
Open Authentication Protocol T. Lodderstedt, Ed.

Internet-Draft Deutsche Telekom AG

Intended status: Standards Track M. McGloin

Expires: October 09, 2011 IBM

P. Hunt

Oracle Corporation

A. Nadalin

Microsoft Corporation

April 07, 2011

OAuth 2.0 Security Considerations

draft-lodderstedt-oauth-securityconsiderations-02

Abstract

This document gives security considerations for the OAuth 2.0 protocol.

The proposed text is intended to be included into [I-D.ietf-oauth-v2].

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on October 09, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as



Web Application

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Definitions

2. Security Considerations

2.1. Client Authentication

2.2. Malicious Client Obtains Authorization

2.3. Access Tokens

2.4. Refresh Tokens

2.5. Token Scope

2.6. Request Confidentiality

2.7. Endpoints Authenticity

2.8. Online Guessing Attacks

2.9. Phishing Attacks

2.10. Authorization Code Disclosure

2.11. Session Fixation

2.12. Resource Owner Password Credentials

3. Acknowledgements

4. References

4.1. Normative References

4.2. Informative References

Authors' Addresses

1. Definitions

This document considers the following clients categories:

Such an application is installed on a server. End-

users access it via a HTML user interface rendered in the user agent

on the end-user's device. All application data relevant to the OAuth

protocol are stored on the server and is not accessible by the user.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*



User Agent-based Application

Native Application

Such an application is downloaded from a

web site and runs within the user agent on the end-user's device.

All application data relevant to the OAuth protocol is accessible by

the user. Since such applications directly reside within the user

agent, they can seamlessly make use of it capabilities in the end-

user authorization process.

Such an app is installed and runs on an end-user's

device. All application data relevant to the OAuth protocol is

accessible by the user. It is assumed that such applications can

protect dynamically issued secrets, such as refresh tokens, from

eavesdropping by other applications residing on the same device.

2. Security Considerations

Note: This section focuses on the security guidelines implementors of

the protocol MUST consider. We encourage readers to consult the more

detailed analysis with additional background information in [I-

D.lodderstedt-oauth-security].

2.1. Client Authentication

Authorization servers MAY issue client secrets to web applications for

the purpose of authenticating them. Authorization servers are

encouraged to consider stronger client authentication means.

Application developers MUST ensure confidentiality of client secrets

and other credentials.

Authorization server MUST NOT issue client secrets to native or user

agent-based applications in general. An authorization server MAY issue

a client secret for an installation of a native application on a

specific device. Alternatively, authorization servers MUST utilize

other means than client authentication to achieve their security

objectives.

2.2. Malicious Client Obtains Authorization

A malicious client could impersonate a valid client and obtain access

to a protected resource.

Assumption: It is not the task of the authorization server to protect

the end-user's device from malicious software. This is the

responsibility of the platform running on the particular device

probably in cooperation with other components of the respective

ecosystem (e.g. an application management infrastructure). The sole

responsibility of the authorization server is to control access to the

end-user's resources living in resource servers and to prevent

unauthorized access to them. Based on this assumption, the following

countermeasures are recommended.

Where the client can be authenticate, the authorization server MUST

authenticate it. If the authorization server cannot authenticate the



particular impersonated client, the authorization server MUST utilize

other means to achieve its security objectives. The authorization

server MAY enforce explicit user authentication or ask the end-user for

consent. In this context, the user SHALL be explained the purpose,

scope, and duration of the authorization. The authorization server MUST

make the meta-data it associates with the particular client (e.g. the

name) available to the end-user. It is up to the user to validate the

binding of this data to the particular application and to approve the

authorization request.

Authorization servers MUST NOT automatically process (without user

interaction) repeated authorizations without authenticating the client.

The authorization server SHOULD require clients to pre-register their

redirect_uri's and validate the actual redirect_uri against the pre-

registered value.

It is higly RECOMMENDED that the authorization server limits the scope

of tokens.

2.3. Access Tokens

Access tokens MUST only be accessible to the authorization server, the

resource servers this token is valid for and the client to whom they

have been issued. The only exception is the implicit grant where the

user agent gets access to the access token that is transmitted in the

URI fragment.

Authorization server as well as application developers MUST ensure

confidentiality of access tokens, on transit and in storage.

Application developers MUST NOT store access tokens in non-transient

memory.

Authorization servers MUST ensure that access tokens cannot be

manufactured, modified, or guessed.

2.4. Refresh Tokens

Authorization servers MAY issue refresh tokens to web and native

applications.

Refresh tokens MUST only be accessible to the authorization server and

the client to whom they have been issued. The authorization server MUST

maintain the link between a refresh token and the client to whom it has

been issued.

Where the client can be authenticated, this relation between client and

refresh token MUST be validated on every token refreshment request. If

this is not possible, it is RECOMMENDED for authorization servers to

implement other means to detect abuse of refresh tokens.

Authorization server as well as application developers MUST ensure

confidentiality of refresh tokens, on transit and in storage.

Authorization servers MUST ensure that refresh tokens cannot be

manufactured, modified, or guessed.



2.5. Token Scope

It is strongly RECOMMENDED that application developers only acquire

access tokens with the minimal scope they need in order to implement

the respective application function.

When obtaining end user authorization and where the client requests

scope, the authorization server MAY want to consider whether to honour

that scope based on who/what the client is and the type of access grant

the client asked for. The resource owner MAY also further restrict the

scope of the access tokens.

2.6. Request Confidentiality

The following security sensitive data elements MUST NOT be transmitted

in clear: access tokens, refresh tokens, resource owner passwords,

authorization codes, and client secrets.

2.7. Endpoints Authenticity

In order to prevent men-in-the-middle and phishing attacks, HTTPS with

server-side authentication MUST be implemented and used by

authorization servers in all exchanges.

For the same purpose, HTTPS with server-side authentication SHOULD/MUST

[note: this is still subject to a WG discussion] be implemented and

used by web application clients at least on their redirect_uri.

Application developers MUST provide mechanisms to validate the

authorization server endpoint's authenticity and ensure proper handling

of CA certificates as well as certificate chain validation.

2.8. Online Guessing Attacks

Authorization servers MUST prevent guessing attacks on the following

credentials: authorization codes, refresh tokens, resource owner

passwords, and client secrets.

When creating token handles or other secrets not intended for usage by

human users, the authorization server MUST include a reasonable level

of entropy in order to mitigate the risk of guessing attacks. When

creating secrets intended for usage by human users, the authorization

server MUST utilize other means to protect those secrets.

2.9. Phishing Attacks

It is strongly RECOMMENDED that native application developers use

external browsers instead of browsers embedded in the application for

performing the end-user authorization process. External browsers offer

a familiar usage experience and a trusted environment, in which users

can confirm the authentictity of the site.

To reduce the risk of phishing attacks, authorization servers MUST

support the authentication of their endpoint. For example, they can

utilize HTTPS server authentication for that purpose. Moreover, service



providers should attempt to educate users about the risks phishing

attacks pose, and should provide mechanisms that make it easy for users

to confirm the authenticity of their sites. e.g. extended validation

certificates.

2.10. Authorization Code Disclosure

Confidentiality of authorization codes MUST be ensured on transport.

Note: Since the code is transmitted via browser redirects, it could

also be disclosed through browser histories and HTTP referers.

The authorization server and the client MUST ensure that the

authorization code transmission is protected by using channel security,

such as TLS, and that the authorization code is short lived.

Where the client can be authenticated, the authorization servers MUST

authenticate the client and validate that the authorization code had

been issued to the same client. If the client cannot be authenticated,

authorization servers MUST enforce one time usage of the authorization

code. Moreover, if an authorization server observes multiple attempts

to redeem an authorization code, the authorization server MAY want to

revoke all tokens granted based on this authorization code.

2.11. Session Fixation

The session fixation attack leverages the authorization code flow in an

attempt to get another user to log-in and authorize access on behalf of

the attacker. The victim, seeing only a normal request from an expected

application, approves the request. The attacker then uses the victim's

authorization to gain access to the information unknowingly authorized

by the victim.

In order to prevent such an attack, authorization servers MUST ensure

that the redirect_uri used in the authorization flow is the same as the

redirect_uri used to exchange the respective authorization code into

tokens. The authorization server operators SHOULD require client

application developers to pre-register their redirect_uri's and

validate the actual redirect_uri against the pre-registered value.

2.12. Resource Owner Password Credentials

The “Resource Owner Password Credentials” grant type is often used for

legacy/migration reasons. It reduces the overall risk of storing

username and password in the client.

It has higher risk than the other OAuth grant types because it

maintains the password anti-pattern. The client could abuse the

password or the password could unintentionally be disclosed on the

client site e.g. through log files. Additionally, because the user does

not have control over the authorization process, clients could acquire

tokens with much broader scope and longer livetime than desired by the

user.



The authorization server MUST ensure the resource owner's control and

transparency with respect to all authorizations issued to clients.

Authorization servers and application developers SHOULD minimize use of

this grant type. Other grant types which facilitate user control and

transparency should be used instead.

The authorization server SHOULD generally restrict the scope of access

tokens issued by this grant type.

3. Acknowledgements

4. References

4.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[I-D.ietf-

oauth-v2]

Hammer-Lahav, E, Recordon, D and D Hardt, "The OAuth

2.0 Authorization Protocol", Internet-Draft draft-

ietf-oauth-v2-22, September 2011.

4.2. Informative References

[I-D.lodderstedt-

oauth-security]

Lodderstedt, T, McGloin, M and P Hunt, "OAuth

2.0 Threat Model and Security Considerations",

Internet-Draft draft-lodderstedt-oauth-

security-01, March 2011.

Authors' Addresses

Dr.-Ing. Torsten Lodderstedt editor Lodderstedt Deutsche Telekom AG

EMail: torsten@lodderstedt.net

Mark McGloin McGloin IBM EMail: mark.mcgloin@ie.ibm.com

Phil Hunt Hunt Oracle Corporation EMail: phil.hunt@yahoo.com

Anthony Nadalin Nadalin Microsoft Corporation EMail: 

tonynad@microsoft.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-ietf-oauth-v2-22
http://tools.ietf.org/html/draft-lodderstedt-oauth-security-01
http://tools.ietf.org/html/draft-lodderstedt-oauth-security-01
mailto:torsten@lodderstedt.net
mailto:mark.mcgloin@ie.ibm.com
mailto:phil.hunt@yahoo.com
mailto:tonynad@microsoft.com

	Abstract
	Requirements Language
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Definitions
	2. Security Considerations
	2.1. Client Authentication
	2.2. Malicious Client Obtains Authorization
	2.3. Access Tokens
	2.4. Refresh Tokens
	2.5. Token Scope
	2.6. Request Confidentiality
	2.7. Endpoints Authenticity
	2.8. Online Guessing Attacks
	2.9. Phishing Attacks
	2.10. Authorization Code Disclosure
	2.11. Session Fixation
	2.12. Resource Owner Password Credentials
	3. Acknowledgements
	4. References
	4.1. Normative References
	4.2. Informative References
	Authors' Addresses

