
Workgroup: Registration Protocols Extensions

Internet-Draft:

draft-loffredo-regext-epp-over-http-02

Published: 13 June 2022

Intended Status: Standards Track

Expires: 15 December 2022

Authors: M. Loffredo

IIT-CNR/Registro.it

L. Luconi Trombacchi

IIT-CNR/Registro.it

M. Martinelli

IIT-CNR/Registro.it

J. Romanowski

NASK/.pl Registry

M. Machnio

NASK/.pl Registry

Extensible Provisioning Protocol (EPP) Mapping over HTTP

Abstract

This document describes how the Extensible Provisioning Protocol

(EPP) is mapped over the Hypertext Transfer Protocol (HTTP). This

mapping requires the use of the Transport Layer Security (TLS)

protocol to protect information exchanged between an EPP client and

an EPP server.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Conventions Used in This Document

2. Reasons behind Using EPP over HTTP

3. Message Exchange

4. Session Management

5. Return Codes

6. Implementation Status

6.1. IIT-CNR/Registro.it EPP Server

6.2. .pl domain Registry (NASK) EPP Server

7. Mapping Considerations

8. IANA Considerations

9. Internationalization Considerations

10. Security Considerations

11. Acknowledgements

12. References

12.1. Normative References

12.2. Informative References

Appendix A. Notes on Load Balancing

Authors' Addresses

1. Introduction

Although the Extensible Provisioning Protocol (EPP) core

specification [RFC5730] does not state the protocol used for the

transit of EPP messages, only the mapping over TCP [RFC5734] has

been standardized thus far. Nevertheless, some EPP implementations

leverage HTTP due to its ease of use and simplicity. This document

describes the reasons behind using HTTP as a substrate for EPP and

how EPP is mapped over HTTP preserving the semantics of commands.

HTTP is defined in some IETF documents according to the versions

currently in use: HTTP/1.1 [RFC9112], HTTP/2 [RFC9113], HTTP/3

[RFC9114]. As the differences among such versions do not affect the

EPP mapping described in this document, hereinafter the version

number is omitted except for presenting the special features in the

underlying layers of the HTTP stack.

Stateful EPP sessions are maintained across HTTP requests through

storing the state in HTTP cookies [RFC6265].

Security services beyond those defined in EPP are provided by the

Transport Layer Security (TLS) protocol [RFC8446] [RFC9155].

¶

¶

¶

¶

¶

1.1. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Reasons behind Using EPP over HTTP

Many web applications and REST APIS are built on top of HTTP. This

is due for a variety of reasons [RFC9205].

HTTP is loosely coupled with the network and provides client-server

cross-platform technology communication. Indeed, since an HTTP

connection is a higher-level abstraction of a network connection,

there is no need to take over all of the lower-level details of

transport protocols. For example, while in TCP the data transmission

between a client and a server starts only after having established a

connection through a 3-way handshake (i.e. SYN, SYN-ACK, ACK), HTTP

uses a one-way communication so that a client can directly issue a

request to a server and then receive a response.

Libraries and frameworks, commonly available on both client and

server sides, save programmers from managing the HTTP connections.

Service providers are only required to process the requests and

return the responses, while consumers need only to send requests and

process responses. Definitively, HTTP ease of use and simplicity

reduces the development time.

Moreover, implementers can leverage the features that are available

in both HTTP and its underlying layers to provide the security

services needed by their applications.

With specific regard to the implementation of EPP over HTTP, some

additional considerations can be made.

HTTP is stateless but not sessionless. This means that, by making an

EPP session untied from the network connection, the EPP

communication over HTTP is more flexible and efficient than over

TCP.

The main reason supporting the usage of EPP over TCP [RFC5734] has

always been its speed. TCP has been significantly faster than HTTP

as HTTP was initially built on top of TCP so that every HTTP request

had to be issued on a new TCP connection. However, subsequent HTTP

¶

¶

¶

¶

¶

¶

¶

versions have been defined over time to increase the protocol speed

and reduce the gap with transport protocols:

Compared to the original HTTP specification, HTTP/1.1 introduced

the "keep-alive" connection by default to enable a request-

response sequence on a single TCP connection without repeating

the connection handshake at each request;

As opposed to HTTP/1.1, which keeps all requests and responses in

plain text format, HTTP/2 defined the binary framing layer to

encapsulate all messages in binary format;

HTTP/3 is based on QUIC transport protocol [RFC9000]. QUIC uses

UDP [RFC768] instead of TCP to exchange packets between the

client and the server. It incorporates TLS whereas HTTP/1.1 and

HTTP/2 define TLS as an add-on. So doing, HTTP/3 can provide a

very quick handshake to establish a secure connection.

From the perspective of moving to the cloud to achieve scalability

and cost reduction, it should be further noted that application

protocols that aren't based on HTTP can be hardly migrated by using

cloud-native features, on both client and server sides. In addition,

from the security point of view, registries would be limited in

terms of the third-party security services available to protect

their EPP servers.

Finally, some considerations should be done about load balancing

which is generally used by EPP operators to distribute the requests

across a pool of servers and, consequently, provide an efficient

domain registration and maintenance service. While HTTP load

balancers are very common and are quite often software, TCP load

balancers are usually implemented in dedicated hardware. In

addition, HTTP load balancers don't merely forward the traffic but

can make high-level routing decisions based on the message content.

With regard to the performance, although HTTP load balancers do more

work, their throughput is evaluated considerably fast.

Additional notes on how EPP sessions can be managed in HTTP load

balancing are included in Appendix A.

3. Message Exchange

EPP describes client-server interaction as a command-response

exchange where the client sends one command to the server and the

server returns one response to the client. A client MUST use the

POST method (Section 3.3 of [RFC7231]) to issue an EPP command

through the request body. A server receiving a request MUST return

an EPP message in the response body using the "Content-Length"

entity-header field to indicate the length in decimal number of

OCTETs of the entity-body. No EPP message information MUST be issued

¶

*

¶

*

¶

*

¶

¶

¶

¶

through any other part of the request or the response. If the HTTP

connection is closed after a server receives and successfully

processes a command but before the response can be returned to the

client, the server MAY attempt to undo the effects of the command to

ensure a consistent state between the client and the server.

Commands MUST be processed independently and in the same order as

received from the server. An EPP client MAY issue multiple EPP

commands to an EPP server on an HTTP connection by relying on the

HTTP keep-alive capability. A server SHOULD limit a client to a

maximum number of HTTP connections based on server capabilities and

operational load.

A client might be able to realize a slight performance gain by

pipelining the requests, but this feature does not change the basic

single command, single response operating mode of the EPP protocol.

A server SHOULD limit the amount of time required for a client to

issue a well-formed EPP command and, consequently close an open HTTP

connection.

4. Session Management

The EPP session is implemented by using the mechanism described in

[RFC6265]. An EPP session is started by the client issuing an EPP

<login> command. A server receiving an EPP <login> command MUST use

the "Set-Cookie" response header to send the client a token that the

client will return in future requests within the scope of the EPP

session. For example (Figure 1), the server can send the client a

"session identifier" (a.k.a "session ID") named SID. The client then

returns the session ID in the "Cookie" header of the subsequent

requests.

Figure 1

The name of the cookie attribute identifying the session ID is not

relevant and depends on the implementations. Examples of the names

that some programming languages use to represent the session ID

include JSESSIONID (Java EE), PHPSESSID (PHP), and ASPSESSIONID

(Microsoft ASP).

¶

¶

¶

¶

 == Server -> Client ==

 Set-Cookie: SID=52ceb07c2a824f09a1c6f9c45574097d

 == Client -> Server ==

 Cookie: SID=52ceb07c2a824f09a1c6f9c45574097d

¶

An EPP session is ended by the client issuing an EPP <logout>

command. A server receiving an EPP <logout> command MUST end the EPP

session invalidating it after having issued the <logout> response.

A client MAY open multiple EPP sessions and distribute commands from

a single EPP session over multiple HTTP connections. A server SHOULD

limit a client to a maximum number of EPP sessions based on server

capabilities and operational load.

EPP sessions that are inactive for more than a server-defined period

MAY be ended by a server invalidating the session.

Clients MAY issue the <hello> command outside an EPP session. In

such a case, servers MUST return the <greeting> response without

starting a session. To accomplish this, a server MAY return no

cookie at all or provide the client with an expired cookie so that

it cannot be used for further communication with the server. Clients

MAY also issue the <hello> command within an EPP session to keep it

alive.

The mechanism implemented by a server to maintain the relationship

between a session and the EPP information negotiated with the client

through the <login> command (e.g. the language, the namespace URIs

representing both the objects and the extensions to be managed

during the session) is out of the scope of this document.

The state machine described in Section 2 of [RFC5730] is updated as

shown in Figure 2.

¶

¶

¶

¶

¶

¶

Figure 2

 |

 V

 +-----------------+ <hello> +-----------------+

 | Waiting for |----------------->| Prepare |

 | Client |<-----------------| Greeting |

 +-----------------+ Send +-----------------+

 ^ | ^ | Greeting

 | | | |

 | | | | Other command +-----------------+

 | | | +------------------>| Prepare |

 | | +---------------------| Fail Response |

 | | Send 2002 Response +-----------------+

 | |

 Send 2200 | +-------------------------------+

 Response | +---------------+ |

 +-------| Prepare Auth | | <login>

 | Fail Response | |

 +---------------+ V

 +-----------------+ ^ +-----------------+

 | End | | | Processing |

 | Session | +---------| <login> |

 +-----------------+ Auth Fail +-----------------+

 ^ ^ |

 | | Timeout | Auth OK

 | +-------------------------------+ | Start

 | | | Session

 | | V

 | +-----------------+ <hello> +-----------------+

 | | Prepare |<----------| Waiting for |

 | | Greeting |---------->| Command or |

 | +-----------------+ Send | <hello> or |

 | Greeting | <logout> |

 | Send 1500 +-----------------+

 | Response | ^ |

 +-----------------+ | | |

 | Processing | <logout> | | |

 | <logout> |<--------------------+ | | Command

 +-----------------+ | | Received

 +-----------------+ Send | |

 | Prepare | Response | |

 | Response |----------+ |

 +-----------------+ V

 ^ +-----------------+

 Command | | Processing |

 Processed +----------| Command |

 +-----------------+

5. Return Codes

Servers MUST NOT use HTTP return codes to signal clients about the

failure of the EPP commands. The HTTP code 200 MUST be used for both

successful and unsuccessful EPP requests. Servers MUST use HTTP

codes to signal clients about the failure of the HTTP requests.

Servers MUST return a 2002 response (i.e. Command use error) if the

client issues an EPP command other than the <hello> and the <login>

commands through HTTP requests including either an empty or an

invalid session ID. Servers receiving a <login> command through an

HTTP request including a session ID MAY return a 2002 response (i.e.

Command use error) or simply ignore the incoming session ID.

6. Implementation Status

NOTE: Please remove this section and the reference to RFC 7942 prior

to publication as an RFC.

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this Internet-Draft, and is based on a proposal described in

[RFC7942]. The description of implementations in this section is

intended to assist the IETF in its decision processes in progressing

drafts to RFCs. Please note that the listing of any individual

implementation here does not imply endorsement by the IETF.

Furthermore, no effort has been spent to verify the information

presented here that was supplied by IETF contributors. This is not

intended as, and must not be construed to be, a catalog of available

implementations or their features. Readers are advised to note that

other implementations may exist.

According to RFC 7942, "this will allow reviewers and working groups

to assign due consideration to documents that have the benefit of

running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

6.1. IIT-CNR/Registro.it EPP Server

Responsible Organization: Institute of Informatics and Telematics

of National Research Council (IIT-CNR)/Registro.it

Location: https://epp.nic.it/ EPP endpoint available only "per IP

address" basis.

Description: The .it EPP server is deployed on WildFly

Application Server. TLS versions supported are 1.2 and 1.3. Load

balancing is implemented with NGINX. EPP sessions are maintained

on a Redis cluster.

Level of Maturity: This is a live implementation.

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

Coverage: This implementation includes all of the features

described in this specification except for the media type that is

currently set to "text/xml".

Contact Information: Mario Loffredo, mario.loffredo@iit.cnr.it

6.2. .pl domain Registry (NASK) EPP Server

Responsible Organization: .pl domain Registry (NASK)/dns.pl

Location: https://dns.pl EPP endpoint available only "per IP

address" basis.

Description: It is an implementation of the EPP protocol that is

used by .pl Registry.

Level of Maturity: This is a live implementation.

Coverage: This implementation includes all of the features

described in this specification.

Contact Information: Marcin Machnio, info@dns.pl

7. Mapping Considerations

Section 2.1 of the EPP core specification [RFC5730] describes

considerations to be addressed by the transport protocol mappings.

HTTP is commonly intended as a Layer 7 stateless protocol that can

be used as a substrate for web applications and REST APIs. Despite

those considerations have explicitly been defined for Layer 4

protocols, some of them are addressed by this document using a

combination of features defined by this mapping and features

provided by HTTP as follows:

Section 3.9.3 of [RFC8095] includes features to provide

reliability, flow control, ordered delivery, and congestion

control of HTTP over TCP. Analogous features implemented by QUIC

are described in [RFC9000].

Section 3 and Section 4 of this document describe how the

stateful nature of EPP is preserved through controlled message

exchanges and managed sessions.

Section 3 of this document notes that command pipelining is

possible with HTTP, though batch-oriented processing (combining

multiple EPP commands in a single HTTP request) is not permitted.

8. IANA Considerations

This document has no actions for IANA.

9. Internationalization Considerations

Servers MUST use the "charset" attribute in the HTTP "Content-Type"

response header field to specify the UTF-8 character encoding (e.g.

Content-Type: application/epp+xml; charset=UTF-8).

*

¶

* ¶

* ¶

*

¶

*

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

¶

¶

10. Security Considerations

Since clients credentials are included in the EPP <login> command,

the HTTP over TLS [RFC8740] MUST be used to protect them from

disclosure while in transit. As well, the transfer over TLS prevents

from sniffing the session ID and, consequently, impersonating a

client to perform actions on registrars' objects. Servers are

REQUIRED to support TLS 1.2 [RFC8446][RFC9155] or higher.

Anyway, servers are RECOMMENDED to implement additional measures to

verify the client. These measures include IP whitelisting and

locking the session ID to the client's IP address.

As a further measure to enforce the security, servers SHOULD require

clients to present a digital certificate. Clients who possess and

present a valid X.509 digital certificate, issued by a recognized

Certification Authority (CA), could be identified and authenticated

by a server who trusts the corresponding CA. This certificate-based

mechanism is supported by HTTPS and can be used with EPP over HTTP.

About sessions, session IDs SHOULD be randomly generated to mitigate

the risk of obtaining a valid one through a brute-force search. A

session ID SHOULD be at least 128 bits or 16 bytes long. An example

of a reliable session ID is the Universally Unique Identifier

(UUID). Servers MAY limit the lifetime of active sessions to avoid

them being exchanged for a long time.

The following measures MAY also be taken to control cookies usage:

restricting their scope through the "Domain" and "Path"

attributes;

limiting their lifetime through the "Max-Age" and "Expire"

attributes.

Other attributes that are normally used to secure the cookies and

prevent them to be accessed by unintended parties or scripts, such

as "HttpOnly" and "Secure", are meaningless in this context.

Finally, servers are RECOMMENDED to perform additional checks to

limit the rate of open EPP sessions and HTTP connections to mitigate

the risk of congestion of requests. Here again, IP whitelisting

could also be implemented to prevent DDoS attacks.

If the EPP server is configured as a load balancer routing the

requests to a pool of backend servers, some of the aforementioned

checks SHOULD be implemented on the load balancer side.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

[RFC2119]

[RFC3470]

[RFC5730]

[RFC6265]

[RFC6839]

[RFC7231]

[RFC7942]

[RFC8095]

11. Acknowledgements

The authors would like to acknowledge the following individuals for

their contributions to this document: Cristian Lucchesi, Stefano

Ruberti, Luca Vasarelli, Roberto Ravazzolo from IIT-CNR/Registro.it

and Adrian Prokop, Sławomir Mateuszczyk from NASK/.pl Registry.

12. References

12.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Hollenbeck, S., Rose, M., and L. Masinter, "Guidelines

for the Use of Extensible Markup Language (XML) within

IETF Protocols", BCP 70, RFC 3470, DOI 10.17487/RFC3470,

January 2003, <https://www.rfc-editor.org/info/rfc3470>.

Hollenbeck, S., "Extensible Provisioning Protocol (EPP)",

STD 69, RFC 5730, DOI 10.17487/RFC5730, August 2009,

<https://www.rfc-editor.org/info/rfc5730>.

Barth, A., "HTTP State Management Mechanism", RFC 6265,

DOI 10.17487/RFC6265, April 2011, <https://www.rfc-

editor.org/info/rfc6265>.

Hansen, T. and A. Melnikov, "Additional Media Type

Structured Syntax Suffixes", RFC 6839, DOI 10.17487/

RFC6839, January 2013, <https://www.rfc-editor.org/info/

rfc6839>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Fairhurst, G., Ed., Trammell, B., Ed., and M. Kuehlewind,

Ed., "Services Provided by IETF Transport Protocols and

Congestion Control Mechanisms", RFC 8095, DOI 10.17487/

RFC8095, March 2017, <https://www.rfc-editor.org/info/

rfc8095>.

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3470
https://www.rfc-editor.org/info/rfc5730
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://www.rfc-editor.org/info/rfc6839
https://www.rfc-editor.org/info/rfc6839
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8095
https://www.rfc-editor.org/info/rfc8095

[RFC8174]

[RFC8446]

[RFC8740]

[RFC9000]

[RFC9112]

[RFC9113]

[RFC9114]

[RFC9155]

[RFC5734]

[RFC768]

[RFC9205]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Benjamin, D., "Using TLS 1.3 with HTTP/2", RFC 8740, DOI

10.17487/RFC8740, February 2020, <https://www.rfc-

editor.org/info/rfc8740>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

info/rfc9000>.

Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,

Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,

June 2022, <https://www.rfc-editor.org/info/rfc9112>.

Thomson, M., Ed. and C. Benfield, Ed., "HTTP/2", RFC

9113, DOI 10.17487/RFC9113, June 2022, <https://www.rfc-

editor.org/info/rfc9113>.

Bishop, M., Ed., "HTTP/3", RFC 9114, DOI 10.17487/

RFC9114, June 2022, <https://www.rfc-editor.org/info/

rfc9114>.

Velvindron, L., Moriarty, K., and A. Ghedini,

"Deprecating MD5 and SHA-1 Signature Hashes in TLS 1.2

and DTLS 1.2", RFC 9155, DOI 10.17487/RFC9155, December

2021, <https://www.rfc-editor.org/info/rfc9155>.

12.2. Informative References

Hollenbeck, S., "Extensible Provisioning Protocol (EPP)

Transport over TCP", STD 69, RFC 5734, DOI 10.17487/

RFC5734, August 2009, <https://www.rfc-editor.org/info/

rfc5734>.

Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI

10.17487/RFC0768, August 1980, <https://www.rfc-

editor.org/info/rfc768>.

Nottingham, M., "Building Protocols with HTTP", BCP 56,

RFC 9205, DOI 10.17487/RFC9205, June 2022, <https://

www.rfc-editor.org/info/rfc9205>.

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8740
https://www.rfc-editor.org/info/rfc8740
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9000
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9114
https://www.rfc-editor.org/info/rfc9155
https://www.rfc-editor.org/info/rfc5734
https://www.rfc-editor.org/info/rfc5734
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc9205
https://www.rfc-editor.org/info/rfc9205

Appendix A. Notes on Load Balancing

An EPP server should be able to serve a large number of concurrent

requests from clients and return the responses in a fast and

reliable manner. In addition, since EPP is extensible, EPP servers

might be updated and the replacement of an EPP server with a new

version should take place per the service level agreement negotiated

between the registry and the registrars. To cost‑effectively scale

high volumes of requests and redeploy a server without affecting its

functioning, best practice in providing a software service generally

requires using load balancing. This section presents two possible

approaches to the implementation of a HTTP load balancing solution

for an EPP server.

An EPP server made up of a server pool must always operate with

respect to the constraint that, once an EPP session is established,

all the requests related to that session should be processed by the

servers in the pool as long as the session is alive.

One possible approach is using sticky sessions. In this case, the

load balancer assigns an identifier to each client issuing a

request. Then, according to such identifier, the load balancer can

route all of the requests of a given client to the backend server

that started the session for its entire duration. This approach

requires each backend server to maintain the EPP information

connected to the sessions opened by that server. This means that

when a backend server is stopped and then restarted after its

update, all the sessions currently active and managed by that server

are lost.

A more efficient solution consists in releasing the sessions from

the server pool. According to this approach, every session is stored

somewhere outside the server pool. The load balancer distributes the

request based on the load of each backend server and according to a

specific algorithm. When a server receives a request, it first

retrieves the session information by the session ID and, if any,

processes the request. Sessions are normally stored in a cluster of

NO-SQL databases so that performance and efficiency requirements are

fulfilled. In this approach, only the ongoing requests are lost when

a backend server is stopped and restarted. Moreover, maintaining the

sessions on a persistent data storage results in supporting a

virtually unlimited number of concurrent sessions.

Authors' Addresses

Mario Loffredo

IIT-CNR/Registro.it

Via Moruzzi,1

56124 Pisa

¶

¶

¶

¶

Italy

Email: mario.loffredo@iit.cnr.it

URI: https://www.iit.cnr.it

Lorenzo Luconi Trombacchi

IIT-CNR/Registro.it

Via Moruzzi,1

56124 Pisa

Italy

Email: lorenzo.luconi@iit.cnr.it

URI: https://www.iit.cnr.it

Maurizio Martinelli

IIT-CNR/Registro.it

Via Moruzzi,1

56124 Pisa

Italy

Email: maurizio.martinelli@iit.cnr.it

URI: https://www.iit.cnr.it

Jan Romanowski

NASK/.pl Registry

Kolska 12

01-045 Warszawa

Poland

Email: jan.romanowski@nask.pl

URI: https://www.dns.pl/

Marcin Machnio

NASK/.pl Registry

Kolska 12

01-045 Warszawa

Poland

Email: info@dns.pl

URI: https://www.dns.pl/

mailto:mario.loffredo@iit.cnr.it
https://www.iit.cnr.it
mailto:lorenzo.luconi@iit.cnr.it
https://www.iit.cnr.it
mailto:maurizio.martinelli@iit.cnr.it
https://www.iit.cnr.it
mailto:jan.romanowski@nask.pl
https://www.dns.pl/
mailto:info@dns.pl
https://www.dns.pl/

	Extensible Provisioning Protocol (EPP) Mapping over HTTP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions Used in This Document

	2. Reasons behind Using EPP over HTTP
	3. Message Exchange
	4. Session Management
	5. Return Codes
	6. Implementation Status
	6.1. IIT-CNR/Registro.it EPP Server
	6.2. .pl domain Registry (NASK) EPP Server

	7. Mapping Considerations
	8. IANA Considerations
	9. Internationalization Considerations
	10. Security Considerations
	11. Acknowledgements
	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. Notes on Load Balancing
	Authors' Addresses

