
 Internet-Draft B. Long
draft-long-external-obj-lang-01.txt
 April 29, 1997
 Expires October 29, 1997

XODL: External Object Description Language

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are
 working documents of the Internet Engineering Task Force
 (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum
 of six months and may be updated, replaced, or obsoleted
 by other documents at any time. It is inappropriate to
 use Internet-Drafts as reference material or to cite them
 other than as "work in progress."

 To learn the current status of any Internet-Draft, please
 check the "1id-abstracts.txt" listing contained in the
 Internet-Drafts Shadow Directories on ftp.is.co.za
 (Africa),nic.nordu.net (Europe), munnari.oz.au (Pacific
 Rim),ds.internic.net (US East Coast), or ftp.isi.edu (US
 West Coast).

ABSTRACT

 This document describes a data structure (XODL: Object
 Description Language) and an associated method which,
 together, provide a means of representing situations or
 types of situations. It can thus be used to represent
 objects, events, or systems of objects and events or
 types of objects, events or systems. Objects represented
 can be computer data objects ("stack", "word processor",
 "user interface", etc.) or "real" objects such as
 computers, networks, users, and so on.

Table of Contents

 1 INTRODUCTION
 2 THE XODL SPECIFICATION
 2.1 Informal Discussion of XODL
 2.1.1 Introduction to XODL Names
 2.2 The Formal Specification
 2.2.1 Notational Conventions

Long [Page 1]

https://datatracker.ietf.org/doc/html/draft-long-external-obj-lang-01.txt

Internet-Draft External Object Description Language April 1997

 2.2.2 StatementLists
 2.2.3 RelationStmts
 2.2.4 InfoRefs
 2.2.5 Names
 2.2.6 Representing Types
 3 AVAILABLES: NAMES OF AVAILABLE INFORMATION
 3.1 Typing ConstantInfos
 4 EXAMPLES
 4.1 Enumerations
 4.2 Records and Type-Definitions
 4.3 Unions, Multiple-Option Types
 4.4 Indexing
 4.5 Numbers, Encapsulation and Inheritance
 4.6 Functions
 4.7 Syntax for Particular Numbers
 4.8 Polymorphism
 4.9 Arrays and Complex References
 4.10 Representing Complex Byte Arrays
 5 Interpreting XODL
 5.1 How Do XODL Interpreters Solve Problems?
 5.2 A Simple Example
 5.3 Internal Problems
 5.4 Availables Revisited
 5.5 An Example
 6 REFERENCES
 7 SECURITY CONSIDERATIONS
 8 AUTHOR'S ADDRESS

1. INTRODUCTION

 XODL provides a method of representing situations by
 representing the different ways information can flow or
 otherwise be structured. For example, one situation type
 is where a stack data structure exists. Such a situation
 is characterized in XODL by the way information is
 structured; for example, in a stack, the first
 information "in" is the last information to come "out."
 Of course that simple description is merely suggestive,
 but much more complex situations can be well described
 with XODL.

 XODL can describe things done by programs, but the
 descriptions in XODL are not programs. That is, they are
 not a list of steps which must be done to produce
 results. Rather, an XODL description provides a way of
 formally communicating specifications of what resources
 are available and how to use them, or of communicating
 what resources are desired.

Long [Page 2]

Internet-Draft External Object Description Language April 1997

 XODL interprets the world as if everything in it were
 pure information. So it may seem at first that only
 "computer objects" like stacks or user interfaces could
 be described. However, since physical objects can be
 simulated, that is, since they can be modeled in terms of
 information structures, XODL can also describe physical
 objects such as computers and modems, or even photons and
 molecules, bank accounts and governments.

2. THE XODL SPECIFICATION

 This section describes the XODL language. First, a
 brief, informal discussion is given. Next, a formal
 specification of the syntax and semantics for XODL will
 be given. Though XODL is presented here as a language,
 it is just as importantly a data structure. That is,
 when it is readable by humans it is in the form of a
 language with a syntax using the ASCII character set, but
 when it is being used by a computer it is in the form of
 a data structure. Thus, instead of a syntax
 specification, a data description would do just as well.
 It is important to keep this in mind, as references to
 XODL as a data structure will be made as easily as
 references to it as a language.

 After each syntax specification in the formal section, a
 discussion of the semantics will be given. Some of the
 semantics will be presented as comments in examples.
 Parts of this specification were taken from a thesis by
 Bruce Long for Colorado State University [1].

2.1. Informal Discussion of XODL

 XODL code consists of a list of statements called a
 StatementList. Each statement is called a RelationStmt.
 A RelationStmt either asserts or denies that two or more
 pieces of information are identical to each other. A
 single RelationStmt may imply one or thousands of
 identities or non-identities. If two pieces of
 information are identical they can be substituted for
 each other in any other RelationStmt context. Pieces of
 information can be constants (7638 or "hello") or names
 of information (<PersonRec>). Sometimes groups of
 information pieces can act as a single piece. In such a
 case, the pieces or names of pieces are enclosed in
 braces: {<Name>, <Address>, <Age>}. A reference to
 information in the form of a constant, name or group is
 called an InfoRef. The important parts of XODL are

Long [Page 3]

Internet-Draft External Object Description Language April 1997

 StatementLists, RelationStmts, InfoRefs, names, and
 constants.

 Here is a sample StatementList:

 StatementList Sample1;;
 (<A> ==);
 (<A> != <C>);
 (<A> == 8476);
 (<C> == ~EmpRec:Ed Hoolan, 132 Oak St., age 28);
 ([(A==B)] == [(C==D)]);
 (<D> == {<e>, <f>, <g>});
 # MainNet|<TcpIp_net>; //MainNet is a TCP/IP net.
 EndList

2.1.1. Introduction to XODL Names

 Names in XODL can be used to refer to a huge variety of
 information pieces and resources: Bytes, bits, records,
 files, disk drives, disks, computers, users, even such
 things as sums and integrals. Further, the need arises
 in XODL for names which refer to other names. The needs
 of XODL require a powerful naming scheme which is not
 satisfied by naming schemes such as those for URLs or
 OLE2 Monikers. For example, in XODL it is necessary to
 have names embedded in "parent" names, and to have a sort
 of "wild card" in segments of a name other than the last
 segment. So, for example, there might be a name which
 would mean the same as something like
 "C:\(PRG_PATH)*\help.txt", where (PRG_Path) is the name
 of a path, and the segment with the "*" means "everything
 here". The example pathname just given is NOT in the
 syntax of XODL; it is merely an example of the problems
 the naming scheme in XODL attempts to solve.

 The complete syntax of XODL names will be given later.
 However, a brief primer will be given here. Names in
 XODL are enclosed in angle brackets, and they consist of
 segments separated by a slash ('/' or '\') or a dot.
 Whether a dot or slash is used is important. Thus,
 <Desktop/CDrive/games> is different from
 <Desktop/CDrive.games>. The dot separators are generally
 used to refer to items related to the "slash" names. For
 example we might have <Desktop/CDrive.FreeSpace> which
 would not be a file, but probably a number. Names can
 also be embedded in other names. For example:
 <<CurrentUser>/BankAccount.Balance>. There is also a
 method of referring to many items at once (like a complex

Long [Page 4]

Internet-Draft External Object Description Language April 1997

 wild card), and a method of referring to name segments
 themselves. These will be presented in detail in the
 formal specification. Lastly, adding a new segment to a
 name does not mean a folder or directory is being
 referenced as in common OS's. It MAY mean that, but it
 does not have to. Thus, <A/B> may not be related in any
 way to <A> (though it probably is).

2.2. The Formal Specification

2.2.1. Notational Conventions

 The following (modified Back-Naur) notation will be used
 to specify syntax:

 (1) Terminal symbols are enclosed in double quotes.
 (2) Non-terminal symbols are alphanumeric or '_'.
 (3) Alternative items are separated by '|'.
 (4) Items are grouped by enclosing them in parentheses.
 (5) Items followed by '!' are optional.
 (6) Items followed by '*' can occur zero or more times.
 (7) Some items will be explained in English.
 (8) Comments are between "//" and the end of the line.
 (9) Whitespace is only a separator.
 (10) Case is unimportant.
 (11) Parameters to an item are in parentheses.
 (See the definition of NameOf.)

2.2.2. StatementLists

 GENERAL NOTES: The start symbol is StatementList. When a
 StatementList is being read, whitespace is ignored. Also
 comments can be added to any line by using a double
 slash. Comments extend to the end of the line the
 comment is on.

 StatementList:
 "StatementList"
 DatabaseID ! ";"
 UsesClause ! ";"
 (RelationStmt ";") *
 ("ShortCuts:" (RelationStmt ";")*)!
 "EndList"

 DataBaseID:
 The DatabaseID is used to identify the statements to

Long [Page 5]

Internet-Draft External Object Description Language April 1997

 follow. It is not yet formally defined; however, it
 will have at least a name, a version identifier, and
 a date. In this way, new versions and extended
 versions can be identified. The DatabaseID is used
 in conjunction with the UsesClause.

 UsesClause:
 The UsesClause, also not yet formally defined,
 identifies other StatementLists which will be
 referred to in the current one. Thus, a
 StatementList about a certain protocol might have the
 UsesClause "Uses TCPIP" where "TCPIP" is the
 DatabaseID of another StatementList.

 SEMANTICS: The tokens "StatementList" and "EndList"
 identify the start and end of a StatementList.

 The RelationStmts before the optional token "Shortcuts"
 are the main statements. Those after it are called
 "shortcuts." Shortcuts are statements that hold if the
 statements above them hold; the shortcuts could be
 inferred from the regular statements. They are analogous
 to theorems in mathematics. The shortcuts are used to
 decrease the amount of time it takes to find a solution
 to an information structure problem.

2.2.3. RelationStmts

 RelationStmt:
 "(" InfoRef "==" InfoRef ("==" InfoRef)* ")"
 | "(" MajorTermList "!=" MinorTermList ")"
 | "{" (RelationStmt ";")* "}"
 | "#" NamePart ("," InfoRef)* "|" RelationStmt
 | NameOf(RelationStmt)

 MajorTermList, MinorTermList:
 InfoRef ("," InfoRef)*

 SEMANTICS: RelationStmts can assert either that some
 InfoRefs are identical, or not identical to each other.
 More will be said about what that means later. The first
 form of RelationStmt asserts that two or more InfoRefs

Long [Page 6]

Internet-Draft External Object Description Language April 1997

 are identical to each other. That is, they can be
 substituted for each other. The second form asserts that
 two or more InfoRefs are not identical to each other
 according to the following rule: Each InfoRef in the
 MajorTermList is asserted to be not identical to 1) every
 other MajorTerm, and 2) to every MinorTerm. MinorTerms
 may or may not be identical or not identical to each
 other. The third form of RelationStmt allows a group of
 RelationStmts to be asserted as if they were a single
 RelationStmt. Each RelationStmt in the curly braces ends
 with a semicolon. While the semicolon is not necessary
 in the syntax (the end of RelationStmts can be determined
 without it), I have found that it is a useful visual aid
 in seeing the end of a RelationStmt.

 In addition to the RelationStmts explicitly asserted, it
 is assumed that InfoRefs in different StatementLists are
 not identical to each other, unless it is explicitly
 stated that they are.

 The fourth type of RelationStmt will be explained later,
 after InfoRefs and Names have been explained. It allows
 for the easy application of universals. That is, it
 allows types to be instantiated.

 Lastly, as with any type of information, a RelationStmt
 can be given a name, and that name can then be used in
 any context in which the actual RelationStmt can be.

 It will be important to explain exactly what is meant by
 identity and non-identity. But this is better done after
 more of the formal aspects are taken care of. Following
 is an example of the RelationStmts just described. It is
 a valid StatementList.

 Notice that the following example is in XODL, not in the
 syntax language. That means the quotes have a different
 meaning which will be explained shortly.

 StatementList Example:

 StatementList Example1; ; // No UsesClause is needed.
 (1, 2, 3 != 4); // These pieces of information
 // are not identical to each other.
 (1 == "one" == "I"); // These are identical.
 (2 == "two" == "II" == "**");
 (4 == "IV");
 ("IV" != 3); // "IV" is not the same information

Long [Page 7]

Internet-Draft External Object Description Language April 1997

 // as 3.
 {
 (<Mars> != <Saturn>);
 (<EveningStar> == <MorningStar>);
 }; // These two RelationStmts act as one complex one.

 EndList

2.2.4. InfoRefs

 InfoRef:
 ConstantInfo
 | "{" InfoRef ("," InfoRef)* "}"
 | NameOf(InfoRef)

 SimpleInfoRef:
 ConstantInfo
 | NameOf(SimpleInfoRef)

 ConstantInfo is defined formally below. ConstantInfo is
 what all InfoRefs eventually terminate in. Or at least
 it is what they ideally terminate in; information may not
 be available. For example, I can refer to the reader's
 shoe size, but I may not be able to access that
 information. ConstantInfo is actual information. For
 example: "Hello", or 1273.

 If an InfoRef is not ConstantInfo, it might be the name
 of such information. E.g., <C:/wp/data.doc>. But notice
 that an InfoRef can be the name of any InfoRef type.
 This means that an InfoRef might be the name of a name of
 a name of some ConstantInfo.

 Alternatively, there is the notation { a, b, c }. This
 is a very important feature of the notation. What it
 means is that all the InfoRefs in the curly braces are to
 be considered together to count as one single piece of
 information. Some examples will be given after the
 definition of ConstantInfo.

 Note: The following definitions contain some English.

Long [Page 8]

Internet-Draft External Object Description Language April 1997

 ConstantInfo:
 "'" (Single Quote Delimited Information) "'"
 | """ (Double Quote Delimited Information) """
 | "~" Number ":" (Length Delimited Information)
 | "~" TypeID ":" (Type Delimited Information)
 | (Default Delimited Information)
 | (Token Delimited Information)

 Number:
 A string of numeric digits terminated by a nondigit.

 TypeID: Token

 Token:
 A case insensitive string of alphanumeric or "_"
 characters terminated by a non-alphanumeric-"_"
 character.

 SEMANTICS: ConstantInfo is actual information. Many of
 the examples of InfoRefs given so far have been
 ConstantInfo.

 Examples of each one in the order they were listed:
 'Hello There!'
 "1256"
 ~5:abcde
 ~AddressRec:1336 Chambers St., Boulder, CO 80303
 [34,65, (2+3)]
 Bruce

 There are so many different ways of giving ConstantInfo
 because there are many different needs. Semantically,
 they are all equivalent. (In fact, once the algorithm I
 have written loads them from a file, it does not even use
 the information about which type was given.) But there
 are pros and cons to each one. Single quoted information
 is read until another single quote is found. So if a
 word in the quotes contains an apostrophe, a problem will
 occur. For example, 'Bob, don't do that' will be read as
 'Bob, don'. Double quotes have a similar problem, but
 for information which includes double quotes. An
 alternative for information which may contain both types
 of quote is to use tacit length delimited information. A
 "~" marks that either tacit length delimited information
 or type delimited information follows. If a number comes
 next, then that number is interpreted as the number of

Long [Page 9]

Internet-Draft External Object Description Language April 1997

 characters to read as ConstantInfo. Otherwise, a TypeID
 will tell what type of information follows. The type
 must have been defined via the language, with a TypeID
 telling the name of a RelationStmt that defines it.

 Often, the program will know ahead of time what type of
 information is being given as ConstantInfo due to a
 default type that has been defined. As long as whoever
 defined the type took care to ensure that the end of the
 information stream can be formally identified by the
 system, this information can be given without any
 delimiting symbols at all. If such care has not been
 taken, the system may think that characters following the
 ConstantInfo are part of it.

 Token delimited information is where a single token is
 held to be the information in question. This is handy
 for simple items such as names or numbers. Thus, "Hello"
 and Hello (without the quotes) will be semantically
 equivalent as an InfoRef. Note that since tokens are
 terminated by certain characters, "Hello There" and Hello
 There (no quotes) are not equivalent. The second one
 would be read as "Hello", and the "There" would be a
 syntax error.

 A note about tacit length delimited information: anywhere
 else in the notation, numbers can be used only after they
 have been defined, that is, when a StatementList is
 written which defines numbers and is included in the
 UsesClause. In the current case, however, the numbers
 are defined tacitly. This means that expressions and
 functions cannot be used to specify length. Only a
 series of digits is allowed, and they will be read as a
 single base ten number.

 SPECIAL INFOREF CONSTANT-INFORMATION

 In actual use of the language, many different types of
 information will be defined and referred to. There is
 one special case of information which is recognized
 without being defined within the language. It is hard
 wired into the language. The information is named by
 names of the form: <IsKnown/%RelationStmt> where the
 %RelationStmt is some RelationStmt. The name refers to
 "Known" if the RelationStmt is implied by the
 StatementLists asserted; otherwise, it refers to
 "NotKnown". Because this will be used so often, and it
 is hard to read in some cases, the format "["

Long [Page 10]

Internet-Draft External Object Description Language April 1997

 RelationStmt "]" where the RelationStmt is enclosed in
 brackets will be recognized as well.

 EXAMPLES USING INFOREFS

 // This says: Something, <PersonRec>, is divided into two
 // non-overlapping parts (<name> and <address>):
 { (<PersonRec> == {<name>, <address>});
 (<name> != <address>); };

 // Something (A) is divided into two parts (B and C)
 // which overlap (a union).
 // The overlapping part is D, while the non overlapping
 // parts are BO and CO:
 { (<A> == {<BO>, <CO>, <D>}); // A is composed of these
 // three parts.
 (<BO>, <CO> != <D>); // They are all three
 // separate parts.
 (== {<BO>, <D> }); // B is composed of DO
 // and D.
 (<C> == {<CO>, <D> }); // C is composed of CO // and D.
 } ;

 // The amount of cash is $56.23: (<Cash> == "$56.23");

 // The President is Ed Smith (<President> == <"Ed Smith">);

 // A three digit number (N) is "123" (said in a hard way)
 // This does not say that N is a number; that would be more
 // complex.
 (<N> == {<Digit1>, <Digit2>, <Digit3>});
 (<Digit1> == 1); (<Digit2> == 2);
 (<Digit3> == 3);

 // The information that X is zero is not the information
 // that X isone:

 ([X==zero] != [X==one]);

2.2.5. Names

 In order for this notation to work, the names used in it
 must meet several requirements. Neither URL's,
 PathNames, nor ActiveX monikers meet the requirements.
 Therefore, the naming system used in this notation is
 somewhat different. However, the notation could be used
 to define the syntax and semantics of other types of
 names, and then they could be used in XODL. They could

Long [Page 11]

Internet-Draft External Object Description Language April 1997

 be made to fit the syntax defined here by looking like
 this:
 <"http://www.bob.com/index.html">.

 Following is the syntax for names:

 NameOf(TypeID):
 // The parameter "TypeID" is used to identify what type
 // will be expected. But it is processed by the
 // semantic engine, not the syntax checker. So it will
 // not appear to have any role in defining syntax.

 "<" NamePart ">"

 NamePart:
 NameSegment (("/" | ".") NameSegment)*
 | ("^" NameSegment
 (("/" | ".") NameSegment)*
 ("/" | ".") ":"))

 NameSegment:
 ("%"! SimpleInfoRef) | ("@" NameOf(path))

 It is assumed, if a name is used, that it is valid. That
 is, using a name implies existence. Notice that names
 are divided into segments similar to DOS or UNIX path
 names. Notice that the syntax where token delimited
 ConstantInfo is used as a segment of a name, the colon
 after "c:" is not allowed. Thus, if we are to use the
 notation to refer to a drive, we must use a slightly
 altered form. There are several choices:
 <"C:/help.txt">, <"C:"/help.txt>, or perhaps
 <DriveC/help.txt>. The way drives are described via the
 notation will determine which of the above will work.

 Names are the most complex part of the information
 notation. Names are a single piece of information that
 is used to refer to another piece of information.
 However, that single piece might be divided into
 segments. In fact, a name can be divided into very
 complex segments. Perhaps the best example of how a name
 works are the PathNames from the DOS and UNIX operating
 systems. For example, a filename might be simple:
 "paper1.doc", or complex:

Long [Page 12]

Internet-Draft External Object Description Language April 1997

 "C:\WP\misc\thesis\chapter3.doc". Each segment adds to
 the name. There are several differences between DOS
 PathNames and the names of the information notation.
 First of all, where PathNames in DOS refer to a hierarchy
 of directories and filenames, the names in the
 information notation refer to a network. For example, in
 the information notation it is possible that
 (<C\dir1\text.doc>==<C\dir2\data.txt>). This means more
 than that the two files contain the same data; it means
 that they are the same file! Deleting one would delete
 the other. (Saying that they contain a copy of the same
 data would be done differently.) Such identities are not
 possible under the DOS naming system. Another difference
 has to do with the relationship between segments. In
 DOS, the relationship between two segments of a name is
 something like containment. That is to say, for example,
 that in the name "WP\Paper.doc", "WP" is also a name,
 and it (WP) contains WP\Paper.doc. For example, if we
 copy WP, we will copy all of the files it contains. In
 the information notation, the name WP\Paper.doc would
 mean that WP\Paper.doc was associated with WP in some
 way, but not necessarily contained in it. Consider this
 example: Bruce/L_arm might refer to Bruce's left arm, and
 Bruce/head to Bruce's head. And when we say "Bruce went
 to the store" in the language, we will mean that Bruce's
 head and arms went along also. But consider
 Bruce/BankAccount. Here, Bruce/BankAccount is associated
 with Bruce, but when Bruce moves, it does not mean that
 his bank account goes with him. That is to say that
 Bruce's head and arms are identical to Bruce in some
 structured way. But (<Bruce/BankAccount> != <Bruce>).

 Let us look closer at the structure of names. First,
 they are enclosed in the symbols "< >". This enclosure
 is to distinguish names which are embedded in other
 names. For example, consider the difference between
 <Bruce/RightArm> and <Bruce/<BrucesStrongestArm>>. The
 first name refers (presumably) to my right arm. But the
 second one refers to my right arm only if
 (<BrucesStrongestArm>==RightArm).

 NAME-PARTS

 Inside the "< >" symbols, lies a structure called a
 NamePart. There are two types of NamePart. The second
 is syntactically like the first, but with a "^" before
 it, and where the last NameSegment is a ":". The syntax
 for the first type of NamePart consists of one or more

Long [Page 13]

Internet-Draft External Object Description Language April 1997

 NameSegments separated by either a slash ("/") or a
 period ("."). Though the formal syntax diagram suggests
 a forward slash, the program will respond to either a
 forward or backward slash. This provides for names which
 are similar to DOS path names. Some sample names are
 <sum/12/5>, and <sum.inverse/10>. Notice that either a
 slash or a dot can be used to separate name segments.
 Segments separated with a slash may refer to different
 information than a name with the same segments separated
 with a dot. For example, <A/B> is not the same name as
 <A.B>. This difference will be useful for keeping names
 organized. For example, we might define that two "slash"
 segments after "sum" (e.g., <sum/segment1/segment2>) are
 numeric segments. But it is useful to define a function
 (name) which is associated with sum to represent
 negation. If we called it <sum/inverse> we would be
 contradicting the statement that the segment after "sum"
 is a number. We can call it <sum.inverse> and avoid the
 problem. Semantically, names with dots are processed the
 same way names with slashes are. However, "dot" names
 are, in this notation, for special cases.

 NAME-SEGMENTS

 Each segment in a name is a NameSegment. A NameSegment
 can either be a SimpleInfoRef optionally prefaced by the
 "%" symbol, or the NameOf a Path which is indicated by
 the symbol "@". Let us look at what these symbols mean,
 and what a Path is. There are three cases.

 First, a NameSegment might be a SimpleInfoRef without the
 percent sign in front of it. A SimpleInfoRef is either
 ConstantInfo (e.g., "DriveC") or the NameOf a
 SimpleInfoRef (e.g., <BootDrive>). In either case the
 information given (directly via ConstantInfo or
 indirectly via name) becomes a segment of the name.

 A second kind of NameSegment is a SimpleInfoRef preceded
 by the "%" symbol. E.g., <Bruce / % appendages>. This
 is the syntax to specify that a segment is a variable
 "<%appendages>" in this case is a variable. The possible
 values that %appendages can have is determined by other
 RelationStmts. For example we might have: (Recall the
 special InfoRef "[...]" from the InfoRef section.)
 (<%appendages> ==
 { [<%appendages> == LeftArm],
 [<%appendages> == RightArm],
 [<%appendages> == LeftLeg],

Long [Page 14]

Internet-Draft External Object Description Language April 1997

 [<%appendages> == RightLeg]
 });

 which says (do not worry excessively about this yet) that
 the information of whether <%appendages> is equal to
 "LeftArm" together with the information about whether it
 equals the other appendage labels is the entirety of
 <%appendages>. In this case, <Bruce/<%appendages>> might
 refer to all of my appendages.

 Variables are not the only item that may need to be given
 a type. NameSegments themselves may need to be typed.
 Suppose I want to say that certain RelationStmts hold for
 a NameSegment whenever it is preceded by
 "<Bruce/Sisters/". I can refer to that segment by adding
 the symbol "^" to the beginning of the name and a ":" to
 represent the segment being referred to. For example, I
 could say that whatever follows "<Bruce/Sister/" is
 either "Rebecca" or "Valerie" like this:
 (<^Bruce/Sisters/:> ==
 { [<^Bruce/Sister/:> == "Rebecca"]
 [<^Bruce/Sister/:> == "Valerie"] });

 I could then assert that (<Bruce/Sisters> ==
 <Bruce/Sisters/<%Sister>>) so that <Bruce/Sisters> would
 refer to all of my sisters. I could then refer to all of
 them, or to each one individually:
 <Bruce/Sisters/Rebecca>.

 The last possibility for a NameSegment is given by the
 example "@DosPath." This feature can be used to help
 write StatementLists that work in different situations
 (e.g., on a different computer) where the name space
 structure is not known. I will use a computer example
 for simplicity. Suppose that my DOS directory is in
 C:/OS/DOS. But most people have their DOS directory in
 C:/DOS. I can refer to their DOS directory by using the
 NameOf a Path, as in <@<DosPath>/command.com>. Each name
 space should have a definition such as:
 (<DosPath> == <EnvironmentVars/DosPath>)
 defined in it.

 EMBEDDED NAMES

 Consider the SimpleInfoRefs in a name. So far, most of
 the SimpleInfoRefs we have seen in a name have been token
 delimited ConstantInfo. For example in "Bruce/Head"
 "Bruce" and "Head" are tokens. That is, they are a

Long [Page 15]

Internet-Draft External Object Description Language April 1997

 series of alphanumeric characters or the character "_".
 But the SimpleInfoRef in a name segment need not be a
 token, or even ConstantInfo. Further, as was mentioned
 above, the segments of a name can have types themselves.
 (To say they have types, is to say that there are
 RelationStmts that refer to them). Thus, a particular
 name segment might be a number or a matrix, or vector.
 For example, <C/SpreadSheets/WorkSheet1/[F,42]> might
 refer to a particular cell in a spreadsheet. The syntax
 of the segment "[F,42]" will have to be defined with its
 own set of RelationStmts.
 Reviewing, another possibility is that rather than having
 actual information, the name of information is used.
 Suppose we wish to refer to a cell in the above
 spreadsheet, but the cell we wish to refer to is the one
 named in another cell. We could do this (leaving off the
 full name): <...WorkSheet1/<WorkSheet1/[E,10]>>. This
 would refer to the cell pointed to in cell [E,10].

 VARIABLES

 Lastly, let us review what the symbol "%" is for. This
 symbol is perhaps the most powerful of all. It has a job
 similar to that of the quantifiers of the predicate
 calculus. It means that the current name segment is a
 variable. If there are no restrictions on the variable,
 then it refers to every possible value that the segment
 can take, rather like "*.*". Thus, we could talk about
 all the cells in a spreadsheet this way:
 <WorkSheet/<%X>>; and we should say nothing about the %X.
 Now suppose we want to refer to only a range of cells, or
 perhaps every other row, or every checker-board cell, or
 even cells [A,4], [F,6] and [G,19]. We can define, using
 RelationStmts which refer to %X, whatever restrictions or
 patterns we wish. The details of doing this will be
 touched upon later. We could also make a set of
 restrictions which would make the variable %X mean
 "some." Likewise, once numbers are defined, we could use
 the notation to say "at least 5 cells", "less than ten
 cells" or even "less than ten, but not exactly 3 cells."
 And ranges of any complexity can be defined.

 Lastly, since %X is a variable, we can use it in more
 than one place. For example, by using it twice, we could
 say that the information in each cell in row 5 is
 identical to the information in the corresponding cell of
 row 8:
 (<WorkSheet / [5,%X]> == <WorkSheet / [8, %X]>).

Long [Page 16]

Internet-Draft External Object Description Language April 1997

2.2.6 Representing Types

 Clearly, if a notation describing objects is to be of any
 real use, it must be able to work with types as well as
 actual information structures. For example, we would
 like to be able to define a system type by stating a list
 of RelationStmts once, and then applying it to different
 particulars. Further, we would like to be able to adjust
 certain aspects of our types that may differ from
 particular to particular. For example, if we define an
 array type, we would like to then be able to declare
 arrays of different sizes and types without changing the
 definition of arrays.

 Recall that in the discussion of the semantics for
 RelationStmts, we skipped the description of the
 RelationStmts with the form: "#" NamePart ("," InfoRef)*
 "|" RelationStmt. Let us consider it now, as it provides
 us with a way to instantiate types.

 It was mentioned that the type of an information
 structure is given by the structure of the RelationStmts
 that refer to it or its parts. Thus, if we wish for two
 structures to be of the same type, we merely assert an
 isomorphic set of RelationStmts of each one. That is,
 the RelationStmts asserted of one should be isomorphic to
 those asserted of the other. For example, if <A> is
 asserted to be composed of two nonoverlapping sub-parts,
 then to make be of the same type, we should assert
 the same things of it as follows:

 {(<A> == {<R>, <S>}); (<R> != <S>)};// describe A.
 {(== {<T>, <U>}); (<T> != <U>)};// describe B.

 Here, <A> and have isomorphic structures, and are, to
 that extent, of the same type. Notice that there are
 several problems with this. First of all, we will have
 to reproduce all the assertions relevant to a certain
 type for every item we wish to declare. For example, if
 we wish to assert that <N> is a number, we shall have to
 assert the relevant RelationStmts of it using entirely
 unique names (e.g., the subparts of <A> cannot have the
 same names as the subparts of). A second problem is
 that the above solution does not allow for flexible
 recursive structures. Each level of the structure would
 have to be defined separately, and thus the number of
 levels would be fixed and finite.

Long [Page 17]

Internet-Draft External Object Description Language April 1997

 A third problem, which is even more problematic, is that,
 when there is an isomorphism between items of equivalent
 structures, the mapping of the isomorphism is not
 represented. For example, with <A> and above, does
 the <R> part of <A> correspond to <T> of , or to <U>?
 In this case there is no way to tell since the order of
 the terms in curly braces is not significant. What we
 need is a method of generating unique names for each new
 particular's "relateends", while preserving the
 information about the isomorphism between them.

 A handy way of generating unique names associated with a
 certain named particular system is to add a segment to
 the name of the particular in question. So, rather than
 using the names <R> and <S> for the parts of <A>, we
 could use <A/R>, and <A/S> respectively. Doing likewise
 for we have the new assertions:

 { (<A> == { <A/R>, <A/S>}); (<A/R> != <A/S>); };
 { (== { <B/R>, <B/S>}); (<B/R> != <B/S>); };

 The "NewLevel" RelationStmts, (as I call them), offer a
 way to shorten this notation. Notice in the syntax
 specification, that after the "#" comes a Namepart,
 followed by a list of InfoRefs, and then a RelationStmt.
 The semantics are as follows. The RelationStmt part of
 the NewLevel RelationStmt is asserted in the normal way
 with the following exceptions. First, any name in the
 RelationStmt which has the token "parent" as its first
 segment will have the NamePart of the NewLevel
 RelationStmt appended where the "parent" is. Second,
 each of the InfoRefs will be asserted to be identical to
 a name formed by using the parent NamePart as the first
 part of the name with a dot segment added to it which
 identifies which InfoRef it is identical to. The new
 segment will be "param1" for the first InfoRef
 (parameter), "param2" for the second one, and so on. An
 example will clarify this. Consider the following
 NewLevel RelationStmt:

 #M, 12, <Bob> | { (<parent>==<parent.param1>);
 (<Friend>==<parent.param2>);};

 This RelationStmt generates the following two assertions:

 (<M> == <M.param1> == 12);
 (<Friend> == <M.param2> == <Bob>);

Long [Page 18]

Internet-Draft External Object Description Language April 1997

 Thus, we can shorten our original assertions of <A> and
 :

 #A | { (<parent>=={<parent/R>, <parent/S>});
 (<parent/R> != <parent/S>); };

 #B | { (<parent>=={<parent/R>, <parent/S>});
 (<parent/R> != <parent/S>); };

 The last problem to solve is the redundant entering of
 the RelationStmts involving <R> and <S>. Recall that the
 NameOf a RelationStmt can always be used in any
 RelationStmt context. Thus, suppose <TwoParts> is the
 name of the above RelationStmt. We could save producing
 the relevant RelationStmt multiple times by using its
 name. Here is the relevant code: Notice how <TwoParts>
 becomes defined.
 {
 (<TwoParts> ==
 " { (<parent>=={<parent/R>, <parent/S>}),
 (<parent/R> != <parent/S>) } ");
 #A / <TwoParts>; // A has two nonoverlapping parts:
 // <A/R> and <A/S>.
 #B / <TwoParts>; // B has two nonoverlapping parts:
 // <B/R> and <B/S>.
 }

 Suppose we wish to define a ball whose size and color are
 parameters for the type. Skipping much of the detail
 such as defining numbers-as-sizes, colors and balls, and
 supposing that the names <size>, and <color> are
 referenced in the RelationStmt named by <BallType>, the
 outcome might look like this:
 {
 #MyBall | <BallType>;
 (<MyBall/size> == 45);
 (<MyBall/color> == red);
 }

 This too can be further reduced by using the list of
 InfoRefs after the first NamePart. As was explained,
 these are tacitly assigned names where the first segment
 is the NamePart, and the second is the dot separated
 segment <param1>, <param2>, and so on for each InfoRef
 included. Thus, we can shorten the above RelationStmt
 to:

 #MyBall, red, 45 | <BallType>;

Long [Page 19]

Internet-Draft External Object Description Language April 1997

 as long as the necessary changes are made to <BallType>
 (i.e., add (<parent/size>==<parent.param1>), and so on).
 In this example, (<MyBall.param1> == red) and
 (<MyBall.param2> == 45).

3. Availables: Names of Available Information

 Many times, it is important for the system utilizing XODL
 to have access to the information referred to by it. For
 example, if a piece of information is asserted to be an
 array with an index ranging from 0 to 10, the "0" and
 "10" will be needed in the process of marshaling the
 array. In other words, while the system does not,
 itself, need to reference the array, it does need to
 reference the information telling about the array, if it
 is to successfully marshal the array (or otherwise
 process it). In this case, the XODL ConstantInfos needed
 to be referenced.

 There are also cases where the information being
 marshaled needs to be referenced. For example, in a
 graphics file, the width and height of the graphic need
 to be ascertained if the graphic is to be marshaled to a
 screen or printer. The width and height are often stored
 in the graphics file itself, and thus, the file would
 need to be accessed if its content is to be marshaled (or
 otherwise utilized) via XODL.

 This type of referencing is done by the use of special
 names called "availables" which must be hard-wired into
 an XODL interpreter. Availables are similar to pointers
 to arrays of bytes. The following rules describe
 availables.

 1) They begin with the segment "avail". E.g.
 <avail/....>. No other name should be allowed to
 start with "avail".

 2) The allowable values for the second segment are
 determined by the implementation of XODL. They may
 refer to memory locations, or perhaps to the results
 of operating system calls, or something equally
 useful.

 3) One of the values for the second segment is
 "const". The names beginning <avail/const> are the
 names of ConstantInfos in the StatementLists
 currently being used by the interpreter. The names

Long [Page 20]

Internet-Draft External Object Description Language April 1997

 of ConstantInfos are used to give types to the
 ConstantInfos. The actual names of particular
 ConstantInfos can be determined as follows: after the
 "const" segment, comes the name of the StatementList
 in which it occurs. The next segment is a number
 which is determined by the order the ConstantInfos
 occur in the StatementList - the first ConstantInfo
 is "1", the second "2", and so on. Thus, the name of
 the first ConstantInfo in a StatementList named (say)
 "FTP_protocol" would be:

 <avail/const/ftp_protocol/1>.

 4) Availables all have two special segments: .data,
 and .length. the .data segment is a tag for the byte
 array containing the named information. And the
 .length segment names an integer which is the length
 of the data array. Thus, the above ConstantInfo name
 has the following names associated with it:

 <avail/const/ftp_protocol/1.length>
 <avail/const/ftp_protocol/1.data>

 Suppose that (<.../1.length> == 2). In other words,
 the length of the .data array is two bytes. Then the
 following names are valid:

 <avail/const/ftp_protocol/1.data/0>
 <avail/const/ftp_protocol/1.data/1>

 They refer to the 0th byte and the first byte of the
 data array.

 Lastly, each byte is associated with names of each of
 its bits numbered from 0 to 7. Thus we have names
 such as:

 <avail/const/ftp_protocol/1.data/0/2>
 <avail/const/ftp_protocol/1.data/1/7>

 which refer to the 2nd bit of byte 0, and the 7th bit
 of byte 1 respectively. The bits are either 1 or 0.

 Reviewing, the availables are used as an interface to any
 real world information including ConstantInfos. They
 also may include implementation dependent items such as
 memory contents or the results of operating system calls.
 Each available has, at least, a byte array and a length

Long [Page 21]

Internet-Draft External Object Description Language April 1997

 of the byte array. The structure of the byte array must
 be specified with other XODL statements.

3.1. Typing ConstantInfos

 Consider a RelationStmt with ConstantInfo in it:
 (<A>==453). Suppose that it is given elsewhere that <A>
 is a number; it can then be concluded (by substitution of
 identicals) that the ConstantInfo 453 is a number. But
 how do the values of the ConstantInfo represent a number?
 How can the type of the ConstantInfos be specified? That
 is, how can the structure of the .byte array comprising a
 ConstantInfo be asserted? Again, how can ConstantInfos
 appear in RelationStmts? There are three different ways
 that ConstantInfo can be typed. All three methods have
 been alluded to earlier in this document. They are:

 1) ConstantInfos can be referred to using the naming
 scheme of section 3. Not only can the entire
 ConstantInfo be referred to this way, but its byte array
 and the length of the byte array can be referred to.
 Such ConstantInfos can be referred to individually to
 specify the type of a particular ConstantInfo. Referring
 to ConstantInfos individually in this way is not usually
 desirable because the name of the ConstantInfo depends
 upon its location in its StatementList. Any changes made
 to the StatementList may change the name of its
 ConstantInfos. A better method is to use a variable to
 refer to all the ConstantInfos in a StatementList, and
 assert that [the information that a ConstantInfo is a
 number (for example)], is identical to [the information
 that it is related to the byte array in a certain way].
 An example of this procedure will be given in the
 examples of section 4.

 2) Recall from the syntax description of ConstantInfos
 that one of their forms is "~TypeID: Information". Every
 ConstantInfo of this form causes a statement of the form
 "# <Name-of-ConstantInfo> | <TypeID>" to be asserted.
 Thus, suppose a type <3DigitNumber> was defined (as it is
 in the examples) which specified a number in terms of a
 byte array. The ConstantInfo "~3DigitNumber:453" would
 tacitly assert that this case of "453" was a
 3DigitNumber.

 3) In Names, each segment can be referred to by the
 notation <^.../:> of section 2.2.5. If a segment is a
 ConstantInfo, then this segment-name notation can be used

Long [Page 22]

Internet-Draft External Object Description Language April 1997

 to give a type to the ConstantInfo.

 It should be noted that for ConstantInfos where the
 length of the byte array can be ascertained by the
 interpreter (e.g., where quotes around the information
 delimit it), the length will be ascertained
 automatically. However, with TypeDelimitedInfo the
 length must be asserted (perhaps calculated) in the
 associated <TypeID>. The length will then be used to
 determine how many bytes should be read in by the syntax
 checker.

 Each of these techniques will be illustrated in the
 examples of the next section.

4. Examples

 There are both explicit and implicit reasons for the
 examples below. Explicitly, each example illustrates how
 to represent a data type using XODL. Implicitly, some
 examples will utilize techniques that illustrate such
 features of XODL as polymorphism, inheritance, and so on.

 These examples are intended only to show how XODL can be
 used to represent complex objects and data structures.
 They are not intended to describe a standard definition
 of such items as numbers or arrays. Nothing in the
 following examples should be interpreted as a description
 of a standard.

4.1. Enumerations

 Suppose we wish to state that a piece of information
 <day> represents a day of the week. We could assert it
 with XODL like this:

 (<day> ==
 { [<day>==Sunday],
 [<day>==Monday],
 [<day>==Tuesday],
 [<day>==Wednesday],
 [<day>==Thursday],
 [<day>==Friday],
 [<day>==Saturday] });

 In English this would read "the information <day> is
 identical to the group of information pieces which answer
 the following questions: { Is <day> Sunday?, Is <day>

Long [Page 23]

Internet-Draft External Object Description Language April 1997

 Monday?, Is <day> Tuesday?, ... }" In other words, if you
 can answer the questions on the right, you know the
 information on the left, and vice versa.

 There is one peculiarity here. The above RelationStmt
 does not assert that <day> cannot take on values other
 than the seven given. But if it does take on other
 values, those values will be informationally equivalent
 to one of the seven. For example, we might assert
 without contradiction that:
 ([<day>==Thursday] == [<day>==Thur]);
 which says "the information that <day> is 'Thursday' is
 identical to the information that <day> is 'Thur' ".

 Depending on the circumstances, we may also wish to
 assert that:
 ([<day>==Sunday],[<day>==Monday], [<day>==Tuesday],
 [<day>==Wednesday], [<day>==Thursday],
 [<day>==Friday] != [<day>==Saturday]);
 which means that none of the above pieces of information
 are identical to each other. E.g., the information that
 it is Monday is not the same as the information that it
 is Tuesday.

4.2. Records and Type-Definitions

 Suppose we need to assert that <EmpData> names an
 employee's name, age and salary. A simple (but not
 flexible) way would be:

 (<EmpData> == { <name>, <age>, <salary> });

 And suppose we have defined types <string>, <integer> and
 <real>. We could then declare the type of the fields:

 #name | <string>;
 #age | <integer>;
 #salary | <real>;

 Notice that the above declaration does not tell how the
 <EmpData> is mapped to a character array. If such a map
 is desired, it must be asserted separately. Such
 examples will be given later in this section.

 We have declared a single record, but suppose we need to
 declare a "type" which is a record with name, age, and
 salary fields. Section 2.2.6 describes how to represent
 types. Here is an example:

Long [Page 24]

Internet-Draft External Object Description Language April 1997

 // Define a type <EmpRecord>.
 (<EmpRecord> == "
 {
 (<parent> == { <parent/name>, <parent/age>,
 <parent/salary> });
 #parent/name | <string>;
 #parent/age | <integer>;
 #parent/salary | <real>;
 } ");

 // Emp1 and Emp2 are EmpRecords.
 #Emp1 | <EmpRecord>;
 #Emp2 | <EmpRecord>;

 The above XODL code generates the following names:
 <Emp1/name>, <Emp1/age>, <Emp1/salary>,
 <Emp2/name>, <Emp2/age>, and <Emp2/salary>
 and <Emp1> and <Emp2>.

 And it asserts that:
 (<Emp1> == {<Emp1/name>, <Emp1/age>,
 <Emp1/salary>});
 and similarly for <Emp2>.

 Notice that a similar type definition method could have
 been applied to enumerations.

4.3. Unions, Multiple-Option Types

 Often it is necessary for a type to contain one sub-type
 in one situation, but another sub-type in another
 situation. XODL can handle such situations in several
 ways. One method, traditionally called a "union" is to
 map two different names to the same bytes in a byte
 array. Consider an example:

 Suppose that there is a byte array <record1> whose
 elements start from zero and are referenced by adding a
 segment to the name of the array which is the number of
 the byte to be referenced. For example, the name of byte
 0 would be <record1/0>, and of byte 1: <record1/1>.
 (More will be said of this type of indexing in the next
 examples.)

 And suppose we wish to have some cases where the first
 two bytes form a 16 bit word, and other cases where they
 are two bytes. Let us use the names <word1> and <byte1>
 and <byte2>. And suppose that the (formal) description

Long [Page 25]

Internet-Draft External Object Description Language April 1997

 of words is that they have segments /hi and /lo to refer
 to their high and low bytes. We can then map the three
 names to our byte array like this:

 (<word1/lo> == <record1/1>);
 (<word1/hi> == <record1/0>);

 (<byte1> == <record1/0>);
 (<byte2> == <record1/1>);

 We have thus established a traditional union. However,
 it is often useful for XODL to have a representation of
 when one interpretation is valid, and when not i.e., a
 multiple-option type.

 In a multiple-option type, some piece of information (a
 "selector") is used to tell which of the options is the
 valid one. The selector may be any named piece of
 information. For the example, let us call the selector
 <selector>. Here is how to make the above union into a
 multiple-option type: Suppose that <selector> can either
 be a 1 or 0.

 // <selector> is either 1 or 0.
 (<selector> ==
 { [(<selector>==1)],
 [(<selector>==0)] });

 // The information that <selector> is 0 is
 // identical to the information that ...
 ([(<selector>==0)] ==
 {
 [(<word1/lo> == <record1/1>)];
 [(<word1/hi> == <record1/0>)];
 });

 // and similarly for <selector> == 1:
 ([(<selector>==1)] ==
 {
 [(<byte1> == <record1/0>)];
 [(<byte2> == <record1/1>)];
 });

 Multiple-option typing can be used to express the type of
 ConstantInfos as was described in section 3.1. In other
 contexts, it can specify the type of information in a
 network stream or file. For example, using a little
 English to shorten the example, ([The information that a

Long [Page 26]

Internet-Draft External Object Description Language April 1997

 file extension is 'gif'] == { Put here: the assertions
 describing a .gif file}). It is also useful in many
 other cases, as will be apparent in the following
 examples.

4.4. Indexing

 In the last example, a byte array was discussed. Recall
 that if the name of the array was <RecByte>, then the
 names of the elements are <RecByte/0>, <RecByte/1>, and
 so on. (Arrays need not start with zero.) As it stands,
 the indexing segment (the 0 or 1) is not known by XODL to
 be a number. For example, it does not know that 0+1=1 or
 that 0<1. For all XODL knows, there is an element named
 <RecByte/jane>. If indexing is to be useful, there must
 be a way of asserting the type of the indexing segment or
 segments. This can be done by using the names for
 segments described in section 2.2.5. The name of the
 above indexing segment would be <^RecByte/:>. So if we
 had a description of numbers called <NumType>, we could
 assert " #^RecByte/: | <NumType>; " to let the XODL
 system know that RecByte is an array. Other statements
 could be used to specify the range of valid numbers for
 the array.

 Of course numbers are not the only type that can be
 indexed upon. By using some other type we can create a
 map or associative array. Suppose we wish to refer to a
 color of a geometric figure that varies according to the
 shape of the figure. We shall call the "color function"
 <color/%shape>. We need to assert that the "%shape" is
 either triangle, circle, or square:

 (<^color/:> ==
 { [(<^color/:> == triangle)],
 [(<^color/:> == square)],
 [(<^color/:> == circle)] });

 Next, we can define some values:

 (<color/triangle>==red);
 (<color/circle>==blue);
 (<color/square>==blue);

 The last three assertions could be made without the first
 one, but XODL would not know that triangle, circle, and
 square exhausted the possible values for <color/%shape>.

Long [Page 27]

Internet-Draft External Object Description Language April 1997

 For really useful indexing, such as in arrays, we must
 have a description of numbers. In the next example, we
 develop a type definition for numbers, which can then be
 used as a parent type for bytes, words, reals, and so on.

4.5. Numbers, Encapsulation and Inheritance

 Consider the traditional mathematical definition of
 numbers. The definition relies on a concept called a
 "group." A group, in mathematics, is defined as
 something with the following properties where G is a set
 of symbols, and + or * is an operation on those symbols:
 (These should seem familiar from algebra.)

 1) G is associative, that is, for any x, y, and z
 from G, (x+y)+z = x+(y+z).

 2) One of the symbols in G is such that x+I=x. It is
 called the Identity Element.

 3) Every x in G has an inverse (-x or 1/x) such that
 x+(-x)=I.

 G is called an "Abelian Group" if G is commutative, that
 is (x+y) = (y+x).

 Next in the definition, the group concept is used to
 define "fields." A field is defined as something meeting
 the following four requirements where F is a set of
 symbols with operations sum (+) and product (*):

 1) F under + is an abelian group with the identity
 element "0".

 2) The set of symbols F, but without "0" under * is
 an abelian group with the identity element "1".

 3) For all x, y, and z in F, x*(y+z)=x*y + x*z.

 4) 0 != 1.

 Lastly, a number is defined as an ordered field.
 "Ordered" means that for any two numbers, the symbols '<'
 and '>' have their usual meanings of greater than and
 less than.

 Traditionally, a number is something like "THE number 2."
 That is, THE number 2 has identity. Of course, while we

Long [Page 28]

Internet-Draft External Object Description Language April 1997

 can find instances of the number 2 in the world, we can
 not find "THE number two." 2 is called an "abstract
 entity." XODL cannot represent abstract entities; it can
 only represent information structures. Therefore, any
 description of numbers in XODL will have to represent
 them in terms of information structures. For the
 following example, let us say that individual numbers
 have identity. That is, we can refer to this 2 or that
 2, but not to "the great number two." This switch will
 cause the discussion to focus on the operators (sum and
 product) rather than on the sets of symbols F and G.

 In the following description of numbers, notice that
 groups are defined, then abelian groups are defined by
 "inheriting" the properties of groups. Next, sum and
 product are declared, then fields are described. The
 ordering axioms are given, followed by the declaration of
 an ordering function (side), then finally, numbers are
 described.

 Notice how the features of a group such as its inverse
 function are encapsulated with it by appending a new name
 segment to the group's name. This type of encapsulation
 will work in many cases. For example, if a stack object
 is named <stack1>, then it may have the sub-names
 <stack1/pop> and <stack1/push>

StatementList Algebra_Draft; ;

(<GroupOp> == "
 {
 // The operation is associative.
 (<parent/%s1/<parent/%s2/%s3>> ==
 <parent/<parent/%s1/%s2>/%s3>);

 // There is an identity element.
 (<parent.ID> == <param1>);

 // The identity element is the correct type.
 (#parent.ID | <param2>);

 // a0 == a (if the ID is 0).
 (<parent/%s4/<parent.ID>> == <%s4>);

 // e.g.: a + -a == 0
 (<parent/%s7/<parent.inverse/%s7>> == <parent.ID>);

 // The next group of RS's tell that the operation is

Long [Page 29]

Internet-Draft External Object Description Language April 1997

 // closed.

 // e.g., suppose param2== <number>
 (<parent.GroupType> == <param2>);

 // sum & product are numbers.
 #parent/%s8/%s9 | <param2>;

 // the inverse is a number.
 #parent.inverse | <param2>;

 // The param to Inverse is a number.
 #^parent.inverse/: | <param2>;

 // the first operand is a number.
 #^parent/: | <param2>;

 // the second operand is a number.
 #^parent/%sx/: | <param2>;
 }");

(<AbelianGroupOp> == "
 {

 #parent | <GroupOp>; // Abelian groups are groups,

 // which are commutative.
 (<parent/%a1/%a2> == <parent/%a2/%a1>);
 }");

(<MultAbGrpOp> == "
 {
 ([<parent/%p3/%p4> != zero] ==
 [<parent/%p3/%p4>==
 <parent.NZProduct/%p3/%p4>]);
 #parent.NZProduct,<param1>,<param2>/<AbelianGroupOp>;
 }");

 // Declare sum and product operators.
 #sum, zero, <NumberType> | <AbelianGroupOp>;
 #product, one, <NumberType> | <MultAbGrpOp>;

(<Field>== "
 {
 (<parent> == <sum/%s1/%s2> == <product/%p1/%p2>);

 // a(b+c) = ab+ac
 (<product/%f1/<sum/%f2/%f3>> ==

Long [Page 30]

Internet-Draft External Object Description Language April 1997

 <sum/<product/%f1/%f2>/<product/%f1/%f3>>);
 ([<parent> == zero] != [<parent> == one]);
 }");

(<OrderRelOp> == "
 {
 (<parent/%o1/%o2>== { // trichotomy
 [<parent / %o1/%o2> == '<'],
 [<parent / %o1/%o2> == '>'],
 [<parent / %o1/%o2> == '='],
 });
 ([<parent/%o3/%o4>=='<'], [<parent/%o3/%o4>=='>'] !=
 [<parent/%o3/%o4> == '=']);

 // a<b == b>a
 ([<parent/%o5/%o6> == '<'] == [<parent/%o6/%o5> == '>']);

 // nothing is less than itself.
 (<parent/%o7/%o7> != '<');

 // transitivity
 ({[<parent/%o8/%o9> == '<'], [<parent/%o9/%o10> == '<']}
 =={[<parent/%o8/%o10> == '<'],
 [<parent/%o9/%o10> == '<'],
 [<parent/%o8/%o9> == '<']});

 }");

 // Declare there to be an ordering operator "Side."
 // Side takes two numbers as parameters and refers to "<",
 // ">", or"=".
 #Side | <OrderRelOp>;

(<NumberType>== "
 {
 // The parent is a field.
 #parent | <Field>;

 // The next two RelationStmts synchronize the field
 // ordering operator "Side" with sum and product.
 ([<Side/%o11/%o12> == <'] == [<Side/<sum/%o11/%o13> /
 <sum/%o12/%o13>> == <']);
 ({[<Side/%o14/%o15> == <'], [<Side/zero/ %16> == <']}
 == {[<Side/%o14/%o15> == <'],
 [<Side/zero/%16> == <'],
 [<Side/<product/%14/%16>/<product/%15/%16>
 == '<'] });

Long [Page 31]

Internet-Draft External Object Description Language April 1997

 }");

Shortcuts:

 // In this section a list of theorems can be given.
 // XODL interpreters should use the shortcuts to make
 // processing more efficient.

 // x*0=0
 (<product/%a/zero> == zero);

EndList

 Let us work through this StatementList quickly. First,
 notice that <GroupOp> is declared to refer to a
 RelationStmt which describes mathematical groups. You
 can find the various aspects of group operators such as
 associativity in this definition. Next, a description of
 Abelian groups is given which references <GroupOp>, then
 adds one more RelationStmt to it (commutativity). The
 third description is for a multiplicative Abelian group
 operator. This operator either returns zero, or acts as
 an Abelian group for non-zero values.

 The next two RelationStmts after the definition of
 <MultAbGroupOp> refer to the previous descriptions in
 order to declare the existence of sum and products.
 Notice that each line tells the name of the operator (sum
 or product), the identity element for the operator (zero
 or one), and the type of the operands and results. These
 names can be used to refer to sums and products. For
 example, the sum of X and Y could be referred to thusly:
 <sum/<X>/<Y>>. Shortly we shall see how to refer to
 actual numbers rather than names of numbers.

 Next, sum and product are used to describe fields, and
 then an "ordering" operator (Side) is defined which takes
 two numbers (or other entity) and refers to either "<",
 ">", or "=" depending on whether the first number is less
 than, greater than, or equal to the second one. For
 example, (<Side/5/10> == "<"). Notice that while the
 group definition creates new names, the field definition
 borrows the names already created to be groups.

 Lastly, the field description and the ordering operator
 are used to describe numbers. This description can be
 used to declare numbers: e.g., #EmployeeAge |
 <NumberType> declares <EmployeeAge> to be the name of a

Long [Page 32]

Internet-Draft External Object Description Language April 1997

 number.

 How it Works

 The statement #Age | <NumberType> declares that the
 RelationStmt in <NumberType> is to be asserted in the
 normal way with the exception that "Age" is substituted
 in for <parent>. Looking at the information
 <NumberType>, we see that it contains (among other
 things) the statement #parent | <Field>. Substituting
 "Age" for <parent>, we get #Age | <Field>, and see that
 once again we must dereference a name and substitute
 "Age" for <parent>. In <Field>, we find the assertion
 (<parent>==<sum/%s1/%s2>) which is asserted as
 (<Age>==<sum/%s1/%s2>). Now, we must look at the
 description of <sum/...>. We find it in the line #sum,
 zero, <NumberType> | <AbelianGroupOp>. Thus, we must
 dereference <AbelianGroupOp>. Doing so, we find that sum
 is a <GroupOp>, and that (<sum/%a1/%a2> ==
 <sum/%a2/%a1>). This means that wherever we find a sum
 operation, we can switch the operands without affecting
 the reference of the name. By continuing the process we
 have been engaged in, we can determine all the valid
 substitutions which can be made, and thus, which
 inferences are valid in the logic.

4.6. Functions

 Obviously, it is important to be able to represent
 functions. In XODL, complex names take the place of
 functions. The arguments to the function are segments of
 the names.

 Notice how we refer to sum to define subtraction, and
 product for square roots. We will not trace through this
 code, merely present it. These RelationStmts should be
 placed into Algebra-Draft. Let us use the abbreviation
 of "difference" "Diff" to mark subtraction, and Sqr and
 Sqrt for square and square root.

 {
 // A difference is a rearrangement of a sum operation.
 (<%op1> == <sum/ %op3 / %op2>);
 (<Diff/ %op1/ %op2> == <%op3>);

 // A square of a number is the number times itself.
 (<Sqr/ %s1> == <product/ %s1/%s1>);

Long [Page 33]

Internet-Draft External Object Description Language April 1997

 // A square root is a rearrangement of a square oper.
 (<%s2> == <Sqr/ %s3>)
 (<Sqrt/%s2> == <%s3>)
 }

 Given the above RelationStmts, we can now refer to such
 information items as <Sqrt/9> or <Diff/5/3> which have
 the meanings Square root of 9, and 5-3. There is reason
 to believe that XODL can represent the semantics of any
 finitely specifiable function.

4.7. Syntax for Particular Numbers

 The above descriptions allow us to talk about numbers.
 For example, we could ask what any number multiplied by
 zero was: <product/%x/ zero>. By substituting the
 identicals defined in the above definition, we could
 conclude that the answer was zero. (We would, after many
 substitutions, be able to substitute "zero" for
 <product/%x/ zero>.) However, notice a major deficiency:
 there is no easy way to represent any number other than
 zero and one. With the notation, we can define
 descendants of numbers which use the ASCII character set
 to represent other numbers. First let us describe a
 single decimal digit <DecDigit>. There are two steps in
 defining <DecDigit> (other than declaring that it is a
 number). First, enumerate the possible values a
 <DecDigit> may take, and second, establish the meanings
 of the values. You can see the two steps in the
 following RelationStmt, which we shall add to the
 definitions of the Algebra_Draft Statement List above.

 (<DecDigit> == "
 {
 // A <DecDigit> is a number
 #parent | <NumberType>;

 // Specify Possible values:
 (<parent> == { [<parent> == 0],
 [<parent> == 1],
 [<parent> == 2],
 [<parent> == 3],
 [<parent> == 4],
 [<parent> == 5],
 [<parent> == 6],
 [<parent> == 7],
 [<parent> == 8],
 [<parent> == 9]

Long [Page 34]

Internet-Draft External Object Description Language April 1997

 });
 // Semantics of the values:
 ([<parent> == 0] == [<parent> == zero]);
 ([<parent> == 1] == [<parent> == one]);
 ([<parent> == 2] == [<parent> == <sum/1/1>]);
 ([<parent> == 3] == [<parent> == <sum/2/1>]);
 ([<parent> == 4] == [<parent> == <sum/3/1>]);
 ([<parent> == 5] == [<parent> == <sum/4/1>]);
 ([<parent> == 6] == [<parent> == <sum/5/1>]);
 ([<parent> == 7] == [<parent> == <sum/6/1>]);
 ([<parent> == 8] == [<parent> == <sum/7/1>]);
 ([<parent> == 9] == [<parent> == <sum/8/1>]);
 }");

 TYPING CONSTANT-INFOS

 Now that a single digit number is defined, we would like
 to be able to use it in names and other InfoRefs as a
 ConstantInfo. For example, we might like to use (as has
 been done earlier without explanation) <Sqrt/9> to mean
 the square root of 9. But how does XODL know that the
 second segment of the name <Sqrt/9> is a <DecDigit>?
 Recall from section 3.1 that every ConstantInfo has a
 name, and is associated with a byte array (the data
 field) and a length field. There are two things that
 need to be done. First, criteria must be asserted
 whereby XODL can infer that a particular ConstantInfo is
 a <DecDigit> (or whatever). And second, assert that if a
 ConstantInfo is a <DecDigit> then it is identical to its
 data field's byte 0.

 Suppose we are creating a statement list named "Stmts" in
 which we use <DecDigit>s. We can fulfill the first
 requirement (that the type of ConstantInfos be
 ascertainable by XODL when necessary) by asserting that
 {the information that a ConstantInfo is a <NumberType>
 and that its length field = 1} is identical to the
 information that it is a <DecDigit>:

 ([{#avail/const/Stmts/%ConstInfo1|<NumberType>;
 (<avail/const/Stmts/%ConstInfo1.length>==1>)] ==
 [#avail/const/Stmts/%ConstInfo1|<DecDigit>]);

 It may seem circular that we use a "1" in asserting that
 a ConstantInfo is a <DecDigit>. But in this case, XODL
 needs only to check for equality, not do an arithmetic
 operation. Thus, it can tell that the length is 1
 without having to look up what the 1 means.

Long [Page 35]

Internet-Draft External Object Description Language April 1997

 Next, we must assert that any ConstantInfos in Stmts that
 are <DecDigits> are identical to their byte 0:

 ([#avail/const/Stmts/%ConstInfo2|<DecDigit>] ==
 {[#avail/const/Stmts/%ConstInfo2|<DecDigit>];
 (<avail/const/Stmts/%ConstInfo2> ==
 <avail/const/Stmts/%ConstInfo2.data/0>)});

 Notice that the condition that a ConstantInfo is a
 <DecDigit> is on both sides of the (main) identity
 symbol. This is because if it were not on the right
 side, then the information that the ConstantInfo was
 identical to its 0 byte would be identical to the
 information that it is a <DecDigit>. But there may be
 other cases where a ConstantInfo is identical to its 0
 byte, but where it is not a <DecDigit>. In other words,
 we do not want to use a "biconditional" here, and
 repeating the "antecedent" on the right side of the
 identity statement removes the biconditionality.

 3 DIGIT NUMBERS

 Now the description of a <DecDigit> can be used to
 describe a three digit number. Notice how we can use
 single digit numbers now as a type of InfoRef. Also,
 notice that if we want to refer to 10, we must use
 <sum/9/1> since 10 is a two digit number, which has not
 been defined.

 (<3DigitNum> == "
 {
 (<parent> == {<digit1>, <digit2>, <digit3>});
 # digit1 | <DecDigit>;
 # digit2 | <DecDigit>;
 # digit3 | <DecDigit>;

 //<parent> == (((D3 * 10) + D2) * 10) + D1
 (<parent> == <sum / <product/<sum/9/1>
 / <sum/ <digit2>
 / <product/ <digit3>/ <sum/9/1>>>
 / <digit1>>);
 } ");

 In order to map a <3DigitNum> to a byte array, we merely
 assert that <digit3> is byte 0, <digit2> is byte 1, and
 <digit1> is byte 2. Notice that in a <3DigitNum>, we
 must fill empty digits with '0'. E.g., a nine would be
 "009", not "9".

Long [Page 36]

Internet-Draft External Object Description Language April 1997

 If we wanted to, we could continue the refinements we
 have been making to define more syntaxes such as numbers
 with an arbitrary number of digits, decimal numbers, and
 so on. We could also use the bit fields in ConstantInfo
 names to define integers of different sizes,
 floating-point numbers and so on. In fact, we could
 create a syntax for complex expressions which result in a
 number. These expressions might include functions, and
 even such numbers as pi. Let us quickly consider this so
 that we may use such a notation without using space here
 to define it.

 EXTENDED NUMBER SYNTAX

 While we could use a very simple syntax for InfoRefs
 which are to be interpreted as numbers (such as
 <3DigitNum>), complex expressions will be very cluttered
 looking and hard to comprehend. Therefore, let us assume
 for the rest of this document that a syntax for numeric
 InfoRefs called <expression> has been defined in some
 RelationStmt such that we can use the symbols +, -, *,
 and /. Of course if we use the slash, we will sometimes
 have to enclose the expression in quotes to avoid its
 being mistaken for a name segment separator. Let us also
 assume that the extended syntax can handle parentheses
 (which will allow us to use "/" for division without
 quotes if it is used inside parentheses), and a function
 notation including the function sqrt() for square roots.
 Thus, from here on, an example of a valid InfoRef in a
 numeric context is: (-2.56 + <x>) * sqrt(81) - 3. When
 the "-" sign is used in a unary position, it will signal
 that <sum.inverse> is being applied (i.e., for negative
 numbers).

 The idea of defining new syntaxes and semantics via
 RelationStmts is partly to distance ourselves from the
 "<.../<...>>" type of syntax which is powerful, but ugly.

4.8. Polymorphism

 Polymorphism is the ability of a language to use the same
 name for similar functions on different types of object.
 Consider that the name <sum/.../...> as it was defined
 above takes two <NumberType>s as arguments and produces a
 <NumberType> in return.

 Suppose we wish to have a sum which added two vectors
 rather than two numbers. I will only discuss doing so

Long [Page 37]

Internet-Draft External Object Description Language April 1997

 here, not actually do it. If the programmer were clever
 enough, she could actually define <sum/.../...> once, and
 have it apply to any system where a non-multiplicative
 group operation was involved. That is, it could
 automatically apply to numbers, vectors, matrices, and
 any other situation where the concept of a sum applies.
 The types of the argument segments and of the named item
 (the result) would have to be determined by statements
 asserting that if the arguments are of a certain type,
 then the result is of a certain type. Unfortunately,
 this means a lot more work will have to be done by the
 XODL interpreter. It may be better to name each
 different kind of sum a different name. For example,
 have <sum/.../...> for numeric sums, but have
 <VectorSum/[a,b,c]/[d,e,f]> for vector sums. The work on
 the interpreter would be significantly decreased.

4.9. Arrays and Complex References

 With a description of numbers along with a syntax and
 semantics for their representation, we can now use the
 language to make references that were not available
 before. For example, suppose we wish to assert that
 there are 100 computers (or vectors, physical objects,
 integers, or files etc.). We can use a numeric variable
 which is limited to numbers from 1 to 100:
 {
 // There are some computers.
 #Computers/%x | <CompType>;

 // The "%x" is a 3 digit number (recall the definition).
 #^Computers/: | <3DigitNum>;

 // %x is not greater than 100 or less than 1.
 (<Side/%x/100> != ">");
 (<Side/%x/1> != "<");
 }

 With this definition, we can refer to such things as the
 fifth computer: <Computers/5>. Since such arrays are
 used often, it is handy to generalize the concept of
 arrays as follows:

 (<ArrayType> == " {
 // There are some items of type param1
 #parent/%x | <param1>;

 // The "%x" is an integer.

Long [Page 38]

Internet-Draft External Object Description Language April 1997

 #^parent/: | <Integer>;

 // %x is not greater than param3 or less than param2.
 (<Side/%x/param3> != ">");
 (<Side/%x/param2> != "<");
 }");

 With this definition of <ArrayType>, we can declare
 arrays easily:

 // People is an array of 50 <PersonRec>s:
 # People, <PersonRec>, 1, 50 | <ArrayType>;

 Or suppose we assert that there are 100 vectors; we can
 say (for example) that the 10th through 30th vectors have
 a zero x component:

 {
 // There are 100 vectors:
 #Vectors, <3VectorType>, 1, 100 | <ArrayType>;

 // Some vectors' x components are zero.
 (<Vectors/%v/x> == zero);

 // these vectors are those referenced by numbers <= 30,
 (<Side/%v / 30> != ">");

 // and >= 10.
 (<Side/%v / 10> != "<");
 }

 Consider several more examples:

 //At least five of the above declared vectors
 //(call them XVec) have an x component of (say) 3:
 {
 #Xvec/%v2 | <3VectorType>;// There are some vectors,
 (^Xvec / : | <3DigitNum>; // which are referenced by a
 // three digit integer,
 (<Side/%v2/5> != "<"); // whose maximum permissible
 // value is at least 5.
 (<Xvec/%v2/x> == 3); // And these vectors have an x
 // component of 3.

 // None of them are the same vector.
 ([<%v4> != <%v5>] == [<Xvec/%v4> != <Xvec/%v5>]);

 // They are identical to some vectors in <Vectors/...>.

Long [Page 39]

Internet-Draft External Object Description Language April 1997

 (<Xvec/%v2> == <Vectors/<%v3>>);
 }

 Another Example:
 // If a <Vectors> has /x == 3, then its y component ==
 // twice its z component

 {
 ([<Vectors/%v6/x> == 3] == {[<Vectors/%v6/y> ==
 (<Vectors/%6/z> * 2)], [<Vectors/%v6/x> == 3] });
 }

 In English, the above RelationStmt reads "The information
 that a <Vectors> is 3 is identical to the information
 that its y component is twice its z component and that it
 its x component is 3." The bit about the x component
 being 3 needs to be repeated on the right side to avoid a
 "biconditional" effect where a y's being 2*z implies
 that x==3.

4.10. Representing Complex Byte Arrays

 In many if not most cases, the system being represented
 is an array of bytes with some complex structure. The
 array could be a file, a computer's memory, a disk
 surface, or a stream from a network. Consider how a
 <file> might be described and mapped to a byte array
 (let's call it a <ByteStream>. Suppose that we have
 defined integer to have /hi and /lo fields as was
 illustrated in section 4.3. Also, let us suppose we have
 defined <string> to describe an integer (/length) and a
 byte array (/data) mapped to a byte array in the usual
 way.

 (<File> == "
 (<MaxUserName> == 32); // max length of user name.
 (<MaxFileLen> == 65535);// max length of a file.
 (<MaxNameLen> == 255); // max length of file name.

 // declare types on all names.
 #parent/FileOwner | <string>;
 #parent/FileName | <string>;
 #parent/FileData | <string>;
 #parent/FileInt | <integer>; // int rep. of FileType

 #parent | <ByteStream>; //the bytes of the file

 // Set max length on names.

Long [Page 40]

Internet-Draft External Object Description Language April 1997

 (<side/<parent/FileOwner/length>/<MaxUserName>>
 != '>');
 (<side/<parent/FileName/length>/<MaxNameLen>>
 != '>');
 (<side/<parent/FileData/length>/<MaxFileLen>>
 != '>');

 // Types of files:
 (<parent/FileType> ==
 {[<parent/FileType> == text];
 [<parent/FileType> == data];
 [<parent/FileType> == exec];
 [<parent/FileType> == gif];
 <parent/OtherType> });

 // <FileType> selects type option for FileData:
 // (In an actual implementation, this table would
 // probably be centralized, not in <file>.)
 ([<parent/FileType>==text] ==
 [<parent/FileInt>==0] ==
 [#parent/FileData|<TextFile>]);

 ([<parent/FileType>==data] ==
 [<parent/FileInt>==1] ==
 [#parent/FileData|<DataFile>]);

 ([<parent/FileType>==Exec] ==
 [<parent/FileInt>==2] ==
 [#parent/FileData|<ExecFile>]);

 ([<parent/FileType>==gif] ==
 [<parent/FileInt>==3] ==
 [#parent/FileData|<GifFile>]);

 // Now, map each item to the ByteStream passed in.
 // (There is an easier way to do this mapping,
 // but for the example, I choose the hard way.)

 (<parent/FileInt/hi> == <parent/data/0>);
 (<parent/FileInt/lo> == <parent/data/1>);

 (<parent/FileName/length/hi> == <parent/data/2>);
 (<parent/FileName/length/lo> == <parent/data/3>);
 (<parent/FileName/data/%FnD>==<parent/data/%FnD+4>);

 // record the byte after the filename in NameEnd.
 (<parent/items/NameEnd>==<parent/FileName/length>+4);

Long [Page 41]

Internet-Draft External Object Description Language April 1997

 (<parent/FileOwner/length/hi>==
 <parent/data/<parent/items/NameEnd>>);
 (<parent/FileOwner/length/lo>==
 <parent/data/(<parent/items/NameEnd>+1)>);
 (<parent/FileOwner/data/%FoD> ==
 <parent/data/(%FoD+<parent/items/NameEnd>+2));

 // record the byte after the file owner.
 (<parent/items/OwnerEnd>==
 (<parent/items/NameEnd> +
 <parent/FileOwner/length>+2));

 (<parent/FileData/length/hi> ==
 <parent/data/<parent/items/OwnerEnd>>);
 (<parent/FileData/length/lo> ==
 <parent/data/(<parent/items/OwnerEnd>+1)>);
 (<parent/FileData/data/%FdD> ==
 <parent/data/(%FdD+<parent/items/OwnerEnd>+2)>);

 ");

 Suppose that a byte stream called "MyFile" is mapped to
 an available byte stream. (Recall, available items are
 those which are directly accessible to the XODL
 interpreter. Then, using the above description of a file
 we could assert:

 # MyFile | <File>;

 Doing so would provide names of all the parts in MyFile,
 along with a way for XODL to access those named pieces of
 information via the available MyFile is mapped to.

5. Interpreting XODL

 There are many different ways that XODL interpreters may
 be implemented, but the basic process must be the same:
 substitute identicals and check non-identicals to move
 information around. There are two related problems to
 solve: The first is, how do we use XODL to represent
 problems we wish to have solved. Let us look at this
 problem first.

5.1 How do XODL interpreters solve problems?

 It may seem that there are many different ways to use
 XODL to solve problems. While there are many different
 ways to implement XODL interpreters, the different

Long [Page 42]

Internet-Draft External Object Description Language April 1997

 problems that can be solved with XODL can be generalized
 and solved with a single algorithm. Let us consider the
 algorithm in term of its inputs (arguments). Let us call
 the algorithm task.engage.

 The inputs necessary for an XODL interpreter can be
 divided into two parts: problem lists, and tacit lists.
 Each of these two parts contains three lists, all of
 which are XODL StatementLists: Assertions, Capabilities,
 and Tasks. Thus, the inputs to task.engage consist of
 six lists. Assertions are those statements which
 describe the world to the interpreter. They mostly
 declare the existence of objects. For example, a
 StatementList might use the names of various computers,
 network connection, users, programs, and so on.

 Capabilities are statements which are not necessarily
 true, but which could be made true by the XODL
 interpreter if need be. For example, a capability might
 be to make certain operating system calls. What those
 calls actually do is specified in the assertions. An
 example might be of the form ([input to op-sys call] ==
 432);. Of course that is greatly simplified.

 Lastly, besides assertions and capabilities, there are
 tasks. A task list is a StatementList which, rather than
 describing the way the world IS, or the way the
 interpreter COULD make it, describes the way we would
 LIKE the world to be. For example, I might like to have
 a copy of a certain file or record on my hard drive or in
 a certain document. I.e., the information on the drive
 == certain other information. Or I might like to have a
 system set up whereby I can edit a certain file.

5.2 A Simple Example

 Suppose the inputs to task.engage are as follows:

 StatementList // Asserts.smt
 (a==b==c);
 (B==D);
 (X==Y);
 EndList

 StatementList //Test Capability List
 (y==t);
 (x==w);

Long [Page 43]

Internet-Draft External Object Description Language April 1997

 (d==x);
 (a==q);
 (b==s);
 EndList

 StatementList // A Task
 (A==Y);
 EndList

 The interpreter's job is to make sure that the task
 (A==Y) becomes the case. First, it (the interpreter)
 might look in the assertions to see if (A==Y) is already
 the case. It may need to do some substitution of
 identicals to do this. For example, it is asserted that
 (Y==X); if it is also the case that (X==A) then (A==Y) is
 already true and the interpreter need not act at all.
 Alas, (A==Y) is not the case according to the above
 assertions. The capabilities are items that the
 interpreter can MAKE true. In this case, making the
 third capability, (d==x), true, will complete the task
 since (D==B), and (b==a). In a real case, names might
 include URLs, references to the internals of documents,
 or to people. And the solution may consist of hundreds
 of steps of capabilities to do.

 Task.engage has two parts: first, find a suitable
 solution, and second, make that solution so.

5.3 Internal problems

 Task.engage is not merely the way a user or programmer
 interacts with the XODL interpreter. It is a vital part
 of how XODL is to BE interpreted. Consider an example.
 Suppose a task consists of retrieving a certain piece of
 information which is in an array. E.g., <PersonRec/53>.
 Now suppose that the index (the 53) was not directly
 known, but is stored in a document on the web. The
 reference to the information might be something like:

 <PersonRec/<"http://.../WorkSheet"/[C,32]>>

 The interpreter will have to retrieve the WorkSheet, or
 at least the contents of cell [C,32], and this will be a
 separate task. Thus, in almost any task, there are
 sub-tasks which the interpreter will have to generate for
 recursive calls to task.engage.

Long [Page 44]

Internet-Draft External Object Description Language April 1997

 The problem is that the simple assertions and
 capabilities passed in to the top level task.engage may
 not cover such things as looking up items on the web, or
 parsing spreadsheets. This is the reason for the "tacit"
 assertions, capabilities and tasks. Tacit assertions and
 capabilities are those items which the interpreter may
 use in solving any problem. For example, in the case
 where a problem references some information on the
 Internet, StatementLists describing TCP/IP, HTTP and so
 on may be needed to reference that information.

 Tacit tasks are a security measure. The tacit tasks will
 often be negative, that is of the form (A!=B). For
 example, tacit tasks might be "do not erase the hard
 drive", "do not try to guess passwords", "do not try to
 thwart system security." Using tacit tasks to increase
 security is only a precaution. It should not be the main
 method of directing the actions of the interpreter. See
 the section on security considerations for more
 information.

5.4 Availables revisited

 Recall that availables are named items to which the
 interpreter has access. The question is, what is the
 nature of this access? The answer is, whenever a piece
 of information resides in available memory, an implicit
 StatementList is being asserted. Suppose that <byte1>
 named an available byte somewhere in system memory. And
 suppose that memory cell contained the number 255. Then
 the statement(<byte1>==255) would automatically be
 asserted, as well as (<byte1/bits/0>==1) and so on for
 all eight bits. Thus, if the interpreter needs to access
 a piece of information, it can engage a task to move that
 information into an available memory location, and then
 read it from there.

5.5 An Example

 Suppose we wish to have the XODL interpreter design an
 AND gate. There are many different ways that AND gates
 can be created: out of transistors and resistors, via
 software connected to an I/O port, out of NAND or NOR
 gates, and so on. We can select which of the possible
 solutions XODL will use by limiting the capabilities it
 has to work with. Let us look at how XODL might
 construct an AND gate out of NOR gates.

Long [Page 45]

Internet-Draft External Object Description Language April 1997

 The first step is to describe AND and NOR gates. Let us
 assume that our gates are ideal in the sense that there
 is no time lag between when the signal arrives at the
 gate and when the new signal leaves. We can index the
 gates over time. That is, we can act as though we have
 an array of gates where each one is at a different time.
 The reference to the inputs of the gates have the form:

 <And/%t/Input1> and <Nor/%t/Input1>, and so on for
 Input2, and output.

 Where %t is the time. Let us consider the three
 StatementLists for this problem: Assertions,
 Capabilities, and Tasks.

///////////////////////////////

 StatementList And_Nor_Assertions;;
 // Type description for a two state system:
 (<BinDigit> ==
 "{(<parent> ==
 { [<parent>==0], [<parent>==1] });
 ([(<parent>==0)] != [(<parent>==1)]);}");

 // Describing AND:
 (<And_type> == "{
 # parent/%t1/Input1|<BinDigit>; // input1 is 1 or 0.
 # parent/%t2/Input2|<BinDigit>; // input2 is 1 or 0.
 # parent/%t3/output|<BinDigit>; // result is 1 or 0.

 // The result is 1 if & only if both inputs are 1.
 ([<parent/%t4/output> == 1] ==
 {[<parent/%t4/Input1>==1],
 [<parent/%t4/Input2>==1]});
 }");

 // Describing NOR:
 (<NOR_type> == "{
 # parent/%t1/Input1|<BinDigit>; // input1 is 1 or 0.
 # parent/%t2/Input2|<BinDigit>; // input2 is 1 or 0.
 # parent/%t3/output|<BinDigit>; // result is 1 or 0.

 // The result is 1 if & only if both inputs are 0.
 ([<parent/%t4/output> == 1] ==
 {[<parent/%t4/Input1>==0],
 [<parent/%t4/Input2>==0]});
 }");

Long [Page 46]

Internet-Draft External Object Description Language April 1997

 // There are two inputs In1 and In2 which are either
 // 1 or 0 depending on the time.
 # In1/%t1 | <BinDigit>;
 # In2/%t1 | <BinDigit>;
 # Out1/%t1| <BinDigit>; // the output is binary.

 // There are three Nor Gates:
 // (Recall the Array example.)
 #Nor, <NOR_Type>, 1, 3 | <ArrayType>;

 EndList

/////////////////////////////////

 StatementList And_Nor_Capabilities;;

 // In1 can attach to any gate input:
 (<In1/%t1>==<Nor/%n1/%t1/Input1>);
 (<In1/%t1>==<Nor/%n2/%t1/Input2>);

 // In2 can attach to any gate input:
 (<In2/%t1>==<Nor/%n3/%t1/Input1>);
 (<In2/%t1>==<Nor/%n4/%t1/Input2>);

 // Gate outputs can attach to gate inputs:
 (<Nor/%n5/%t1/output>==<Nor/%n6/%t1/Input1>);
 (<Nor/%n7/%t1/output>==<Nor/%n8/%t1/Input2>);

 // Out1 can attach to any gate output:
 (<Out1/%t1>==<Nor/%n9/%t1/output>);

 EndList

/////////////////////////////////

 StatementList And_Nor_Task;;

 // Create a new AND gate,
 #NewAnd | <And_Type>;

 // where in1, in2, and out1 are the I/O.
 (<In1/%t1>==<NewAnd/%t1/Input1>);
 (<In2/%t1>==<NewAnd/%t1/Input1>);
 (<Out1/%t1>==<NewAnd/%t1/output>);

 EndList

/////////////////////////////////

Long [Page 47]

Internet-Draft External Object Description Language April 1997

 Given the above inputs, an XODL interpreter should
 produce a list of statements similar to the following
 one:

 {
 (<Nor/1/%t1/Input1> == <In1/%t1>);
 (<Nor/1/%t1/Input2> == <In1/%t1>);
 (<Nor/2/%t1/Input1> == <In2/%t1>);
 (<Nor/2/%t1/Input2> == <In2/%t1>);
 (<Nor/3/%t1/Input1> == <Nor/1/%t1/output>);
 (<Nor/3/%t1/Input2> == <Nor/2/%t1/output>);
 (<Nor/3/%t1/output> == <Out1/%t1>);
 }

 It can be shown that the above RelationStmt will produce
 an AND gate if it is instantiated.

6. References

 [1] Bruce Long, "The Concept of Causality in Ethical
 Theories", not published. This paper can be requested
 from xbruce@dimensional.com.

7. Security Considerations

 XODL interpreters are given a specification of a state of
 affairs, and they try to find a sequence of actions which
 will bring that state of affairs to be. Different
 interpreters, or interpreters with slightly different
 StatementList driving them will come up with different
 sequences of actions. This means that special care must
 be taken to ensure that none of the actions taken are
 harmful, illegal, or immoral. For example, if a local
 machine did not have enough resources to complete a task,
 one solution would be to hack into another computer and
 use its resources via a hacked password.

 While such scenarios must be watched for, they need not
 cause a panic. There are several ways to control the
 behavior of XODL interpreters.

 1) Do not give it access to certain resources.
 2) Do not give it the capability of accessing them.
 3) Do not give it the knowledge (StatementLists) of them.
 4) Use tacit tasks to forbid certain actions.
 5) Program the interpreter to follow a system of values.

 The last item may sound hard to do, but I have developed

Long [Page 48]

Internet-Draft External Object Description Language April 1997

 a theory which will allow a complex value system to be
 "digitized." This theory can easily be hardwired into an
 XODL interpreter such that any action taken would conform
 to the stored value system. Such a system would probably
 be quite secure, as the XODL interpreter could be on the
 look out for items which would cause problems, and
 prevent them; whether they were rogue StatementLists or
 other programs. This theory is partly documented in [1].
 More information will be forthcoming, and will be posted
 at http://www.dimensional.com/~xbruce/.

8. Author's Address

 Bruce Long
 1335 Chambers Drive
 Boulder, CO 80303

 Phone: 303/494-3985
 E-mail: xbruce@dimensional.com

http://www.dimensional.com/~xbruce/

Long [Page 49]

