
TCP Maintenance & Minor Extensions (tcpm) J. Looney
Internet-Draft Netflix
Updates: 793, 2018, 5925, 7323 (if March 13, 2017
 approved)
Intended status: Standards Track
Expires: September 14, 2017

 64-bit Sequence Numbers for TCP
draft-looney-tcpm-64-bit-seqnos-00

Abstract

 This draft updates RFC 793 to allow the optional use of 64-bit
 sequence numbers. It also updates other standards to support the
 extended sequence number space.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 14, 2017.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Looney Expires September 14, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/draft-looney-tcpm-64-bit-seqnos-00
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

Table of Contents

1. Introduction . 2
1.1. Design Goals . 3
1.2. Overview of Implementation 3
1.3. Backwards Compatibility 4
1.4. Requirements Language 4

2. Extended Sequence Numbers 4
2.1. The 64-bit Sequence Number Option 5
2.2. Operation of the 64-bit Sequence Number Option 6
2.2.1. Choice of Initial Sequence Numbers 6
2.2.2. Negotiation of the 64-bit Sequence Number Option . . 7
2.2.3. Detecting Middle Boxes 8
2.2.4. Backwards Compatibility Mode 8

3. Changes to Other Features 9
3.1. Window Size . 9
3.2. SACK Blocks . 9
3.2.1. 32-bit SACK Blocks 9
3.2.2. 64-bit SACK Blocks 10

3.3. TCP Authentication Option 11
3.4. Other Features . 12

4. Implementation Considerations 12
5. Acknowledgements . 13
6. IANA Considerations . 13
7. Security Considerations 14
7.1. Attacks Due to Sequence-Number Guessing 14
7.2. Downgrade Attacks . 14
7.3. Denial-of-Service Attacks 15
7.4. 32-bit Sequence Numbers 15

8. References . 15
8.1. Normative References 15
8.2. Informative References 16

Appendix A. Design Choices 16
A.1. Detecting Middle Boxes 16
A.2. SACK Blocks . 17

 Author's Address . 17

1. Introduction

RFC 793 [RFC0793] specifies the sequence number space as a 32-bit
 space. This means that the sequence number space will wrap in 2**32
 bytes. On a 10-Gb/s network, this can occur in approximately 3.5
 seconds. On a 100-Gb/s network, this can occur in approximately 350
 milliseconds. While sequence number wrapping is a basic feature of
 TCP, the specified wrapping mechanism only supports having a
 theoretical maximum of 2**31 bytes outstanding at any given time.
 Additionally, when you are re-using sequence number space in such a
 short timeframe, it is unclear that the existing mechanisms for

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793

Looney Expires September 14, 2017 [Page 2]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 detecting duplicate packets will be sufficient. To practically
 support these very high-speed networks, it is necessary to expand the
 sequence number space.

 In addition to the base TCP specification, a number of other
 specifications have made assumptions about sequence numbers being 32
 bits long. This document updates some of those specifications and
 provides guidance on interaction with other specifications.

1.1. Design Goals

 This document assumes the following design goals:

 o Support 64-bit sequence numbers.

 o Maintain the existing header format.

 o Maintain backwards compatibility with TCP implementations
 (including middle boxes) that only support 32-bit sequence
 numbers.

 o Require minimal changes for any features that assume 32-bit
 sequence numbers.

 o Use minimal TCP option space.

1.2. Overview of Implementation

 This document specifies that the least significant 32 bits of the
 sequence number will continue to be carried in the Sequence Number
 and Acknowledgment Number fields of the standard TCP header. The
 most significant 32 bits will be carried in a new TCP option.

 This mechanism provides an easy way to negotiate the option on
 startup: hosts that understand 64-bit sequence numbers can include
 the option with the SYN. If the other host does not understand the
 64-bit Sequence Number Option, it will ignore the option and use the
 32-bit sequence number already contained in the standard TCP header.
 When the initiating host receives a SYN/ACK that does not contain the
 64-bit sequence number option, it simply reverts to normal 32-bit
 operation.

 This method of negotiation and operation bears some similarity to the
 TCP Timestamp Option [RFC7323], which has been widely deployed
 without evident problems.

https://datatracker.ietf.org/doc/html/rfc7323

Looney Expires September 14, 2017 [Page 3]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

1.3. Backwards Compatibility

 This document proposes a mechanism for providing backwards
 compatibility with existing TCP implementations that only support
 32-bit sequence numbers. The document takes advantage of the fact
 that the least-significant 32-bits of the 64-bit sequence number
 should have the same properties as the normal 32-bit sequence number:
 it is the same size, should be seeded to be as random as 32-bit
 sequence numbers, and should continue to wrap as expected.

1.4. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Extended Sequence Numbers

 This document allows the use of 64-bit sequence numbers if both
 endpoints of a TCP connection agree to use them. If both endpoints
 agree to use them, the endpoints should store 64 bits of sequence
 number and acknowledgment number information and should conduct all
 operations on these values using modulo 2**64 arithmetic.

 Although a host is free to store the 64-bit sequence number
 information in whatever format it desires, this document make a
 logical distinction between the most-significant 32 bits and the
 least-significant 32 bits of sequence number information. This
 division is represented in Figure 1.

 0 1 2 3 4 5 6
 01234567890123456789012345678901 23456789012345678901234567890123
 +--------------------------------+--------------------------------+
 | Sequence Number Extension | Legacy Sequence Number |
 +--------------------------------+--------------------------------+

 Figure 1: Logical division of a 64-bit sequence number

 In Figure 1, the least-significant 32 bits of the sequence number are
 labeled the "Legacy Sequence Number". This is the portion of the
 sequence number that is stored in the Sequence Number field of the
 standard TCP header defined in [RFC0793]. In Figure 1, the most-
 significant 32 bits of the sequence number are labeled the "Sequence
 Number Extension". This is the portion of the sequence number that
 is stored in the 64-bit Sequence Number Option, which is defined in
 this document.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc0793

Looney Expires September 14, 2017 [Page 4]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 The 64-bit acknowledgment number is divided in the same way. For
 completeness, the acknowledgment number logical divisions are shown
 in Figure 2.

 0 1 2 3 4 5 6
 01234567890123456789012345678901 23456789012345678901234567890123
 +--------------------------------+--------------------------------+
 |Acknowledgment Number Extension | Legacy Acknowledgment Number |
 +--------------------------------+--------------------------------+

 Figure 2: Logical division of a 64-bit acknowledgment number

 In Figure 2, the least-significant 32 bits of the acknowledgment
 number are labeled the "Legacy Acknowledgment Number". This is the
 portion of the acknowledgment number that is stored in the
 Acknowledgment Number field of the standard TCP header defined in
 [RFC0793]. In Figure 2, the most-significant 32 bits of the
 acknowledgment number are labeled the "Acknowledgment Number
 Extension". This is the portion of the acknowledgment number that is
 stored in the 64-bit Sequence Number Option, which is defined in this
 document.

2.1. The 64-bit Sequence Number Option

 The 64-bit Sequence Number Option is used to carry the most-
 significant 32 bits of the 64-bit sequence number information. It is
 also used to signal support for 64-bit sequence numbers in TCP
 segments with the SYN flag set.

 The 64-bit Sequence Number Option will use TCP Option Kind TBD1. Its
 general form is shown in Figure 3.

 0 1 2 3
 01234567 89012345 67890123 45678901
 +--------+--------+
 | Kind | Length |
 +--------+--------+--------+--------+
 | Sequence Number Extension |
 +--------+--------+--------+--------+
 | Acknowledgment Number Extension |
 +--------+--------+--------+--------+

 Figure 3: The 64-bit Sequence Number Option

 Prior to standardization action, implementations should use the
 mechanism described in [RFC6994] to encode the option. IANA has
 reserved experiment ID (ExID) TBD2 for the option described in this
 document. This option format is shown in Figure 4.

https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc6994

Looney Expires September 14, 2017 [Page 5]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 0 1 2 3
 01234567 89012345 67890123 45678901
 +--------+--------+--------+--------+
 |Kind=253| Length | ExID=TBD2 |
 +--------+--------+--------+--------+
 | Sequence Number Extension |
 +--------+--------+--------+--------+
 | Acknowledgment Number Extension |
 +--------+--------+--------+--------+

 Figure 4: The 64-bit Sequence Number Option with ExID

 In both cases, the fields are described in more detail below:

 Length
 The total length (in octets) of the option (including Kind,
 Length, and, if applicable, ExID), as specified in [RFC0793].

 Sequence Number Extension
 The most-significant 32 bits of the 64-bit sequence number.

 Acknowledgment Number Extension
 For a segment with the ACK flag set, this field contains the
 most-significant 32 bits of the 64-bit sequence number. If
 the ACK flag is not set, this field is omitted (and,
 consequently, the option is 4 octets shorter).

2.2. Operation of the 64-bit Sequence Number Option

 In order to use 64-bit sequence numbers, it is necessary for both
 hosts to negotiate the use of 64-bit sequence numbers. Further, it
 is necessary to ensure that no middlebox that is unaware of 64-bit
 sequence numbers is going to modify sequence number information.
 This section describes the initial negotiation to satisfy these
 parameters.

2.2.1. Choice of Initial Sequence Numbers

 In order to detect when a middlebox has modified the initial sequence
 numbers (ISNs) in the three-way handshake, each host must choose an
 ISN such that the Sequence Number Extension is the bitwise inverse of
 the Legacy Sequence Number. In C pseudo-code:

 sequence_number_extension = ~(legacy_sequence_number);

 This property is only a restriction on a choice of ISN. Subsequent
 to the selection of an ISN, 64-bit sequence numbers behave as normal
 64-bit numbers.

https://datatracker.ietf.org/doc/html/rfc0793

Looney Expires September 14, 2017 [Page 6]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

2.2.2. Negotiation of the 64-bit Sequence Number Option

 When a host ("the client") desires to use 64-bit sequence numbers for
 a TCP connection it is initiating, it includes the 64-bit Sequence
 Number Option in the initial segment. It places the least-
 significant 32 bits of the initial sequence number (ISN) in the
 Sequence Number field of the TCP header. It places the most-
 significant 32 bits of the ISN in the Sequence Number Extension field
 of the 64-bit Sequence Number Option.

 When a host ("the server") receives a request to initiate a TCP
 connection (that is, a segment with the SYN flag set and the ACK flag
 not set) and the segment contains a valid 64-bit Sequence Number
 Option, the server MAY choose to use 64-bit sequence numbers for that
 TCP connection. If the server chooses to use 64-bit sequence numbers
 for that connection, the server includes the 64-bit sequence number
 option in its reply (that is, a segment with both the SYN and ACK
 flags set). The server MUST NOT include a 64-bit Sequence Number
 Option unless the client included the 64-bit Sequence Number Option
 in its request to initiate a TCP connection.

 When the client receives the initial reply (that is, a segment with
 both the SYN and ACK flags set), it checks for a valid 64-bit
 Sequence Number Option. If it finds a valid 64-bit Sequence Number
 Option, it MUST include the 64-bit Sequence Number Option on all
 subsequent segments it sends for this connection.

 When the server receives an acknowledgement to its initial segment,
 it chcks for a valid 64-bit Sequence Number Option. If it finds a
 valid 64-bit Sequence Number Option, it MUST include the 64-bit
 Sequence Number Option on all subsequent segments it sends for this
 connection.

 For purposes of this section, a 64-bit Sequence Number Option is
 considered "valid" if (and only if):

 o If the segment's SYN flag is set, the Sequence Number Extension
 must be the bitwise inverse of the Legacy Sequence Number.

 o If the ACK flag is set, the full 64-bit acknowledgment number
 exactly matches the expected value.

 A host is said to have negotiated to use 64-bit sequence numbers is
 it has sent a 64-bit Sequence Number Option in the first segment it
 sent to the remote host and the first reply it received from the
 remote host contained a valid 64-bit Sequence Number Option.

Looney Expires September 14, 2017 [Page 7]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 If a host successfully negotiates the use of 64-bit sequence numbers,
 the host proceeds using 64-bit sequence numbers for the remainder of
 the session. If a host fails to successfully negotiate the use of
 64-bit sequence numbers, the host uses backwards compatibility mode
 (see Section 2.2.4).

2.2.3. Detecting Middle Boxes

 If a middle box is present which is modifying sequence numbers or
 proxying TCP connections, and that middle box does not support 64-bit
 sequence numbers, it is probable that either the ISN will not follow
 the rule specified in Section 2.2.1 or the Acknowledgment Number will
 not match the expected values. (The probability that these will
 exactly match accidentally is approximately 1 in 2**32. And, it is
 hard to conceive of a reasonable scenario where the 32-bit sequence
 numbers will exactly match, the first three segments will all also
 contain valid 64-bit Sequence Number Options, and yet the two sides
 will be unable to communicate using 64-bit sequence numbers.) That
 is why both sides MUST follow the validation rules specified in

Section 2.2.2 for the first first three packets in the session (the
 so-called "three-way handshake"). And, this is also why both sides
 MUST fallback to using 32-bit sequence numbers if an invalid 64-bit
 Sequence Number Option is detected in one of the first three frames.

2.2.4. Backwards Compatibility Mode

 If a host finds a missing or invalid 64-bit Sequence Number Option in
 one of the first three segments of a connection (the so-called
 "three-way handshake"), it MUST process the segment using 32-bit
 sequence numbers. Specifically, it ignores any 64-bit Sequence
 Number Option and only pays attention to the 32-bit Sequence Number
 and Acknowledgement Number fields found in the standard TCP header.
 Additionally, the host only considers the Legacy Sequence Number
 portion of the 64-bit sequence number and/or acknowledgement number
 it stored for the session. If the host finds that the segment is
 still not valid (e.g. the Acknowledgment Number does not match the
 expected value), it ignores the segment. (NOTE: This specifically
 means that the segment does NOT determine whether the host has
 successfully negotiated, or failed to negotiate, the use of 64-bit
 sequence numbers on the session.)

 However, if the host finds that the segment is valid when processed
 using 32-bit sequence numbers, the 64-bit sequence number negotiation
 has failed and the host MUST proceed for the rest of the session
 using only 32-bit sequence numbers. In this case, it MUST NOT send
 the 64-bit Sequence Number Option on any further segments for that
 connection.

Looney Expires September 14, 2017 [Page 8]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 If a host has NOT successfully negotiated to use 64-bit sequence
 numbers for a particular connection and it receives a 64-bit Sequence
 Number Option in a TCP segment for that connection, it MUST treat the
 segment as if it contained an out-of-window sequence number.

 If a host has successfully negotiated to use 64-bit sequence numbers
 for a particular connection and it receives a segment without a
 64-bit Sequence Number Option, it MUST treat the segment as if it
 contained an out-of-window sequence number.

3. Changes to Other Features

 Over time, other features have built upon the base TCP protocol
 specification. Many, if not all, of these features have assumed the
 existence of 32-bit sequence numbers. This document updates some of
 the features. It also provides a general rule for the operation of
 other features.

3.1. Window Size

 [RFC7323] specifies the Window Scale Option. It specifies a maximum
 window shift of 14. This document updates [RFC7323] by specifying
 that the maximum window shift is 46 if the hosts successfully
 negotiate using 64-bit sequence numbers for a connection. If the
 64-bit sequence number negotiation fails, both hosts must enforce the
 maximum window shift of 14 specified by [RFC7323].

3.2. SACK Blocks

 [RFC2018] defines a way to acknowledge receipt of out-of-order
 segments. [RFC2018] specifies that the segments are defined by
 32-bit sequence numbers. This document updates the way SACK blocks
 defined in [RFC2018] are interpreted when used on 64-bit
 environments. It also defines a new option used to hold 64-bit SACK
 blocks.

3.2.1. 32-bit SACK Blocks

 When a host has successfully negotiated the use of 64-bit sequence
 numbers on a session and has also negotiated the use of SACK as
 described in [RFC2018], the host may append a TCP SACK option as
 defined in [RFC2018]. When these options are used, the sequence
 numbers in the option are interpreted as follows: the Acknowledgment
 Number Extension from the 64-bit Sequence Number Option is used as
 the most-significant 32 bits of the 64-bit sequence numbers, while
 the sequence numbers from the TCP SACK option are used as the least-
 significant 32 bits of the 64-bit sequence numbers. Otherwise, the
 operation of the TCP SACK option remains unchanged.

https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc7323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018

Looney Expires September 14, 2017 [Page 9]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

3.2.2. 64-bit SACK Blocks

 When a host has successfully negotiated the use of 64-bit sequence
 numbers on a session and has also negotiated the use of SACK as
 described in [RFC2018], the host may append a 64-bit SACK Option.

 The 64-bit SACK Option will use TCP Option Kind TBD3. Its general
 form is shown in Figure 5.

 0 1 2 3
 01234567 89012345 67890123 45678901
 +--------+--------+
 | Kind | Length |
 +--------+--------+--------+--------+
 | |
 + Left Edge of 1st Block +
 | |
 +--------+--------+--------+--------+
 | |
 + Right Edge of 1st Block +
 | |
 +--------+--------+--------+--------+
 | |
 / . . . /
 | |
 +--------+--------+--------+--------+
 | |
 + Left Edge of nth Block +
 | |
 +--------+--------+--------+--------+
 | |
 + Right Edge of nth Block +
 | |
 +--------+--------+--------+--------+

 Figure 5: The 64-bit SACK Option

 Prior to standardization action, implementations should use the
 mechanism described in [RFC6994] to encode the option. IANA has
 reserved experiment ID (ExID) TBD4 for the option described in this
 document. This option format is shown in Figure 6.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc6994

Looney Expires September 14, 2017 [Page 10]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 0 1 2 3
 01234567 89012345 67890123 45678901
 +--------+--------+--------+--------+
 |Kind=253| Length | ExID=TBD2 |
 +--------+--------+--------+--------+
 | |
 + Left Edge of 1st Block +
 | |
 +--------+--------+--------+--------+
 | |
 + Right Edge of 1st Block +
 | |
 +--------+--------+--------+--------+
 | |
 / . . . /
 | |
 +--------+--------+--------+--------+
 | |
 + Left Edge of nth Block +
 | |
 +--------+--------+--------+--------+
 | |
 + Right Edge of nth Block +
 | |
 +--------+--------+--------+--------+

 Figure 6: The 64-bit SACK Option with ExID

 The meaning of the option fields, and the operation of the option, is
 unchanged from the TCP SACK option described in [RFC2018], except
 that the sequence numbers are 64-bit values in network byte order.

3.3. TCP Authentication Option

 [RFC5925] defines the TCP Authentication Option. The TCP
 Authentication Option uses sequence numbers in two places: the Key
 Derivation Function (KDF) context and the data input to the Message
 Authentication Code (MAC) algorithm.

 For purposes of the KDF context, this document updates [RFC5925] to
 specify that the Source ISN and Dest. ISN fields (shown in Figure 7
 of [RFC5925]) are defined to be the least-significant 32 bits of the
 initial sequence numbers.

 For purposes of the input to the Message Authentication Code (MAC)
 algorithm, this document updates [RFC5925] to specify that the
 Sequence Number Extension field is the Sequence Number Extension
 field from the 64-bit Sequence Number Option, if the option is

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5925

Looney Expires September 14, 2017 [Page 11]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 present, in any packet that does not carry the SYN flag. Otherwise,
 the Sequence Number Extension field is calculated as specified in
 [RFC5925].

 Note that the Sequence Number Extension field will always be
 formulated as specified in [RFC5925] for the first two packets of the
 so-called "three-way handshake". This ensures that hosts will be
 able to correctly calculate MACs whether or not they support 64-bit
 sequence numbers.

3.4. Other Features

 Anywhere that another RFC specifies the use of sequence numbers
 without specifying the way 64-bit sequence numbers should be handled,
 the RFC shall be interpreted as using the least-significant 32 bits
 of the sequence number.

4. Implementation Considerations

 During the 64-bit sequence number negotiation, it is important for
 security purposes (as described in Section 7.3) that the server check
 the third packet of the "three-way handshake" when determining
 whether the connection has negotiated to use 64-bit sequence numbers.
 If another in-sequence packet is received prior to the third packet
 of the "three-way handshake", it must either be discarded or queued
 for processing after the third packet of the "three-way handshake" is
 received.

 It may be useful to provide a way for applications to know whether a
 given connection uses 32-bit or 64-bit sequence numbers. It may also
 be useful to provide a way for applications to force the use of
 32-bit or 64-bit sequence numbers.

 It will be essential to properly handle 32-bit and 64-bit sequence
 numbers concurrently for different connections. This will require
 providing two sets of arithmetic and comparison functions. For
 various reasons, it probably makes sense to store the data as a union
 of a single 64-bit value and a two-member array of 32-bit values.

 Due to the limited option space, it may be impossible to deploy this
 feature concurrently with some other features on a given connection.
 This limitation may change if the option space is expanded by a
 future standardization change. However, implementers should pay
 attention to the possible combinations of options and order them in
 such a way to fit the maximum number of options in a single segment.
 Further, implementations will need to prioritize which features
 actually appear in the option space if they will not all fit.

https://datatracker.ietf.org/doc/html/rfc5925
https://datatracker.ietf.org/doc/html/rfc5925

Looney Expires September 14, 2017 [Page 12]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 Careful consideration will need to be paid to various offload
 technologies, such as TCP segmentation offload (TSO) or large receive
 offload (LRO). If the network interface card (NIC) drivers or
 hardware do not support 64-bit sequence numbers, the endpoint MUST
 NOT try to use 64-bit sequence numbers. Otherwise, sessions may not
 work correctly in practice, even if they appear to work correctly in
 small-scale tests.

 Implementations must ensure that the least-significant 32 bits of
 64-bit initial Sequence Numbers (ISNs) must serve as sufficiently
 random 32-bit ISNs. (See Section 7.4.)

5. Acknowledgements

 Jana Iyengar, Randall Stewart, and Michael Tuexen provided valuable
 feedback on this document. Michael Tuexen suggested the mechanism
 that currently appears in Section 2.2.1.

6. IANA Considerations

 IANA has assigned an option code value of TBD1 to the 64-bit Sequence
 Number Option (defined in Section 2.1) and an option code value of
 TBD3 to the 64-bit SACK Option (defined in Section 3.2.2) from the
 TCP Option Kind Numbers space defined in Section 9.3 of RFC 2780
 [RFC2780].

 [Note to editor: I think this paragraph and the following table can
 be removed.]The requested options are summarized below:

 +-------+------------------------+-----------+
 | Value | Description | Reference |
 +-------+------------------------+-----------+
 | TBD1 | 64-bit Sequence Number | [RFCXXXX] |
 | TBD3 | 64-bit SACK | [RFCXXXX] |
 +-------+------------------------+-----------+

 IANA has assigned an identifer value of TBD2 to the 64-bit Sequence
 Number experiment and an identifier value of TBD4 to the 64-bit SACK
 experiment from the TCP Experimental Option Experiment Identifiers
 space defined in Section 8 of RFC 6994 [RFC6994] [NOTE: If this is
 standardized with an option number, the experimental IDs should be
 deprecated, which will require change to this text.]

 [Note to editor: I think this paragraph and the following table can
 be removed.]The assigned ExIDs are summarized below:

https://datatracker.ietf.org/doc/html/rfc2780#section-9.3
https://datatracker.ietf.org/doc/html/rfc2780
https://datatracker.ietf.org/doc/html/rfc6994#section-8
https://datatracker.ietf.org/doc/html/rfc6994

Looney Expires September 14, 2017 [Page 13]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 +-------+--------------------+--------------------------------------+
 | Value | Description | Reference |
 +-------+--------------------+--------------------------------------+
TBD2	64-bit Sequence	[draft-looney-tcpm-64-bit-seqnos-00]
	Number	
TBD4	64-bit SACK	[draft-looney-tcpm-64-bit-seqnos-00]
 +-------+--------------------+--------------------------------------+

7. Security Considerations

 The security properties of TCP are largely unchanged (at least in a
 negative way) by 64-bit sequence numbers. However, a few things are
 worth discussing.

7.1. Attacks Due to Sequence-Number Guessing

 With 32-bit sequence numbers and the maximum window shift, an
 attacker has approximately a 25% chance of accurately guessing an in-
 window Sequence Number. If a host checks for both the acceptability
 of Sequence Numbers and Acknowledgment Numbers prior to acting on a
 segment, in the worst-case scenario (where the full window size is in
 flight, allowing for a full window size worth of acceptable
 Acknowledgment Numbers), this allows a 6.25% chance of accurately
 guessing a combination of in-window Sequence Number and acceptable
 Acknowledgment Number.

 Because this document specifies a maximum window shift that is 32
 bits larger than the maximum window shift used for 32-bit sequence
 numbers, these security properties are essentially unchanged with
 64-bit sequence numbers. (The major change is that an out-of-band
 attacker may not be able to guess whether a connection uses 64-bit
 sequence numbers. This may require that they try both 32-bit and
 64-bit sequence number semantics, decreasing the chance that they
 would accurately guess appropriate sequence numbers.)

 However, if you compare the use of 32-bit and 64-bit sequence numbers
 with the same amount of outstanding traffic and the same window size,
 the chance of guessing acceptable sequence numbers is much smaller
 with 64-bit sequence numbers than 32-bit sequence numbers.

7.2. Downgrade Attacks

 A man-in-the-middle (for example, a middlebox or proxy) can conduct a
 downgrade attack. This is actually a feature, as it allows two
 endpoints that understand 64-bit sequence numbers to communicate
 through a middlebox or proxy that does not understand 64-bit sequence
 numbers. However, it is important that operators be cognizant of the
 differing performance and security properties of 32-bit and 64-bit

https://datatracker.ietf.org/doc/html/draft-looney-tcpm-64-bit-seqnos-00
https://datatracker.ietf.org/doc/html/draft-looney-tcpm-64-bit-seqnos-00

Looney Expires September 14, 2017 [Page 14]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 sequence numbers. It may be appropriate to provide a mechanism for
 applications to require the use of 64-bit sequence numbers (and reset
 a session that cannot be established with 64-bit sequence numbers).

7.3. Denial-of-Service Attacks

 This mechanism introduces one additional denial-of-service attack
 possibility. Assume a session where both sides have sent and
 received valid 64-bit Sequence Number Options in the SYN segments.
 If an attacker correctly guesses the appropriate Sequence Number and
 Acknowledgment Number to use in the third packet of the so-called
 "three-way handshake" and they can inject a packet with the correct
 Sequence Number and Acknowledgment Number without a 64-bit Sequence
 Number Option and ensure the server receives the spoofed packet prior
 to the valid packet, this will prevent communication between the two
 hosts. The server will use 32-bit sequence numbers for the session,
 while the client will use 64-bit sequence numbers for the session.
 However, the requirement that the server must verify the actual third
 packet of the "three-way handshake" (and not merely some in-window
 segment) requires that the attacker EXACTLY guess both the 32-bit
 Legacy Sequence Number and the 32-bit Legacy Acknowledgment Number.
 With completely random sequence numbers, the chance of doing this is
 1 in 2**64.

7.4. 32-bit Sequence Numbers

 Because a session that is started with 64-bit sequence numbers may
 fallback to using 32-bit sequence numbers, implementations MUST
 choose ISNs such that the least-significant 32 bits of the ISN must
 be at least as random as the 32-bit ISNs that the system uses for
 connections that only support 32-bit sequence numbers.

 Further, the mechanism chosen to detect middleboxes results in only
 2**32 possible 64-bit ISNs. This provides the same level of security
 provided with 32-bit sequence numbers.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018,
 DOI 10.17487/RFC2018, October 1996,
 <http://www.rfc-editor.org/info/rfc2018>.

https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793
https://datatracker.ietf.org/doc/html/rfc2018
http://www.rfc-editor.org/info/rfc2018

Looney Expires September 14, 2017 [Page 15]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
 Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
 June 2010, <http://www.rfc-editor.org/info/rfc5925>.

 [RFC6994] Touch, J., "Shared Use of Experimental TCP Options",
RFC 6994, DOI 10.17487/RFC6994, August 2013,

 <http://www.rfc-editor.org/info/rfc6994>.

 [RFC7323] Borman, D., Braden, B., Jacobson, V., and R.
 Scheffenegger, Ed., "TCP Extensions for High Performance",

RFC 7323, DOI 10.17487/RFC7323, September 2014,
 <http://www.rfc-editor.org/info/rfc7323>.

8.2. Informative References

 [RFC2780] Bradner, S. and V. Paxson, "IANA Allocation Guidelines For
 Values In the Internet Protocol and Related Headers",

BCP 37, RFC 2780, DOI 10.17487/RFC2780, March 2000,
 <http://www.rfc-editor.org/info/rfc2780>.

Appendix A. Design Choices

 This section attempts to document the reasoning behind some of the
 design choices.

A.1. Detecting Middle Boxes

 An earlier version of this draft specified a different mechanism for
 detecting middlebox changes: a checksum of the 64-bit Sequence Number
 and Acknowledgment Number. This had the benefit of allowing the full
 64-bit sequence number to be random. However, it had the negative
 effects of requiring an additional two bytes of option space and
 requiring additional processing on input and output. Michael Tuexen
 suggested the mechanism that currently appears in Section 2.2.1.

 The mechanism that currently appears in Section 2.2.3 may still fail
 to detect a middlebox in one case. If there is a middlebox (such as
 a "transparent proxy") that passes TCP segments unchanged between the
 client and server, rewriting only IP addresses, this mechanism will
 not detect such a middlebox. However, it is not really necessary to
 detect such a middlebox: if the middlebox literally leaves the TCP
 portion of the packet unchanged, it should be perfectly acceptable to
 use 64-bit sequence numbers.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5925
http://www.rfc-editor.org/info/rfc5925
https://datatracker.ietf.org/doc/html/rfc6994
http://www.rfc-editor.org/info/rfc6994
https://datatracker.ietf.org/doc/html/rfc7323
http://www.rfc-editor.org/info/rfc7323
https://datatracker.ietf.org/doc/html/bcp37
https://datatracker.ietf.org/doc/html/rfc2780
http://www.rfc-editor.org/info/rfc2780

Looney Expires September 14, 2017 [Page 16]

Internet-Draft 64-bit Sequence Numbers for TCP March 2017

A.2. SACK Blocks

 An earlier version of this draft reused the existing TCP SACK option
 and specified that the option should contain sequence numbers of the
 same length as the sequence numbers in use for the connection.
 However, this was suboptimal for two reasons. First, a middle box
 might misinterpret the meaning of the 64-bit sequence numbers.
 Second, it always required the use of 64-bit values. The current
 mechanism means that the existing TCP SACK option will always contain
 32-bit values. This mechanism also allows the use of 32-bit values
 instead of full 64-bit values in some cases. However, this may still
 suffer from being too complex.

Author's Address

 Jonathan Looney
 Netflix
 100 Winchester Circle
 Los Gatos, CA 95032
 USA

 Email: jtl.ietf@gmail.com

Looney Expires September 14, 2017 [Page 17]

