
Network Working Group S. Loreto
Internet-Draft Ericsson
Intended status: Informational P. Saint-Andre
Expires: April 29, 2010 Cisco
 G. Wilkins
 Webtide
 S. Salsano
 Univ. of Rome "Tor Vergata"
 Oct 26, 2009

Best Practices for the Use of Long Polling and Streaming in
Bidirectional HTTP

draft-loreto-http-bidirectional-01

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 29, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Loreto, et al. Expires April 29, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Bidirectional HTTP Oct 2009

Abstract

 There is widespread interest in using the Hypertext Transfer Protocol
 (HTTP) to enable asynchronous or server-initiated communication from
 a server to a client as well as from a client to a server. This
 document describes how to better use HTTP, as it exists today, to
 enable such "bidirectional HTTP" using "long polling" and "HTTP
 streaming" mechanisms.

Table of Contents

1. Introduction . 3
2. Long Polling . 4
2.1. Definition . 4
2.2. Long Polling Issues 5

3. HTTP Streaming . 6
3.1. Definition . 6
3.2. HTTP Streaming Issues 8

4. Overview of Technologies 9
4.1. Bayeux . 9
4.2. BOSH . 10
4.3. Server-Sent Events . 12

5. HTTP Best Practices . 12
5.1. Two Connection Limit 12
5.2. Pipelined Connections 13
5.3. Proxies . 13
5.4. HTTP Responses . 14
5.5. Timeouts . 14
5.6. Network Impact . 14

6. Future Work . 15
7. Acknowledgments . 15
8. IANA Considerations . 15
9. Security Considerations 15
10. Informative References . 15

 Authors' Addresses . 16

Loreto, et al. Expires April 29, 2010 [Page 2]

Internet-Draft Bidirectional HTTP Oct 2009

1. Introduction

 The Hypertext Transfer Protocol [HTTP-1.1] is a request/response
 protocol. HTTP defines the following entities: clients, proxies, and
 servers. A client establishes connections to a server for the
 purpose of sending HTTP requests. A server accepts connections from
 clients in order to service HTTP requests by sending back responses.
 Proxies are intermediate entities that can be involved in the
 delivery of requests and responses from the client to the server and
 vice versa.

 In the standard HTTP model, a server cannot initiate a connection
 with a client nor send an unrequested HTTP response to the client;
 thus the server cannot push asynchronous events to clients.
 Therefore, in order to receive asynchronous events as soon as
 possible, the client needs to poll the server periodically for new
 content. However, continual polling can consume significant
 bandwidth by forcing a request/response round trip when no data is
 available. It can also be inefficient because it reduces the
 responsiveness of the application since data is queued until the
 server receives the next poll request from the client.

 To improve this situation, several server push programming mechanisms
 have been implemented in recent years. These mechanisms, which are
 often grouped under the common label "Comet" [COMET], enable a web
 server to send updates to clients without waiting for a poll request
 from the client. Such mechanisms can deliver updates to clients in a
 more timely manner while avoiding the latency experienced by client
 applications due to the frequent open and close connections necessary
 to periodically poll for data.

 The two most common server push mechanisms are "Long Polling" and
 "HTTP Streaming":

 Long Polling: The server attempts to "hold open" (not immediately
 reply to) each HTTP request, responding only when there are events
 to deliver. In this way, there is always a pending request
 available to use for delivering events as they occur, thereby
 minimizing the latency in message delivery.

 HTTP Streaming: The server keeps a request open indefinitely; that
 is, it never terminates the request or closes the connection, even
 after it pushes data to the client.

 It is possible to define other technologies for bidirectional HTTP,
 however such technologies typically require changes to HTTP itself
 (e.g., by defining new HTTP methods). This document focuses only on
 bidirectional HTTP technologies that work within the current scope of

Loreto, et al. Expires April 29, 2010 [Page 3]

Internet-Draft Bidirectional HTTP Oct 2009

 HTTP as defined in [HTTP-1.1] and [HTTP-1.0].

 The remainder of this document is organized as follows. Section 2
 analyzes the "long polling" technique. Section 3 analyzes the "HTTP
 streaming" technique. Section 4 provides an overview of the specific
 technologies that use server-push technique. Section 5 lists best
 practices for bidirectional HTTP using existing technologies.

 The preferred venue for discussion of this document is the
 hybi@ietf.org mailing list; visit
 <https://www.ietf.org/mailman/listinfo/hybi> for further information.

2. Long Polling

2.1. Definition

 With the traditional or "short" polling technique, a client sends
 regular requests to the server and each request attempts to "pull"
 any available events or data. If there are no events or data
 available, the server returns an empty response and the client waits
 for a period before sending another poll request. The frequency
 depends on the latency which can be tolerated in retrieving updated
 information from the server. This mechanism has the drawback that
 the consumed resources (server processing and network) strongly
 depend on the acceptable latency in the delivery of updates from
 server to client. If the acceptable latency is low (e.g., on the
 order of seconds) then the frequency of the poll request can cause an
 unacceptable burden on the server, the network, or both.

 By contrast with such "short polling", "long polling" attempts to
 minimize both latency in server-client message delivery and the
 processing/network resource as compared to normal polling techniques.
 The server achieves these efficiencies by responding to a request
 only when a particular event, status, or timeout has occurred. Once
 the server sends a long poll response, typically the client
 immediately sends a new long poll request. Effectively this means
 that at any given time the server will be holding open a long poll
 request, to which it replies when new information is available for
 the client. As a result, the server is able to asynchronously
 "initiate" communication.

 The basic life cycle of an application using "long polling" is as
 follows:

 1. The client makes an initial request and then waits for a
 response.

https://www.ietf.org/mailman/listinfo/hybi

Loreto, et al. Expires April 29, 2010 [Page 4]

Internet-Draft Bidirectional HTTP Oct 2009

 2. The server defers its response until an update is available, or a
 particular status or timeout has occurred.

 3. When an update is available, the server sends a complete response
 to the client.

 4. The client typically sends a new long poll request, either
 immediately or after a pause to allow an acceptable latency
 period.

 The long polling mechanism can be applied to either persistent or
 non-persistent HTTP connections. The use of persistent HTTP
 connections will avoid the additional overhead of establishing a
 TCP/IP connection for every long poll.

2.2. Long Polling Issues

 The long polling mechanism introduces the following issues.

 Header Overhead: With the long polling technique, every long poll
 request and long poll response is a complete HTTP message and thus
 contains a full set of HTTP headers in the message framing. For
 small infrequent messages, the headers can represent a large
 percentage of the data transmitted. This does not introduce
 significant technical issues if the network MTU allows all the
 information (including the HTTP header) to fit within a single IP
 packet. On the other hand, it can introduce business issues
 related to data cost, as the amount of transferred data can be
 significantly larger than the real payload carried by HTTP.

 Maximal Latency: After a long polling response is sent to a client,
 the server must wait for the next long polling request before
 another message can be sent to the client. This means that while
 the average latency of long polling is close to one network
 transit, the maximal latency is over three network transits (long
 poll response, next long poll request, long poll response).
 However, because HTTP is carried on TCP/IP, packet loss and
 retransmission can occur, so maximal latency for any TCP/IP
 protocol will be more than three network transits (lost packet,
 next packet, negative ack, retransmit).

 Connection Establishment: A common criticism of both short polling
 and long polling is that these mechanisms frequently open TCP/IP
 connections and then close them. However, both polling mechanisms
 work well with persistent HTTP connections that can be reused for
 many poll requests. Specifically, the short duration of the pause
 between a long poll response and the next long poll request avoids
 the closing of idle connections.

Loreto, et al. Expires April 29, 2010 [Page 5]

Internet-Draft Bidirectional HTTP Oct 2009

 Allocated Resources: Operating systems and network appliances will
 allocate resources to TCP/IP connections and to HTTP requests
 outstanding on those requests. The long polling mechanism
 requires that for each client, both a TCP/IP connection and an
 HTTP request are held open. Thus it is important to consider the
 resources related to both of these when sizing a long polling
 application. Typically the resources used per TCP/IP connection
 are minimal and can scale reasonably. Frequently the resources
 allocated to HTTP requests can be significant, and scaling the
 total number of requests outstanding can be limited on some
 gateways, proxies, and servers.

 Graceful Degradation: A long polling client or server that is under
 load has a natural tendency to gracefully degrade in performance
 at a cost of message latency. If load causes either a client or
 server to run slowly, then events to be pushed to clients will
 queue (waiting either for a long poll request or for available CPU
 to use a held long poll request). If multiple messages are queued
 for a client, then they may be delivered in a batch within a
 single long poll response. This can significantly reduce the per-
 message overhead and thus ease the work load of the client or
 server for the given message load.

3. HTTP Streaming

3.1. Definition

 The "HTTP streaming" mechanism keeps a request open indefinitely. It
 never terminates the request or closes the connection, even after the
 server pushes data to the client. This mechanism significantly
 reduces the network latency because the client and the server do not
 need to open and close the connection.

 The basic life cycle of an application using "HTTP streaming" is as
 follows:

 1. The client makes an initial request and then waits for a
 response.

 2. The server defers the response to a poll request until an update
 is available, or a particular status or timeout has occurred.

 3. Whenever an update is available, the server sends it back to the
 client as a part of the response.

 4. The data sent by the server does not terminate the request or the
 connection. The server returns to step 3.

Loreto, et al. Expires April 29, 2010 [Page 6]

Internet-Draft Bidirectional HTTP Oct 2009

 The HTTP streaming mechanism is based on the capability of the server
 to send several pieces of information on the same response, without
 terminating the request or the connection. This result can be
 achieved by both HTTP/1.1 and HTTP/1.0 servers.

 A HTTP response content length can be defined using 3 options:

 Content-Length header: This indicates the size of the entity body in
 the message, in bytes.

 Transfer-Encoding header: The 'chunked' valued in this header
 indicates the message will be break into chunks of known size.

 End of File (EOF): This is actually the default approach for
 HTTP/1.0 where the connections are not persistent. Clients do not
 need to know the size of the body they are reading; instead they
 expect to read the body until the server closes the connection.
 Although with HTTP/1.1 the default is for persistent connections,
 it still possible to use EOF by setting the 'Connection:close'
 header in either the request or the response, to indicate that the
 connection should not be considered 'persistent' after the current
 request/response is complete. The client's inclusion of the
 'Connection: close' header field in the request will also prevent
 pipelining.

 The main issue with EOF is that it is difficult to tell the
 difference between a connection terminated by a fault and one that
 is correctly terminated.

 An HTTP/1.0 server can use only EOF as a streaming mechanism. By
 contrast, both EOF and "chunked transfer" are available to an
 HTTP/1.1 server.

 The "chunked transfer" mechanism is the one typically used by
 HTTP/1.1 servers for streaming. It does so by including the header
 "Transfer-Encoding: chunked" at the beginning of the response, which
 enables it to send the following parts of the response in different
 "chunks" over the same connection. Each chunk starts with the
 hexadecimal expression of the length of its data, followed by CR/LF
 (the end of the response is indicated with a chunk of size 0).

Loreto, et al. Expires April 29, 2010 [Page 7]

Internet-Draft Bidirectional HTTP Oct 2009

 HTTP/1.1 200 OK
 Content-Type: text/plain
 Transfer-Encoding: chunked

 25
 This is the data in the first chunk

 1C
 and this is the second one

 0

 Figure 1: Transfer-Encoding response

 A HTTP/1.0 server will omit the Content-Length header in the response
 to achieve the same result, so it will be able to send the following
 parts of the response on the same connection (in this case the
 different parts of the response are not explicitly separated by HTTP
 protocol, and the end of the response is achieved by closing the
 connection).

3.2. HTTP Streaming Issues

 The HTTP streaming mechanism introduces the following issues.

 Network Intermediaries: The HTTP protocol allows for intermediaries
 (proxies, transparent proxies, gateways, etc.) to be involved in
 the transmission of a response from server to the client. There
 is no requirement for an intermediary to immediately forward a
 partial response and it is legal for it to buffer the entire
 response before sending any data to the client (e.g., caching
 transparent proxies). HTTP streaming will not work with such
 intermediaries.

 Maximal Latency: Theoretically, on a perfect network, an HTTP
 streaming protocol's average and maximal latency is one network
 transit. However, in practice the maximal latency is higher due
 to network and browser limitations. The browser techniques used
 to terminate HTTP streaming connections are often associated with
 JavaScript and/or DOM elements that will grow in size for every
 message received. Thus in order to avoid unlimited memory growth
 in the client, an HTTP streaming implementation must occasionally
 terminate the streaming response and send a request to initiate a
 new streaming response (which is essentially equivalent to a long
 poll). Thus the maximal latency is at least three network
 transits. Also, because HTTP is carried on TCP/IP, packet loss
 and retransmission can occur, so maximal latency for any TCP/IP
 protocol will be more than three network transits (lost packet,

Loreto, et al. Expires April 29, 2010 [Page 8]

Internet-Draft Bidirectional HTTP Oct 2009

 next packet, negative ack, retransmit).

 Client Buffering: There is no requirement in existing HTTP
 specifications for a client library to make the data from a
 partial HTTP response available to the client application. For
 example, if each response chunk contains a statement of
 JavaScript, there is no requirement in the browser to execute that
 JavaScript before the entire response is received. However, in
 practice most browsers do execute JavaScript received in partial
 responses, but some require a buffer overflow to trigger
 execution, so blocks of white space can be sent to achieve buffer
 overflow.

 Framing Techniques: Using HTTP streaming, several application
 messages can be sent within a single HTTP response. The
 separation of the response stream into application messages needs
 to be perfomed at the application level and not at the HTTP level.
 In particular it is not possible to use the HTTP chunks as
 application message delimiters, since intermediate proxies might
 "re-chunk" the message stream (for example by combining different
 chunks into a longer one). This issue does not affect the long
 polling technique, which provides a canonical framing technique:
 each application message can be sent in a different HTTP response.

4. Overview of Technologies

 This section provides an overview of how the specific technologies
 that implement server-push mechanisms employ HTTP to asynchronously
 deliver messages from the server to the client.

4.1. Bayeux

 The Bayeux protocol [BAYEUX] was developed in 2006-2007 by the Dojo
 Foundation. Bayeux can use both the long polling and HTTP streaming
 mechanisms.

 In order to achieve bidirectional communications, a Bayeux client
 will use two HTTP connections to a Bayeux server so that both server-
 to-client and client-to-server messaging can occur asynchronously.

 The Bayeux specification requires that implementations control
 pipeling of HTTP requests, so that requests are not pipelined
 inappropriately (e.g., a client-to-server message pipelined behind a
 long poll request).

 In practice, for JavaScript clients, such control over pipelining is
 not possible in current browsers. Therefore JavaScript

Loreto, et al. Expires April 29, 2010 [Page 9]

Internet-Draft Bidirectional HTTP Oct 2009

 implementations of Bayeux attempt to meet this requirement by
 limiting themselves to a maximum of two outstanding HTTP requests at
 any one time, so that browser connection limits will not be applied
 and the requests will not be queued or pipelined. While broadly
 effective, this mechanism can be disrupted by non-Bayeux JavaScript
 simultaneously issuing requests to the same host.

 Bayeux connections are negotiated between client and server with
 handshake messages that allow the connection type, authentication
 method, and other parameters to be agreed upon between the client and
 the server. Furthermore, during the handshake phase, the client and
 the server reveal to each other their acceptable bidirectional
 techniques and the client selects one from the intersection of those
 sets.

 For non-browser or same-domain Bayeux, clients use HTTP POST requests
 to the server for both the long poll request and the request to send
 messages to the server. The Bayeux protocol packets are sent as the
 body of the HTTP messages using the "text/json; charset=utf-8" MIME
 content type.

 For browsers that are operating in cross-domain mode, Bayeux clients
 use the "script src Ajax" ("AJAST") mechanism as described at
 <http://en.wikipedia.org/wiki/AJAST_(programming)>.

 Client-to-server messages are sent as encoded JSON on the URL query
 parameters.

 Server-to-client messages are sent as a JavaScript program that wraps
 the message JSON with a JavaScript function call to the already
 loaded Bayeux implementation.

4.2. BOSH

 BOSH, which stands for Bidirectional-streams Over Synchronous HTTP
 [BOSH], was developed by the XMPP Standards Foundation in 2003-2004.
 The purpose of BOSH is to emulate normal TCP connections over HTTP
 (TCP is the standard connection mechanism used in the Extensible
 Messaging and Presence Protocol as described in [XMPP]). BOSH
 employs the long polling mechanism by allowing the server (called a
 "BOSH connection manager") to defer its response to a request until
 it actually has data to send to the client from the application
 server itself (typically an XMPP server). As soon as the client
 receives a response from the connection manager, it sends another
 request to the connection manager, thereby ensuring that the
 connection manager is (almost) always holding a request that it can
 use to "push" data to the client.

http://en.wikipedia

Loreto, et al. Expires April 29, 2010 [Page 10]

Internet-Draft Bidirectional HTTP Oct 2009

 In some situations, the client needs to send data to the server while
 it is waiting for data to be pushed from the connection manager. To
 prevent data from being pipelined behind the long poll request that
 is on hold, the client can send its outbound data in a second HTTP
 request. BOSH forces the server to respond to the request it has
 been holding on the first connection as soon as it receives a new
 request from the client, even if it has no data to send to the
 client. It does so to make sure that the client can send more data
 immediately if necessary even in the case where the client is not
 able to pipeline the requests, respecting at the same time the two-
 connection limit discussed here under Section 5.1.

 The number of long polling request-response pairs is negotiated
 during the first request sent from the client to the connection
 manager. Typically BOSH clients and connection managers will
 negotiate the use of two pairs, although it is possible to use only
 one pair or to use more than two pairs.

 The roles of the two response-response pairs typically switch
 whenever the client sends data to the connection manager. This means
 that when the client issues a new request, the connection manager
 immediately answers to the blocked request on the other TCP
 connection, thus freeing it; in this way, in a scenario where only
 the client sends data, all the even requests are sent over one
 connection and the odd ones are sent over the other connection.

 BOSH is able to work reliably both when network conditions force
 every HTTP request to be made over a different TCP connection and
 when it is possible to use HTTP/1.1 and then relay on two persistent
 TCP connections.

 If the connection manager has no data to send to the client for an
 agreed amount of time (also negotiated during the first request),
 then the connection manager will respond to the request it has been
 holding with no data, and that response immediately triggers a fresh
 client request. The connection manager does so to ensure that if a
 network connection is broken then both parties will realise that fact
 within a reasonable amount of time.

 Moreover BOSH defines the negotiation of an "inactivity period" value
 that specifies the longest allowable inactivity period (in seconds).
 This enables the client to ensure that the periods with no requests
 pending are never too long.

 BOSH allows data to be pushed immediately when HTTP Pipelining is
 available. However if HTTP Pipelining is not available and one of
 the endpoints has just pushed some data, BOSH will usually need to
 wait for a network round trip time until it is able to push again.

Loreto, et al. Expires April 29, 2010 [Page 11]

Internet-Draft Bidirectional HTTP Oct 2009

 BOSH uses standard HTTP POST request and response bodies to encode
 all information.

 BOSH normally uses HTTP Pipelining over a persistent HTTP/1.1
 connection. However, a client can deliver its POST requests in any
 way permitted by HTTP 1.0 or HTTP 1.1.

 BOSH clients and connection managers are not allowed to use Chunked
 Transfer Coding, since intermediaries might buffer each partial HTTP
 request or response and only forward the full request or response
 once it is available.

 BOSH allows the usage of the Accept-Encoding and Content-Encoding
 headers in the request and in the response respectively, and then
 compresses the response body accordingly.

 Each BOSH session can share the HTTP connection(s) it uses with other
 HTTP traffic, including other BOSH sessions and HTTP requests and
 responses completely unrelated to the BOSH protocol (e.g., web page
 downloads).

4.3. Server-Sent Events

 W3C Server-Sent Events specification [W3C.WD-eventsource-20090423]
 defines an API that enables servers to push data to Web pages over
 HTTP in the form of DOM events.

 The data is encoded as text/event-stream content and pushed using a
 HTTP streaming mechanism, but the specification suggests to disable
 HTTP chunking for serving event streams unless the rate of messages
 is high enough to avoid the possible negative effects of this
 technique as described here under Section 3.2.

 However it is not clear the benefit of using EOF rather than chunking
 with regards to intermediaries, unless they are HTTP/1.0.

5. HTTP Best Practices

5.1. Two Connection Limit

 HTTP [HTTP-1.1] section 8.1.4 recommends that a single user client
 should not maintain more than two connections to any server or proxy,
 to prevent the server from being overloaded.

 Web applications need to limit the number of long poll requests
 initiated, ideally to a single long poll that is shared between
 frames, tabs, or windows of the same browser. However the security

Loreto, et al. Expires April 29, 2010 [Page 12]

Internet-Draft Bidirectional HTTP Oct 2009

 constraints of the browsers make such sharing difficult.

 A possible best practice is for a server to use cookies to detect
 multiple long poll requests from the same browser and to avoid
 deferring both requests since this might cause connection starvation
 and/or pipeline issues.

5.2. Pipelined Connections

 HTTP [HTTP-1.1] permits optional request pipelining over persistent
 connections. Multiple requests can be enqueued before the responses
 arrive.

 There is a possible open issue regarding the inability to control
 "pipelining". Normal requests can be pipelined behind a long poll,
 and are thus delayed until the long poll completes.

5.3. Proxies

 Most proxies work well with long polling, because a complete HTTP
 response must be sent either on an event or a timeout. Proxies
 should return that response immediately to the user-agent, which
 immediately acts on it.

 The HTTP streaming mechanism uses partial responses and sends some
 JavaScript in an HTTP/1.1 chunk as described under Section 3. This
 mechanism can face problems caused by two factors: (1) it relies on
 proxies to forward each chunk (even though there is no requirement
 for them to do so, and some caching proxies do not), and (2) it
 relies on user-agents to execute the chunk of JavaScript as it
 arrives (even though there is also no requirement for them to do so).

 A "reverse proxy" basically is a proxy that pretends to be the actual
 server (as far as any client or client proxy is concerned), but it
 passes on the request to the actual server that is usually sitting
 behind another layer of firewalls. Any short polling or long polling
 Comet solution should work fine with this, as will most streaming
 Comet connections. The main downside is performance, since most
 proxies are not designed to hold many open connections (as a
 dedicated Comet server is).

 Reverse proxies can come to grief when they try to share connections
 to the servers between multiple clients. As an example, Apache with
 mod_jk shares a small set of connections (often 8 or 16) between all
 clients. If long polls are sent on those shared connections, then
 the proxy can be starved of connections, which means that other
 requests (either long poll or normal) can be held up. Thus Comet
 mechanisms currently need to avoid any connection sharing -- either

Loreto, et al. Expires April 29, 2010 [Page 13]

Internet-Draft Bidirectional HTTP Oct 2009

 in the browser or in any intermediary -- because the HTTP assumption
 is that each request will complete as fast as possible.

 Much of the "badness" of both long polling and HTTP streaming for
 servers and proxies results from using a synchronous programming
 model for handling requests, since the resources allocated to each
 request are held for the duration of the request. Asynchronous
 proxies and servers can handle Comet long polls with few resources
 above that of normal HTTP traffic. Unfortunately some synchronous
 proxies do exist (e.g., apache mod_jk) and many HTTP application
 servers also have a blocking model for their request handling (e.g.,
 the Java servlet 2.5 specification).

5.4. HTTP Responses

 The server responds to a request successfully received by sending a
 200 OK answer, but only when a particular event, status, or timeout
 has occurred. The 200 OK body section contains the actual event,
 status, or timeout that occurred.

5.5. Timeouts

 The long polling mechanism allows the server to respond to a request
 only when a particular event, status, or timeout has occurred. In
 order to minimize as much as possible both latency in server-client
 message delivery and the processing/network resources needed, the
 long polling request timeout should be set to a high value.

 However, the value timeout value has to be chosen carefully; indeed,
 there can be problem if this value is set too high (e.g., the client
 might receive a 408 Request Timeout answer from the server or a 504
 Gateway Timeout answer from a proxy). The default timeout value in a
 browser is 300 seconds, but most network infrastructures have proxies
 and server that do not have such a long timeout.

 Several experiments have shown success with timeouts as high as 120
 seconds, but generally 30 seconds is a safer value. Therefore it is
 recommended that all network equipment wishing to be compatible with
 the long polling mechanism should implement a timeout substantially
 greater than 30 seconds (where "substantially" means several times
 more than the medium network transit time).

5.6. Network Impact

 To follow.

Loreto, et al. Expires April 29, 2010 [Page 14]

Internet-Draft Bidirectional HTTP Oct 2009

6. Future Work

 This document focuses on best practices for bidirectional HTTP in the
 context of HTTP as it exists today. Future documents might define
 additions to HTTP that could enable improved mechanisms for
 bidirectional HTTP. Examples include:

 o An HTTP extension for long polling, including request tracking,
 duplication, and retry methods.

 o A method for monitoring the state of multiple resources.

 o A request header to determine timeouts.

 o A request header to determine the longest acceptable polling
 interval.

 o Improved rendezvous logic between the user agent, a proxy /
 connection manager, and the backend application server.

 o Improved addressing for the entities involved in bidirectional
 HTTP, possibly including the use of URI templates.

 o Possible improvements/extensions to XMLHttpRequest (XHR) API
 [W3C.WD-XMLHttpRequest2-20090820] to expose connection-handling
 details (e.g., use of pconns, pipelining, etc.)

7. Acknowledgments

 Thanks to Joe Hildebrand, Mark Nottingham, and Martin Tyler for their
 feedback.

8. IANA Considerations

 This document does not require any actions by the IANA.

9. Security Considerations

 To follow.

10. Informative References

 [BAYEUX] Russell, A., Wilkins, G., Davis, D., and M. Nesbitt,
 "Bidirectional-streams Over Synchronous HTTP (BOSH)",

Loreto, et al. Expires April 29, 2010 [Page 15]

Internet-Draft Bidirectional HTTP Oct 2009

 2007.

 [BOSH] Paterson, I., Smith, D., and P. Saint-Andre,
 "Bidirectional-streams Over Synchronous HTTP (BOSH)", XSF
 XEP 0124, February 2007.

 [COMET] Russell, A., "Comet: Low Latency Data for the Browser",
 March 2006.

 [HTTP-1.0]
 Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext
 Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.

 [HTTP-1.1]
 Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [W3C.WD-XMLHttpRequest2-20090820]
 Kesteren, A., "XMLHttpRequest Level 2", World Wide Web
 Consortium WD WD-XMLHttpRequest2-20090820, August 2009,
 <http://www.w3.org/TR/2009/WD-XMLHttpRequest2-20090820>.

 [W3C.WD-eventsource-20090423]
 Hickson, I., "Server-Sent Events", World Wide Web
 Consortium WD WD-eventsource-20090423, April 2009,
 <http://www.w3.org/TR/2009/WD-eventsource-20090423>.

 [XMPP] Saint-Andre, P., Ed., "Extensible Messaging and Presence
 Protocol (XMPP): Core", RFC 3920, October 2004.

Authors' Addresses

 Salvatore Loreto
 Ericsson
 Hirsalantie 11
 Jorvas 02420
 Finland

 Email: salvatore.loreto@ericsson.com

 Peter Saint-Andre
 Cisco

 Email: psaintan@cisco.com

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2616
http://www.w3.org/TR/2009/WD-XMLHttpRequest2-20090820
http://www.w3.org/TR/2009/WD-eventsource-20090423
https://datatracker.ietf.org/doc/html/rfc3920

Loreto, et al. Expires April 29, 2010 [Page 16]

Internet-Draft Bidirectional HTTP Oct 2009

 Greg Wilkins
 Webtide

 Email: gregw@webtide.com

 Stefano Salsano
 Univ. of Rome "Tor Vergata"
 Via del Politecnico, 1
 Rome 00133
 Italy

 Email: stefano.salsano@uniroma2.it

Loreto, et al. Expires April 29, 2010 [Page 17]

