
INTERNET DRAFT

 Colin Low, Jim Randell, Mike Wray
 Hewlett Packard Laboratories
 October 1997

Self-Describing Data Representation (SDR)
<draft-low-sdr-00.txt>

Status of this Document

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To view the entire list of current Internet-Drafts, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), ftp.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

 This document expires on April 23 1998

Abstract

 This document describes a human-readable, textual syntax for
 representing self-describing structured data. This representation was
 designed as a transfer syntax for loosely-coupled distributed
 applications where one cannot depend on sender(s) and receiver(s)
 sharing a schema for exchanged data. The syntax is compact,
 expressive, intuitive, and simple to implement.

1. Introduction

 A traditional assumption in distributed systems is that structured
 data exchanged between applications is marshalled into an efficient

 [Page 1]

https://datatracker.ietf.org/doc/html/draft-low-sdr-00.txt

INTERNET DRAFT Self-Describing Data Representation October 1997

 binary representation, and the receiver shares enough state with the
 sender to unmarshal this representation. This is usually achieved
 through a shared schema, in the form of shared header files, or an
 interface description language (IDL) used to generate the marshaling
 and unmarshaling routines for both sender and receiver.

 This assumption is being eroded by the growth of distributed
 applications on the Internet, where one can no longer make the
 assumption that sender and receiver have shared state at some time in
 the past. In some applications sender and receiver are intentionally
 anonymous [1] and so data must of necessity be free-standing and
 self-describing.

 Application-specific syntaxes which employ self-description do exist
 (e.g. Mail, News [2], HTTP [3]), but they lack the expressive power
 required for more general use.

 The syntax described here was designed to meet the following goals:

 Self-describing. We do not assume the recipient of data is
 familiar with its schema, and so data values must include
 additional information to identify the values, and possibly also
 the representation used for each data value.

 Schema Tolerance. In a loosely-coupled and evolving distributed
 system with millions of participants, it may be difficult or
 impossible to ensure that all participants use the same schema for
 interpreting received data. The onus is on the recipient to
 interrogate the received data to ensure that it contains the
 minimum information required to make further progress.

 Expressiveness. The syntax supports structured data values in the
 form of maps and lists to any level of containment.

 Human Readability. Free-standing data needs to be (within
 reasonable limits) self-documenting.

 Compactness. We wanted a syntax that was efficient to transport
 and parse.

 Transport Independence. Self-describing data can (and should) be
 decoupled from the method used to transport it - it should be able
 to "ride piggyback" on any nominated transport. As most transports
 support the transfer of text, this means that the syntax described
 here can be employed with CORBA IIOP, ASN.1 Encoding Rules, OSF

 [Page 2]

INTERNET DRAFT Self-Describing Data Representation October 1997

 DCE, Electronic Mail, TCP, and UDP.

 Platform and language independence.

 Accessibility and simplicity. Excessive complexity militates
 against widespread use. Our goal was that an average programmer
 should be able to write a parser for the syntax in a couple of
 days.

 In order to provide a brief overview and example of the syntax, we
 have used the syntax to describe information of general interest to
 users of public transport, in the form of a "bus location update"
 notification:

 notification: {

 !An advanced customer service from the Speedy Bus Corporation

 type {
 ...
 },
 content {
 type (omnibus speedy-bus location-update),
 bus-id "23",
 date USDate:"091797",
 time 24hour:"19:36:50",
 latitude (59 43 21),
 longitude (54 23 19),
 vrml "http://www.bus-company.com/vrml/bus.wrl"
 },
 system {
 ...
 }
 }

 As a public service the Speedy Bus Corporation has attached GPS
 receivers to all its buses, and makes location information available
 about each bus at regular intervals. Someone receiving this
 information can interpret it and build applications - for example, it
 would be straightforward to create a map showing the current
 positions of all the buses, or use regular information about a single
 bus to estimate the congestion on a known route.

 Anyone receiving the information above can begin to make sense of it
 - there is no need to contact the bus company for information about
 how it encodes its location updates. Much of the information

 [Page 3]

INTERNET DRAFT Self-Describing Data Representation October 1997

 represented is self-evident.

 In more detail, the basis for self-description is the map, denoted by
 curly brackets {}. A map is an unordered set of name/value pairs.
 In the example above, the outermost map contains three further maps,
 named 'type', 'system' and 'content'. Because the SDR syntax is
 schema-tolerant, we don't need to know anything about the information
 in the 'type' and 'system' maps - we can effectively ignore them. If
 someone added a fourth map called 'authentication', it would have no
 impact on existing applications, which could ignore it.

 In this application the 'content' map contains application-specific
 information, such as the position of the bus. We can use as little
 or as much of the information as we need. Let us suppose that the
 initial application supplied only the latitude and longitude of the
 bus. Later, in response to a 3D VRML town plan, the bus company
 supplies a URL that points to a 3D model of the bus, so that
 application writers can add the bus dynamically to the town model.
 The addition of a new 'vrml' element to the 'content' map will not
 impact older applications, which will continue to use only the
 position information.

 This resilience to extensions to the schema is one of the most
 powerful features of SDR - loosely-coupled applications implemented
 on a large scale must tolerate this kind of incremental change and
 enhancement. The rule we apply is that an SDR parser should be able
 to accept syntactically correct SDR without prior knowledge of a
 schema, and present it to an application for interpretation. It is up
 to the application to decide whether the minimum information required
 is present.

 For example, let us suppose the Reliable Bus Corporation also
 provides bus location notifications, but has not implemented the
 pointer to a VRML model of a bus. An application could work with
 both the Speedy and the Reliable bus notifications. If the 'vrml'
 field exists, the application could load the VRML model, otherwise it
 could substitute a default model. Clearly some minimal knowledge
 about the schema for notifications is necessary, but an application
 using SDR is insulated from additions and extensions to a schema.

 The capability to unmarshal SDR in the absence of a schema leads to
 new kinds of application capable of carrying out a variety of purely
 syntactic functions on data-filtering, distribution and rewriting.
 For example, using the bus notification example above, it is possible
 to create an application that filters notifications using predicate
 expressions involving the fields of the notification. This filter

 [Page 4]

INTERNET DRAFT Self-Describing Data Representation October 1997

 application needs to know nothing about the application (bus location
 updates) or the meaning of the fields used in predicates (e.g.
 latitude and longitude).

2. Data Model

 SDR provides for the representation of structured data in three ways:
 map values, list values, and atomic values.

2.1 Map Values

 A map is an unordered set of name/value pairs. The map

 {
 firstname "John",
 lastname "Doe"
 }

 contains two pairs, with braces {} used to delimit the map. The
 ordering of pairs in a serial representation of a map is undefined -
 any order of pairs is a valid order.

 Any atom (byte sequence) can be used to name a value in a map,
 subject to the restriction that a name may only be associated with a
 single value in the same map; that is, names are unique within the
 map. Values may be of any type - maps are not homogeneous - and can
 consist of further maps or lists as well as Atomic values.

 Map values provide the foundation for self-describing data, and are
 intended to be heavily used in applications of SDR.

2.2 List Values

 List values allow a collection of values to be represented. There is
 no requirement that the list be homogeneous. The list

 (3 "Foobar" { firstname "John" lastname "Doe" })

 is a list consisting of the atom 3, the atom "Foobar", and the map
 value from the previous section. Round brackets () delimit the list.

 Lists can be used to represent sets where the number of elements is
 not known in advance - for example, a list of peoples' names. Lists
 can also be used to represent ordered data, such as lists of numbers.

 Lists should be avoided in cases where an implicit assumption is made

 [Page 5]

INTERNET DRAFT Self-Describing Data Representation October 1997

 about the interpretation of list elements - for example, the first
 element is a name, the second element is an age, the third element is
 the person's sex, and so on. This interpretation requires implicit
 state shared between the sender and the receiver. That is, the list

 ("John Doe" 35 "male")

 would be better represented by the map

 { name "John Doe",
 age 35,
 sex "male"
 }

 which provides a more robust decoupling between sender and receiver -
 new elements can be added to the map without affecting the receiver.
 If the receiver only needs to know the age (for a statistical
 calculation) then it can extract that without having to interpret the
 rest of the information in the map.

 This difference between maps and lists illustrates the philosophical
 difference between conventional serial representations of data, and
 self-describing data.

2.3 Atomic Values

 Atomic values are used to represent the data at the leaf nodes of an
 SDR represenation. An arbitrary sequence of bytes can be represented
 as an atomic value. Typically any byte sequence represented by an
 atomic value is treated as an indivisible whole by the system and not
 subject to further structural breakdown - hence these byte sequences
 are known as atoms.

2.4 Tags

 A value may have a tag associated with it. A tag is an atom
 associated with a value that may be used at the application level to
 denote the intended high-level type of the value. For example:

 Person: {
 firstname "John",
 lastname "Doe"
 }

 indicates a map with the tag 'Person'. Tags are useful in increasing
 the comprehensibility of the syntax, but more importantly, were

 [Page 6]

INTERNET DRAFT Self-Describing Data Representation October 1997

 intended to be used in conjunction with data types. For example,

 UKDate: "010997"

 and

 USDate: "010997"

 use the same string of numbers to represent different calendar dates
 (1st September 1997 in former case, 9th January 1997 in the latter).

 The astute reader will have noticed that shared types (tags)
 reintroduce the need for shared state between sender and receiver.
 Tags are optional. When used sparingly they can be used to enrich
 the intentionally limited range of atomic types in SDR by imposing
 application semantics on atomic types (e.g. representing a date as a
 string).

 In many applications tags are unnecessary - there are common
 notations in programming languages such as 'C' for representing a
 small number of different types of value such as integers, booleans,
 strings, and floating point numbers. SDR has a canonical
 representation for a small number of value types, and values
 recognised as such (for example, an integer) are supplied with an
 implicit tag. Further details on the representation of values and
 tagging are given below.

3. Data Representation

 SDR is a human-readable concrete syntax to represent the data values
 described above as plain text.

3.1 Atoms

 There is no single best method to represent an atomic value, and so
 four different methods of representation are provided which cover
 most common requirements. An atom can be introduced in four ways: as
 a token, a string, as counted data, and as quoted data.

 Each of these is a way of introducing a sequence of bytes and any of
 them can be used to denote an atom. It is normally obvious which
 representation to use - for example, numbers are normally represented
 as tokens, and text as strings.

3.1.1 Tokens

 [Page 7]

INTERNET DRAFT Self-Describing Data Representation October 1997

 SDR is based on an octet stream. Certain 8-bit values are reserved
 which correspond to the ASCII (7-bit) values for the SDR meta-
 characters (see 3.7).

 If a non-empty atom consists entirely of octets equivalent to the
 following ASCII characters *or* contains octets whose values are
 greater than 0x7f (hexadecimal) it can be represented directly:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz
 0123456789$%&*+-.@?/_^~;<=>[]'`|

 Atoms expressed in this limited alphabet are known as tokens. This
 convention is equivalent to support for UTF8-encoded Unicode.

 Tokens are an efficient and readable representation for:

 boolean values: true, false
 integer values: 496 3 -89
 floating point values: 1.333 -5.9+e9
 names for map values: firstname lastname
 tags: USDate UKDate

3.1.1.1 Examples

 Each of the following is a valid atom introduced as a token and
 representing the given byte sequence (represented in hex):

 event <-> '65/76/65/6E/74'
 < <-> '3C'
 <= <-> '3C/3D'
 = <-> '3D'
 x[4] <-> '78/5B/34/5D'
 42 <-> '34/32'
 return-template <-> '72/65/74/75/72/6E/2D/74/65/6D/70/6C/
61/74/65'

 If an atom is not drawn from the limited alphabet it can be
 represented in one of the three remaining ways: as a string, as
 quoted data, or as counted data. Each of these ways can introduce
 arbitrary atoms (i.e. arbitrary byte sequences), whereas the token
 representation can only be used for a subset of atoms.

3.1.2 Strings

 An atom can be introduced by representing it as a C-like string
 constant. The string is delimited with double quotes (" ") and may

 [Page 8]

INTERNET DRAFT Self-Describing Data Representation October 1997

 contain octal escape characters as well as the standard escape forms
 of some other non-printable characters.

 Atoms represented as strings consist of all bytes between the quote
 delimiters with escaped characters introduced by the backslash
 character (\).

 The following escaped forms are recognised in strings and are
 translated to the given byte (in hex):

 \b -> 08 (backspace)
 \f -> 0C (form feed)
 \n -> 0A (line feed)
 \r -> 0D (carriage return)
 \t -> 09 (horizontal tab)
 \\ -> 5C (backslash)
 \" -> 22 (double quote)
 \' -> 27 (single quote)
 \x where x is an octal number in the range 0-7 (hex: 00-07)
 \xx where xx is an octal number in the range 00-77 (hex: 00-3F)
 \xxx where xxx is an octal number in the range 000-377 (hex: 00-FF)

 Any other characters following a backslash are considered a parse
 error.

3.1.2.1 Examples

 Each of the following is a valid atom introduced as a string and
 representing the given byte sequence (represented in hex):

 "string" <-> '73/74/72/69/6E/67'
 "" <-> '' (empty byte sequence)
 "forty two" <-> '66/6F/72/74/79/20/74/77/6F'
 "\"pardon?\"" <-> '22/70/61/72/64/6F/6E/3F/22'
 "line 1\nline 2" <-> '6C/69/6E/65/20/31/0A/6C/69/6E/65/20/32'

3.1.3 Counted Data

 A byte sequence may be introduced as an atom by preceding it with #*
 (hash, star) followed by a byte count represented in ASCII decimal
 (characters hex: 30-39) followed by \ (backslash) followed by the
 bytes themselves.

 This format is particularly useful for programatic generation of
 data, where you know the length of the data you want to introduce,
 but you do not want to deal with the special quoting rules of

 [Page 9]

INTERNET DRAFT Self-Describing Data Representation October 1997

 strings.

3.1.3.1 Examples

 Each of the following is a valid atom introduced as counted data and
 representing the given byte sequence (represented in hex). To
 improve clarity, input characters are delimited by meta characters [
 and], which are typographic and not part of the Counted Data syntax.

 [#*10\some bytes] <-> '73/6F/6D/65/20/62/79/74/65/73'
 [#*0\] <-> '' (empty byte sequence)
 [#*2\] <-> '20/20'
 [#*9\"pardon?"] <-> '22/70/61/72/64/6F/6E/3F/22'

3.1.4 Quoted Data

 A byte sequence may be introduced as an atom by placing a delimiting
 sequence that does not occur within it on either side of the
 sequence. This representation is denoted by preceding it with #<
 (hash, less-than) followed by a single byte not occurring in the
 delimiter, the delimiter itself followed by the same single byte,
 then the atom itself followed by the single byte delimiter and the
 delimiter string.

3.1.4.1 Examples

 Each of the following is a valid atom introduced as quoted data and
 representing the given byte sequence (represented in hex).

 #<ENDsome bytes$END -> '73/6F/6D/65/20/62/79/74/65/73'
 #<#x##x -> '' (empty byte sequence)
 #<*---* *--- -> '20/20'

3.2 Tags

3.2.1 Introduction

 Tags are a way to describe the intended interpretation of a value in
 SDR. For example:

 boolean: true
 boolean: 1

 [Page 10]

INTERNET DRAFT Self-Describing Data Representation October 1997

 can both denote the same truth value.

 SDR builds compound values out of atoms, and the atoms are
 syntactically neutral, with no particular meaning intended. In the
 absence of implicit interpretations of atoms in SDR one would have to
 use 'int:32' and 'string:"32"' to indicate that the first atom is
 meant to be an integer and the second a string. In order to avoid
 this SDR has `implicit tags'. These implicit tags cause untagged
 atoms to be treated as `the obvious thing' by SDR systems. The
 following implicit tags have defined meanings: map, list, atom,
 string, num, int, float.

 The implicit tag of '32' is 'int', and the implicit tag of `"32"' is
 'string', so we can use these representations without tags when we
 intend these interpretations.

 Since the implicit tag of '"32"' is `string' it is not an equivalent
 representation to '32', though 'int:"32"' is. The rule is that in
 using an alternative representation for the bytes of an untagged atom
 an explicit tag must be supplied if the alternative representation
 has a different implicit tag.

 It is possible that an SDR system may not want to parse integers and
 floats completely, but still use alternative representations. This is
 allowed by the use of the `num' tag. This means that the following
 atomic value is meant to be a number, but has not necessarily been
 checked for validity. SDR systems should not rewrite untagged atoms
 using the 'int' or 'float' tags unless they check validity. For
 example the following are equivalent forms:

 32 int:"32" num:"32" int:#*2\32 int:#<<end<32<end
 1.414 float:"1.414" num:"1.414"
 4/2 num:"4/2"
 "123" string:123 #<<|<123<|

 The form integer:"4/2" is not illegal SDR, though it may be
 uninterpretable as an integer.

 A token begining with a digit has implicit tag 'num'. If it is a
 syntactically valid integer or float the implicit tag 'int' or
 'float' may also be used. Any other unquoted token has implicit tag
 'token'. An atom introduced as a string using `"' has the implicit
 tag 'string'.

 The implicit tags of maps '{ .. }' and lists '(...)' are 'map' and
 'list' respectively. At the moment there are no alternative

 [Page 11]

INTERNET DRAFT Self-Describing Data Representation October 1997

 representations (up to element re-ordering of maps) so the only
 equivalent forms are like these:

 { x 1, y 2 } map:{x 1, y 2} map:{y 2, x 1,} {y 2, x 1,}
 (12 "abc") list:(12 string:#*3\abc)

 The implicit tag of #* and #< is 'string'. Some equivalences:

 #*3\abc #<<|<abc<| string:abc "abc"

3.2.2 Equivalent Forms

 SDR has equivalent ways of saying the same thing, for example { x 1,
 y 2 } and { y 2, x 1 } mean the same. At least they are intended to
 mean the same. An SDR parser can see the different order of x and y
 in the 2 inputs and could make this information available to an
 application which could then distinguish them.

 In order to exclude this behaviour, and make the notion of `meaning
 the same' precise, we define `SDR-compliance'. Suppose a client
 program is reading a stream of SDR. We define the client to be SDR-
 compliant if the input stream could be transformed into any
 equivalent form without disturbing the functioning of the client.

 Similarly, suppose we have an SDR client functioning as a forwarder
 of SDR streams between clients. The forwarder is allowed to rewrite
 SDR into any equivalent form. The whole system is `SDR-compliant' if
 such rewriting does not disturb its functioning.

 An atom is equivalent to any form that preserves its bytes and tag
 (implicit or not).

 A map is equivalent to any form that preserves its tag and uses
 equivalent forms for its keys and values. Permuting the element-pairs
 and adding or removing the trailing comma are equivalences.

 A list is equivalent to any form that preserves its tag and uses
 equivalent forms for its elements, in the same order.

 Values may be introduced by an optional tag, represented by an atom
 followed by a : (colon) and optional white space, and then the value
 itself. Both the tag (if present) and an atomic value may be
 represented in any of the atom formats.

 [Page 12]

INTERNET DRAFT Self-Describing Data Representation October 1997

3.2.3 Implicit Tagging

 In many applications tagging is unnecessary, and an SDR parser can
 say something about the types of atoms it recognises without needing
 an explicit tag. The SDR syntax was designed to facilitate the
 following implicit tags:

 1. If the value is introduced as a token then the implicit tag
 depends on the content of the value in the following way:

 1.1. If the value represents a 64-bit signed integer, expressed
 either in decimal or twos complement hexadecimal, then it will be
 assigned the implicit tag 'int'.

 1.2. If the value represents an IEEE-754 floating point number,
 then it will be assigned the implicit tag 'float'.

 1.3. If the value has at least one byte and the first byte
 represents either a decimal digit or a sign or radix (+ (plus), -
 (minus), . (full stop)), then it will be assigned an implicit tag
 of 'num'.

 1.4. Otherwise it will be assigned an implicit tag of 'token'.

 2. If the value was introduced as a string then it will be
 assigned an implicit tag of 'string'.

 3. If the value was introduced either as counted data or quoted
 data then it will be assigned an implicit tag of 'string'.

 Implicit tags are structured as follows:

 atom
 |

 | |
 token string
 |
 num
 |

 | |
 int float

 When a value is transmitted, any tag (either explicit or implicit)

 [Page 13]

INTERNET DRAFT Self-Describing Data Representation October 1997

 must be maintained. For example, an atomic value introduced as
 [42] may be transmitted as [#*7\int:#*2\42] but not simply
 [#*2\42] (as it would be received with the implicit tag of
 'data'). Similarly a value introduced as [string:1.3e+7] may be
 transmitted as ["1.3e+7"] but not as [1.3e+7] (as it would be
 received with the implicit tag of 'float').

3.2.3.1 Examples

 Each of the following is a valid atomic value. Each line consists of
 alternative representations of the same atomic value (i.e. the same
 tag and the same value). Input characters are delimited by the meta
 characters [and], which are typographic and not part of the syntax.

 [string:42] ["42"] [#*2\42] [#*002\42] [#<x$x42x$]
 [37] [int: 37] [int: "37"]
 [int: "thirty seven"] [int: #*12\thirty seven]
 [token] [token:"token"] [token:#*05\token]

3.3 List Values

 List values are introduced by an optional tag, followed by ((open
 round bracket) followed by the list elements in order, separated by
 white space, and terminated with a) (close round bracket).

 Untagged list values receive the implicit tag 'list'.

3.3.1.1 Examples

 Each of the following is a valid list value.

 [Page 14]

INTERNET DRAFT Self-Describing Data Representation October 1997

 (one two three four)

 (integer:one integer:two integer: three integer:four)

 (1 (2 2) (3 3 3) (4 four IV 4.0 4+0i))

 template:(
 (insert type (literal (app msg-panel notify)))
 (insert name (literal "WWW"))
 (insert text (format "Update: %s" (substitute (document-info
url))))
 (insert url (substitute (document-info url)))
 (if (test (document-info title) (type atomic))
 (insert text (format "Update: %s - %s" (substitute (document-
 info title)) (substitute (document-info url)))))
)

3.4 Map Values

 Map values are introduced by an optional tag, followed by { (open
 brace) followed by a comma separated sequence of pairs, followed by a
 } (close brace). Each pair consists of an atom representing the name,
 followed by whitespace, followed by the value. The value may be an
 atomic value, a list or a map. If a comma is included after the final
 maplet in a map it will be ignored.

 Untagged map values receive the implicit tag 'map'.

3.4.1.1 Examples

 Each of the following is a valid map value.

 [Page 15]

INTERNET DRAFT Self-Describing Data Representation October 1997

 {one 1, two 2, three 3, four 4}

 {1 int:one, 2 int:two, 3 int: three, 4 int:four}

 notification: {
 type (app wanda document update),
 document-info {
 url "http://keryxsoft.hpl.hp.com/project/web-watcher.html",
 last-modified "Tuesday, 04-Mar-97 09:23:28 GMT",
 checksum {type md5, value 79552c131ee78346de887912534bcc},
 keywords ("Keryx" "Application" "Web" "Notification"),
 visibility (
 {type netmask, pattern 15.0.0.0, mask 255.0.0.0}
),
 title "Keryx Web Watcher",
 author-url "mailto:foo@hplb.hpl.hp.com",
 description "Proposal for Keryx Killer App",
 relevance (
 {type (hp logical), value (com hp hpl hplb keryx)}
 {type (geo global), value ("51:30:00N" "02:33:15W")}
)
 }
 }

3.5 White Space

 The following bytes (given in hex) are considered white space when
 they occur (other than as part of an atomic value).

 20 (space)
 09 (horizontal tab)
 0D (carriage return)
 0A (line feed)
 0C (form feed)

3.6 Comments

 When values are read from files comments may be introduced by the
 character ! (exclamation mark) and continue to the next new-line
 character. The comment is treated as white space.

3.7 Character Sets

 [Page 16]

INTERNET DRAFT Self-Describing Data Representation October 1997

 SDR is based on an octet stream. Certain 8-bit values are reserved,
 corresponding to the ASCII 8-bit values for the characters:

 (){}#"!
 plus the whitespace characters given in 3.5.

4. Syntax Description

 The syntax for SDR is represented using an extended BNF. Square
 brackets [] are used to denote an optional item. The character '*'
 denotes an item that may be repeated zero or more times, and '+'
 denotes an item that may be repeated one or more times. A choice is
 denoted by '|'. Literals are quoted: for example, 'foo'.

 Value = [Atom':'] RawValue
 RawValue = Atom | Compound
 Atom = Token | String | CountedData | QuotedData
 Compound = Map | List
 Map = '{' '}' | '{' [Maplet ',']* Maplet [','] '}'
 Maplet = Atom Value
 List = '(' [Value]* ')'
 Token = RestrictedChar+
 String = '"' Char* '"'
 CountedData = '#*' NonNegativeInteger '\' RawBytes
 Char = Escape | OctalEscape | Ascii
 Escape = '\n' | '\t' | '\b' | '\r' | '\f' | '\"' | '\'' | '\\'
 OctalEscape = '\' OctalDigit OctalDigit OctalDigit
 RestrictedChar = one of
 abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$%&*+-.
 @?/_^~;<=>[]'`| plus octet values over 0x7F
 Ascii = Any ASCII character
 QuotedData = '#<' <single char c> <delimiter string s> <c again>
 data <c again> <s again>

 In OctalEscape and in Data types after initial #x, no white-space is
 permitted.

5. Implementation

 An implementation of SDR in Java, with source code, is available as a
 component of the Keryx Notification Service, available at

http://keryxsoft.hpl.hp.com

6. Acknowledgements

http://keryxsoft.hpl.hp.com

 [Page 17]

INTERNET DRAFT Self-Describing Data Representation October 1997

 This syntax has been critiqued by several people. In particular,
 Soren Brandt and Anders Kristensen have implemented several variants
 of the syntax and provided many valuable suggestions.

7. References

 [1] The Keryx Notification Service - http://keryxsoft.hpl.hp.com

 [2] Standard for the format of Arpa Internet text messages, RFC 822,
 1982

 [3] Hypertext Transfer Protocol HTTP/1.0, RFC 1945, 1996

8. Author's Address

 Colin Low (editor)
 Hewlett Packard Laboratories,
 Filton Road,
 Stoke Gifford,
 Bristol BS12 6QZ
 UK

 Tel: +44 117 9799910
 Email: cal@hplb.hpl.hp.com

 [Page 18]

http://keryxsoft.hpl.hp.com
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc1945

