
QUIC I. Lubashev
Internet-Draft Akamai Technologies
Intended status: Informational May 29, 2018
Expires: November 30, 2018

Partially Reliable Message Streams for QUIC
draft-lubashev-quic-partial-reliability-03

Abstract

 This memo introduces a new EXPIRED_STREAM_DATA frame to enable
 partial reliability for QUIC streams. The EXPIRED_STREAM_DATA frame
 allows a sender to give up on retransmitting older parts of a stream
 and to notify the receiver about this decision. The content of this
 draft is intended for merging into QUIC transport, recovery, and
 applicability drafts as a negotiable extension and/or QUIC Version 2
 transport feature.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 30, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Lubashev Expires November 30, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft quic-pr May 2018

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Notational Conventions 2
2. Introduction . 2
2.1. Stream-per-Message Alternative 3
2.2. Partially Reliable Message Streams 3

 2.3. Minimum retransmittable offset and smallest receive
 offset . 3

3. EXPIRED_STREAM_DATA Frame 4
4. Sender Interface and Behavior 5
4.1. Communicating Message Boundary 5
4.2. Translating Application Offsets to QUIC Offsets 5
4.3. Sender Behavior . 5
4.3.1. Coalescing Minimum Retransmittable Offset Updates . . 6
4.3.2. Example . 6

5. Receiver Interface and Behavior 7
6. Retransmission of EXPIRED_STREAM_DATA 8
7. IANA Considerations . 8
8. Security Considerations 8
9. Change Log . 8
9.1. Since version 00 . 8
9.2. Since version 01 . 8
9.3. Since version 02 . 8

10. Acknowledgments . 9
11. References . 9
11.1. Normative References 9
11.2. URIs . 9

 Author's Address . 10

1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction

 Some applications, especially applications with near real-time
 requirements, need transport that supports partially reliable streams
 - streams that deliver bytes in order but allow for applicaiton-
 controlled gaps. These applications communicate using application-
 specific messages that are serialized over QUIC streams.
 Applications desire partially reliable streams when their messages
 expire and lose their usefulness due to later events (time passing,
 newer messages, etc).

https://datatracker.ietf.org/doc/html/rfc2119

Lubashev Expires November 30, 2018 [Page 2]

Internet-Draft quic-pr May 2018

 Examples of applications that can benefit from partially reliable
 streams are real time video (all prior data is to be expired when a
 new key frame is available) and data replication (expire previous
 updates, when a new update overwrites the data).

 The content of this draft is intended for [I-D.ietf-quic-transport],
 [I-D.ietf-quic-recovery] and, [I-D.ietf-quic-applicability] as a QUIC
 extension and/or QUIC Version 2.

2.1. Stream-per-Message Alternative

 It is possible to avoid the need for partially reliable streams by
 encoding one message per QUIC stream. When a message expires, the
 sender can reset the stream, causing RST_STREAM frame to be
 transmitted, unless all data in the stream has already been fully
 acknowledged. Likewise, the receiver can send STOP_SENDING frame to
 indicate its disinterest in the message. The problem with this
 approach is that messages transmitted by the application typically
 belong to a message stream, and applications may need to support
 multiple concurrent message streams. Hence, a message-per-stream
 approach requires each message to contain an extra header portion to
 associate the message with a logical application stream. In case of
 short messages, this approach introduces a significant overhead due
 to STREAM frames and message headers. It also places the burden on
 the application to reorder data arriving on multiple QUIC streams.
 Furthermore, splitting each application stream into multiple QUIC
 streams renders QUIC's per-stream flow control ineffective and
 requires an application to build its own.

2.2. Partially Reliable Message Streams

 The proposed single-stream mechanism keeps aplication messages
 arriving in order on a single stream, while allowing the application
 to control message expiration.

 The key to partially reliabile message streams is notifying the
 receiver about data that will not be retransmitted and ensuring that
 the receiver can identify the beginning of each new message.

 It is important to note that the proposed protocol does not guarantee
 that data is read by the receiver application at the stream offsets
 written to by the sender application.

2.3. Minimum retransmittable offset and smallest receive offset

 For fully reliable streams, the smallest unacknowledged data offset
 is treated by the sender to be the minimum retransmittable offset.
 Likewise, the smallest receive offset for a stream is the smallest

Lubashev Expires November 30, 2018 [Page 3]

Internet-Draft quic-pr May 2018

 data offset that has not been received by the receiver. Due to loss
 and reordering, the smallest receive offset may be smaller than the
 largest received offset.

 Partially reliable streams allow the sender to advance its minimum
 retransmittable offset and notify the receiver to advance its
 smallest receive offset.

3. EXPIRED_STREAM_DATA Frame

 The EXPIRED_STREAM_DATA frame (type=0x??) is used by a sender to
 inform a receiver of the minimum retransmittable offset (Section 2.3)
 for a stream.

 An endpoint that receives an EXPIRED_STREAM_DATA frame for a send-
 only stream MUST terminate the connection with error
 PROTOCOL_VIOLATION.

 The frame is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Stream ID (i) ...
 +-+
 | Minimum Stream Offset (i) ...
 +-+

 The fields in the EXPIRED_STREAM_DATA frame are as follows:

 Stream ID: The stream ID of the stream that is affected encoded as a
 variable-length integer.

 Minimum Stream Offset: A variable-length integer indicating the
 minimum offset of the stream data that will sent (or re-
 transmitted) on the identified stream, in units of octets.

 Since Stream 0 MUST be reliable, Stream ID MUST NOT be 0.

 Upon receipt of an EXPIRED_STREAM_DATA frame, the receiver advances
 the smallest receive offset for the stream (Section 2.3) to be the
 Minimum Stream Offset value.

 The sender MUST NOT reduce the minimum retransmittable offset for a
 stream, but loss and reordering can cause EXPIRED_STREAM_DATA frames
 to be received out of order. EXPIRED_STREAM_DATA frames that do not
 advance the smallest receive offset for the stream MUST be ignored.

Lubashev Expires November 30, 2018 [Page 4]

Internet-Draft quic-pr May 2018

 It is possible for the smallest receive offset to become larger than
 the largest received offset a the stream. Receipt of an
 EXPIRED_STREAM_DATA does not advance the largest received offset for
 the stream.

4. Sender Interface and Behavior

 QUIC library interface needs provide a way for a sender to expire
 data previously written to the transport by updating the minimum
 retransmittable offset (Section 2.3) for a stream. A typical sender
 would call this API function whenever data previously enqueued for
 transmission expires, per application semantics. The sender would
 keep track of the message boundaries and request expiration of data
 on a message boundary.

4.1. Communicating Message Boundary

 To allow a sender application to expire stream data written to the
 transport but never sent to the receiver, the sender transport needs
 to create a gap between data previously sent on the stream and data
 to be sent after the expiration point. The gap ensures that the
 receiver does not deliver subsequent octets to the application until
 the receipt of the EXPIRED_STREAM_DATA frame, in case packets
 containing the EXPIRED_STREAM_DATA frame and subsequent STREAM frame
 are reordered.

 To avoid complicated connection flow control accounting (see version
 02 of this draft [1]), a single octet gap is used for communicating
 the message boundary. Sender's EXPIRED_STREAM_DATA frame extends the
 minimum stream offset past that gap. Upon receipt of the
 EXPIRED_STREAM_DATA frame, the receiver is able to notify the
 application of a gap, which allows the application to identify the
 beginning of a new message.

4.2. Translating Application Offsets to QUIC Offsets

 Since the QUIC library and the application need to communicate data
 offsets (for example, for the purpose of updating the minimum
 retransmittable stream offset), the QUIC library needs to translate
 appliction offsets to QUIC offsets. Depending on the richness of the
 APIs exposed to the application, keeping a single difference between
 the current application and QUIC offsets is likely to be sufficient.

4.3. Sender Behavior

 This section discusses sender behavior in terms of QUIC offsets, and
 the translation from applicatoin offsets (see Section 4.2) is
 implicit.

Lubashev Expires November 30, 2018 [Page 5]

Internet-Draft quic-pr May 2018

 When an application instructs its QUIC transport to advance the
 minimum retransmittable offset for a stream, and there is any
 unacknowledged data (including unsent data) at an offset smaller than
 the new minimum retransmittable offset, the sender SHOULD transmit an
 EXPIRED_STREAM_DATA frame (Section 3), except as provided for in

Section 4.3.1.

 - When the new minimum retransmittable offset is less than or equal
 to the current send offset, the Minimum Stream Offset field in the
 EXPIRED_STREAM_DATA frame is set to the new minimum
 retransmittable offset.

 - When the new minimum retransmittable offset is larger the current
 send offset, the Minimum Stream Offset field in the
 EXPIRED_STREAM_DATA frame is set to the current send offset plus
 1, and stream data starting at the new minimum retransmittable
 offset is henceforth sent starting at the current send offset plus
 1 (which becomes the new minimum retransmittable offset). Hence,
 it may be possible for a minimum retransmittable offset to become
 larger than the current send offset for a stream.

4.3.1. Coalescing Minimum Retransmittable Offset Updates

 When an application instructs its QUIC transport to advance the
 minimum retransmittable offset for a stream, but the current send
 offset is not larger than the minimum retransmittable offset
 specified in the _previous_ call to this API function, the current
 stream offset is not advanced and an EXPIRED_STREAM_DATA frame is not
 sent. Stream data starting at the requested minimum retransmittable
 offset is henceforth sent starting at the previous minimum
 retransmittable offset (which remains the minimum retransmittable
 offset for the stream).

 Note that the coalescing rule does not apply (the EXPIRED_STREAM_DATA
 frame _is_ sent) if the very first message has expired before any of
 its octets have been transmitted. This allows the receiver to always
 ascertain the location of any gaps in messages it is receiving.

4.3.2. Example

 For example, an application wrote four 10-octet messages (A, B, C, D)
 to the transport, and the current send offset (the next offset to be
 sent) is 12. In this example, the upper-case indicates bytes to be
 sent, while the lower-case indicates bytes already sent.

Lubashev Expires November 30, 2018 [Page 6]

Internet-Draft quic-pr May 2018

 0 1 s 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |a a a a a a a a a a b b B B B B B B B B C C C C C C C C C C D D ...
 +-+

 When the application desires to expire messages A and B, it requests
 the minimum retransmittable offset to be 20. The transport then
 sends an EXPIRED_STREAM_DATA frame with Minimum Stream Offset field
 set to 13, and the subsequent STREAM frame would send message C
 starting at stream offset 13.

 0 1 s m 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |a a a a a a a a a a b b C C C C C C C C C C D D D D D D D D D D
 +-+

 However, if the application requestes to expire octets corresponding
 to message C before any subsequent STREAM frames could be sent, no
 new EXPIRED_STREAM_DATA frame is sent, and the subsequent STREAM
 frame would send message D starting at stream offset 13.

 0 1 s m 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |a a a a a a a a a a b b D D D D D D D D D D
 +-+

5. Receiver Interface and Behavior

 Upon receipt of an EXPIRED_STREAM_DATA frame (Section 3), the
 receiver SHOULD assume that none of the data before the new smallest
 receive offset (Section 2.3) will be retransmitted. A receiver
 SHOULD discard any stream data received for an offset smaller than
 the new smallest receive offset, possibly advancing the largest
 received offset for the stream. Discarding such data ensures that
 when the application observes a gap in the data stream, what follows
 the gap is a beginning of a new message.

 It is recommended that a QUIC library API provides a way for the
 receiver application to learn of the presence of a gap in the data
 stream, indicating that the data that follows the gap is a beginning
 of a new message.

Lubashev Expires November 30, 2018 [Page 7]

Internet-Draft quic-pr May 2018

6. Retransmission of EXPIRED_STREAM_DATA

 The most recent EXPIRED_STREAM_DATA frame (Section 3) for a stream
 MUST be retransmitted if it is declared lost, until the sender is
 certain that the receiver is not expecting retransmission of any
 expired data. I.e. the frame MUST be retransmitted until the stream
 enters "half-closed (local)" state, or all data between the largest
 Minimum Stream Offset field in an acknowledged EXPIRED_STREAM_DATA
 frame and the current minimum retransmittable offset (Section 2.3)
 has been acknowledged.

7. IANA Considerations

 This document has no actions for IANA.

8. Security Considerations

 This document has no new security considerations.

9. Change Log

9.1. Since version 00

 - Fixed flow control to disallow other streams to use connection
 credits designated for skipping expired bytes.

9.2. Since version 01

 - Added an ability by the receiver as well as the sender to control
 partial reliability of QUIC streams.

 - Added Exempt Stream Bytes value and updated connection flow
 control calculation to use Exempt Stream Bytes value.

 - Replaced the Min Stream Offset value with the existing values:
 "min retransmittable offset" (for sender) and "smallest receive
 offset" (for receiver). (Section 2.3)

 - Changed MIN_STREAM_DATA frame to be a receiver-transmitted frame.

 - Added sender-transmitted EXPIRED_STREAM_DATA frame. (Section 3)

9.3. Since version 02

 - Significantly simplifed the proposal by treating the stream as a
 message stream, allowing for data offsets not to be preserved
 between the sender and the receiver.

Lubashev Expires November 30, 2018 [Page 8]

Internet-Draft quic-pr May 2018

 - Reverted to sender-only transport-level control of message
 expiration.

 - Removed the need for Exempt Stream Bytes and changes to connection
 flow control accounting.

 - Removed MIN_STREAM_DATA frame.

10. Acknowledgments

 Many thanks to Mike Bishop, Ian Swett, and Subodh Iyengar for their
 reviews, feedback, and ideas. Thus draft would not happen without
 their input. Kudos to the QUIC working group for a mountain of
 feedback on this draft and for diligently plowing through hard
 problems, making thousands of big and small decisions, to make the
 Internet better for everyone.

11. References

11.1. Normative References

 [I-D.ietf-quic-applicability]
 Kuehlewind, M. and B. Trammell, "Applicability of the QUIC
 Transport Protocol", draft-ietf-quic-applicability-01
 (work in progress), October 2017.

 [I-D.ietf-quic-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", draft-ietf-quic-recovery-12 (work in
 progress), May 2018.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-12 (work
 in progress), May 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

11.2. URIs

 [1] https://tools.ietf.org/html/draft-lubashev-quic-partial-
reliability-02

https://datatracker.ietf.org/doc/html/draft-ietf-quic-applicability-01
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-12
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-12
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://tools.ietf.org/html/draft-lubashev-quic-partial-reliability-02
https://tools.ietf.org/html/draft-lubashev-quic-partial-reliability-02

Lubashev Expires November 30, 2018 [Page 9]

Internet-Draft quic-pr May 2018

Author's Address

 Igor Lubashev
 Akamai Technologies

 EMail: igorlord@alum.mit.edu

Lubashev Expires November 30, 2018 [Page 10]

