
opsawg Lucas
Internet Draft Cisco International Limited
Intended status: Standards track September 13, 2017
Expires: March 17, 2018

aSSURE Data Security
draft-lucas-assure-data-security-00.txt

Abstract

 aSSURE uses industry standards and best practice to provide a
 secure communications platform for device configuration and life
 cycle management across the entire range of smart devices, from
 the largest servers through to more constrained devices, with
 minimal human involvement. Based on extensions to current standard
 methods, aSSURE also provides secure end to end communication
 across any network type.

 A new approach allows key distribution and encrypted channels to
 be established between devices that support RSA, EC and/or simple
 shared secrets. For devices that only support shared secrets, key
 derivation algorithms ensure that forward and backward compatible
 secrecy is supported so that secure change of ownership can be
 obtained. Owners prove ownership via a "case ID" known by the
 manufacturer and the "Trusted Authority" ID Server but not known
 by the device.

 aSSURE defines end-to-end encryption links, called "channels", so
 that pairs of devices communicate with a unique set of encryption
 keys. These unique keys, coupled with the end-to-end encryption,
 mean communication is both secure and private.

 DTLS supports both certificates and pre-shared keys, but does not
 cover key distribution or management. DTLS does not support
 client-specific pre-shared keys because the client cannot identify
 itself during the handshake. Herein are all the APIs required to
 support key distribution and management as well as an extension to
 the DTLS handshake that allows the client identity to be provided.

 aSSURE cleanly integrates with the Open Interconnect Consortium
 (OIC) architecture. Both use CBOR encoded data with CoAP over UDP
 and DTLS. aSSURE URIs do not collide with OIC URIs and aSSURE
 channels can be used as a secure transport for OIC requests.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

 working documents as Internet-Drafts. The list of current
 Internet-

Lucas Expires March 17, 2018 [Page 1]

Internet-Draft aSSURE Data Security September 2017

 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 This Internet-Draft will expire on March 17, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Simplified BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Simplified BSD License.

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Lucas Expires March 17, 2018 [Page 2]

Internet-Draft aSSURE Data Security September 2017

Table of Contents

1. INTRODUCTION... 7
2. THE ROLE OF ASSURE IN AN IOT ENVIRONMENT......................... 8
2.1. Background... 8
2.2. Who am I allowed to talk to?................................... 8
2.3. How can I authenticate them?................................... 9
2.4. What am I allowed to tell them?................................ 9
2.5. What are they allowed to tell me?.............................. 9
2.6. How can I ensure that our communication is private?............ 9
3. TERMINOLOGY... 10
4. THE ROLE OF THE MANAGEMENT SYSTEM IN ASSURE..................... 10
4.1. Overview.. 10
4.2. Creation of Communication Topologies.......................... 10
4.3. Examples of communication topologies.......................... 11
4.3.1. A "star" topology... 11
4.3.2. A "ring" topology... 11
4.3.3. A "tree" topology... 12
4.3.4. A "fully connected" topology................................ 12
5. ASSURE ARCHITECTURE... 13
5.1. Internet Accessible Deployments............................... 13
5.2. Walled Garden Deployments..................................... 14
6. SECURITY CONSIDERATIONS... 15
6.1. Overview.. 15
6.2. Guidelines for manufacturers.................................. 17
6.2.1. Device UUID... 17
6.2.2. Device Asymmetric Key....................................... 17
6.2.3. Device Shared Secret.. 17
6.2.4. Case ID... 17
6.2.5. QR Code... 17
7. DATA STRUCTURES... 18
7.1. Overview.. 18
7.2. Key Definition.. 18
7.3. Signature Definition.. 20
7.4. Authenticated Key Definition.................................. 21
7.5. Content Type IDs.. 22
7.6. Key Format IDs.. 23
7.7. Identity Class IDs.. 23
7.8. Cipher Suite IDs.. 24
7.9. Signature Format IDs.. 24
7.10. Authenticated Key Metadata................................... 25
7.11. aSSURE timestamps.. 25
7.11.1. Simple timestamps.. 25
7.11.2. Precision timestamps....................................... 25
8. DTLS WITH ASSURE KEY IDENTITIES................................. 26
8.1. Overview.. 26
8.2. Extension to (D)TLS... 26
8.2.1. Peer Name Indication.. 26

8.3. Proof of identity by public key clients....................... 27
8.4. Proof of identity by shared secret clients.................... 28
9. TRUSTED AUTHORITY APIS.. 29
9.1. Overview.. 29

Lucas Expires March 17, 2018 [Page 3]

Internet-Draft aSSURE Data Security September 2017

9.2. Manufacturer API.. 29
9.2.1. PUT /v1/devices/<uuid>...................................... 30
9.2.2. POST /v1/parametersets...................................... 31
9.2.3. PUT /v1/parametersets/<uuid>................................ 31
9.2.4. GET /v1/parametersets/<uuid>................................ 31
9.3. Owner API... 32
9.3.1. POST /v1/managementsystems.................................. 32
9.3.2. PUT /v1/devices/<uuid>/owner?case_string=<string>........... 33
9.3.3. PUT /v1/devices/<uuid>/owner?mgmtid=<string>................ 33
9.3.4. PUT /v1/devices/<uuid>/owner?case_string=................... 34
 <string>&mgmtid=<string> 34
9.3.5. PUT /v1/devices/<uuid>/owner?mgmtid=NULL.................... 34
9.3.6. GET /v1/devices/<uuid>/parameterset......................... 34
9.3.7. PUT /v1/devices/<uuid>/bootstrap............................ 35
9.3.8. GET /v1/devices/<uuid>/bootstrap............................ 35
9.4. Bootstrap API... 36
9.4.1. GET /v1/devices/<uuid>/bootstrap............................ 36
10. DEVICE MANAGEMENT API.. 36
10.1.1. PUT /v1/keys/<uuid>.. 37
10.1.2. POST /v1/keys/generate?type=<key_type>&persistent=<boolean> 37
10.1.3. GET /v1/keys/<uuid>.. 38
10.1.4. DELETE /v1/keys/<uuid>..................................... 38
10.1.5. GET /v1/keys... 39
10.1.6. PUT /v1/channels... 39
10.1.7. PUT /v1/channels/<id>...................................... 40
10.1.8. PUT /v1/channels/<channel_id>/open......................... 41
10.1.9. PUT /v1/channels/<channel_id>/close........................ 41
10.1.10. DELETE /v1/channels/<channel_id>.......................... 41
10.1.11. GET /v1/channels/<id>..................................... 42
10.1.12. GET /v1/channels.. 43
10.1.13. PUT /v1/reboot.. 44
10.1.14. PUT /v1/shutdown.. 44
10.1.15. PUT /v1/bootstrap... 44
10.1.16. GET /v1/ping.. 45
10.1.17. GET /v1/info.. 45
11. MANAGEMENT SERVER API.. 46
11.1. Overview... 46
11.2. Registration API... 46
11.2.1. POST /v1/devices/<uuid>?case_string=<case_string>.......... 46
11.2.2. POST /v1/devices/<old_uuid>/replace?uuid=<new_uuid>........ 47
11.2.3. GET /v1/devices/<uuid>/status.............................. 47
11.2.4. GET /v1/devices/<uuid>/info................................ 47
11.3. Presence API... 48
11.3.1. PUT /v1/devices/<uuid>/info................................ 48
11.3.2. PUT /v1/devices/<uuid>/goodbye............................. 49
11.4. Miscellaneous.. 49
11.4.1. GET /v1/timestamp.. 49
12. PHYSICAL / NETWORK LAYER IMPLEMENTATIONS....................... 50

12.1. BACnet... 50
12.1.1. aSSURE Bootstrap... 50
12.1.2. aSSURE Secure Management Channels.......................... 52
12.1.3. aSSURE Secure Data Channels................................ 52

Lucas Expires March 17, 2018 [Page 4]

Internet-Draft aSSURE Data Security September 2017

12.2. IP... 52
12.2.1. Bootstrap Server FQDN...................................... 53
12.3. Bluetooth.. 53
12.4. Assigned address types....................................... 53
13. DTLS CONNECTION CONFIGURATION EXAMPLES......................... 54
13.1. Example Topology... 54
13.2. Elliptic Curve device . Elliptic Curve device................ 55
13.3. Elliptic Curve device . RSA device........................... 55
13.3.1. Option 1 - Issue EC key to RSA device...................... 55
13.3.2. Option 2 - Issue RSA key to EC device...................... 55
13.3.3. Option 3 - Issue Shared Secret to both devices............. 55
13.4. Elliptic Curve device . Shared Secret device................. 55
13.5. RSA device . RSA device...................................... 55
13.6. RSA device . Shared Secret device............................ 56
13.7. Shared Secret device . Shared Secret device.................. 56
14. MESSAGE SEQUENCE DIAGRAMS...................................... 57
14.1. Manufacturing Flow... 57
14.2. Management System Preparation................................ 58
14.3. Device Registration.. 59
14.4. Device Ownership State Machine............................... 60
14.5. Device Configuration and Bootstrap........................... 61
14.6. Device Configuration and Bootstrap (Walled Garden)........... 62
14.7. Device Change Owner.. 63
15. CONFIGURATION AND BOOTSTRAP DATA FORMATS....................... 65
15.1. Overview... 65
15.2. Configuration data format.................................... 65
15.3. Device connection to the bootstrap server using DTLS using... 66
 pre-shared secrets... 66
15.4. Device connection to the bootstrap server using DTLS using... 66
 public keys.. 66
15.5. Bootstrap data format.. 66
15.5.1. Payload protected by Elliptic Curve keys................... 67
15.5.2. Payload protected by RSA keys.............................. 68
15.5.3. Payload protected by shared secrets........................ 68
15.5.4. Decrypted payload content.................................. 68
16. SECURITY CONSIDERATIONS.. 69
17. IANA CONSIDERATIONS.. 69
18. CONCLUSIONS.. 69
19. REFERENCES... 69
19.1. Normative References... 69
19.2. Informative References....................................... 70
20. ACKNOWLEDGMENTS... 711

Lucas Expires March 17, 2018 [Page 5]

Internet-Draft aSSURE Data Security September 2017

Table of Figures

 Star Topology 11
 Ring Topology 11
 Tree Topology 12
 Fully Connected Topology 12
 Internet-accessible architecture 13
 Walled-garden architecture 14
 DTLS Connection Example Topology 55
 Manufacturing Flow Sequence Diagram 57
 Management System Preparation Sequence Diagram 58
 Device Registration Sequence Diagram 59
 Device Ownership State Machine 60
 Device Configuration and Bootstrap Sequence Diagram 61
 Device Configuration and Bootstrap Sequence Diagram
 (Walled Garden) 62
 Device Change Owner Sequence Diagram (first part) 63
 Device Change Owner Sequence Diagram (second part) 64

Lucas Expires March 17, 2018 [Page 6]

Internet-Draft aSSURE Data Security September 2017

Glossary of Terms

 API Application Programming Interface
 CA Certificate Authority
 CBOR Concise Binary Object Representation, RFC-7049
 CoAP Constrained Application Protocol, RFC-7252
 DHCP Dynamic Host Configuration Protocol
 DNS Domain Name System
 DTLS Datagram Transport Layer Security (v1.2), RFC-6347
 EC Elliptic Curve
 ECDSA E C Digital Signature Algorithm, NIST FIPS 186-4
 ECIES Elliptic Curve Integrated Encryption Scheme, ANSI X9.63
 FQDN Fully Qualified Domain Name
 PKCS Public Key Cryptography Service
 PKI Public Key Infrastructure
 TA Trusted Authority
 TLS Transport Layer Security (v1.2), RFC-5246

1. Introduction

 This document provides the reference technical specification for
 aSSURE.

 aSSURE uses industry standards and best practice to provide a
 secure communications platform for device configuration and life
 cycle management. Where possible, a minimal approach is taken to
 standards implementation so that the complexity and code footprint
 for implementation is kept to a minimum.

 The underlying standards are:
 o Transport Layer Security, TLS v1.2, RFC-5246
 o Datagram Transport Layer Security, DTLS v1.2, RFC-6347
 o Constrained Application Framework, CoAP, RFC-7252
 o Concise Binary Object Representation, CBOR, RFC-7049
 o CoAP Block-wise Transfers, https://www.ietf.org/id/draft-ietf
 o core-block-21.txt

 The additional functionality provided by aSSURE is intended to
 work within existing communications frameworks. This allows aSSURE
 to provide an upgrade path to add a common security approach that
 provides both secure communications and lifecycle management
 including change of ownership. aSSURE uses a "Trusted Authority"
 (TA), similar to the role that a Certificate Authority (CA) plays
 in a Public Key Infrastructure (PKI) today, to track the
 manufacture and ownership of devices. Any number of Trusted
 Authorities may exist but each device will be assigned to a
 specific TA during its manufacture and will remain assigned to

https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://www.ietf.org/id/draft-ietf

 this TA for its entire life.

 Device owners communicate with the various Trusted Authorities to
 assert ownership of individual devices and upload the initial

Lucas Expires March 17, 2018 [Page 7]

Internet-Draft aSSURE Data Security September 2017

 configuration for the device. When the device powers up, it will
 contact the Trusted Authority to obtain its initial configuration
 - this process is called "bootstrap". The initial configuration
 will provide sufficient information for the device to establish a
 secure communications channel to the system that will be managing
 it. Once this channel is established, additional configuration
 will be provided from the management system directly to the device
 and the device can enter "normal service".

 The detailed device lifecycle flow is described elsewhere.

 Note
 aSSURE is designed to cleanly integrate with the Open Interconnect
 Consortium (OIC) architecture. Both OIC and aSSURE use CBOR
 encoded data with CoAP over UDP and DTLS. aSSURE URIs have been
 deliberately chosen not to collide with OIC URIs and aSSURE
 channels can be used as a secure transport for OIC requests.

2. The role of aSSURE in an IoT environment

2.1. Background

 In any secure environment, there are five basic questions that any
 device must ask:

 1. Who am I allowed to talk to?
 2. How can I authenticate them?
 3. What am I allowed to tell them?
 4. What are they allowed to tell me?
 5. How can I ensure that our communication is private?

 If these basic questions can all be answered with confidence,
 there is the foundation for a secure system. If any of the above
 are uncertain then the system has weaknesses that may be exploited
 by an attacker.

 The aSSURE standard provides an answer to all these questions in a
 way that allows devices to communicate across different network
 architectures and device capabilities yet still providing end-to
 end security at a level that is appropriate to the abilities of
 the devices that are communicating.

 Furthermore, aSSURE provides this with a solution that involves
 minimal human involvement.

 The following sections will address each of these questions in
 turn.

2.2. Who am I allowed to talk to?

 In many ways, this is one of the biggest hurdles to overcome. If
 we want to be able to manufacture and sell "generic" product that

Lucas Expires March 17, 2018 [Page 8]

Internet-Draft aSSURE Data Security September 2017

 has no pre-configuration, how does that device know that we own
 it? There are a lot of different approaches to this with "Trusted
 On First Use" (TOFU) being an obvious one, but with all of them
 they either have weaknesses in the initial security or rely on
 public key cryptography.

 Public key cryptography is fine in more powerful devices, but not
 an option in the smallest ones, so for a universally secure
 solution, a different approach is required.

 The aSSURE standard uses a Trusted Authority (TA) as the reference
 for the device. The device is programmed with the identity and
 credentials of the TA during manufacture and, on first power up,
 will only talk to the TA. The user will register ownership of the
 device with the TA and securely upload the initial configuration
 data for the device to the TA. The TA will then forward that
 configuration to the device. That configuration includes the
 location and security parameters for the device to connect to the
 owner's systems, so now the device knows that it can trust its
 owner.

 Once the device has connected to the owner's management system,
 this system can deliver additional configuration parameters,
 encryption keys, etc. to the device. This allows the management
 system to tell devices to set up secure peer-to-peer connections,
 connect to additional management systems and perform other
 actions.

2.3. How can I authenticate them?

 The same sequence as for 2.2. above is used to provide the
 authentication details to the device. This information allows the
 device to authenticate the owner's systems and allows the owner's
 systems to authenticate the device.

2.4. What am I allowed to tell them?

 The same sequence as for 2.2. above is used to provide the access
 control rules for access to the device data. This allows the
 device to know what information it can disclose.

2.5. What are they allowed to tell me?

 The same sequence as for 2.2. above is used to provide the access
 control rules for commands and configuration sent to the device.
 This allows the device to know what parameters and commands it
 will accept from the owner's systems.

2.6. How can I ensure that our communication is private?

 The aSSURE standard defines end-to-end encryption links, called
 "channels", that ensure each pair of devices communicate with a

Lucas Expires March 17, 2018 [Page 9]

Internet-Draft aSSURE Data Security September 2017

 unique set of encryption keys. These unique keys, coupled with the
 end-to-end encryption, means that their communication is both
 secure and private.

3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"
 in this document are to be interpreted as described in RFC 2119
 [RFC2119].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to
 be interpreted as carrying significance described in RFC 2119.

 In this document, the characters ">>" preceding an indented
 line(s) indicates a statement using the key words listed above.
 This convention aids reviewers in quickly identifying or finding
 The portions of this RFC covered by these keywords.

4. The role of the Management System in aSSURE

4.1. Overview

 The Management System is a key part in the trust relationship that
 the device creates. The root of trust is the Trusted Authority.
 The Trusted Authority tells the device which management systems(s)
 it can trust. The Management Systems tell the device which other
 management systems and devices it can trust (if any) and what
 their permissions are on the device.

4.2. Creation of Communication Topologies

 The Management System can instruct the aSSURE devices to form any
 topology that is within their capabilities. The limits on the
 topology types and complexity are only:

 o Limitations set by the underlying network architecture
 o Limitations set by the device memory and/or processing power
 o and/or software
 o Limitations set by the management software

 In aSSURE terminology, each connection between devices is called a
 channel. The rules about how channel keys are determined and
 assigned is described in detail in section 13. below.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Lucas Expires March 17, 2018 [Page 10]

Internet-Draft aSSURE Data Security September 2017

4.3. Examples of communication topologies

4.3.1. A "star" topology

 / \
 | Device|
 _______ _______/ ______
 / \ | / \
 | Device| | |Device|
 _______/\ | /______/
 \ ___|___ /
 / \
 | Device|
 _______/
 _______ / | \ _______
 / \/ | \/ \
 | Device| | | Device|
 _______/ ___|___ _______/
 / \
 | Device|
 _______/

 Star Topology

4.3.2. A "ring" topology

 / \
 | Device|
 _______ /_______/\ ______
 / \/ \/ \
 | Device| |Device|
 _______/ ______/
 | |
 | |
 ___|___ ___|___
 / \ / \
 | Device| | Device|
 _______/\ _______ /_______/
 \/ \/
 | Device|
 _______/

 Ring Topology

Lucas Expires March 17, 2018 [Page 11]

Internet-Draft aSSURE Data Security September 2017

4.3.3. A "tree" topology

 / \
 | Device|
 _______ _______/ ______
 / \ | / \
 | Device| | |Device|
 _______/\ | /______/
 \ ___|___ /
 / \
 | Device|
 _______/
 _______ | _______
 / \ | / \
 | Device| | | Device|
 _______/\ ___|___ /_______/
 \/ \/
 | Device|
 _______/

 Tree Topology

4.3.4. A "fully connected" topology

 The fully connected topology shows four devices where each device
 has a connector to all of the other three devices. If there are
 "n" devices they each have "n-1" connectors.
 _______ _______
 / \ / \
 | Device|<------->| Device|
 _______/ _______/
 ^ ^ ^ ^
 | \ / |
 | \ --/ |
 | \ / |
 | ------ |
 | / \ |
 | --/ \ |
 | / \ |
 __v_ _v_ v____v_
 / \ / \
 | Device|<------->| Device|
 _______/ _______/

 Fully Connected Topology

Lucas Expires March 17, 2018 [Page 12]

Internet-Draft aSSURE Data Security September 2017

5. aSSURE Architecture

5.1. Internet Accessible Deployments

 TRUSTED AUTHORITY MANUFACTURER
+-------------------------+ +--------------------------+
+----------------------+		+--------------+				
	MANUFACTURER	<--(-)--------	MANUFACTURING	--		
	GATEWAY		Manufacturer	SYSTEM		
+--------------------!-+	Interface +--------------+					
	!		V			
	!		+-------+			
	!		Short-Lived	DEVICE		
	+--A-I-R-G-A-P-!---		Make & Delete +-------+			
		!		!		
	A LOCK !	+--------------------!-----+				
	I +-----------V-+	!				
	R	IDENTITY		!		
	G	SERVER		!		
	A +-----------!-+	OWNER !				
	P !	+------------------------!-----+				
		!		!		
	+---A-I-R-G-A-P!---		Bootstrap Interface+---v---+			
v !		-----(-)-------	DEVICE			
+-----------------+ !		/ +-------+				
	REGISTRATION	!		/ /	QR CODE	
	SERVER	!		/ / +-------+		
+-----------------+ !		/ /				
^ ^ !		/ (/)				
		!	/ Management v			
	+------------V-+	(/) Interface +-------+				
		BOOTSTRAP	<--/	(/) INSTALLER		
		SERVER			/ +-------+	
	+--------------+		/ /			
	^		/ (/)			
				+------v----+ Registration		
						Interface
					MANAGEMENT	(/)
+-------------+			SYSTEM	/		
	OWNER					/
	GATEWAY	<--------(-)-----		/		
+-------------+ Owner			v			
Interface	+-----------+					
+-------------------------+ +------------------------------+

 Internet-accessible architecture

Lucas Expires March 17, 2018 [Page 13]

Internet-Draft aSSURE Data Security September 2017

5.2. Walled Garden Deployments

TRUSTED AUTHORITY MANUFACTURER
+----------------------+ +----------------------------+
+-------------------+		+----------------+				
	MANUFACTURER	<----(-)------	MANUFACTURING	--		
	GATEWAY		Manufacturer	SYSTEM		
+-----------------!-+	Interface +----------------+					
	!		V			
	!		Short-lived +-------+			
	!		Make & Delete	DEVICE		
	+--A-I-R-G-A-P-!---		+-------+			
		!		!		
	A LOCK !	+----------------------!-----+				
	I +-----------V-+	!				
	R	IDENTITY		!		
	G	SERVER		!		
	A +-----------!-+	OWNER !				
	P !	+----------------------------!-----+				
		!		!		
	+---A-I-R-G-A-P!---		+-----------+ Bootstrap +---v---+			
v !			Bootstrap	<--(-)-----	DEVICE	
+--------------+ !			Server	Interface +-------+		
	REGISTRATION	!		+-----------+ /	QR CODE	
	SERVER	!		^ (/) +-------+		
+--------------+ !		! +----------+ Management				
^ ^ !		!	Management	Interface		
		!		!	Server	<-/
	+------------V-+		! +----------+			
		BOOTSTRAP			! ^	
		SERVER		+=!===!===WALLED=GARDEN======	=====	
	+--------------+		! ! v			
	^		! / +---------+			
				! /	INSTALLER	
				!/ +---------+		
				+----------+ /		
+----------+			INTERNET	(/)		
	OWNER				FACING	Registration
	GATEWAY	<----(-)-----	MANAGEMENT	Interface		
+----------+ Owner			SYSTEM	(/)		
Interface				<-----/		
		+----------+				
+----------------------+ +----------------------------------+

 Walled-garden architecture

Lucas Expires March 17, 2018 [Page 14]

Internet-Draft aSSURE Data Security September 2017

6. Security Considerations

6.1. Overview

 The aSSURE framework is intended to be usable across the entire
 range of smart devices - from the largest servers through to more
 constrained devices (as defined in RFC-7228). This is a very
 challenging goal and means that some security approaches in common
 use today are not universally suitable.

 Examples of approaches that are not universally suitable include:

 o Public Key Cryptography, e.g. RSA, DSA, EC
 o This is computationally intensive and may take too long to
 be acceptable on devices with minimal processing ability.
 o This is computationally intensive and the necessary
 additional processing load may have an unacceptable impact
 on battery life.
 o This requires reasonably large code size to implement in
 software and this may not be available on the more
 constrained devices.
 o X.509 certificates
 o These use time stamps and small devices may not have a real
 time clock.
 o These assume public key cryptography (RSA, DSA or EC) and
 constrained devices may not be able to support this as
 explained above.
 o These have a fixed lifetime, thus requiring them to be
 reissued before they expire.
 o These require a certificate authority to issue (and
 reissue) them.
 o Due to their complexity, these have been the target of
 various attacks in the past, so removing them reduces the
 attack surface.
 o Complex text-based data representations such as ASN.1, HTML,
 XML, YAML or JSON
 o These are difficult to parse, requiring larger code
 libraries and more processing power than simpler formats
 such as CBOR.
 o Due to their complexity, these have been the target of
 various attacks in the past, so removing them reduces the
 attack surface.
 o Complex protocols such as SOAP, HTML, etc.
 o Again, these are more difficult to parse, requiring larger
 code libraries and more processing power than simpler
 protocols such as CoAP.
 o Full standards implementation
 o Lots of industry standards are large and have a lot of

https://datatracker.ietf.org/doc/html/rfc7228

 different options, most of which are unnecessary for a new
 implementation with no legacy support requirements.
 o For example, TLS supports over 200 different cipher suites
 and this list continues to grow.

Lucas Expires March 17, 2018 [Page 15]

Internet-Draft aSSURE Data Security September 2017

 o Due to their complexity, these have been the target of
 various attacks in the past, so reducing the scope of the
 implementation also reduces the attack surface.

 Support for shared secrets

 Very constrained devices that cannot support public key
 cryptography have to fall back on "shared secrets" (also known as
 "pre-shared keys") to identify themselves. Typical approaches
 using shared secrets require the secret to be disclosed to both
 parties to set up the secure connection. Once a secret has been
 disclosed, it can never be proved to have been forgotten. This
 makes transfer of device ownership problematic, as the previous
 owner of the device may still know the shared secret even after
 the device has been transferred to a new owner. In this scenario,
 the previous owner would be able to decrypt all traffic between
 the device and its new owner, making the device untrustworthy to
 the new owner.

 aSSURE offers a new approach using shared secrets that allows the
 original secret to be concealed from the peer involved in the
 connection.

 In the aSSURE scenario, a shared secret can be distributed to a
 device (or multiple devices) with one or two derivation functions.
 These derivation functions allow a device with the correct
 reference key to derive the shared secret. Different derivation
 functions exist to derive the shared secret from an Elliptic Curve
 key, an RSA key or another shared secret.

 This ability to derive shared secrets is used to secure the
 ownership lifecycle for devices that do not support public key
 cryptography. With this approach, the device owner is provided
 with the parameters for the hashing function and the derived
 shared secret but not the original shared secret programmed into
 the device during manufacture. When the owner wishes to
 communicate with the device, the owner provides the device with
 the derived secret parameters, thus allowing the device to derive
 the new secret from the original secret. The owner is provided
 with a second derivation function that uses the owner key, so they
 can also derive the same secret and hence establish a secure
 communication link to the device. When the device changes owner,
 the new owner is given a different derived secret, not the
 original secret. The new owner can communicate with the device
 using the new parameters and the knowledge of the new derived
 secret. The previous owner, however, does not have the new owner's
 key nor the device key, so cannot derive the new shared secret and
 so is unable to decrypt the communications with the new owner.

 The only entities that know the original device secret are the
 device itself and the Identity server within the Trusted Authority
 (this is described in more detail later).

Lucas Expires March 17, 2018 [Page 16]

Internet-Draft aSSURE Data Security September 2017

 Shared secrets are described more in 7.2. and 8.4. below.

6.2. Guidelines for manufacturers

6.2.1. Device UUID

 All device UUIDs should be truly randomly generated. This means
 that they are completely unpredictable and knowledge of the UUID
 does not disclose any information about what the device is, who
 manufactured it or when.

6.2.2. Device Asymmetric Key

 If a device uses an RSA or EC asymmetric key, this should be
 securely generated within the device and the private key must
 never be disclosed outside of the device. The device should have
 access to a suitable entropy source to ensure that the key is
 truly randomly generated.

6.2.3. Device Shared Secret

 If a device uses a shared secret, this should be truly randomly
 generated and at least 128 bits in size. It may be generated
 inside the device or on the local manufacturing station but, if
 generated outside the device, must never be stored in an
 unencrypted form and must be wiped from RAM as soon as it is no
 longer needed. The device secret can only ever be stored in non
 volatile storage AFTER it has been formed into the device identity
 structure and encrypted as described in 9.2.1. below.

6.2.4. Case ID

 The aSSURE solution needs a method for an owner to prove that a
 device is in their possession. This is done through knowledge of a
 "case ID", an identification string that is printed on the outside
 of the case. This number is NOT known to the device - it is only
 known to the manufacturer and the Trusted Authority's Identity
 Server. The case ID should be a randomly generated number that is
 at least 128 bits.

6.2.5. QR Code

 The device ID and case ID should be printed in a QR Code on the
 side of the device. The data should be encoded in CBOR as follows:

 ARRAY {
 INTEGER version // Set to 1 for aSSURE v1
 BYTE STRING device_uuid

 BYTE STRING case_id
 }

Lucas Expires March 17, 2018 [Page 17]

Internet-Draft aSSURE Data Security September 2017

 If the device UUID and case UUID are both 128 bits then this will
 encode in 36 bytes. This can be encoded in a type 3 QR code (27 x
 27 pixels) with "M" level of error correction, a type 4 QR code
 (33 x 33 pixels) with a "Q" level of error or a type 5 QR code (37
 x 37 pixels) with "H" level of error correction.

 The manufacturer may choose any of these QR formats, but the type
 5 is recommended as it has a higher level of error correction and
 is therefore less susceptible to damage.

7. Data Structures

7.1. Overview

 Where possible, common data structures are used across the system.
 This simplifies the development and allows better code reuse.

7.2. Key Definition

 A key is defined using one of the following CBOR formats depending
 on its type. All keys are identified by their ID, which is a 128
 bit randomly assigned UUID.

 Keys have a format which may be Elliptic Curve, RSA or derived
 secret. Elliptic Curve and RSA keys must include the public key
 part and may optionally also include the associated private key.

 If the key is an Elliptic Curve key, the definition is:

 ARRAY {
 INTEGER content // "Key Content Type", see 7.5. below
 INTEGER format // "EC key", see 7.6. below
 BYTE STRING key_id // UUID
 BYTE STRING public_key // ASN.1 DER encoded string
 BYTE STRING private_key // ASN.1 DER encoded string
 }

 The private_key BYTE STRING must be zero length if only a public
 key is provided.

 Note that the private key definition is not encrypted so if the
 private key is provided, the definition must be transferred over
 an encrypted channel and stored in a protected store.

 If the key is an RSA key, the definition is:

 ARRAY {
 INTEGER content // "Key Content Type", see 7.5. below
 INTEGER format // "RSA key", see 7.6. below

 BYTE STRING key_id // UUID
 BYTE STRING public_key // ASN.1 DER encoded string
 BYTE STRING private_key // ASN.1 DER encoded string

Lucas Expires March 17, 2018 [Page 18]

Internet-Draft aSSURE Data Security September 2017

 }
 The private_key BYTE STRING must be zero length if only a public
 key is provided.

 Note that the private key definition is not encrypted so if the
 private key is provided, the definition must be transferred over
 an encrypted channel and stored in a protected store.

 If the key is a derived secret, the definition is:

 ARRAY {
 INTEGER content // "Key Content Type", see 7.5. below
 INTEGER format // "Derived shared secret", see 7.6.
 below
 // below
 BYTE STRING key_id // UUID
 ARRAY {
 // Derivation definition
 BYTE STRING reference_A_key // UUID
 BYTE STRING salt
 INTEGER iterations_or_cipher
 BYTE_STRING encrypted_secret
 }
 // Additional derivation definitions may be present in
 // the same format as above
 }

 The derived secret has one or more derivation definitions. All
 derivations can be disclosed publicly and all derivations must
 produce the same secret. A device may use any of the derivations
 for which it already knows the reference key.

 If the reference key is a shared secret then the PBKDF2 algorithm
 is used with SHA2 as the digest function, the reference key shared
 secret used as the passphrase, the "iterations_or_cipher" used as
 the iteration count, salt and a length value determined by the
 length of the "encrypted_secret". After the PBKDF2 is completed,
 the result is XOR'd against the "encrypted_secret". This allows
 secure generation of any byte sequence.

 If the reference key is an elliptic curve key, then the "salt" and
 "iterations_or_cipher" fields are ignored (and should be zero
 length and value zero respectively). The "encrypted_secret"
 contains the shared secret protected by the Cryptographic Message
 Syntax with "enveloped-data" as the ContentInfo (see RFC 5652 and

RFC 5753) using the "Standard" variation of Ephemeral Static ECDH
 (see RFC 5753 section 3.1). The default choices for encryption
 cipher and hash function should be AES-128 and SHA-256

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5753
https://datatracker.ietf.org/doc/html/rfc5753#section-3.1

 respectively.

 If the reference key is an RSA key, then the "salt" and
 "iterations_or_cipher" fields are ignored (and should be zero

Lucas Expires March 17, 2018 [Page 19]

Internet-Draft aSSURE Data Security September 2017

 length and value zero respectively). The "encrypted_secret"
 contains the shared secret protected by the Cryptographic Message
 Syntax with "enveloped-data" as the ContentInfo (see RFC 5652)
 using RSAES-OAEP (see RFC 8017 section 7.1). The default choices
 for encryption cipher and hash function should be AES-128 and SHA
 256 respectively. The SHA-1 hash should not be used.

7.3. Signature Definition

 Rather than use X.509 signatures, which require public key
 cryptography and ASN.1 encoding, aSSURE uses a simpler approach
 using CBOR that can also be used with derived secrets as well as
 public keys.

 If the signature is generated by an Elliptic Curve private key,
 the signature structure is:

 ARRAY {
 INTEGER content // "Signature Content Type", see
 // 7.5. below
 INTEGER format // Signature format, see 7.9. below
 INTEGER created_at
 INTEGER valid_until
 BYTE STRING key_id
 BYTE STRING r
 BYTE STRING s
 }
 Here, "r" and "s" are the signature values as defined in the
 Elliptic Curve Digital Signature Algorithm (ECDSA).

 If the signature is generated by an RSA private key, the signature
 structure is:

 ARRAY {
 INTEGER content // "Signature Content Type", see
 // 7.5. below
 INTEGER format // Signature format, see 7.9. below
 INTEGER created_at
 INTEGER valid_until
 BYTE STRING key_id
 BYTE STRING s
 }
 Here, "s" are the signature values as defined in the RSA Digital
 Signature Algorithm (PKCS #1 v1.5).

 If the signature is generated by a derived secret, the signature
 structure is:

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc8017#section-7.1

 ARRAY {
 INTEGER content // "Signature Content Type", see
 // 7.5. below

Lucas Expires March 17, 2018 [Page 20]

Internet-Draft aSSURE Data Security September 2017

 INTEGER format // Signature format, see 7.9. below
 INTEGER created_at
 INTEGER valid_until
 BYTE STRING key_id
 BYTE STRING hmac
 }

 In all cases, the signature covers the original data structure and
 the signature structure with the "r", "s" and/or "hmac" fields
 being treated as zero length when performing the sign or
 validation actions (i.e. the BYTE STRING definition is considered
 to be the value 0b010_00000).

 Two timestamps are part of each signature:

 o The timestamp of when the signature was created ("created_at")
 o The timestamp after which the signature invalid ("valid_until")
 o
 Each signing authority is free to choose its own validity duration
 for the signatures that it issues. The authority can therefore
 balance the rate of re-issue of signatures against the time that a
 signature or a compromised key would remain valid. These fields
 can be set to zero to indicate a signature that is always valid
 and never expires. These fields may also be zero if the signature
 authority knows that the signature is being issued to a device
 with no real-time clock capability. If a device has no knowledge
 of the true time, these fields should be ignored when performing
 signature validation.

7.4. Authenticated Key Definition

 Rather than use X.509 certificates which require public key
 cryptography, ASN.1 encoding and knowledge of real time, aSSURE
 uses a simpler yet more flexible structure to authenticate a
 public key or a key derived from a shared secret.

 An authenticated key definition combines a header, key definition
 as in 7.2. above, optional metadata and signature as in 7.3.
 above.

 ARRAY {
 INTEGER content // "Identity Content Type", see 7.5. below
 INTEGER class // Identity class, see 7.7. below
 ARRAY {
 // Key definition, see 7.2. above
 INTEGER content // "Key Content Type", see 7.5. below
 }
 MAP {

 // Metadata (key + value pairs), see 7.10. below
 }
 ARRAY {
 // Signature definition, see 7.3. above

Lucas Expires March 17, 2018 [Page 21]

Internet-Draft aSSURE Data Security September 2017

 INTEGER content // "Signature Content Type", see
 // 7.5. below
 }
 }

 The device should validate an "authenticated key" as follows:

 1. Check that the key used to generate its signature is already
 present in the device
 2. Check that current time is within the timestamp range for the
 signature
 3. For each key in the hierarchy of keys required to validate this
 signature, check that current time is within the timestamp range
 for that key's signature
 4. Check that the class of the key used to generate the signature
 is allowed to sign the class of the new authenticated key. The
 rules for this are in 7.7. below.
 5. Check that the signature matches the authenticated key data

 If all the above checks pass, the authenticated key can be
 accepted.

7.5. Content Type IDs

 +-------+------------------------------+
 | Value | Meaning |
 +-------+------------------------------+
0	Identity Content Type
1	Key Content Type
2	Configuration Content Type
3	Encrypted Key Content Type
4	Signature Content Type
5	Owner Content Type
 +-------+------------------------------+

 +-------+------------------------------+
 | Value | Meaning |
 +-------+------------------------------+
 | 0 | Identity Content Type |
 +--------------------------------------+
 | 1 | Key Content Type |
 +--------------------------------------+
 | 2 | Configuration Content Type |
 +--------------------------------------+
 | 3 | Encrypted Key Content Type |
 +--------------------------------------+
 | 4 | Signature Content Type |
 +--------------------------------------+

 | 5 | Owner Content Type |
 +-------+------------------------------+

Lucas Expires March 17, 2018 [Page 22]

Internet-Draft aSSURE Data Security September 2017

7.6. Key Format IDs

 +-------+-------------------------------------+
 | Value | Meaning |
 +-------+-------------------------------------+
0	Elliptic Curve Key (ASN1.DER encoded
	following industry standards)
1	RSA Key (ASN1.DER encoded
	following industry standards)
2	Configuration Content Type
 +-------+-------------------------------------+

7.7. Identity Class IDs

 +---+------------+---------------------------------------+
 | | Signing Permissions|
 + +----+----+----+----+----+----+ | +
 | | Identity Classes | | |
 + +----+----+----+----+----+----+ | +
	M								
	a								
	n		M S						
	u	T A	a y	B S				B D	
	f	r u	n s	o e				o a	
	a	u t	a t	o r		C		o t	
---+------------	c	s h	g e	t v	D	h	C	t a	
V		t	t o	e m	s i	e	a	o	s
a		u	e r	m	t c	v	n	n	t
l		r	d i	e	r e	i	n	f	r
 + u + | e | t |n |a | c | e | i |a |
 | e |Name | r | y |t |p | e l g p |
 +---+------------+----+----+----+----+----+----+----+----+
 | 0 |Manufacturer| Y | Y | N | N | Y | N | N | N |
 | | | | | | | | | | |
 +---+------------+----+----+----+----+----+----+----+----+
 | 1 |Trusted | N | Y | Y | Y | Y | N | N | N |
 | |Authority | | | | | | | | |
 +---+------------+----+----+----+----+----+----+----+----+
 | 2 |Management | N | N | Y | Y | Y | Y | Y | Y |
 | |System | | | | | | | | |
 +---+------------+----+----+----+----+----+----+----+----+
 | 3 |Bootstrap | N | N | N | N | N | N | N | N |
 | |Service | | | | | | | | |
 +---+------------+----+----+----+----+----+----+----+----+
 | 4 |Device | N | N | N | N | N | Y | N | N |
 | | | | | | | | | | |
 +---+------------+----+----+----+----+----+----+----+----+
 | 5 |Channel | N | N | N | N | N | N | N | N |

 | | | | | | | | | | |
 +--+

 The Manufacturer is the manufacturer of the device. A manufacturer

Lucas Expires March 17, 2018 [Page 23]

Internet-Draft aSSURE Data Security September 2017

 may install Device identification keys at the factory to allow the
 device to authenticate itself. If the device is public key
>> capable, the manufacturer MUST install the identity for the
 Trusted Authority.

 The Trusted Authority refers to all systems running within the
 Trusted Authority. A Trusted Authority is only allowed to
 authenticate other systems running within the Trusted Authority,
 the Bootstrap Service, the owner's Management Systems or the
 Device. It is not allowed to authenticate Bootstrap data or
 device communications Channels.

 The Management System is not allowed to authenticate Manufacturers
 or Trusted Authorities but it can authenticate all other
 identities used by the device.

 The Bootstrap Service is not allowed to authenticate anything else
 - it is only able to deliver bootstrap data to the device.

 The Device is only allowed to authenticate channels.

 The Channel is not allowed to authenticate anything else - it is
 only allowed to transport data.

7.8. Cipher Suite IDs

 +-------+---+
 | Value | Meaning |
 +-------+---+
0	"AES-128 CBC" (OID 2.16.840.1.101.3.4.2)"
1	"AES-192 CBC" (OID 2.16.840.1.101.3.4.22)"
2	"AES-256 CBC" (OID 2.16.840.1.101.3.4.42)"
3	"AES-128 CCM" (OID 2.16.840.1.101.3.4.7)"
4	"AES-192 CCM" (OID 2.16.840.1.101.3.4.27)"
5	"AES-256 CCM" (OID 2.16.840.1.101.3.4.47)"
6	"AES-128 GCM" (OID 2.16.840.1.101.3.4.6)"
7	"AES-192 GCM" (OID 2.16.840.1.101.3.4.26)"
8	"AES-256 GCM" (OID 2.16.840.1.101.3.4.46)"
 +-------+---+

7.9. Signature Format IDs

 +-------+---+
 | Value | Meaning |
 +-------+---+
 | 0 | ecdsa-with-SHA256 (OID 1.2.840.10045.4.3.2) |
 +---+
 | 1 | ecdsa-with-SHA384 (OID 1.2.840.10045.4.3.3) |
 +---+

 | 2 | ecdsa-with-SHA512 (OID 1.2.840.10045.4.3.4) |
 +---+
 | 3-7 | Reserved..future expansion of ECDSA signatures |

Lucas Expires March 17, 2018 [Page 24]

Internet-Draft aSSURE Data Security September 2017

 +---+
 | 8 | sha256-with-rsa-signature |
 | | (OID 1.2.840.113549.1.1.11) |
 +---+
 | 9 | sha384-with-rsa-signature |
 | | (OID 1.2.840.113549.1.1.12) |
 +--
 | 10 | sha512-with-rsa-signature |
 | | (OID 1.2.840.113549.1.1.13) |
 +---+
 | 11-15 | Reserved..future expansion of RSA signatures |
 +---+
 | 16 | hmacWithSHA256 (OID 1.2.840.113549.2.9) |
 +---+
 | 17 | hmacWithSHA384 (OID 1.2.840.113549.2.10) |
 +---+
 | 18 | hmacWithSHA512 (OID 1.2.840.113549.2.11) |
 +---+

7.10. Authenticated Key Metadata

 +----------+------------------+---------------------------+
 | Key | Value | Usage |
 +----------+------------------+---------------------------+
 |INTEGER(0)| BYTE STRING | Indicates the device |
 | | (<device uuid>) | owning the key |
 +----------+------------------+---------------------------+

7.11. aSSURE timestamps

7.11.1. Simple timestamps

 aSSURE uses a variant of the Unix time format for all its
 timestamps. An aSSURE simple timestamp is an integer that tracks
 the number of seconds since midnight on Friday January 1st 2010
 GMT rather than midnight on January 1st 1970 GMT. This allows a
 signed 32-bit number to provide a valid timestamp until 2078
 rather than 2038.

 aSSURE_timestamp_secs = unix_timestamp_secs - 1262304000

 A simple timestamp is defined in CBOR as:

 INTEGER timestamp_secs

7.11.2. Precision timestamps

 If more precision is required, a fractional part may also be
 provided. This holds the fractional part of the second as a 32-bit

 value (so the precision is ~233ps).

 A precision timestamp is defined in CBOR as:

Lucas Expires March 17, 2018 [Page 25]

Internet-Draft aSSURE Data Security September 2017

 ARRAY {
 INTEGER timestamp_secs
 INTEGER timestamp_frac
 }

8. DTLS with aSSURE key identities

8.1. Overview

 aSSURE uses DTLS for all secure connections due to its low
 overhead both in code and operation. DTLS supports both
 certificates and pre-shared keys, but does not cover how the
 certificate authorities or pre-shared keys are to be securely
 distributed.

 This section shows how we extend the basic DTLS standard with
 additional RFC to provide the functionality required for aSSURE.
 It also shows how to setup DTLS connections in an aSSURE
 environment.

8.2. Extension to (D)TLS

 aSSURE needs to be able to provide the client identity to the
 server during the DTLS handshake. This would normally be done
 using X.509 certificates, but aSSURE avoids the complexity and
 overhead of X.509 certificates so an alternative approach is
 required.
 aSSURE provides the client identity to the server using a new TLS
 extension, "Peer Name Indication" that is lightweight and similar
 to the "Server Name Indication" extension.

8.2.1. Peer Name Indication

 TLS does not provide a mechanism for a client to tell a server the
 name of the client that is connecting before the ServerHello is
 returned. It may be desirable for clients to provide this
 information to facilitate secure connections to servers where the
 ServerHello should vary according to the client identity.

 In order to provide any of the names, clients MAY include an
 extension of type "peer_name" in the (extended) client hello. The
 "extension_data" field of this extension SHALL contain
 "PeerNameList" where:

 struct {
 NameType name_type;
 select (name_type) {
 case uuid: UUID;

 } name;
 } PeerName;

Lucas Expires March 17, 2018 [Page 26]

Internet-Draft aSSURE Data Security September 2017

 enum {
 uuid(0), (255)
 } NameType;

 opaque UUID[16];

 struct {
 PeerName peer_name_list<1..2^16-1>
 } PeerNameList;

 This allows the client to provide its UUID in a compact format to
 the server. It also allows other client formats to be used in the
 future.

8.3. Proof of identity by public key clients

 A typical DTLS handshake uses X.509 certificates to allow both
 mutual authentication of identity and key exchange to set up the
 secure connection. aSSURE does not use X.509 certificates for the
 reasons explained in section 6.1. above so an alternative
 approach is required to allow mutual authentication and key
 exchange.

 aSSURE uses the device API calls to allow the management system to
 securely provide identity credentials for other peers to the
 device. An aSSURE device WILL NOT communicate with any peer that
 has not had the peer identity credentials provided to it by an
 authorised management system over a secured connection.

 aSSURE uses the Peer Name Indication extension (see 8.2.1. above)
 to allow a device to indicate its ID to the peer during the
 initial connection request. This allows the peer to check that the
 device is in its list of trusted devices. If the device is not in
 the list, the peer refuses the connection.

 Similarly, the server uses the Peer Name Indication extension to
 provide its ID to the client in the initial connection response.
 This allows the client to quickly check its database to check that
 the server is in its list of trusted peers. If the server is not
 in the list, the client aborts the connection attempt.

 aSSURE then uses the Raw Public Key Extension defined in RFC-7250
 to allow just the public keys to be exchanged between device and
 peer. Both the device and the peer cross-check the public keys
 provided in the DTLS handshake against the expected public keys
 their list of trusted devices. If either device or peer detect a
 public key mismatch, they abort the handshake.

 If all checks complete without error, the handshake is allowed to

https://datatracker.ietf.org/doc/html/rfc7250

 continue normally and the secure connection is established.

Lucas Expires March 17, 2018 [Page 27]

Internet-Draft aSSURE Data Security September 2017

8.4. Proof of identity by shared secret clients

 When establishing a secure connection, if either device cannot
 support public keys, they must use the derived shared secret
 method of authentication. Derived shared secrets are a weaker
 form of security than public keys, but if used carefully, can
 still provide a reasonable level of security.

 DTLS connections protected by derived shared secrets differ from
 public key cryptography in that both parties must know the same
 secret to allow the DTLS handshake to complete. Hence, a derived
 shared secret can be used to prove a link relationship but not an
 endpoint identity.

 The management system will have been provided with a unique
 derived shared secret for each device - this is provided to the
 device in the bootstrap configuration so that the device can trust
 the link relationship from itself to the management system.

 The management system will then generate a unique derived shared
 secret for each link that the device needs to establish using its
 knowledge of the available keys on the devices at each end of the
 link. The management system will then push that derived shared
 secret to both devices indicating the peer device ID to which the
 derived shared secret relates and instruct one of them to act as
 the client to establish the channel.

 The client will then attempt to connect to the peer using DTLS.

 aSSURE uses the Peer Name Indication extension (see 8.2.1. above)
 to allow a device to indicate its ID to the peer during the
 initial connection request. This allows the peer to check that the
 device is in its list of trusted devices. If the device is not in
 the list, the peer refuses the connection.

 Similarly, the server uses the Peer Name Indication extension to
 provide its ID to the client in the initial connection response.
 This allows the client to quickly check its database to check that
 the server is in its list of trusted peers. If the server is not
 in the list, the client aborts the connection attempt.

 aSSURE then uses the Pre-shared Key Identity Hint Extension
 defined in RFC-4279 to allow the server to provide the necessary
 key information to the client. The key information is encoded in
 Base64 because RFC-4279 recommends that the key information only
 contains printable characters. The key information will be one of:

 o The UUID of a key known to both client and server. The UUID is
 provided as a CBOR BYTE STRING of 16 bytes.

https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4279

 o A key definition as in 7.2. above.

 The client can determine which is provided by inspecting the data.

Lucas Expires March 17, 2018 [Page 28]

Internet-Draft aSSURE Data Security September 2017

 A simple UUID is a CBOR BYTE STRING whilst a key definition is a
 CBOR ARRAY.

 The client checks that the indicated (or reference) key is
 available and appropriate for this connection, derives the secret
 as appropriate and uses this as the pre-shared key for the DTLS
 session. The server also derives the secret from the key and uses
 this as the pre-shared key for the DTLS session.

 The DTLS handshake then continues as normal and the session is
 established.

9. Trusted Authority APIs

9.1. Overview

 The Trusted Authority provides three distinct APIs as follows:
 o Manufacturer API
 o Owner API
 o Bootstrap API

 The Manufacturer API is used by the manufacturer to upload
 manufacturing details about each device when it is created. Only
 the minimum amount of information about the device is uploaded and
 this information is stored in One-Time Programmable (OTP) memory
 on the device, so can never be changed. For this reason, the
 Manufacturing API has no requirement to allow device information
 to be updated after manufacture, such as during Return Merchandise
 Authorisation (RMA), because this information can never be
 changed.

 The Owner API is used by the device owner to assert ownership of
 the device, update the device bootstrap configuration and change
 device ownership.

 The Bootstrap API is used by the devices themselves to download
 their bootstrap configuration so that they can connect to their
 management systems and enter service.

9.2. Manufacturer API

 The Manufacturer API is used by the manufacturer to upload data
 about the device when it is manufactured. The manufacturer API is
 a RESTful interface using JSON over HTTPS with client
 authentication. Generation of the client key and issuing of the
 client certificate is out of scope for this document (this
 information could easily be exchanged via email). Similarly,
 delivery of the Trusted Authority "Identity Service" certificate
 to the manufacturer and disclosure of the Manufacturer API URL is

 also out of scope (again, this information could easily be
 provided via email).

Lucas Expires March 17, 2018 [Page 29]

Internet-Draft aSSURE Data Security September 2017

9.2.1. PUT /v1/devices/<uuid>

 After a device is manufactured, the manufacturer builds the device
 data into a JSON data structure as follows:

 {
 "id": "<device UUID>",
 "bootstrap_server": <bootstrap server ID used by device>,
 "case_string": "<string printed on case>",
 "shared_secret": "<Device shared secret as HEX>"
 "public_key": "<X.509 PEM encoded device public key>"
 "parameter_set": "<parameter set UUID>"
 "capabilities": { // Device bootstrap capabilities
 "ec_capable": <boolean>,
 "rsa_capable": <boolean>,
 "sha384_capable": <boolean>,
 "sha512_capable": <boolean>,
 "aes256_capable": <boolean>,
 // Additional capabilities may be added in the future
 }
 }

 If the device uses an RSA or EC key as its device key, the
 "shared_secret" will not present. If the device is only shared
 secret capable then the "public_key" will not be present. The JSON
 data will NEVER have both "shared_secret" and "public_key" fields.

 All devices must support SHA-256, AES-128 and shared secrets. If
 the device can support other keys, hashing algorithms or ciphers
 during bootstrap, these should be indicated here.

 The manufacturer's production line will have encrypted the device
 data immediately after the device has been tested. The device data
 is encrypted using ECIES and the Identity Service public key
 (which must be a strong Elliptic Curve key). The ECIES
 configuration uses SHA512 and AES-256. The encrypted data is then
 provided as a binary payload in the request.

 No payload is returned. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |201 Created | The new device has been created |
 +--------------+--+
 |403 Forbidden | The manufacturer cannot update the |
 | | device because it already exists |
 +--------------+--+
 | 503 Service | The device cannot be created at |

 | Unavailable | this time |
 +--------------+--+
 Only a single device is uploaded in each PUT request, but the
 client may re-use the HTTPS session to send additional requests.

Lucas Expires March 17, 2018 [Page 30]

Internet-Draft aSSURE Data Security September 2017

9.2.2. POST /v1/parametersets

 This allows a manufacturer to upload a parameter set definition.
 The format of the parameter set definition is TBD. The parameter
 set is defined in CBOR and provided as the request payload. The
 parameter set is provided in the configuration data to the
 Management System to guide the bootstrap data definition as
 described in 15.2. below.

 The payload will contain the assigned UUID as a simple ASCII
 string. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |201 Created | The new parameter set has been created |
 +--------------+--+
 | 503 Service | The parameter set cannot be created at |
 | Unavailable | this time |
 +--------------+--+

9.2.3. PUT /v1/parametersets/<uuid>

 This allows a manufacturer to replace a parameter set definition.
 The format of the parameter set definition is TBD. The parameter
 set is defined in CBOR and provided as the request payload. The
 parameter set is provided in the configuration data to the
 Management System to guide the bootstrap data definition as
 described in 15.2. below.

 No payload is returned. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |201 Created | The new parameter set has been created |
 +--------------+--+
403 Forbidden	The manufacturer cannot update the
	parameter set because it does not exist
	or belongs to a different manufacturer
+--------------+--+	
503 Service	The parameter set cannot be created at
Unavailable	this time
 +--------------+--+

 Only a single parameter set is uploaded in each POST request, but
 the client may re-use the HTTPS session to send additional
 requests.

9.2.4. GET /v1/parametersets/<uuid>

 This allows a manufacturer to download a parameter set definition.

Lucas Expires March 17, 2018 [Page 31]

Internet-Draft aSSURE Data Security September 2017

 The format of the parameter set definition is TBD and is exactly
 the data as provided in 9.2.2. above.

 The returned payload is the parameter set data. The response code
 will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |200 OK | The parameter set has been returned |
 +--------------+--+
 |403 Forbidden | The parameter set does not exist or was |
 | | provided by a different manufacturer |
 +--------------+--+

9.3. Owner API

 The Owner API is used to take ownership of a device, set the
 bootstrap data for the device and transfer ownership of the
 device.

 As with the Manufacturer API, the Owner API is a RESTful interface
 using JSON over HTTPS with client authentication.

9.3.1. POST /v1/managementsystems

 This is used by management systems to register with the Owner API.
 The connection does not require client authentication.

 Before making this request, the management system should generate
 a new Elliptic Curve key and associated X.509 certificate signing
 request (CSR). The management system provides the CSR in DER
 format as the request payload. The Owner API will immediately
 issue a certificate for this CSR and return it as the response
 payload in DER format.

 All management systems must support both Elliptic Curve and RSA
 public keys, SHA-256, SHA-512, AES-128 and AES-256 so that they
 can correctly interoperate with all devices irrespective of the
 device abilities (or lack of abilities).

 The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |201 Created | The new management system ID |
 | | has been created |
 +--------------+--+
 | 503 Service | The management system ID cannot be |
 | Unavailable | created at this time |

 +--------------+--+

Lucas Expires March 17, 2018 [Page 32]

Internet-Draft aSSURE Data Security September 2017

 Note: Some Trusted Authorities may require a username and password
 to be provided to authenticate this request to prevent attackers
 trying to overload the system with requests. Alternative
 validation approaches are also possible. Such extensions are out
 of scope of this document.

 Note: The serial number of the issued certificate is used as the
 "manufacturer ID" in owner management API requests (9.3.4. below
 and 9.3.5. below). For security reasons, the manufacturer ID
 should not be predictable so ought to be a large random number (>=
 64 bits).

9.3.2. PUT /v1/devices/<uuid>/owner?case_string=<string>

 This is used by management systems to take ownership of a device.
 The connection must be authenticated with the issued client
 certificate.

 The case identification string from the QR code must be provided
 as the "case_string" parameter. No payload is provided.
 No payload is returned and the response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |204 Changed | Ownership has been assigned to this |
 | | management system |
 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, the wrong case string
	was provided or the device does not exist
 +--------------+--+

9.3.3. PUT /v1/devices/<uuid>/owner?mgmtid=<string>

 This is a variant of 9.3.2. above and used by management systems
 to transfer ownership of a device to a different management
 system. The connection must be authenticated with the issued
 client certificate.
 The serial number of the certificate issued to the new management
 system must be provided as the "mgmtid" parameter. No payload is
 provided.

 No payload is returned and the response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |204 Changed | Ownership has been assigned to the new |
 | | owner |

 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, or the device
	does not exist

Lucas Expires March 17, 2018 [Page 33]

Internet-Draft aSSURE Data Security September 2017

 +--------------+--+

9.3.4. PUT /v1/devices/<uuid>/owner?case_string=
 <string>&mgmtid=<string>

 This is a combination of 9.3.2. and 9.3.3. above. It is used by
 management systems to take ownership of a device and immediately
 assign it to a different management system. The connection must be
 authenticated with the issued client certificate.

 The case identification string must be provided as the
 "case_string" parameter and the serial number of the certificate
 issued to the new management system must be provided as the
 "mgmtid" parameter. No payload is provided.

 No payload is returned and the response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |204 Changed | Ownership has been assigned to the new |
 | | owner |
 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, or the device
	does not exist
 +--------------+--+

9.3.5. PUT /v1/devices/<uuid>/owner?mgmtid=NULL

 This is a variant of 9.3.2. above and used by management systems
 to release ownership of a device. Once a device has been released
 from ownership, any management system may take ownership of the
 device if knows the device UUID and case string. The connection
 must be authenticated with the issued client certificate.

 No payload is provided or returned and the response code will be
 one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |204 Changed | Ownership has been released |
 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, or the device
	does not exist
 +--------------+--+

9.3.6. GET /v1/devices/<uuid>/parameterset

 This is used by management systems to obtain the parameter set
 required for the device. The connection must be authenticated with
 the issued client certificate.

Lucas Expires March 17, 2018 [Page 34]

Internet-Draft aSSURE Data Security September 2017

 No payload is provided. If the request is successful, the
 parameter set will be returned in the payload. The format of the
 parameter set data is TBD.

 Note that this returns the same data as 9.2.4. above but
 references the device not the parameter set UUID itself.

 The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |200 OK | The device parameter set has |
 | | been returned |
 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, or the device
	does not exist
 +--------------+--+

9.3.7. PUT /v1/devices/<uuid>/bootstrap

 This is used by management systems to set the bootstrap data for a
 device. The connection must be authenticated with the issued
 client certificate.

 The bootstrap data is provided as a binary payload. The format of
 the device bootstrap data is device dependent and detailed in the
 device parameter set returned in 9.3.6. above. No payload is
 returned. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |204 Changed | The device bootstrap data has been |
 | | accepted |
 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, or the device
	does not exist
 +--------------+--+

9.3.8. GET /v1/devices/<uuid>/bootstrap

 This is used by management systems to return the bootstrap data
 for a device. The connection must be authenticated with the issued
 client certificate.

 No payload is provided. If successful, the bootstrap data is
 returned as a binary payload. The response code will be one of:

 +--------------+--+
 | Response | Description |
 +--------------+--+

Lucas Expires March 17, 2018 [Page 35]

Internet-Draft aSSURE Data Security September 2017

 |200 OK | The device bootstrap data has |
 | | been returned |
 +--------------+--+
403 Forbidden	The device is owned by a different
	management system, or the device
	does not exist
 +--------------+--+

9.4. Bootstrap API

 The Bootstrap API is used by the device to download its bootstrap
 data. The Bootstrap API is a RESTful interface using CBOR and CoAP
 over DTLS with client authentication.

9.4.1. GET /v1/devices/<uuid>/bootstrap

 This is used by the device to obtain its bootstrap data. The DTLS
 connection must be authenticated with the device key as described
 in section 8. above. The <uuid> in the URI must belong to the
 device authenticated during the DTLS handshake.

 No payload is provided. If successful, the bootstrap data is
 returned as a binary payload. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |2.05 | The device bootstrap data has |
 | | been returned |
 +--------------+--+
4.03	The device is not allowed to access the
	requested bootstrap data, or the device
	does not exist
 +--------------+--+

10. Device Management API

 The device API is used by the management system to control the
 aSSURE functionality in the device. Like the Bootstrap API, the
 Device API is RESTful using CBOR and CoAP over DTLS. The transport
 of the DTLS messages will vary depending on the device type and
 installation - examples of different physical and/or network
 layers are provided in section 11. below.

 All requests on the Device Management API must be made over
 authenticated DTLS connections, known as "channels". The
 definition of channels is in 4.2. above.

 The Management API is used to define what privileges are assigned
 to each channel. These privileges are:

 +--------------+--+
 | Privilege | Description |

Lucas Expires March 17, 2018 [Page 36]

Internet-Draft aSSURE Data Security September 2017

 +--------------+--+
Key	The connection is allowed to create,
Management	reconfigure and delete keys on the
	device.
+--------------+--+	
Channel	The connection is allowed to create,
Management	reconfigure and delete channel
	definitions on the device.
+--------------+--+	
System	The connection is allowed to instruct
Management	the device to perform system level
	actions such as bootstrap or reboot.
 +--------------+--+

10.1.1. PUT /v1/keys/<uuid>

 This request requires "Key Management" privileges on the
 requesting channel.

 This instructs the device to add the indicated key to its key
 store. The key is provided in the payload as a CBOR object as
 defined in 7.4. above.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.01 | The key has been created |
 +----------+--+
 | 2.04 | The key already exists on the device |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage keys |
 +----------+--+
 | 4.13 | The device has no space to add more keys |
 +----------+--+

10.1.2. POST /v1/keys/generate?type=<key_type>&persistent=<boolean>

 This request requires "Key Management" privileges on the
 requesting channel.

 This instructs the device to create a new key of the indicated
 type in its key store.

 +----------+--+
 | Type | Description |
 +----------+--+
 | 0 | RSA 2048 bits |

 +----------+--+
 | 1 | Elliptic Curve (NIST P-256) |
 +----------+--+

Lucas Expires March 17, 2018 [Page 37]

Internet-Draft aSSURE Data Security September 2017

 | 2 | Elliptic Curve (NIST P-384) |
 +----------+--+
 | 3 | Elliptic Curve (NIST P-521) |
 +----------+--+

 If the persistent flag is not set, the key will only exist in RAM
 and will be lost when the device next reboots or loses power.

 If the creation is successful, the device will create an
 authenticate key as defined in 7.4. above. The device will add
 its own ID in the MAP field and create the signature using its
 device key. The authenticate key is then returned in the response
 payload.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.01 | The key has been created |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage keys |
 +----------+--+
 | 4.13 | The device has no space to add more keys |
 +----------+--+
 | 5.01 | Unsupported key type |
 +----------+--+

10.1.3. GET /v1/keys/<uuid>

 This request requires "Key Management" privileges on the
 requesting channel.

 This instructs the device to return the indicated key in its key
 store. The key is returned in the payload as a CBOR object as
 defined in 7.4. above.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.05 | The key information has been returned |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | return keys |
 +----------+--+
 | 4.04 | The key does not exist |
 +----------+--+

10.1.4. DELETE /v1/keys/<uuid>
 This request requires "Key Management" privileges on the
 requesting channel.

Lucas Expires March 17, 2018 [Page 38]

Internet-Draft aSSURE Data Security September 2017

 This instructs the device to delete the indicated key from its key
 store. The key must not be in use by any channel nor must it be
 used as a reference key by any other keys. The device will not
 permit any key defined in the bootstrap data to be deleted.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.02 | The key has been deleted or did not exist |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage keys |
 +----------+--+
 | 4.03 | The key is in use and cannot be deleted at |
 | | this time or is not allowed to be deleted |
 +----------+--+

10.1.5. GET /v1/keys

 This request requires "Key Management" privileges on the
 requesting channel.

 This instructs the device to list the keys in its key store. The
 key list is returned as a CBOR array of authenticated keys as
 defined in 7.4. above. For security reasons, no private keys will
 be disclosed. Instead, if the device has the private data for the
 key, the string "PRESENT" will be returned as the "private_key"
 byte string. If the device does not have the private data for the
 key, the "private_key" byte string will be zero length.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.05 | The key list has been returned |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage keys |
 +----------+--+

10.1.6. PUT /v1/channels

 This request requires "Channel Management" privileges on the
 requesting channel.

 This instructs the device to create a new channel. The channel
 configuration will be provided in the request payload in CBOR

 format as below:

 ARRAY {

Lucas Expires March 17, 2018 [Page 39]

Internet-Draft aSSURE Data Security September 2017

 BYTE STRING local_key_id
 BYTE STRING peer_key_id // Zero length if the same as
 // local_key_id
 ARRAY {
 BOOLEAN persistent_across_reboots
 BOOLEAN open_immediately
 BOOLEAN channel_management_privilege
 BOOLEAN system_management_privilege
 BOOLEAN key_management_privilege
 // Additional configuration flags may follow
 }
 ARRAY {
 INTEGER address_type
 // Address content, structure varies depending on
 // address_type
 }
 }
 The format of the address content depends on the target device
 network and physical layer. As support for additional network and
 physical layers are added, additional address types and associated
 address content format will be defined. The list of assigned
 address types is in 12.4. below.

 The assigned channel ID will be returned in the response payload
 as a CBOR integer.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.01 | The channel has been created |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage channels |
 +----------+--+
 | 4.13 | The device has no space to add more channels |
 +----------+--+

10.1.7. PUT /v1/channels/<id>

 As per 10.1.6. above, "PUT /v1/channels" but where the channel ID
 is explicitly provided. The request and response payload formats
 are unchanged.

 Additional response codes may be:

 +----------+--+
 | Response | Description |

 +----------+--+
 | 2.04 | The channel already exists |
 +----------+--+

Lucas Expires March 17, 2018 [Page 40]

Internet-Draft aSSURE Data Security September 2017

10.1.8. PUT /v1/channels/<channel_id>/open

 This request requires "Channel Management" privileges on the
 requesting channel.

 This instructs the device to open the indicated channel. No
 request payload is provided.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.04 | The device will try to open the channel |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage channels |
 +----------+--+
 | 4.04 | The channel does not exist |
 +----------+--+

 Note that a 2.04 response DOES NOT mean that the channel has been
 successfully opened. Instead, it means that the device WILL TRY to
 open the channel. This may take some time and the status can be
 monitored with the channel status request in 10.1.11. below.

10.1.9. PUT /v1/channels/<channel_id>/close

 This request requires "Channel Management" privileges on the
 requesting channel.

 This instructs the device to close the indicated channel. No
 request payload is provided.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.04 | The device will try to close the channel |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage channels |
 +----------+--+
 | 4.04 | The channel does not exist |
 +----------+--+

 Note that a 2.04 response DOES NOT mean that the channel has been
 successfully closed. Instead, it means that the device WILL TRY to
 close the channel. This may take some time and the status can be
 monitored with the channel status request in 10.1.11. below.

10.1.10. DELETE /v1/channels/<channel_id>

Lucas Expires March 17, 2018 [Page 41]

Internet-Draft aSSURE Data Security September 2017

 This request requires "Channel Management" privileges on the
 requesting channel.

 This instructs the device to delete the indicated channel, closing
 it automatically if it is currently open. No request payload is
 provided. The device will not permit any channel defined in the
 bootstrap data to be deleted.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.02 | The channel has been deleted or does not |
 | | exist |
 +----------+--+
 | 2.04 | The channel was open so will be cleanly |
 | | closed then deleted |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage channels |
 +----------+--+
 | 4.03 | The channel is not allowed to be deleted |
 +----------+--+

 Note that after a 2.04 response the client can poll the channel
 status using the "GET" request as in 10.1.11. below. If the
 channel is still being closed, the response will be a 2.05 with
 status = 4. As soon as the close completes, the channel will be
 deleted and the "GET" request in 10.1.11. below will return 4.04
 because the channel no longer exists.

10.1.11. GET /v1/channels/<id>

 This request requires "Channel Management" privileges on the
 requesting channel.

 This requests the device to return the configuration and status of
 the channel. No request payload is provided. The channel
 configuration and status will be provided in the request payload
 in CBOR format as below:

 ARRAY {
 ARRAY {
 // Configuration structure as in 10.1.6. above
 }
 ARRAY {
 INTEGER channel_id
 INTEGER state

 // Additional status flags may follow
 }
 }

Lucas Expires March 17, 2018 [Page 42]

Internet-Draft aSSURE Data Security September 2017

 The "status" integer will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 0 | The channel is closed |
 +----------+--+
 | 1 | The channel is requested to be opened |
 +----------+--+
 | 2 | The channel handshake is in progress |
 +----------+--+
 | 3 | The channel is open |
 +----------+--+
 | 4 | The channel is being closed |
 +----------+--+
 | 10 | The channel handshake failed because the |
 | | peer did not answer |
 +----------+--+
 | 11 | The channel handshake failed because the |
 | | peer provided the wrong key ID |
 +----------+--+
 | 12 | The channel handshake failed because the |
 | | peer failed authentication |
 +----------+--+
 | 13 | The channel has experienced some other error |
 +----------+--+

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.05 | The channel information has been returned |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage channels |
 +----------+--+
 | 4.04 | The channel does not exist |
 +----------+--+

10.1.12. GET /v1/channels

 This request requires "Channel Management" privileges on the
 requesting channel.
 This requests the device to return the configuration and status of
 all channels. No request payload is provided. The information is
 returned as a CBOR array of channel responses as defined in
 10.1.11. above.

 The response code will be one of:

 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.05 | The configuration and status for all |

Lucas Expires March 17, 2018 [Page 43]

Internet-Draft aSSURE Data Security September 2017

 | | channels has been returned |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage channels |
 +----------+--+

10.1.13. PUT /v1/reboot

 This request requires "System Management" privileges on the
 requesting channel.

 This instructs the device to reboot. The device will reboot after
 returning the response. No request payload is provided and no
 response payload is returned.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.04 | The device is about to reboot |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage the system |
 +----------+--+

10.1.14. PUT /v1/shutdown

 This request requires "System Management" privileges on the
 requesting channel.

 This instructs the device to shut down. The device will shut down
 after returning the response. No request payload is provided and
 no response payload is returned.

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.04 | The device is about to shutdown |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage the system |
 +----------+--+

10.1.15. PUT /v1/bootstrap

 This request requires "System Management" privileges on the
 requesting channel.

 This instructs the device to perform an aSSURE bootstrap. The
 device will bootstrap after returning the response. No request
 payload is provided and no response payload is returned.

Lucas Expires March 17, 2018 [Page 44]

Internet-Draft aSSURE Data Security September 2017

 The response code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.04 | The device is about to bootstrap |
 +----------+--+
 | 4.01 | The channel does not have privileges to |
 | | manage the system |
 +----------+--+

10.1.16. GET /v1/ping

 This request requires no privileges on the requesting channel.
 This is used to check that the device is online and able to
 respond to requests.

 A payload may be provided. The device will respond with the same
 payload (or as much of the payload as the device can return if it
 is a constrained device). The response code will be:

 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.05 | Ping response |
 +----------+--+

10.1.17. GET /v1/info

 This request requires no privileges on the requesting channel.

 This is used to return basic information about the device. The
 device will return the CBOR structure below:

 ARRAY {
 BYTE STRING device_id
 BYTE STRING device_mac_address
 TEXT STRING device_manufacturer
 TEXT STRING device_product_code
 TEXT STRING device_serial_number
 TEXT STRING device_build_date
 TEXT STRING software_manufacturer
 TEXT STRING software_product_code
 TEXT STRING software_version
 }

 The only field that must be present is the device_id. All other
 fields may be zero length if the device is unable to provide them
 for any reason.

 The response code will be:

Lucas Expires March 17, 2018 [Page 45]

Internet-Draft aSSURE Data Security September 2017

 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.05 | Information returned |
 +----------+--+

11. Management Server API

11.1. Overview

 The management server must support the registration and presence
 APIs. The registration API is used to allow devices to be
 registered with the management system. The presence API is used by
 devices after bootstrap to inform the management system of their
 presence on the network.

11.2. Registration API

 The Registration API is used to register the device with the
 management system when it is installed. The Registration API is a
 RESTful interface using JSON over HTTPS. The authentication
 behaviour is determined by the Management Server implementation
 but either username + passphrase or client certificates are
 recommended.

11.2.1. POST /v1/devices/<uuid>?case_string=<case_string>

 This is used to register the indicated device UUID with the
 management system. The case string is provided to prove the device
 is physically present. The UUID and case string would normally
 come from a QR code or similar attached to the device (use of an
 RFID is not recommended as the source for obvious security
 reasons).

 No payload is returned. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 |201 Created | The new device has been registered |
 +--------------+--+
 | 401 | The device cannot be registered because |
 | Unauthorised | it already exists |
 +--------------+--+
 | 503 Service | The device cannot be registered |
 | Unavailable | at this time |
 +--------------+--+

 Only a single device is uploaded in each POST request, but the

 client may re-use the HTTPS session to send additional requests.

Lucas Expires March 17, 2018 [Page 46]

Internet-Draft aSSURE Data Security September 2017

11.2.2. POST /v1/devices/<old_uuid>/replace?uuid=<new_uuid>

 This is used to tell the management system that the indicated
 device with UUID <old_uuid> has been replaced by the device with
 UUID <new_uuid>. For example, this would occur when a device has
 failed and a maintenance engineer has replaced it. The management
 system can then update its database, etc. to allow the new device
 to "seamlessly replace" the old device (e.g. by applying the old
 device configuration to the new device). For security reasons, the
 management system should immediately disable the old device as
 this call indicates that the old device is no longer in use.

 The new device must be registered with the call in 11.2.1. above
 before performing this call to replace the old device.

 No payload is returned. The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 | 201 Created | The new device has replaced the old one |
 +--------------+--+
401	The old device does not exist, the client
	is not allowed to update the state of the
	old device, the new device does not exist
	or the client is not allowed to update
	the state of the new device.
+--------------+--+	
503 Service	The device cannot be replaced
Unavailable	at this time
 +--------------+--+

11.2.3. GET /v1/devices/<uuid>/status

 This is used to get the status of the device. The registration,
 configuration, bootstrap and presence of a device may take some
 time. A registration client may obtain the status of the device
 here to check if the device has entered service.

 If successful, the payload is a JSON structure:

 {
 status: <value>,
 description: "<helpful_text>"
 }

11.2.4. GET /v1/devices/<uuid>/info

 This is used to get the information for the device. This is only
 available after the device has sent is presence message to the

 management system.

 If successful, the payload is a JSON structure with the same

Lucas Expires March 17, 2018 [Page 47]

Internet-Draft aSSURE Data Security September 2017

 information as in 10.1.17. above:

 {
 "device_id": "<device uuid>",
 "device_mac_address": "<device MAC address>",
 "device_manufacturer": "...",
 "device_product_code": "...",
 "device_serial_number": "...",
 "device_build_date": "...",
 "software_manufacturer": "...",
 "software_product_code": "...",
 "software_version": "..."
 }

 The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 | 200 OK | The device information has been returned |
 +--------------+--+
 | 401 | The client is not authorised to access |
 | Unauthorised | this device |
 +--------------+--+
 | 503 Service | Device information cannot be returned at |
 | Unavailable | this time |
 +--------------+--+

 Only a single device response is permitted per GET request, but
 the client may re-use the HTTPS session to send additional
 requests.

11.3. Presence API

 The Presence API is used by the device to indicate to the
 management system that its bootstrap process has completed and it
 is now online in the network. Like the Bootstrap API and Device
 Management APIs, the Presence API is RESTful using CBOR and CoAP
 over DTLS.

11.3.1. PUT /v1/devices/<uuid>/info

 This is used by the device to confirm it is active and has
 completed its bootstrap.

 The device provides the same CBOR structure as in 10.1.17. above
 as the request payload.

 No payload is returned. The response code will be one of:
 +-------------+---+

 | Response | Description |
 +-------------+---+
 | 2.01 Created| The device presence has been acknowledged |

Lucas Expires March 17, 2018 [Page 48]

Internet-Draft aSSURE Data Security September 2017

 +-------------+---+
 | 4.01 | The device has attempted to provide |
 |Unauthorized | information for a different device |
 +-------------+---+

11.3.2. PUT /v1/devices/<uuid>/goodbye

 This is used by the device to indicate it is deliberately going
 offline. It will send this to all connected management systems.

 The device will provide a single INTEGER in CBOR format to
 indicate the reason.

 +---------+---+
 | Value | Reason |
 +---------+---+
 | 0 | Device is shutting down |
 +---------+---+
 | 1 | Device has been instructed to reboot by |
 | | Management System |
 +---------+---+
 | 2 | Device has been instructed to bootstrap by |
 | | Management System |
 +---------+---+
 | 3 | Device has been instructed to reboot by |
 | | local controls (e.g. button) |
 +---------+---+
 | 4 | Device has been instructed to bootstrap by |
 | | local controls (e.g. button) |
 +---------+---+

 No payload is returned. The response code will be one of:
 +-------------+---+
 | Response | Description |
 +-------------+---+
 | 2.04 Changed| The device goodbye has been acknowledged |
 +-------------+---+
 | 4.01 | The device has attempted to provide |
 |Unauthorized | information for a different device |
 +-------------+---+

11.4. Miscellaneous

11.4.1. GET /v1/timestamp

 This is used to get the current time from a trusted source. A
 device may use this to set its clock without having to include
 support for other protocols such as NTP. This request may be made
 by any client with or without authentication.

 No payload is provided. The response is a timestamp in CBOR as
 defined in 7.11. above (both integer and fractional parts).

Lucas Expires March 17, 2018 [Page 49]

Internet-Draft aSSURE Data Security September 2017

 The response code will be one of:
 +--------------+--+
 | Response | Description |
 +--------------+--+
 | 200 OK | The timestamp has been returned |
 +--------------+--+
 | 503 Service | Device information cannot be returned at |
 | Unavailable | this time |
 +--------------+--+

12. Physical / Network Layer Implementations

12.1. BACnet

 aSSURE traffic is fully compatible with existing BACnet traffic
 and is identified as Network Control messages using Message Types
 0x80 - 0x82 and Vendor ID 0x_TBD_.

 Message Types 0x80 through 0x82 are used to identify the aSSURE
 traffic as belonging to one of three logical groups.

 +-------------+---+
 | Message Type| Description |
 +-------------+---+
 | 0x80 | aSSURE Bootstrap |
 +-------------+---+
 | 0x81 | aSSURE Secure Management Channels |
 +-------------+---+
 | 0x82 | aSSURE Secure Data Channels |
 +-------------+---+

 When an address is indicated in a CBOR message, the address format
 is:

 ARRAY {
 INTEGER 0 // Address type 1 = BACnet
 INTEGER net
 BYTE STRING addr // "len" is the BYTE STRING length
 }

 If the "net" field is a NULL (CBOR Major: 7, Value: 22 => 0xF6)
 rather than an INTEGER (CBOR Major: 0), this indicates a local
 network address. When creating the BACnet NPDU, the NPDU
 destination specifier for that address would not be present.

12.1.1. aSSURE Bootstrap

 The aSSURE Bootstrap messages are used to identify the bootstrap

 gateways on the BACnet network and assign a secure data channel
 for communication with the bootstrap server. This traffic cannot
 be secured because it happens BEFORE the bootstrap data has been

Lucas Expires March 17, 2018 [Page 50]

Internet-Draft aSSURE Data Security September 2017

 received so the device has no keys for communicating with peers on
 the local network.

 All Insecure Control Messages are RESTful using CoAP in the NSDU
 part of an NPDU frame. They are therefore independent of any
 specific BACnet LLC such as BACnet IP or BACnet MS/TP.

12.1.1.1. GET /v1/gateway/<bootstrap_server_id>

 This message is broadcast on BACnet to discover the best gateway
 capable of routing traffic to the indicated bootstrap server. No
 payload is provided.

 All gateways capable of routing traffic to the broadcast server
 should respond with their assigned priority for handling traffic
 (or zero if it has not been explicitly set). This means that a
 device may receive multiple replies to its GET message and it
 should be able to handle this. The device should wait a reasonable
 time (e.g. 5 seconds) for all replies to be received and should
 pick the gateway with the lowest priority value. If multiple
 gateways respond with the same lowest priority value, a gateway
 should be chosen at random.

 If no gateways respond, the device should backoff and retry.

 The gateway response should be a 2.00 status code with a CBOR
 payload containing the following content:

 INTEGER priority

12.1.1.2. POST /v1/gateway/channel?server=<bootstrap_server_id>

 This message is sent to the chosen gateway that responded to the
 discovery message described in 12.1.1.1. above. The gateway
 should assign a channel that routes messages to the indicated
 bootstrap server. No payload is provided. If successful, the
 gateway response should be a CBOR payload with the following
 content:

 INTEGER channel_id
 BYTE STRING token

 The cookie should be a random string of at least 4 bytes. The
 device must provide this token when closing the channel.

 The status code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+

 | 2.01 | The channel has been created |
 +----------+--+
 | 4.04 | The gateway cannot find a route to the |

Lucas Expires March 17, 2018 [Page 51]

Internet-Draft aSSURE Data Security September 2017

 | | indicated bootstrap server |
 +----------+--+
 | 5.03 | The gateway cannot create the channel at |
 | | this time |
 +----------+--+

12.1.1.3. DELETE/v1/gateway/channel/<channel_id>?token=<token_in_hex>

 This message is sent to the chosen gateway that responded to the
 discovery message described in 12.1.1.1. above. The gateway
 should assign a channel that routes messages to the indicated
 bootstrap server. No payload is provided and no payload is
 returned. The device must offer the token returned by the gateway
 in the channel assign request in 12.1.1.2. above and the DELETE
 request must come from the same network address as the POST
 request.

 The status code will be one of:
 +----------+--+
 | Response | Description |
 +----------+--+
 | 2.02 | The channel has been deleted |
 +----------+--+
 | 4.01 | The device is not allowed to delete this |
 | | channel |
 +----------+--+

12.1.2. aSSURE Secure Management Channels

 These messages are used for encrypted aSSURE-protected DTLS
 sessions accessing the Device Management API defined in 10.
 above. All messages on the aSSURE Secure Management Channel have
 the following CBOR structure:

 INTEGER channel_id
 BYTE STRING dtls_data

12.1.3. aSSURE Secure Data Channels

 These messages are used for all other aSSURE-protected DTLS
 session such as secure bootstrap or peer-to-peer channels. All
 messages on the aSSURE Secure Data Channel have the following CBOR
 structure:

 INTEGER channel_id
 BYTE STRING dtls_data

12.2. IP

 When deployed on IP networks, aSSURE traffic uses UDP port TBD for
 Secure Management Channels and UDP port TBD for Secure Data

Lucas Expires March 17, 2018 [Page 52]

Internet-Draft aSSURE Data Security September 2017

 Channels. The UDP payload is the DTLS data. The channel ID is
 inferred from the local port and remote address and port.

 When compared to BACnet, the "aSSURE Bootstrap" messages are not
 required because an IP network is already able to route traffic
 directly to the bootstrap servers without the explicit
 establishment of a channel. The device is assumed to be capable of
 DHCP and DNS to obtain a local IP address, determine the subnet
 gateway and resolve the bootstrap server FQDN.

 When an address is indicated in a CBOR message, the address format
 is:

 ARRAY {
 INTEGER 1 // Address type 1 = IP
 BYTE STRING remote_addr // 4 bytes for IPv4,network byte order
 //16 bytes for IPv6,network byte order
 INTEGER local_port // Local UDP port, 0=any
 INTEGER remote_port // Remote UDP port
 }

12.2.1. Bootstrap Server FQDN

 The bootstrap server ID can be converted to a Fully Qualified
 Domain Name (FQDN) by suffixing the decimal value of the ID with
 the string ".*TBD*.net". Similarly, an aSSURE bootstrap server
 FQDN can be converted to the server ID by reversing the process.

12.3. Bluetooth

 Bluetooth implementations should use the "Internet Protocol
 Support Profile" to allow the device to send and receive IPv6
 traffic.

 When an address is indicated in a CBOR message, the address format
 should be type 1 as in 12.2. above.
 When a Bluetooth MAC address is specifically indicated in a CBOR
 message, the address format is:

 ARRAY {
 INTEGER 2 // Address type 2 = Bluetooth
 BYTE STRING mac // MAC address, 6 bytes
 }

 In all other respects, the Bluetooth implementation follows the
 "IP" implementation as in 12.2. above.

12.4. Assigned address types
 +-------------+---+

 | Address Type| Description |
 +-------------+---+
 | 0 | BACnet NPDU address |

Lucas Expires March 17, 2018 [Page 53]

Internet-Draft aSSURE Data Security September 2017

 +-------------+---+
 | 1 | Destination IP address and UDP ports |
 +-------------+---+
 | 2 | Bluetooth MAC address |
 +-------------+---+
13. DTLS Connection Configuration Examples

13.1. Example Topology

 *********** *********** +++++++++++
 +Device G +<-ec-->*Device A *<-ec-->*Device B *
 +++++++++++ *********** ***********
 ^ ^ ^ | ^ / ^
 | | \ / | \ R |
 e e \ e e s S R
 c c R c c s A S
 | | SA-----RSA-------RS \/ A
 | e / | A/\ |
 e c-ec---/-e e /\ \ R
 c e c c / \ s S
 | c \ | / \ s A
 | / \ | / \ \ |
 v v v v v v v v
 *********** OOOOOOOOOOOO +++++++++++
 * * oManagemento + +
 *Device F *--ec->o System o<-RSA--+Device C +
 *********** OOOOOOOOOOOO +++++++++++
 ^ ^ ^ ^ ^
 | / | \ |
 | / | \ |
 s / s \ s
 s ss-/ s \-ss s
 | / | \ |
 | / | \ |
 | / | \ |
 _____v_/_ _________ __v_____
 / \ / \ / \
 |Device E |<--ss->|Device E |<-ss-->|Device D |
 |Service X| |Service Y| | |
 ________ / _________/ _________/

*** - (Device A & F) Elliptic Curve and Shared Secret Capable
+++ - (Device C) RSA and Shared Secret Capable

*** _ (Device G) Elliptic Curve, RSA and Shared Secret Capable
+++ (EC Device Key)

+++ _ (Device B) Elliptic Curve, RSA and Shared Secret Capable

*** (RSA Device Key)

___ - (device D and E) Only Shared Secret Capable
 (Shared Secret Device Key)

Lucas Expires March 17, 2018 [Page 54]

Internet-Draft aSSURE Data Security September 2017

"ec", "ss", "RSA" are the channels
 DTLS Connection Example Topology

13.2. Elliptic Curve device . Elliptic Curve device

 e.g. Device A . Device F
 Both endpoints have Elliptic Curve keys so no additional keys need
 to be created. Each endpoint is sent a channel definition
 indicating the local device key, the peer device key, the peer
 address and the privileges for the channel.

13.3. Elliptic Curve device . RSA device

 We cannot use the two device keys to directly secure the DTLS
 connection. There are three possible solutions to allow a secure
 link. These are presented in the order of most to least preferred.

13.3.1. Option 1 - Issue EC key to RSA device

 e.g. Device A . Device B
 If the RSA device can support Elliptic Curve keys, then a new
 Elliptic Curve key should be created on (or issued to) the RSA
 device by the Management System. The Management System should sign
 the new key as assigned to the device.

 Now both devices have an EC key, so 13.2. above can be followed.

13.3.2. Option 2 - Issue RSA key to EC device

 e.g. Device C . Device G
 If the EC device can support RSA keys, then a new RSA key should
 be created on (or issued to) the EC device by the Management
 System. The Management System should sign the new key as assigned
 to the device.

 Now both devices have an RSA key, so 13.5. below can be followed.

13.3.3. Option 3 - Issue Shared Secret to both devices

 e.g. Device A . Device C
 Shared secrets must be used, so 13.7. below is followed.

13.4. Elliptic Curve device . Shared Secret device

 e.g. Device F . Device E (Service X)
 Shared secrets must be used, so 13.7. below is followed.

13.5. RSA device . RSA device

 e.g. Device B . Device C
 Both endpoints have RSA key so no additional keys need to be

Lucas Expires March 17, 2018 [Page 55]

Internet-Draft aSSURE Data Security September 2017

 created. Each endpoint is sent a channel definition indicating the
 local device key, the peer device key, the peer address and the
 privileges for the channel.

13.6. RSA device . Shared Secret device

 e.g. Device C . Device D
 Shared secrets must be used, so 13.7. below is followed.

13.7. Shared Secret device . Shared Secret device

 e.g. Device D . Device E (Service Y)
 The management system must issue a new shared secret (called the
 "Channel Key") to both devices to identify the channel. Each
 endpoint is sent a channel definition indicating the Channel Key,
 the peer address and the privileges for the channel.

Lucas Expires March 17, 2018 [Page 56]

Internet-Draft aSSURE Data Security September 2017

14. Message Sequence Diagrams

14.1. Manufacturing Flow

+------+ +--------+ +--------+ +--------+ +------------+ +---------+
|DEVICE| | MAKER | | MAKER | |IDENTITY| |REGISTRATION| |BOOTSTRAP|
| | | | |GATEWAY | | SERVER | | SERVER | | SERVER |
+------+ +--------+ +--------+ +--------+ +------------+ +---------+
 | | | | | |
 []<--UUID--| | | | |
 [Key Generation] | | | |
 []UUID+KEY-> | | | |
 | []POST | | | |
 | []/v1/devices->[] | | |
 | [] []-CheckDeviceExists()--->[] |
 | [] [] | [] |
 | [] []<-------FALSE-----------[] |
 | [] [] | | |
 | [] []-----CreareDevice()---->[] |
 | [Key] [] | [] |
 | [Encryption] []<--------ACK------------[] |
 | [] [] | | |
 | [] []--------------CreateDevice()--------->[]
 | [] [] | | []
 | [] []<-----------------ACK-----------------[]
[] []			
[] []SUBMIT device data			
[] []--->			
[]<201 Created-[] []			
	[Key Decryption]		
	[Bootstrap and Registration Identity]		
	[Generation]		
	[]ISSUE device bootstrap data---->		
	[]		
	[]ISSUE device		
		registration	
		data------->	
		[] []	
		IMPORT IMPORT	
		data data	
		[] []	
		Ready for Ready for	
		device owner data	
		registration upload	

 Manufacturing Flow Sequence Diagram

Lucas Expires March 17, 2018 [Page 57]

Internet-Draft aSSURE Data Security September 2017

14.2. Management System Preparation

+------------+ +-------+
| MANAGEMENT | | OWNER |
| SYSTEM | |GATEWAY|
+------------+ +-------+
 | |
 [] |
 Certificate |
 Generation |
 [] POST |
 [] /v1/managementsystems |
 []------------------------------>[]
 [] []
 [] 201 Created UUID []
 []<------------------------------[]
 [] |
 | |

Registration of the Management System with the Trusted Authority

 Management System Preparation Sequence Diagram

Lucas Expires March 17, 2018 [Page 58]

Internet-Draft aSSURE Data Security September 2017

14.3. Device Registration

+------+ +---------+ +----------+ +-------+ +---------+ +-----------+
|DEVICE| |INSTALLER| |MANAGEMENT| | OWNER | |BOOTSTRAP| REGISTRATION|
| | | | | SERVER | |GATEWAY| | SERVER | | SERVER |
+------+ +---------+ +----------+ +-------+ +---------+ +-----------+
 | | | | | |
[Installed | | | | |
 On site] | | | | |
------->[]				
QR Code[]------------>[]				
scanned[] Upload UUID []				
[] and case ID []				
[] [] PUT				
[] []/v1/devices/<id>/owner				
[] []---------->[]				
[] [] [] Set DeviceOwner()				
[] [] []------------------------>[]				
[] [] [] ACK []				
[] [] []<------------------------[]				
[] [] 200 OK []				
[] []<----------[]				
[] ACK []				
[]<------------[]				

Registration of the device with the management systems

 Device Registration Sequence Diagram

Lucas Expires March 17, 2018 [Page 59]

Internet-Draft aSSURE Data Security September 2017

14.4. Device Ownership State Machine

 O
 |
 |
 |
 V
 +------------+
 | UNOWNED |
 | |<-----------------
 +------------+ |
 | |
 | |
 |POST |POST
 |/v1/devices/<uuid>/owner |/v1/devices/<uuid>/release
 | |
 V |
 +------------+ |
 | OWNED | |
 ------->| |------------------
 | +------------+
 | |
POST
 /v1/devices/<uuid>/transfer

 Device Ownership State Machine

Lucas Expires March 17, 2018 [Page 60]

Internet-Draft aSSURE Data Security September 2017

14.5. Device Configuration and Bootstrap

+------+ +----------------+ +----------+ +----------+ +------------+
|DEVICE| | MANAGEMENT | |OWNER | |BOOTSTRAP | |REGISTRATION|
| | | SYSTEM | |GATEWAY | | SERVER | | SERVER |
+------+ +----------------+ +----------+ +----------+ +------------+
[Device Registration			
Completed]			
[]			
[] GET			
[]/v1/devices/<uuid>/configuration			
[]------------------->[]			
[] []			
[] []GetDeviceData()			
[] []-------------->[]GetDeviceOwner()			
[] [] []------------>[]			
[] [] [] [Owner] []			
[] [] []<------------[]			
[] [] [data] []			
[] []<--------------[]			
[] []			
[] 200 OK [data] []			
[]<-------------------[]			
[]			
[Power			
Applied]			
[] GET /v1/devices/<uuid>/bootstrap			
[]-->[]			
[]		[]	
[]	200 OK [image]	[]	
[]<--[]			
[]			
[Validate and			
decrypt bootstrap			
image]			
[]			
[Apply bootstrap			
Image]			
[]			
[]PUT /v1/devices/<uuid>/info			
[]------->[]			
[] <data> []			
[]<-------[]			

 Device Configuration and Bootstrap Sequence Diagram

Lucas Expires March 17, 2018 [Page 61]

Internet-Draft aSSURE Data Security September 2017

14.6. Device Configuration and Bootstrap (Walled Garden)
+------+ +-------+ +-------+ +-------+ +-------+ +------+ +--------+
|DEVICE| |WALLED | |WALLED | |MANAGE | |OWNER | |BOOT | REG |
| | |BOOT | |MANAGE | |SYSTEM | |GATEWAY| |SERVER| |SERVER |
+------+ +-------+ +-------+ +-------+-+-------+ +------+ +--------+
		[Device Reg Done]		
		[]		
		[-GET------>]		
		[] ?/config[] []		
		[] [-GetDevData]		
		[] []---------->]		
		[] [] [GetDevOwner		
		[] [] [--------->]		
		[] [] [] owner []		
		[] [] data [<---------]		
		[] 200 OK []<----------] []		
		[]<---------] []		
		[] []		
	(Build Bootstrap Image)			
		[]		
	<------------------[]EXPORT device bootstrap data			
		<-----[]EXPORT device management data		
[] []				
IMPORT IMPORT				
bootstrap data management data				
[] []				
[Power Applied]				
[]				
[-GET----->[]				
[]?/bootstrap				
[] []				
[] 200 OK []				
[]<---------]				
[] (image) []				
[]				
[Validate and decrypt				
Bootstrap image]				
[Apply bootstrap image]				
[]				
[]	[]			
[]-POST ?/info---------->]				
[]	[]			
[]<----------------------]				
[]	[]			

?/ is /v1/devices/<uuid>/

Configuration of the device to connect to the management system

 Device Configuration and Bootstrap Sequence Diagram
 (Walled Garden)

Lucas Expires March 17, 2018 [Page 62]

Internet-Draft aSSURE Data Security September 2017

14.7. Device Change Owner

+------+ +--------+ +--------+ +--------+ +----------+ +------------+
|DEVICE| | MAKER | | MAKER | |OWNER | |BOOTSTRAP | |REGISTRATION|
| | |SYSTEM A| |SYSTEM B| |GATEWAY | | SERVER | | SERVER |
+------+ +--------+ +--------+ +--------+ +----------+ +------------+
 | | | | | |
 []<-data->[] []---GET--->] | |
 [] [] []?/configuration | |
 [] [] [] [] | |
 [] [] [] []GetDeviceData() |
 [] [] [] []----------->[]GetDeviceOwner()
 [] [] [] [] []----------->[]
 [] [] [] [] [] [Mgmt B] []
 [] [] [] []UNAUTHORISED[]<-----------[]
 [] [] [] 403 []<-----------[] |
 [] [] []<--------[] | |
 [] [] | Forbidden| | |
 [] [] PUT | | | |
 [] []------------------------>] | |
 [] []?/transfer?mgmtid=$MgmtB[] SetDeviceOwner("Mgmt B") |
 [] [] | []------------------------->[]
 [] [] | [] | Reset []
 [] [] | [] | Device []
 [] [] | [] | Bootstrap()[]
 [] [] | [] []<-----------[]
 [] [] | [] [] ACK []
 [] [] | [] []----------->[]
 [] [] | [] ACK | []
 [] [] 200 OK []<-------------------------[]
 [] []<-----------------------[] | |
 []<-------[] | | | |
 [] PUT /v1/bootstrap | | | |
 [] [] | | | |
 []-------->] | | | |
 [] PUT ?/goodbye | | | |
 [] [] | | | |
 [] | | | | |
 []-----------GET /v1/devices/<uuid>/bootstrap---->[] |
 [] | | | [] |
 []<----------------- 204 No Content--------------[] |
 [] | | | | |
 | | | | | |
 [sleeps] | | | | |

 Device Change Owner Sequence Diagram (first part)

Lucas Expires March 17, 2018 [Page 63]

Internet-Draft aSSURE Data Security September 2017

 | | | | | |
+------+ +--------+ +--------+ +--------+ +----------+ +------------+
|DEVICE| | MAKER | | MAKER | |OWNER | |BOOTSTRAP | |REGISTRATION|
| | |SYSTEM A| |SYSTEM B| |GATEWAY | | SERVER | | SERVER |
+------+ +--------+ +--------+ +--------+ +----------+ +------------+
[sleeps] | | | | |
	[]---GET--->]	
	[]?/configuration	
	[] []	
	[] []GetDeviceData()	
	[] []----------->[]GetDeviceOwner()	
	[] [] []----------->[]	
	[] [] [] [Mgmt B] []	
	[] 200 OK [] [data] []<-----------[]	
	[] [data] []<-----------[]	
	[]<--------[]	
	[]	
	[Build bootstrap image]	
	[]	
	[] POST ?/bootstrap	
	[]-------->[]	
	[] []SetDeviceBootstrap()	
	[] []----------->[]	
	[] [] []GetDeviceOwner()	
	[] [] []----------->[]	
	[] [] [] [Mgmt B] []	
	[] [] ACK []<-----------[]	
	[] 200 OK []<-----------[]	
	[]<--------[]	
[wakes up]		
[]		
[]-----------GET /v1/devices/<uuid>/bootstrap---->[]		
[]		
[]<-----------------------[image]-----------------[]		
[]		
[Validate and decrypt bootstrap data]		
[]		
[Apply bootstrap data]		
[]		
[]-PUT ?/info----------->[]		
[]	[]	
[] [data] []		
[]<--------------------->[]		

?/ is /v1/devices/<uuid>/
Device Change of Ownership

Change the management system authorized for the device

 Device Change Owner Sequence Diagram (second part)

Lucas Expires March 17, 2018 [Page 64]

Internet-Draft aSSURE Data Security September 2017

15. Configuration and Bootstrap Data Formats

15.1. Overview

 The bootstrap data is critical to the device to determine
 ownership and allow authentication of the management system.
 Additional parameters may be provided to the device as part of the
 bootstrap data. The Management System uploads the bootstrap data
 for a device to the bootstrap server so that the bootstrap server
 can be provide it to the device during the bootstrap sequence. he
 Management System therefore encrypts the bootstrap data so that
 only the target device can decode it (in the case of shared secret
 devices, the Identity Service is also theoretically capable of
 this decryption). This protects the data from exposure should the
 bootstrap server be compromised.

 The Management System needs to know what information the device
 needs to complete its bootstrap and it requests this in the
 request defined in 9.3.6. above.

15.2. Configuration data format

 The configuration data for a device provides the manufacturing
 data for the device and information about the key to use to
 encrypt the bootstrap data. The data is in JSON format as below:
 {
 "device": {
 "id": "<device UUID>",
 "bootstrap_server": <bootstrap server ID used by device>,
 "capabilities": { // Device bootstrap capabilities
 "ec_capable": <boolean>,
 "rsa_capable": <boolean>,
 "sha384_capable": <boolean>,
 "sha512_capable": <boolean>,
 "aes256_capable": <boolean>,
 // Additional capabilities may be added in the future
 },
 },
 "authenticated_keys": [
 // Array of base-64 encoded key identity strings as in
 // 7.4. above
],
 "owner_information": "<base64-encoded signed owner data
 in 15.3. below>",
 "parameter_choices": [
 // List of sets of parameter choices. The Management
 // System should provide exactly one of the sets of
 // parameters, but it may choose to provide a different

 // parameter set if it has additional information about
 // what the device can support.
],
 }

Lucas Expires March 17, 2018 [Page 65]

Internet-Draft aSSURE Data Security September 2017

 The format of the "parameter_choices" array depends on the types
 of messages that are required by the device. The exact format is
 TBD at this time.

15.3. Device connection to the bootstrap server using DTLS using
 pre-shared secrets

 The array of "authenticated_keys" provided in the configuration
 data will include a bootstrap server key. This key and all keys
 that it relies on to derive it from the device key must be
 provided to the device by the bootstrap server during the DTLS
 handshake so that the device can establish the DTLS connection.
 The bootstrap service in the Trusted Authority will do this
 automatically. If a bootstrap service is used within the Walled
 Garden, it must be careful to include all these keys in the
 correct order (from device key to bootstrap server) so that the
 device can derive the key necessary for the DTLS session.

15.4. Device connection to the bootstrap server using DTLS using
 public keys

 There is a special requirement for the device behaviour when
 establishing the DTLS connection to the bootstrap server. The DTLS
 handshake (with extensions as in RFC-7250 allowing raw public
 keys) uses public keys rather than certificates, so the device
 cannot authenticate the bootstrap server key during the DTLS
 handshake.

 The device must therefore temporarily accept the public key from
 the bootstrap server during the DTLS handshake and download the
 bootstrap data. The device must then check that the public key
 from the bootstrap server is in the list of identities in the
 bootstrap and that it has the "Bootstrap Service" identity class.

 Once the identity of the bootstrap server has been confirmed,
 validation of the bootstrap data can continue. If the identity of
 the bootstrap server cannot be confirmed, the bootstrap data
 should be discarded.

15.5. Bootstrap data format

 The bootstrap data is constructed by the management system based
 on the configuration data and the additional information that the
 management system needs to provide.

 The bootstrap data is in CBOR format comprises three sections - a
 header, the encrypted content and the signature. The header
 includes one or more authenticated keys and the owner information.

https://datatracker.ietf.org/doc/html/rfc7250

 All authenticated keys in the configuration data must be included
 in the authenticated key list in the order provided. The
 management system may then append additional keys if it wishes.

Lucas Expires March 17, 2018 [Page 66]

Internet-Draft aSSURE Data Security September 2017

 The order is important because the device will validate and import
 the authenticated keys in the order provided. If a key is invalid
 or depends on a key that is not yet imported, the bootstrap data
 will be rejected.

 The owner information tells the device the number of owners the
 device has had. This number starts at zero and is incremented each
 time the owner changes. The device must store this number in non
 volatile memory and only accept bootstrap data if the owner
 sequence_number in the bootstrap data is the same or higher than
 the owner_sequence_number stored in non-volatile memory. This
 prevents replay attacks of older owner data in an attempt to
 reclaim ownership of a device. The owner data must be signed by a
 manufacturer or registration identity as defined in 7.7. above.

 ARRAY {
 // One or more authenticated key definitions in 7.4. above
 ARRAY {
 ... // Authenticated key definition
 }

 // Owner information
 ARRAY {
 INTEGER content //"Owner Content Type" as in 7.5. above
 INTEGER owner_sequence_number
 ARRAY {
 // Signature for owner data, provided by bootstrap
 // server as in 7.3. above
 }
 }
 // End of owner information

 // Start of encryption information
 BYTE STRING decryption_key_id // Key UUID
 BYTE STRING encrypted_payload

 // Signature for the entire bootstrap data
 ARRAY {
 // Signature as in 7.3. above, signed by Management
 // Systems key
 // Signature covers ENCRYPTED payload, so signature
 //.validation is done before decryption
 }
 }

15.5.1. Payload protected by Elliptic Curve keys

 If the decryption key refers to an Elliptic Curve key, the

 encrypted_payload is a Cryptographic Message Syntax object
 containing an enveloped-data block (see RFC 5652 and RFC 5753).
 The enveloped-data should be encrypted using the "Standard"
 variation of Ephemeral Static ECDH (see RFC 5753 section 3.1). The

Lucas Expires March 17, 2018 [Page 67]

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc5753
https://datatracker.ietf.org/doc/html/rfc5753#section-3.1

Internet-Draft aSSURE Data Security September 2017

 default choices for encryption cipher and hash function should be
 AES-128 and SHA-256 respectively.

 The "enveloped-data", after decryption, contains the payload CBOR
 structure as defined in 15.5.4. below.

15.5.2. Payload protected by RSA keys

 If the decryption key refers to an RSA key, then the
 encrypted_payload is a Cryptographic Message Syntax object
 containing an enveloped-data block (see RFC 5652).

 The enveloped-data should be encrypted using RSAES-OAEP (see RFC
8017 section 7.1). The default choices for encryption cipher and

 hash function should be AES-128 and SHA-256 respectively.
 The SHA-1 hash should NOT be used.

 The "enveloped-data", after decryption, contains the payload CBOR
 structure as defined in 15.5.4. below.

15.5.3. Payload protected by shared secrets

 If the decryption key refers to a shared secret then the
 encrypted_payload contains the CBOR structure below. The salt,
 iterations_or_cipher and encrypted_secret fields are used to
 derive a decryption key for the cipher in the same way as a
 derived secret is obtained in section 7.2. above. This key is
 then used with the indicated cipher_suite with the cipher_IV and
 optional tag to decrypt the encrypted_data.

 ARRAY {
 BYTE STRING salt
 INTEGER iterations_or_cipher
 BYTE_STRING encrypted_secret
 INTEGER cipher_suite // As in 7.8. above
 BYTE STRING cipher_IV
 BYTE STRING tag // Zero length for CBC ciphers
 BYTE STRING encrypted_data
 }

 The "encrypted_data", after decryption, contains the payload CBOR
 structure as defined in 15.5.4. below.

15.5.4. Decrypted payload content

 The payload has the following CBOR format:
 ARRAY {
 BYTE STRING coap_message0
 BYTE STRING coap_message1

https://datatracker.ietf.org/doc/html/rfc5652
https://datatracker.ietf.org/doc/html/rfc8017
https://datatracker.ietf.org/doc/html/rfc8017

 ...
 BYTE STRING coap_messageN
 }

Lucas Expires March 17, 2018 [Page 68]

Internet-Draft aSSURE Data Security September 2017

 Each message is replayed to the local API in the order in the
 payload.

 If the device requires configuration messages to be replayed to a
 different API, a local API function should be created that
 understands how to replay the message content to the other API.
 E.g. replay of a BACnet APDU to the local device.

16. Security Considerations

 This whole draft concerns security considerations. See Chapter 6.

17. IANA Considerations

 None

18. Conclusions

 End to end certificate handling and encrypted communication using
 "channels" within the DTLS framework can easily be achieved
 without inventing new standards, just by enhancing current ones.
 This covers devices from high end servers down to resource
 constrained devices across different types of network.

 The underlying standards are:

 Transport Layer Security, TLS v1.2, RFC-5246
 Datagram Transport Layer Security, DTLS v1.2, RFC-6347
 Constrained Application Framework, CoAP, RFC-7252
 Concise Binary Object Representation, CBOR, RFC-7049
 CoAP Block-wise Transfers, https://www.ietf.org/id/draft-ietf

core-block-21.txt

 The aSSURE specification lends itself to the industrial
 manufacture and distribution of IoT and other connected pieces of
 equipment and can serve many markets both in retrofit and new
 build. Indeed IoT is currently disgorging millions of devices in
 architectures that are not secure enough and could be repaired
 using the aSSURE framework and philosophy. This problem is better
 described by Bob Hinden in his paper "Internet of Insecure Things"
 published in the Internet Protocol Journal.

19. References

19.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7049
https://www.ietf.org/id/draft-ietfcore-block-21.txt
https://www.ietf.org/id/draft-ietfcore-block-21.txt
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

 [RFC4279] Eronen, P., Ed., and H. Tschofenig, Ed., "Pre-Shared Key
 Ciphersuites for Transport Layer Security (TLS)", RFC4279, DOI

Lucas Expires March 17, 2018 [Page 69]

https://datatracker.ietf.org/doc/html/rfc4279

Internet-Draft aSSURE Data Security September 2017

 10.17487/RFC4279, December 2005, <http://www.rfc
editor.org/info/rfc4279>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer
 Security (TLS) Protocol Version 1.2", RFC 5246, DOI
 10.17487/RFC5246, August 2008, <http://www.rfc

editor.org/info/rfc5246>.

 [RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD
 70, RFC 5652, DOI 10.17487/RFC5652, September 2009,
 <http://www.rfc-editor.org/info/rfc5652>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, January
 2012, <http://www.rfc-editor.org/info/rfc6347>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October
 2013, <http://www.rfc-editor.org/info/rfc7049>.

 [RFC7250] Wouters, P., Ed., Tschofenig, H., Ed., Gilmore, J.,
 Weiler, S., and T. Kivinen, "Using Raw Public Keys in Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS)", RFC 7250, DOI 10.17487/RFC7250, June 2014,
 <http://www.rfc-editor.org/info/rfc7250>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252, DOI 10.17487/RFC7252, June
 2014, <http://www.rfc-editor.org/info/rfc7252>.

19.2. Informative References

 CoAP Block-wise Transfers, https://www.ietf.org/id/draft-ietf
core-block-21.txt

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, DOI 10.17487/RFC2898,
 September 2000, <http://www.rfc-editor.org/info/rfc2898>.

 [RFC5753] Turner, S. and D. Brown, "Use of Elliptic Curve
 Cryptography (ECC) Algorithms in Cryptographic Message Syntax
 (CMS)", RFC 5753, DOI 10.17487/RFC5753, January 2010,
 <http://www.rfc-editor.org/info/rfc5753>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228, DOI 10.17487/RFC7228, May
 2014, <http://www.rfc-editor.org/info/rfc7228>.

 "Internet of Insecure Things", Hinden, B., Internet Protocol

http://www.rfceditor.org/info/rfc4279
http://www.rfceditor.org/info/rfc4279
https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfceditor.org/info/rfc5246
http://www.rfceditor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5652
http://www.rfc-editor.org/info/rfc5652
https://datatracker.ietf.org/doc/html/rfc6347
http://www.rfc-editor.org/info/rfc6347
https://datatracker.ietf.org/doc/html/rfc7049
http://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7250
http://www.rfc-editor.org/info/rfc7250
https://datatracker.ietf.org/doc/html/rfc7252
http://www.rfc-editor.org/info/rfc7252
https://www.ietf.org/id/draft-ietfcore-block-21.txt
https://www.ietf.org/id/draft-ietfcore-block-21.txt
https://datatracker.ietf.org/doc/html/rfc2898
http://www.rfc-editor.org/info/rfc2898
https://datatracker.ietf.org/doc/html/rfc5753
http://www.rfc-editor.org/info/rfc5753
https://datatracker.ietf.org/doc/html/rfc7228
http://www.rfc-editor.org/info/rfc7228

 Journal March 2017 Vol 20, Number 1, Page 12.
 <http://ipj.dreamhosters.com/wp-content/uploads/issues/2017/ipj20-

1.pdf>.

Lucas Expires March 17, 2018 [Page 70]

http://ipj.dreamhosters.com/wp-content/uploads/issues/2017/ipj20-1.pdf
http://ipj.dreamhosters.com/wp-content/uploads/issues/2017/ipj20-1.pdf

Internet-Draft aSSURE Data Security September 2017

20. Acknowledgments

 This document is a byproduct of the "aSSURE" project, partially
 funded by Innovate UK. It is provided "as is" and without
 any express or implied warranties, including, without limitation,
 the implied warranties of fitness for a particular purpose. The
 views and conclusion contained herein are those of the authors and
 should not be interpreted as necessarily representing the official
 policies or endorsements, either expressed or implied, of the
 aSSURE project or Innovate UK.

Author's Address

 Roger Lucas
 c/o Cisco International Limited
 10, New Square Park
 Bedfont Lakes
 Feltham
 TW14 8HA
 United Kingdom
 Email: iot@hiddenengine.co.uk

Lucas Expires March 17, 2018 [Page 71]

