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Status of this memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups. Note that other
   groups may also distribute working documents as Internet-Drafts.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time. It is inappropriate to use Internet-Drafts as reference
   material or cite them other than as "work in progress".

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

   A "fast timeout" occurs if the retransmission timer expires, and
   afterwards the TCP sender receives the duplicate ACK that would have
   triggered a fast retransmit of the oldest outstanding segment. In
   this case, staying in slow start is an unnecessarily drastic response
   to the congestion indication. Instead, we believe it is safe to back
   out of the slow start phase but instead go into the fast recovery
   phase. One benefit of this approach is that the potentially following
   duplicate ACKs can be exploited for advanced loss recovery
   algorithms.
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Terminology

   The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
   SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
   document, are to be interpreted as described in [RFC2119].

   We use the term 'acceptable ACK' as defined in [RFC793]. That is an
   ACK that acknowledges previously unacknowledged data. We use the term
   'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The
   variable 'dupacks' is a counter of duplicate ACKs that have already
   been received by the TCP sender before the fast retransmit is sent.
   We use the variable 'DupThresh' to refer to the so-called duplicate
   acknowledgement threshold, i.e., the number of duplicate ACKs that
   need to arrive at the TCP sender to trigger a fast retransmit.
   Currently, DupThresh is specified as a fixed value of three
   [RFC2581].

   Furthermore, we use the TCP sender state variables 'SND.UNA' and
   'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence
   number of the oldest outstanding segment. SND.NXT holds the segment
   sequence number of the next segment the TCP sender will
   (re-)transmit. In addition, we define as 'SND.MAX' the segment
   sequence number of the next original transmit to be sent. The
   definition of SND.MAX is equivalent to the definition of snd_max in
   [WS95].

   We use the TCP sender state variables 'cwnd' (congestion window), and
   'ssthresh' (slow start threshold), and the terms 'SMSS', and
   'FlightSize' as defined in [RFC2581]. FlightSize is the amount of
   outstanding data in the network, or alternatively, the difference
   between SND.MAX and SND.UNA at a given point in time. We use the TCP
   sender state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as
   defined in [RFC2988]. In addition, we assume that the TCP sender
   maintains in the variable 'RTT-SAMPLE' the value of the latest round-
   trip time (RTT) measurement.

1. Introduction

   We call a timeout a "fast timeout" if the retransmission timer
   expires, and afterwards the TCP sender receives the duplicate ACK
   that would have triggered a fast retransmit of the oldest outstanding
   segment [RFC2581]. We name this a fast timeout since in competition
   with the fast retransmit algorithm the timeout was faster.

   As with the common case of a spurious timeout (see definition in
   [LM02]), a fast timeout would not have occurred had the sender
   "waited longer". However, a fast timeout is not spurious since
   apparently a segment was in fact lost, i.e., loss recovery was

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581


   entered rightfully.
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   While we have no data that indicates how frequent TCP fast timeouts
   occur in the general Internet, they do occur when wireless. They have
   been observed on paths that span across wide-area wireless links
   [Gu01]. In those experiments TCP fast timeouts occurred due to
   drastic bit rate reductions of the dedicated (non-shared with other
   hosts) wireless link that also happened to be the path's bottleneck
   link. Such rate changes may, e.g., occur in current wide-area
   wireless links due to a host roaming into a more congested radio
   cell, or due to preemption of radio resources in favor of higher
   priority traffic.

   The fast timeout algorithm is a spin-off that had originally been
   proposed as part of the Eifel detection and response algorithms
   [LM02], [LG02]. There are two main reason why we have separated it
   into an independent document.

   First, the Eifel detection and response algorithms only kick in if a
   loss recovery has been initiated unnecessarily, i.e., when in fact no
   congestion indication has been given to the TCP sender. On the
   contrary, the fast timeout algorithm kicks in even though the TCP has
   received a congestion indication.

   Second, the Eifel response algorithm relies on the Eifel detection
   algorithm that in turn relies on the use of the TCP Timestamps option
   [RFC1323]. On the contrary, the fast timeout algorithm defines its
   own detection scheme that does not rely on the use of the TCP
   Timestamps option, nor on the use of any other TCP option.

2. Responding to Fast Timeouts

2.1 The Fast Timeout Algorithm

   A TCP sender MAY use the fast timeout algorithm as defined in this
   subsection.

   If the fast timeout algorithm is used, the following steps MUST be
   taken by the TCP sender, but only upon initiation of loss recovery,
   and only if that was triggered by a timeout. Note: The algorithm MUST
   NOT be reinitiated after loss recovery has already started. In
   particular, it may not be reinitiated upon subsequent timeouts for
   the same segment.

      (1)     Before the variables cwnd and ssthresh have been updated
               when loss recovery is initiated, set a "cwnd_prev"
               variable to the current value of FlightSize, and set a
               "ssthresh_prev" variable to the value of ssthresh.

               Note: The value of the variable dupacks might be greater

https://datatracker.ietf.org/doc/html/rfc1323


               than zero at this point. For example, when one or two
               duplicate ACKs have already been received when the
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               timeout occurs.

      (2)     Wait for the arrival of either an acceptable or a
               duplicate ACK. If such an ACK arrives, then update the
               variable dupacks and proceed to step (3).

      (3)     If an acceptable ACK has arrived, then proceed to step
               (DONE),

               else if the value of the variable dupacks is smaller than
               the value of the variable DupThresh, then return to step
               (2)

               else (dupacks equals DupThresh) proceed to step (4).

      (4)     Resume transmission off the top:

               Suppress the fast retransmit, and set
                    SND.NXT <- SND.MAX

      (5)     Make the RTT estimator more conservative:

               Set
                    SRTT <- 2*SRTT,
               recalcualte the RTO, and restart the retransmission
               timer.

      (6)     Leave slow start and move to congestion avoidance:

               Set
                    ssthresh <- max (cwnd_prev/2, 2*SMSS)
                    cwnd <- ssthresh + SMSS * DupThresh

      (DONE)  No further processing.

2.2 Motivating the Response Steps

2.2.1 Suppressing the Fast Retransmit (step 4)

   Since the timeout already triggered a retransmit of the oldest
   outstanding segment, another (fast) retransmit of that segment should
   be suppressed. Instead, transmission should be resumed with new data
   as done in the fast recovery algorithm [RFC2581].

2.2.2 Making the RTO more Conservative (step 5)

   Given that a fast timeout occurred, the TCP sender's RTT estimators

https://datatracker.ietf.org/doc/html/rfc2581


   are likely to be off. However, the TCP sender cannot derive a new and
   valid RTT measurement from the duplicate ACK [RFC1323]. It is
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   therefore suggested to double SRTT to make the RTO more conservative
   for future segment transmissions.

   To have the new RTO become effective, the retransmission timer needs
   to be restarted. This is a more conservative management of the
   retransmission timer than recommended in [RFC2988].

2.2.3 Moving from Slow Start to Congestion Avoidance(step 6)

   Given that the TCP sender has received the duplicate ACK that would
   have triggered a fast retransmit, staying in slow start [RFC2581] is
   an unnecessarily drastic response to the congestion indication.
   Instead, we believe it is safe to back out of the slow start phase
   but instead go into the fast recovery phase.

   A benefit of this approach is that the potentially following
   duplicate ACKs can be exploited for advanced SACK-based loss recovery
   algorithms [RFC2018], [BA02].

3. Security Considerations

   As with standard TCP there is a risk that misbehaving TCP receivers
   spoof duplicate ACKs to "tune" a TCP sender's send rate [SCWA99]. A
   TCP sender that implements the fast timeout algorithm is slightly
   more vulnerable to such attacks than a standard TCP sender. This is
   because the TCP sender gets "upgraded" from a smaller congestion
   window during slow start to a larger congestion window during
   congestion avoidance.

   Still, a TCP sender that implements the fast timeout algorithm
   remains responsive to congestion indications in such cases. Hence,
   the mentioned risk does not pose any threat to the stability of the
   Internet, and should only result in minor unfairness against less
   capable TCP senders. We believe that the unfairness is not any larger
   than the unfairness caused, e.g., by newer TCPs that start with a
   larger initial congestion window.
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