
Network Working Group Reiner Ludwig
INTERNET-DRAFT Ericsson Research
Expires: January 2003 July, 2002

Responding to Fast Timeouts in TCP
<draft-ludwig-tsvwg-tcp-fast-timeouts-00.txt>

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or cite them other than as "work in progress".

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/lid-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 A "fast timeout" occurs if the retransmission timer expires, and
 afterwards the TCP sender receives the duplicate ACK that would have
 triggered a fast retransmit of the oldest outstanding segment. In
 this case, staying in slow start is an unnecessarily drastic response
 to the congestion indication. Instead, we believe it is safe to back
 out of the slow start phase but instead go into the fast recovery
 phase. One benefit of this approach is that the potentially following
 duplicate ACKs can be exploited for advanced loss recovery
 algorithms.

https://datatracker.ietf.org/doc/html/draft-ludwig-tsvwg-tcp-fast-timeouts-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/lid-abstracts.txt
http://www.ietf.org/shadow.html

Ludwig [Page 1]

INTERNET-DRAFT Responding to Fast Timeouts in TCP July, 2002

Terminology

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [RFC2119].

 We use the term 'acceptable ACK' as defined in [RFC793]. That is an
 ACK that acknowledges previously unacknowledged data. We use the term
 'duplicate ACK', and the variable 'dupacks' as defined in [WS95]. The
 variable 'dupacks' is a counter of duplicate ACKs that have already
 been received by the TCP sender before the fast retransmit is sent.
 We use the variable 'DupThresh' to refer to the so-called duplicate
 acknowledgement threshold, i.e., the number of duplicate ACKs that
 need to arrive at the TCP sender to trigger a fast retransmit.
 Currently, DupThresh is specified as a fixed value of three
 [RFC2581].

 Furthermore, we use the TCP sender state variables 'SND.UNA' and
 'SND.NXT' as defined in [RFC793]. SND.UNA holds the segment sequence
 number of the oldest outstanding segment. SND.NXT holds the segment
 sequence number of the next segment the TCP sender will
 (re-)transmit. In addition, we define as 'SND.MAX' the segment
 sequence number of the next original transmit to be sent. The
 definition of SND.MAX is equivalent to the definition of snd_max in
 [WS95].

 We use the TCP sender state variables 'cwnd' (congestion window), and
 'ssthresh' (slow start threshold), and the terms 'SMSS', and
 'FlightSize' as defined in [RFC2581]. FlightSize is the amount of
 outstanding data in the network, or alternatively, the difference
 between SND.MAX and SND.UNA at a given point in time. We use the TCP
 sender state variables 'SRTT' and 'RTTVAR', and the term 'RTO' as
 defined in [RFC2988]. In addition, we assume that the TCP sender
 maintains in the variable 'RTT-SAMPLE' the value of the latest round-
 trip time (RTT) measurement.

1. Introduction

 We call a timeout a "fast timeout" if the retransmission timer
 expires, and afterwards the TCP sender receives the duplicate ACK
 that would have triggered a fast retransmit of the oldest outstanding
 segment [RFC2581]. We name this a fast timeout since in competition
 with the fast retransmit algorithm the timeout was faster.

 As with the common case of a spurious timeout (see definition in
 [LM02]), a fast timeout would not have occurred had the sender
 "waited longer". However, a fast timeout is not spurious since
 apparently a segment was in fact lost, i.e., loss recovery was

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581

 entered rightfully.

Ludwig [Page 2]

INTERNET-DRAFT Responding to Fast Timeouts in TCP July, 2002

 While we have no data that indicates how frequent TCP fast timeouts
 occur in the general Internet, they do occur when wireless. They have
 been observed on paths that span across wide-area wireless links
 [Gu01]. In those experiments TCP fast timeouts occurred due to
 drastic bit rate reductions of the dedicated (non-shared with other
 hosts) wireless link that also happened to be the path's bottleneck
 link. Such rate changes may, e.g., occur in current wide-area
 wireless links due to a host roaming into a more congested radio
 cell, or due to preemption of radio resources in favor of higher
 priority traffic.

 The fast timeout algorithm is a spin-off that had originally been
 proposed as part of the Eifel detection and response algorithms
 [LM02], [LG02]. There are two main reason why we have separated it
 into an independent document.

 First, the Eifel detection and response algorithms only kick in if a
 loss recovery has been initiated unnecessarily, i.e., when in fact no
 congestion indication has been given to the TCP sender. On the
 contrary, the fast timeout algorithm kicks in even though the TCP has
 received a congestion indication.

 Second, the Eifel response algorithm relies on the Eifel detection
 algorithm that in turn relies on the use of the TCP Timestamps option
 [RFC1323]. On the contrary, the fast timeout algorithm defines its
 own detection scheme that does not rely on the use of the TCP
 Timestamps option, nor on the use of any other TCP option.

2. Responding to Fast Timeouts

2.1 The Fast Timeout Algorithm

 A TCP sender MAY use the fast timeout algorithm as defined in this
 subsection.

 If the fast timeout algorithm is used, the following steps MUST be
 taken by the TCP sender, but only upon initiation of loss recovery,
 and only if that was triggered by a timeout. Note: The algorithm MUST
 NOT be reinitiated after loss recovery has already started. In
 particular, it may not be reinitiated upon subsequent timeouts for
 the same segment.

 (1) Before the variables cwnd and ssthresh have been updated
 when loss recovery is initiated, set a "cwnd_prev"
 variable to the current value of FlightSize, and set a
 "ssthresh_prev" variable to the value of ssthresh.

 Note: The value of the variable dupacks might be greater

https://datatracker.ietf.org/doc/html/rfc1323

 than zero at this point. For example, when one or two
 duplicate ACKs have already been received when the

Ludwig [Page 3]

INTERNET-DRAFT Responding to Fast Timeouts in TCP July, 2002

 timeout occurs.

 (2) Wait for the arrival of either an acceptable or a
 duplicate ACK. If such an ACK arrives, then update the
 variable dupacks and proceed to step (3).

 (3) If an acceptable ACK has arrived, then proceed to step
 (DONE),

 else if the value of the variable dupacks is smaller than
 the value of the variable DupThresh, then return to step
 (2)

 else (dupacks equals DupThresh) proceed to step (4).

 (4) Resume transmission off the top:

 Suppress the fast retransmit, and set
 SND.NXT <- SND.MAX

 (5) Make the RTT estimator more conservative:

 Set
 SRTT <- 2*SRTT,
 recalcualte the RTO, and restart the retransmission
 timer.

 (6) Leave slow start and move to congestion avoidance:

 Set
 ssthresh <- max (cwnd_prev/2, 2*SMSS)
 cwnd <- ssthresh + SMSS * DupThresh

 (DONE) No further processing.

2.2 Motivating the Response Steps

2.2.1 Suppressing the Fast Retransmit (step 4)

 Since the timeout already triggered a retransmit of the oldest
 outstanding segment, another (fast) retransmit of that segment should
 be suppressed. Instead, transmission should be resumed with new data
 as done in the fast recovery algorithm [RFC2581].

2.2.2 Making the RTO more Conservative (step 5)

 Given that a fast timeout occurred, the TCP sender's RTT estimators

https://datatracker.ietf.org/doc/html/rfc2581

 are likely to be off. However, the TCP sender cannot derive a new and
 valid RTT measurement from the duplicate ACK [RFC1323]. It is

Ludwig [Page 4]

https://datatracker.ietf.org/doc/html/rfc1323

INTERNET-DRAFT Responding to Fast Timeouts in TCP July, 2002

 therefore suggested to double SRTT to make the RTO more conservative
 for future segment transmissions.

 To have the new RTO become effective, the retransmission timer needs
 to be restarted. This is a more conservative management of the
 retransmission timer than recommended in [RFC2988].

2.2.3 Moving from Slow Start to Congestion Avoidance(step 6)

 Given that the TCP sender has received the duplicate ACK that would
 have triggered a fast retransmit, staying in slow start [RFC2581] is
 an unnecessarily drastic response to the congestion indication.
 Instead, we believe it is safe to back out of the slow start phase
 but instead go into the fast recovery phase.

 A benefit of this approach is that the potentially following
 duplicate ACKs can be exploited for advanced SACK-based loss recovery
 algorithms [RFC2018], [BA02].

3. Security Considerations

 As with standard TCP there is a risk that misbehaving TCP receivers
 spoof duplicate ACKs to "tune" a TCP sender's send rate [SCWA99]. A
 TCP sender that implements the fast timeout algorithm is slightly
 more vulnerable to such attacks than a standard TCP sender. This is
 because the TCP sender gets "upgraded" from a smaller congestion
 window during slow start to a larger congestion window during
 congestion avoidance.

 Still, a TCP sender that implements the fast timeout algorithm
 remains responsive to congestion indications in such cases. Hence,
 the mentioned risk does not pose any threat to the stability of the
 Internet, and should only result in minor unfairness against less
 capable TCP senders. We believe that the unfairness is not any larger
 than the unfairness caused, e.g., by newer TCPs that start with a
 larger initial congestion window.

References

 [RFC2581] M. Allman, V. Paxson, W. Stevens, TCP Congestion Control,
RFC 2581, April 1999.

 [BA02] E. Blanton, M. Allman, A Conservative SACK-based Loss
 Recovery Algorithm for TCP, work in progress, July 2002.

 [RFC2119] S. Bradner, Key words for use in RFCs to Indicate

https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581

 Requirement Levels, RFC 2119, March 1997.

Ludwig [Page 5]

https://datatracker.ietf.org/doc/html/rfc2119

INTERNET-DRAFT Responding to Fast Timeouts in TCP July, 2002

 [Gu01] A. Gurtov, Effect of Delays on TCP Performance, In
 Proceedings of IFIP Personal Wireless Conference,
 August 2001.

 [RFC1323] V. Jacobson, R. Braden, D. Borman, TCP Extensions for High
 Performance, RFC 1323, May 1992.

 [RFC2018] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, TCP Selective
 Acknowledgement Options, RFC 2018, October 1996.

 [LM02] R. Ludwig, M. Meyer, The Eifel Detection Algorithm for TCP,
 work in progress, July 2002.

 [LG02] R. Ludwig, A. Gurtov, The Eifel Response Algorithm for TCP,
 work in progress, July 2002.

 [RFC2988] V. Paxson, M. Allman, Computing TCP's Retransmission Timer,
RFC 2988, November 2000.

 [RFC793] J. Postel, Transmission Control Protocol, RFC793, September
 1981.

 [SCWA99] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP
 Congestion Control with a Misbehaving Receiver, ACM
 Computer Communications Review, October 1999.

 [WS95] G. R. Wright, W. R. Stevens, TCP/IP Illustrated, Volume 2
 (The Implementation), Addison Wesley, January 1995.

Author's Address

 Reiner Ludwig
 Ericsson Research
 Ericsson Allee 1
 52134 Herzogenrath, Germany
 Email: Reiner.Ludwig@ericsson.com

This Internet-Draft expires in January 2003.

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc793

Ludwig [Page 6]

