
INTERNET-DRAFT Ari Luotonen
Expires: February 1999 Netscape Communications Corporation
<draft-luotonen-web-proxy-tunneling-01.txt> August 1998

Tunneling TCP based protocols through Web proxy servers

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Currently, this draft is stable and only waiting for its referenced
 documents to become RFC's, so this draft can become an RFC as well.

Abstract

 This document specifies a generic tunneling mechanism for TCP based
 protocols through Web proxy servers. This tunneling mechanism was
 initially introduced for the SSL protocol [SSL] to allow secure Web
 traffic to pass through firewalls, but its utility is not limited to
 SSL. Earlier drafts of this specification were titled "Tunneling SSL
 through Web Proxy Servers" <draft-luotonen-ssl-tunneling-XX.txt>.
 Implementations of this tunneling feature are commonly referred to as
 "SSL tunneling", although, again, it can be used for tunneling any
 TCP based protocol.

 A wide variety of existing client and proxy server implementations
 conform to this specification. The purpose of this specification is
 to describe the current practice, to propose some good practices for
 implementing this specification, and to document the security
 considerations that are involved with this protocol.

Luotonen [Page 1]

https://datatracker.ietf.org/doc/html/draft-luotonen-web-proxy-tunneling-01.txt
https://datatracker.ietf.org/doc/html/draft-luotonen-ssl-tunneling-XX.txt

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

Table of Contents

1. Overview ... 2
2. General Considerations 3
3. Functional Specification 3
3.1. Request .. 3
3.2. Proxy Response ... 4
3.2.1. Response Content-Type Field 5
3.3. Data Pipelining .. 6
4. Extensibility .. 7
5. Multiple Proxy Servers 7
6. Security Considerations 8
7. References ... 8
8. Author's Address ... 9

1. Overview

 The wide success of the SSL (Secure Sockets Layer) protocol made it
 vital for Web proxy servers to be able to tunnel requests performed
 over SSL. The easiest, and perhaps the most elegant, way to
 accomplish this is to extend the HTTP/1.x protocol [HTTP/1.0,
 HTTP/1.1] in such a way that it will be able to intiate a tunnel
 through the proxy server.

 This document specifies the HTTP/1.x extension to implement the
 generic TCP protocol tunneling on Web proxy servers. This extension
 may be used between clients and proxy servers, and between two
 proxies (in the case of daisy-chained proxies -- proxies that contact
 other proxies to perform requests). This document focuses on the
 differences and additions to HTTP/1.x; refer to the HTTP/1.x
 specifications for a full specification of HTTP/1.x.

 Note that the HTTPS protocol, which is just HTTP on top of SSL, could
 alternatively be proxied in the same way that other protocols are
 handled by the proxies: to have the proxy (instead of the client)
 initiate the secure session with the remote HTTPS server, and then
 perform the HTTPS transaction on the client's part. The response
 will be received and decrypted by the proxy, and sent to the client
 over (insecure) HTTP. This is the way FTP and Gopher get handled by
 proxies. However, this approach has several disadvantages and
 complications:

 * The connection between the client and the proxy is normal HTTP,
 and hence, not secure. This may, however, often be acceptable if
 the clients are in a trusted subnetwork (behind a firewall).

 * The proxy will need to have full SSL implementation incorporated

Luotonen [Page 2]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

 into it -- something this tunneling mechanism does not require.

 * The client will not be able to perform SSL client authentication
 (authentication based on X509 certificates) to the remote server,
 as the proxy will be the authenticated party. Future versions of
 SSL may, however, provide such delegated authentication.

 This specification defines a tunneling mechanism for Web proxy
 servers. This mechanism is compatible with HTTP/1.x protocol, which
 is currently being used by Web proxies.

 Note that this mechanism, if used for SSL tunneling, does not require
 an implementation of SSL in the proxy. The SSL session is
 established between the client generating the request, and the
 destination (secure) Web server; the proxy server in between is
 merely tunneling the encrypted data, and does not take any other part
 in the secure transaction.

2. General Considerations with Respect to SSL Tunneling

 When tunneling SSL, the proxy must not have access to the data being
 transferred in either direction, for the sake of security. The proxy
 merely knows the source and destination addresses, and possibly, if
 the proxy supports user authentication, the name of the requesting
 user.

 In other words, there is a handshake between the client and the proxy
 to establish the connection between the client and the remote server
 through the proxy. In order to make this extension be backward
 compatible, the handshake must be in the same format as HTTP/1.x
 requests, so that proxies without support for this feature can still
 cleanly determine the request as impossible for them to service, and
 give proper error responses (rather than e.g. get hung on the
 connection).

3. Functional Specification

3.1. Request

 The client connects to the proxy server, and uses the CONNECT method
 to specify the hostname and the port number to connect to. The
 hostname and port number are separated by a colon, and both of them
 must be specified.

Luotonen [Page 3]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

 The host:port part is followed by a space and a string specifying the
 HTTP version number, e.g. HTTP/1.0, and the line terminator (CR LF
 pair. Note that some applications may use just a LF on its own, and
 it is recommended that applications be tolerant of this behavior.
 When this document refers to CR LF pair, in all cases should a LF on
 its own be treated the same as a CR LF pair).

 After that there is a series of zero or more of HTTP request header
 lines, followed by an empty line. Each of those header lines is also
 terminated by the CR LF pair. The empty line is simply another CR LF
 pair.

 After the empty line, if the handshake to establish the connection
 was successful, the tunnelled (SSL or other) data transfer can begin.
 Before the tunneling begins, the proxy will respond, as described in
 the next section (Section 3.2).

 Example of an SSL tunneling request to host home.netscape.com, to
 HTTPS port (443):

 CONNECT home.netscape.com:443 HTTP/1.0
 User-agent: Mozilla/4.0

 ...data to be tunnelled to the server...

 Note that the "...data to be tunnelled to the server..." is not a
 part of the request. It is shown here only to make the point that
 once the tunnel is established, the same connection is used for
 transferring the data that is to be tunnelled.

 The advantage of extending the HTTP/1.x protocol in this manner (a
 new method) is that this protocol is freely extensible just like
 HTTP/1.x is. For example, the proxy authentication may be used just
 like with any other request to the proxy:

 CONNECT home.netscape.com:443 HTTP/1.0
 User-agent: Mozilla/4.0
 Proxy-authorization: basic dGVzdDp0ZXN0

 ...data to be tunnelled to the server...

3.2. Proxy Response

 After the empty line in the request, the client will wait for a
 response from the proxy. The proxy will evaluate the request, make
 sure that it is valid, and that the user is authorized to request
 such a connection. If everything is in order, the proxy will make a

Luotonen [Page 4]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

 connection to the destination server, and, if successful, send a "200
 Connection established" response to the client. Again, the response
 follows the HTTP/1.x protocol, so the response line starts with the
 protocol version specifier, and the response line is followed by zero
 or more response headers, followed by an empty line. The line
 separator is CR LF pair.

 Example of a response:

 HTTP/1.0 200 Connection established
 Proxy-agent: Netscape-Proxy/1.1

 ...data tunnelled from the server...

 After the empty line, the proxy will start passing data from the
 client connection to the remote server connection, and vice versa.
 At any time, there may be data coming from either connection, and
 that data must be forwarded to the other connection immediately.

 Note that since the tunnelled protocol is opaque to the proxy server,
 the proxy cannot make any assumptions about which connection the
 first, or any subsequent, packets will arrive. In other words, the
 proxy server must be prepared to accept packets from either of the
 connections at any time. Otherwise, a deadlock may occur.

 If at any point either one of the peers gets disconnected, any
 outstanding data that came from that peer will be passed to the other
 one, and after that also the other connection will be terminated by
 the proxy. If there is outstanding data to that peer undelivered,
 that data will be discarded.

 An example of a tunneling request/response in an interleaved
 multicolumn format:

 CLIENT -> SERVER SERVER -> CLIENT

 CONNECT home.netscape.com:443 HTTP/1.0
 User-agent: Mozilla/4.0
 <<< empty line >>>
 HTTP/1.0 200 Connection
established
 Proxy-agent: Netscape-Proxy/1.1
 <<< empty line >>>
 <<< data tunneling to both directions begins >>>

3.2.1. Response Content-Type Field

Luotonen [Page 5]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

 The proxy response does not necessarily have a Content-Type field,
 which is otherwise mandatory in HTTP/1.x responses. Currently there
 is no content media type assigned to a tunnel. Future versions of
 this specification may introduce a standard media type, for example
 "application/tunnel". For forward compatibility, a Content-type
 field should be allowed, but for backward compatibitity, one should
 not be required by clients.

3.3. Data Pipelining

 It is legal for the client to send some data intended for the server
 before the "200 Connection established" (or any other success or
 error code) is received. This allows for reduced latency and
 increased efficiency when any handshake data intended for the remote
 server can be sent in the same TCP packet as the proxy request. This
 allows the proxy to immediately forward the data once the connection
 to the remote server is established, without waiting for two round-
 trip times to the client (sending 200 to client; waiting for the next
 packet from client).

 This means that the proxy server cannot assume that reading from the
 client socket descriptor would only return the proxy request.
 Rather, there may be any amount of opaque data following the proxy
 request that must be forwarded to the server once the connection is
 established. However, if the connection to the remote server fails,
 or if it is disallowed by the proxy server, the data intended to the
 remote server will be discarded by the proxy.

 At the same time this means that a client pipelining data intended
 for the remote server immediately after sending the proxy request (or
 in the same packet), must be prepared to re-issue the request and
 re-compose any data that it had already sent, in case the proxy fails
 the request, or challenges the client for authentication credentials.
 This is due to the fact that HTTP by its nature may require the
 request to be re-issued, accompanied by authentication credentials or
 other data that was either missing or invalid in the original
 request.

 Note that it is not recommended to pipeline more data than the amount
 that can fit to the remainder of the TCP packet that the proxy
 request is in. Pipelining more data can cause a TCP reset if the
 proxy fails or challenges the request, and subsequently closes the
 connection before all pipelined TCP packets are received by the proxy
 server host. A TCP reset will cause the proxy server's response to
 be discarded, and not be available to the client -- thus being unable
 to determine whether the failure was due to a network error, access
 control, or an authentication challenge.

Luotonen [Page 6]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

4. Extensibility

 The tunneling handshake is freely extensible using the HTTP/1.x
 headers; as an example, to enforce authentication for the proxy the
 proxy will simply use the 407 status code and the Proxy-authenticate
 response header (as defined by the HTTP/1.x specification) to ask the
 client to send authentication information:

 HTTP/1.0 407 Proxy authentication required
 Proxy-authenticate: ...

 The client would then reperform the request, and send the
 authentication information in the Proxy-authorization header:

 CONNECT home.netscape.com:443 HTTP/1.0
 User-agent: ...
 Proxy-authorization: ...

 ...data to be tunnelled to the server...

 The full example displayed in an interleaved multicolumn format:

 CLIENT -> SERVER SERVER -> CLIENT

 CONNECT home.netscape.com:443 HTTP/1.0
 User-agent: Mozilla/4.0
 <<< empty line >>>
 HTTP/1.0 407 Proxy auth required
 Proxy-agent: Netscape-Proxy/1.1
 Proxy-authenticate: ...
 <<< empty line >>>
 CONNECT home.netscape.com:443 HTTP/1.0
 User-agent: Mozilla/4.0
 Proxy-authorization: ...
 <<< empty line >>>
 HTTP/1.0 200 Connection
established
 Proxy-agent: Netscape-Proxy/1.1
 <<< empty line >>>
 <<< data tunneling to both directions begins >>>

5. Multiple Proxy Servers

 This specification applies equally to proxy servers talking to other
 proxy servers. As an example, double firewalls make this necessary.

 In this case, the inner proxy is simply considered a client with

Luotonen [Page 7]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

 respect to the outer proxy.

6. Security Considerations

 The CONNECT tunneling mechanism is really a lower-level function than
 the rest of the HTTP methods, kind of an escape mechanism for saying
 that the proxy should not interfere with the transaction, but merely
 forward the data. In the case of SSL tunneling, this is because the
 proxy should not need to know the entire URI that is being accessed
 (privacy, security), only the information that it explicitly needs
 (hostname and port number) in order to carry out its part.

 Due to this fact, the proxy cannot necessarily verify that the
 protocol being spoken is really what it is supposed to tunnel (SSL
 for example), and so the proxy configuration should explicitly limit
 allowed connections to well-known ports for that protocol (such as
 443 for HTTPS, 563 for SNEWS, as assigned by IANA, the Internet
 Assigned Numbers Authority).

 Ports of specific concern are such as the telnet port (port 23), SMTP
 port (port 25) and many UNIX specific service ports (range 512-600).
 Allowing such tunnelled connections to e.g. the SMTP port might
 enable sending of uncontrolled E-mail ("spam").

7. References

 [HTTP/1.0] T. Berners-Lee, R. Fielding, and H. Frystyk.
 Hypertext Transfer Protocol -- HTTP/1.0.

RFC 1945, MIT/LCS, UC Irvine, May 1996.

 [HTTP/1.1] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and
 T. Berners-Lee. Hypertext Transfer Protocol -- HTTP/1.1.

RFC 2068, UC Irvine, DEC, MIT/LCS, January, 1997.

 [TLS] T. Dierks, C. Allen, A. O. Freier, P. L. Karlton, and P. Kocher.
 The TLS (Transport Layer Security) Protocol.
 Internet-Draft draft-ietf-tls-protocol-05.txt,
 Consensus Development, Netscape Communications,
 November 12, 1997.

 [SSL] K. Hickman, T. Elgamal, "The SSL Protocol",
draft-hickman-netscape-ssl-01.txt, Netscape Communications

 Corporation, June 1995.

 [SSL3] A. O. Freier, P. Karlton, Paul C. Kocher,
 "The SSL Protocol -- Version 3.0",

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2068
https://datatracker.ietf.org/doc/html/draft-ietf-tls-protocol-05.txt
https://datatracker.ietf.org/doc/html/draft-hickman-netscape-ssl-01.txt

Luotonen [Page 8]

TCP PROTOCOL TUNNELING IN WEB PROXY SERVERS INTERNET-DRAFT August 1998

draft-ietf-tls-ssl-version3-00.txt, November 18, 1996.

8. Author's Address:

 Ari Luotonen <ari@netscape.com>
 Mail-Stop MV-068
 Netscape Communications Corporation
 501 East Middlefield Road
 Mountain View, CA 94043
 USA

Luotonen [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-tls-ssl-version3-00.txt

