
Workgroup: NETMOD

Internet-Draft:

draft-ma-netmod-immutable-flag-00

Published: 10 February 2022

Intended Status: Standards Track

Expires: 14 August 2022

Authors: Q. Ma, Ed.

Huawei

Q. Wu

Huawei

H. Li

HPE

Immutable Metadata Annotation

Abstract

This document defines a metadata annotation [RFC7952] named

"immutable" to indicate the immutability of a particular

instantiated data node. Any instantiated data node annotated with

immutable="true" by the server is read-only to the clients of YANG-

driven management protocols, such as NETCONF, RESTCONF and other

management operations (e.g., SNMP and CLI requests).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. "Immutable" Metadata Annotation Definition

3. YANG Module

4. IANA Considerations

4.1. The "IETF XML" Registry

4.2. The "YANG Module Names" Registry

5. Security Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Usage Examples

A.1. Interface Example

A.1.1. Creating an "immutable" Interface Type

A.1.2. Changing an "immutable" Interface Type

A.1.3. Deleting an "immutable" Interface Type

A.2. Built-in Access Control Example

Authors' Addresses

1. Introduction

YANG [RFC7950] is a data modeling language used to model both state

and configuration data, based on the "config" statement. However,

there are some configuration data which may not be writable to

clients, e.g., the interface name and type values created by the

system due to the hardware currently present in the device cannot be

modified by clients, while configurations such as MTU created by the

system are free to be modified by the client.

Allowing some configuration modifiable while others not is

inconsistent and introduces ambiguity to clients.

To address this issue, this document defines a metadata annotation

[RFC7952] named "immutable" to indicate the immutability

characteristic of a particular instantiated data node. Any

instantiated data node marked with immutable="true" by the server is

read-only to the clients of YANG-driven management protocols, such

as NETCONF, RESTCONF and other management operations (e.g., SNMP and

CLI requests).

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

immutable:

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are defined in [RFC6241] and [RFC8341] and are

not redefined here:

configuration data

access operation

The following terms are defined in this document:

A metadata annotation indicating the immutability of a

data node. An immutable data node is read-only to clients. Note

that "immutable" is used to annotate instances of YANG data nodes

rather than schema nodes. For instance, a "list" data node may

exist in multiple instances in the data tree, "immutable" can

annotate some of the instances as read-only, while others are

not.

2. "Immutable" Metadata Annotation Definition

The "immutable" flag is used to indicate the immutability of a

particular instantiated data node. It applies to the container,

anydata, anyxml, leaf, list and leaf-list entries. The values are

boolean types indicating whether the data node instance is immutable

or not.

When the client retrieves a particular datastore, immutable data

node instances MUST be annotated with immutable="true" by the

server. If the "immutable" metadata annotation is not specified, the

default is the same as the "immutable" value of the parent node. The

default "immutable" value for a top level data node is false.

Any data node instance annotated with "immutable=true" is read-only

to clients, which means that the following access operations for a

particular instance are not allowed:

Create: add descendant node instances for a container instance

annotated with "immutable";

Delete: delete a data node instance annotated with "immutable" or

its child node instances from a datastore, e.g., delete an

immutable list or leaf-list entry;

Update: update an existing data node instance annotated with

"immutable" or its child node instances in a datastore, e.g.,

modify the value of an immutable leaf data node;

¶

¶

* ¶

* ¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

However the following operations SHOULD be allowed:

Create an immutable data node with a same value initially set by

the system if it doesn't exist in the datastore, e.g., explicitly

configure a system generated interface name in <running>;

Delete the parent node of an immutable data node unless the

parent node is also annotated with "immutable=true", e.g., /

interfaces/interface/type leaf instance is immutable, but the

deletion to the /interfaces/interface list entry is allowed;

Comment: Should we allow the client delete an "immutable" system

instantiated node in <running> (see Appendix A.1.3)?

Comment: Annotations can only be attached to individual list/leaf-

list entry, how would the client know if it's to apply to the whole

list/leaf-list, the list/leaf-list entries, or both?

Servers MUST reject any attempt to the "create", "delete" and

"update" access operations on an immutable data node. The error

reporting is performed at various different time according to the

selected target datastore. If the target datastore is "running" or

"startup", the server should reply with an "invalid-value" at a

<edit-config> operation time. If the target datastore is

"candidate", the "invalid-value" error response to update an

immutable data node is delayed until a <commit> or <validate>

operation takes place. For an example of an "invalid-value" error

response, see Appendix A.1.2.

¶

*

¶

*

¶

¶

¶

¶

3. YANG Module

<CODE BEGINS> file="ietf-immutable@2022-01-05.yang"

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation named 'immutable'

 to indicate the immutability of a particular instantiated

 data node. Any instantiated data node marked with

 immutable='true' by the server is read-only to the clients

 of YANG-driven management protocols, such as NETCONF,

 RESTCONF as well as SNMP and CLI requests.

 Copyright (c) 2021 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-01-05 {

 description

 "Initial revision.";

 reference

 "RFC XXX: Immutable Metadata Annotation";

 }

 md:annotation immutable {

 type boolean;

 description

 "The 'immutable' annotation indicates the immutability of an

 instantiated data node. Any data node instance marked as

 'immutable=true' is read-only to clients and cannot be

 created/deleted/changed through NETCONF, RESTCONF or CLI.

 It applies to the container, anydata, anyxml and leaf

 instances, list and leaf-list entries.

 If not specified for a given configuration data node

 instance, then the immutability is the same as its parent

 node instance in the data tree. The default for any top-level

 configuration data node instance is false if not specified.";

 }

 }

<CODE ENDS>

4. IANA Considerations

4.1. The "IETF XML" Registry

This document registers one XML namespace URN in the 'IETF XML

registry', following the format defined in [RFC3688].

4.2. The "YANG Module Names" Registry

This document registers one module name in the 'YANG Module Names'

registry, defined in [RFC6020].

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

¶

¶

[RFC2119]

[RFC3688]

[RFC6020]

[RFC6241]

[RFC6242]

5. Security Considerations

The YANG module specified in this document defines a metadata

annotation for data nodes that is designed to be accessed network

management protocols such as NETCONF [RFC6241] or RESTCONF

[RFC8040]. The lowest NETCONF layer is the secure transport layer,

and the mandatory-to-implement secure transport is Secure Shell

(SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the

mandatory-to-implement secure transport is TLS [RFC8446].

Since immutable information is tied to applied configuration values,

it is only accessible to clients that have the permissions to read

the applied configuration values.

The security considerations for the Defining and Using Metadata with

YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

defined in this document.

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242

[RFC7950]

[RFC7952]

[RFC8040]

[RFC8341]

[RFC8446]

[RFC8174]

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "Defining and Using Metadata with YANG", RFC

7952, DOI 10.17487/RFC7952, August 2016, <https://

www.rfc-editor.org/info/rfc7952>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

6.2. Informative References

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Usage Examples

A.1. Interface Example

In this section, the following fragment of a fictional interface

module is used:¶

https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8174

In this example model, when an interface is physically present, the

system will create an interface entry automatically with valid name

and type values. Let's say that there is a system-defined interface

"eth0" in <operational>:

The "type" leaf instance is annotated with immutable="true" in the

RPC response, which means that it is not allowed to be modified by

client configuration operations. Note that although the "name"

defined as a list key leaf isn't annotated with immutable="true",

modification of the key value for a particular list entry is never

allowed. Deletion to the whole list entry of interface "eth0" should

be allowed in this case, since there is no annotation for the "type"

leaf instance's parent node.

A.1.1. Creating an "immutable" Interface Type

The server should accept the configuration to set the leaf "type" to

the value same as in <operational>:

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 type identityref {

 base ianaift:iana-interface-type;

 }

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

¶

¶

<interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"

 xmlns:im="urn:ietf:params:xml:ns:yang:ietf-immutable"

 or:origin="or:system">

 <interface>

 <name>eth0</name>

 <type im:immutable="true">ianaift:ethernetCsmacd</type>

 <mtu>1500</mtu>

 </interface>

</interfaces>

¶

¶

¶

A.1.2. Changing an "immutable" Interface Type

If a client tries to change the type of an interface to a value that

doesn't match the real type of the interface used by the system, the

server must reject the request:

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"

 xc:operation="create">

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 </interface>

 </config>

 </edit-config>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

</rpc-reply>

¶

¶

A.1.3. Deleting an "immutable" Interface Type

Should the server accept the configuration of deleting the type of

interface named "eth0" from the running configuration?

<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

</rpc-reply>

¶

¶

Even the type of interface named "eth0" is deleted from the running

configuration, the client which performs a <get-data> towards

<operational> will still get:

A.2. Built-in Access Control Example

In this example, the "ietf-netconf-acm" YANG module defined in

[RFC8341] is used. Suppose when the device is powered on, the system

may provide some built-in access control groups, for each access

control group there exists at least one built-in user, which might

be read-only and cannot be modified by the client. In addition, the

system also can predefine some access control rules for a specific

group. Some rules can be modified, while others are not (e.g.,

access control rule for a root account should be immutable). In

addition, clients can also define their own groups and access

control rules freely.

The built-in access control groups and rules are provided by the

system, they are present in <operational>. The example below

<rpc message-id="102"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface>

 <name>eth0</name>

 <type xc:operation="delete">ianaift:ethernetCsmacd</type>

 </interface>

 </config>

 </edit-config>

</rpc>

¶

¶

<interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"

 xmlns:im="urn:ietf:params:xml:ns:yang:ietf-immutable"

 or:origin="or:intended">

 <interface>

 <name>eth0</name>

 <type im:immutable="true" or:origin="or:intended">

 ianaift:ethernetCsmacd

 </type>

 <mtu>1500</mtu>

 </interface>

</interfaces>

¶

¶

illustrates what the built-in groups and rules might look like for a

server after it boots:¶

 <nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"

 xmlns:im="urn:ietf:params:xml:ns:yang:ietf-immutable">

 <groups>

 <group>

 <name>admin</name>

 <user-name im:immutable="true">admin</user-name>

 </group>

 <group>

 <name>monitor</name>

 <user-name im:immutable="true">user</user-name>

 </group>

 <group>

 <name>visit</name>

 <user-name im:immutable="true">guest</user-name>

 </group>

 </groups>

 <rule-list im:immutable="true">

 <name>admin-acl</name>

 <group>admin</group>

 <rule>

 <name>permit-all</name>

 <module-name>*</module-name>

 <access-operations>*</access-operations>

 <action>permit</action>

 </rule>

 </rule-list>

 <rule-list>

 <name>monitor-acl</name>

 <group>visit</group>

 <rule>

 <name>permit-monitor</name>

 <module-name>ietf-netconf-monitoring</module-name>

 <access-operations>read</access-operations>

 <action>permit</action>

 </rule>

 </rule-list>

 <rule-list>

 <name>visit-acl</name>

 <group>visit</group>

 <rule>

 <name>deny-ncm</name>

 <module-name>ietf-netconf-monitoring</module-name>

 <access-operations>*</access-operations>

 <action>deny</action>

 </rule>

 </rule-list>

 </nacm>

¶

As indicated in the above XML snippet, the system predefines three

access control groups and for each group there is one built-in

immutable user, which means that the client can define new users for

a particular access control group, but deletion of a built-in user-

name is not allowed. The system also provides three access control

list entries, one for each predefined group. Only the access control

rule for the "admin" group is read-only to clients.

Authors' Addresses

Qiufang Ma (editor)

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: maqiufang1@huawei.com

Qin Wu

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: bill.wu@huawei.com

Hongwei Li

HPE

Email: flycoolman@gmail.com

¶

mailto:maqiufang1@huawei.com
mailto:bill.wu@huawei.com
mailto:flycoolman@gmail.com

	Immutable Metadata Annotation
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. "Immutable" Metadata Annotation Definition
	3. YANG Module
	4. IANA Considerations
	4.1. The "IETF XML" Registry
	4.2. The "YANG Module Names" Registry

	5. Security Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Usage Examples
	A.1. Interface Example
	A.1.1. Creating an "immutable" Interface Type
	A.1.2. Changing an "immutable" Interface Type
	A.1.3. Deleting an "immutable" Interface Type

	A.2. Built-in Access Control Example

	Authors' Addresses

