
Workgroup: NETMOD

Internet-Draft:

draft-ma-netmod-immutable-flag-02

Published: 4 July 2022

Intended Status: Standards Track

Expires: 5 January 2023

Authors: Q. Ma

Huawei

Q. Wu

Huawei

B. Lengyel

Ericsson

H. Li

HPE

YANG Extension and Metadata Annotation for Immutable Flag

Abstract

This document defines a YANG extension named "immutable" to indicate

that specific "config true" data nodes are not allowed to be

created/deleted/updated. To indicate that specific instances of a

list/leaf-list node cannot be changed after initialization, a

metadata annotation with the same name is also defined. Any data

node or instance marked as immutable is read-only to the clients of

YANG-driven management protocols, such as NETCONF, RESTCONF and

other management operations (e.g., SNMP and CLI requests).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 5 January 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Overview

3. "Immutable" YANG Extension

4. "Immutable" Metadata Annotation

5. YANG Module

6. IANA Considerations

6.1. The "IETF XML" Registry

6.2. The "YANG Module Names" Registry

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Usage Examples

A.1. Interface Example

A.1.1. Creating an Interface with a "type" Value

A.1.2. Updating the Value of an Interface Type

A.2. Immutable System Capabilities Modelled as "config true"

A.3. Immutable System-defined List Entries

Appendix B. Changes between revisions

Authors' Addresses

1. Introduction

YANG [RFC7950] is a data modeling language used to model both state

and configuration data, based on the "config" statement. However

there exists data that should not be modifiable by the client, but

still needs to be declared as "config true" to:

allow configuration of data nodes under immutable lists or

containers;

ensure the existence of specific list entries that are provided

and needed by the system, while additional list entries can be

created, modified or deleted;

place "when", "must" and "leafref" constraints between

configuration and immutable schema nodes.

E.g., the interface name and type values created by the system due

to the hardware currently present in the device cannot be modified

by clients, while configurations such as MTU created by the system

are free to be modified by the client. Further examples and use-

cases are described in Appendix A.

¶

¶

*

¶

*

¶

*

¶

¶

immutable:

Allowing some configuration to be modifiable while other parts are

not is inconsistent and introduces ambiguity to clients.

To address this issue, this document defines a YANG extension and a

metadata annotation [RFC7952] named "immutable" to indicate the

immutability characteristic of a particular schema node or

instantiated data node. If a schema node is marked as immutable,

data nodes based on the schema MUST NOT be added, removed or updated

by management protocols, such as NETCONF, RESTCONF or other

management operations (e.g., SNMP and CLI requests). If an

instantiated data node is marked as immutable the server MUST reject

changes to it by YANG-driven management protocols, such as NETCONF,

RESTCONF and other management operations (e.g., SNMP and CLI

requests). Marking instance data nodes as immutable (as opposed to

marking schema-nodes) is important when only some instances of a

list or leaf-list shall be marked as read-only.

Theoretically, any "config true" data node is allowed to be created,

updated and deleted. This work makes write access restrictions other

than general YANG and NACM rules visible, which doesn't mean

attaching such restrictions is encouraged.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are defined in [RFC6241] and [RFC8341] and are

not redefined here:

configuration data

access operation

write access

The following terms are defined in this document:

A property indicating that a schema node or data

instance is not allowed to be created/deleted/updated.

2. Overview

The "immutable" concept only puts write access restrictions to read-

write datastores. When a specific data node or instance is marked as

"immutable", NACM cannot override this to allow create/delete/update

access.

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

A particular data node or instance MUST have the same immutability

in all read-write datastores. The immutable annotation information

should be visible even in read-only datastores (e.g., <system>,

<intended>, <operational>), however this only serves as information

about the data node itself, but has no effect on the handling of the

read-only datastore. The immutability property of a particular data

node or instance MUST be protocol-independent and user-independent.

If a particular container/list/leaf-list node is marked as

"immutable" without exceptions for "delete" in the schema, the

server SHOULD NOT annotate its instances, as that provides no

additional information. If a particular leaf/anydata/anyxml node is

marked as "immutable" without exceptions for "delete" or "update" in

the schema, the server SHOULD NOT annotate its instances, as that

provides no additional information.

Servers MUST reject any attempt to the "create", "delete" and

"update" access operations on an immutable data node or instance

marked by the metadata annotation or YANG extension (except

according to the exceptions argument). The error reporting is

performed immediately at an <edit-config> operation time, regardless

what the target configuration datastore is. For an example of an

"invalid-value" error response, see Appendix A.1.2.

However the following operations SHOULD be allowed:

Use a create, update, delete/remove operation on an immutable

node/instance if the effective change is null. E.g. If a leaf has

a current value of "5" it should be allowed to replace it with a

value of "5".

Create an immutable data node/instance with a same value

initially set by the system if it doesn't exist in the datastore.

E.g., explicitly configure a system-generated interface name and

type in <running>;

Note that even if a particular data node is immutable without the

exception for "delete", it still can be deleted with its parent

node, e.g., /if:interfaces/if:interface/if:type leaf is immutable,

but the deletion to the /if:interfaces/if:interface list entry is

allowed; if a particular data node is immutable without the

exception for "create", it means the client can never create the

instance of it, regardless the handling of its parent node.

TODO: Is immutable inherited down the containment hierarchy? If it

is, should we allow overriding the immutability of a particular

contained element (i.e., to declare a contained data node as

immutable=false inside an immutable container/list) ?

¶

¶

¶

¶

*

¶

*

¶

¶

¶

3. "Immutable" YANG Extension

The "immutable" YANG extension can be a substatement to a leaf,

leaf-list, container, list, anydata or anyxml statement. It

indicates that data nodes based on the parent statement MUST NOT be

added, removed or updated except according to the exceptions

argument. The server MUST reject any such write attempt.

The "immutable" YANG extension defines an argument statement named

"exceptions" which gives a list of operations that users are

permitted to invoke for the specified node.

The following values are supported for the "exceptions" argument:

Create: allow users to create instances of the data node;

Update: allow users to modify instances of the data node;

Delete: allow users to delete instances of the data node.

4. "Immutable" Metadata Annotation

The "immutable" flag is used to indicate the immutability of a

particular instantiated data node. It only applies to the list/leaf-

list entries. The values are boolean types indicating whether the

data node instance is immutable or not.

Any list/leaf-list instance annotated with immutable="true" is read-

only to clients, which means that once an instance is created, the

client cannot change it. If a list entry is annotated with

immutable="true", any contained descendant instances of any type

(including leafs, lists, containers, etc.) inside the specific

instance is not allowed to be created, updated and deleted without

the need to annotate descendant nodes instances explicitly.

Note that "immutable" metadata annotation is used to annotate

instances of a list/leaf-list rather than schema nodes. For

instance, a list node may exist in multiple instances in the data

tree, "immutable" can annotate some of the instances as read-only,

while others are not.

When the client retrieves a particular datastore, immutable data

node instances MUST be annotated with immutable="true" by the

server. If the "immutable" metadata annotation inside a list entry

is not specified, the default "immutable" value for a list/leaf-list

entry is false.

Different from the "immutable" YANG extension, deletion to an

instance marked with immutable="true" metadata annotation SHOULD

always be allowed unless the list/leaf-list data node in the schema

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

has an im:immutable extension as substatement without a "delete"

exception.¶

5. YANG Module

<CODE BEGINS> file="ietf-immutable@2022-04-18.yang"

// RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation named 'immutable'

 to indicate the immutability of a particular instantiated

 data node. Any instantiated data node marked with

 immutable='true' by the server is read-only to the clients

 of YANG-driven management protocols, such as NETCONF,

 RESTCONF as well as SNMP and CLI requests.

 The module defines the immutable extension that indicates

 that data nodes based ona data-dafinition statement cannot

 be added removed or updated except according to the

 exceptions argument.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-04-18 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: Immutable Metadata Annotation";

 }

 extension immutable {

 argument exceptions;

 description

 "The 'immutable' extension as a substatement to a data

 definition statement indicates that data nodes based on

 the parent statement MUST NOT be added, removed or

 updated by management protocols, such as NETCONF,

 RESTCONF or other management operations (e.g., SNMP

 and CLI requests) except when indicated by the

 exceptions argument.

 Immutable data MAY be marked as config true to allow

 'leafref', 'when' or 'must' constraints to be based

 on it.

 The statement MUST only be a substatement of the leaf,

 leaf-list, container, list, anydata, anyxml statements.

 Zero or one immutable statement per parent statement

 is allowed.

 No substatements are allowed.

 The argument is a list of operations that are

 permitted to be used for the specified node, while

 other operations are forbidden by the immutable extension.

 - create: allows users to create instances of the data node

 - update: allows users to modify instances of the data node

 - delete: allows users to delete instances of the data node

 To disallow all user write access, omit the argument;

 To allow only create and delete user access, provide

 the string 'create delete' for the 'exceptions' parameter.

 Providing all 3 parameters has the same affect as not

 using this extension at all, but can be used anyway.

 Equivalent YANG definition for this extension:

 leaf immutable {

 type bits {

 bit create;

 bit update;

 bit delete;

 }

 default '';

 }

 Adding immutable or removing values from the

 exceptions argument of an existing immutable statement

 are non-backwards compatible changes.

 Other changes to immutable are backwards compatible.";

 }

 md:annotation immutable {

 type boolean;

 description

 "The 'immutable' annotation indicates the immutability of an

 instantiated data node. Any data node instance marked as

 'immutable=true' is read-only to clients and cannot be

 updated through NETCONF, RESTCONF or CLI. It applies to the

 list and leaf-list entries. The default is 'immutable=false'

 if not specified for an instance.";

 }

 }

<CODE ENDS>

6. IANA Considerations

6.1. The "IETF XML" Registry

This document registers one XML namespace URN in the 'IETF XML

registry', following the format defined in [RFC3688].

¶

¶

[RFC2119]

[RFC3688]

[RFC6020]

6.2. The "YANG Module Names" Registry

This document registers one module name in the 'YANG Module Names'

registry, defined in [RFC6020].

7. Security Considerations

The YANG module specified in this document defines a metadata

annotation for data nodes that is designed to be accessed network

management protocols such as NETCONF [RFC6241] or RESTCONF

[RFC8040]. The lowest NETCONF layer is the secure transport layer,

and the mandatory-to-implement secure transport is Secure Shell

(SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the

mandatory-to-implement secure transport is TLS [RFC8446].

Since immutable information is tied to applied configuration values,

it is only accessible to clients that have the permissions to read

the applied configuration values.

The security considerations for the Defining and Using Metadata with

YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

defined in this document.

8. References

8.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

¶

¶

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020

[RFC6241]

[RFC6242]

[RFC7950]

[RFC7952]

[RFC8040]

[RFC8341]

[RFC8446]

[I-D.ma-netmod-with-system]

[RFC8174]

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Wasserman, M., "Using the NETCONF Protocol over Secure

Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

<https://www.rfc-editor.org/info/rfc6242>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "Defining and Using Metadata with YANG", RFC

7952, DOI 10.17487/RFC7952, August 2016, <https://

www.rfc-editor.org/info/rfc7952>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

8.2. Informative References

Ma, Q., Watsen, K., Wu, Q., Chong, F.,

and J. Lindblad, "System-defined Configuration", Work in

Progress, Internet-Draft, draft-ma-netmod-with-system-03,

10 April 2022, <https://www.ietf.org/archive/id/draft-ma-

netmod-with-system-03.txt>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Usage Examples

A.1. Interface Example

This section shows how to use im:immutable YANG extension to mark

some data node as immutable.¶

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6242
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8446
https://www.ietf.org/archive/id/draft-ma-netmod-with-system-03.txt
https://www.ietf.org/archive/id/draft-ma-netmod-with-system-03.txt
https://www.rfc-editor.org/info/rfc8174

When an interface is physically present, the system will create an

interface entry automatically with valid name and type values in

<system> (see [I-D.ma-netmod-with-system]). The system-generated

data is dependent on and must represent the HW present, and as a

consequence must not be changed by the client. The data is modelled

as "config true" and should be marked as immuable.

Seemingly an alternative would be to model the list and these leaves

as "config false", but that does not work because:

The list cannot be marked as "config false", because it needs to

contain configurable child nodes, e.g., ip-address or enabled;

The key leaf (name) cannot be marked as "config false" as the

list itself is config true;

The type cannot be marked "config false", because we MAY need to

reference the type to make different configuration nodes

conditionally available.

The immutability of the data is the same for all interface

instances, thus following fragment of a fictional interface module

including an "immutable" YANG extension can be used:

Note that the "name" leaf is defined as a list key which can never

been modified for a particular list entry, there is no need to mark

"name" as immutable.

¶

¶

*

¶

*

¶

*

¶

¶

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 im:immutable "create";

 type identityref {

 base ianaift:iana-interface-type;

 }

 mandatory true;

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

¶

¶

A.1.1. Creating an Interface with a "type" Value

As defined in the YANG model, there is an exception for "create"

operation. Assume the interface hardware is not present physically

at this point, the client is allowed to create an interface named

"eth0" with a type value in <running>:

The interface data does not appear in <operational> since the

physical interface doesn't exist. When the interface is inserted,

the system will detect it and create the associated configuration in

<system>. The system tries to merge the interface configuration in

the <running> datastore with the same name as the inserted interface

configuration in <system>. If no such interface configuration named

"eth0" is found in <system> or the type set by the client doesn't

match the real interface type generated by the system, only the

system-defined interface configuration is applied and present in

<operational>.

A.1.2. Updating the Value of an Interface Type

Assume the system applied the interface configuration named "eth0"

successfully. If a client tries to change the type of an interface

to a value that doesn't match the real type of the interface used by

the system, the server must reject the request:

¶

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"

 xc:operation="create">

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 </interface>

 </config>

 </edit-config>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

</rpc-reply>

¶

¶

¶

A.2. Immutable System Capabilities Modelled as "config true"

System capabilities might be represented as system-defined data

nodes in the model. Configurable data nodes might need constraints

specified as "when", "must" or "path" statements to ensure that

configuration is set according to the system's capabilities. E.g.,

A timer can support the values 1,5,8 seconds. This is defined in

the leaf-list 'supported-timer-values'.

When the configurable 'interface-timer' leaf is set, it should be

ensured that one of the supported values is used. The natural

solution would be to make the 'interface-timer' a leaf-ref

pointing at the 'supported-timer-values'.

<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

</rpc-reply>

¶

¶

*

¶

*

¶

However, this is not possible as 'supported-timer-values' must be

read-only thus config=false while 'interface-timer' must be writable

thus config=true. According to the rules of YANG it is not allowed

to put a constraint between config true and false schema nodes.

The solution is that the supported-timer-values data node in the

YANG Model shall be defined as "config true" and shall also be

marked with the "immutable" extension. After this the 'interface-

timer' shall be defined as a leaf-ref pointing at the 'supported-

timer-values'.

A.3. Immutable System-defined List Entries

There are some system-defined entries for a "config true" list which

are present in <system> (see [I-D.ma-netmod-with-system]) and cannot

be updated by the client, such system-defined instances should be

defined immutable. The client is free to define, update and delete

their own list entries in <running>. Thus the list data node in the

YANG model cannot be marked as "immutable" extension as a whole. But

some of the system-defined list entries need to be protected if they

are copied from the <system> datastore to <running>.

An immutable metadata annotation can be useful in this case. When

the client retrieves those system-defined entries towards <system>

(or <running> if they are copied into <running>), an

immutable="true" annotation is returned; so that the client can

understand that the predefined list entries shall not be updated but

they can configure their list entries without any restriction.

Appendix B. Changes between revisions

Note to RFC Editor (To be removed by RFC Editor)

v01 - v02

clarify the relation between the creation/deletion of the

immutable data node with its parent data node;

Add a "TODO" comment about the inheritance of the immutable

property;

Define that the server should reject write attempt to the

immutable data node at an <edit-config> operation time, rather

than waiting until a <commit> or <validate> operation takes

place;

v00 - v01

Added immutable extension

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

* ¶

Added new use-cases for immutable extension and annotation

Added requirement that an update that means no effective change

should always be allowed

Added clarification that immutable is only applied to read-write

datastore

Narrowed the applied scope of metadata annotation to list/leaf-

list instances

Authors' Addresses

Qiufang Ma

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: maqiufang1@huawei.com

Qin Wu

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: bill.wu@huawei.com

Balazs Lengyel

Ericsson

Email: balazs.lengyel@ericsson.com

Hongwei Li

HPE

Email: flycoolman@gmail.com

* ¶

*

¶

*

¶

*

¶

mailto:maqiufang1@huawei.com
mailto:bill.wu@huawei.com
mailto:balazs.lengyel@ericsson.com
mailto:flycoolman@gmail.com

	YANG Extension and Metadata Annotation for Immutable Flag
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Overview
	3. "Immutable" YANG Extension
	4. "Immutable" Metadata Annotation
	5. YANG Module
	6. IANA Considerations
	6.1. The "IETF XML" Registry
	6.2. The "YANG Module Names" Registry

	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Usage Examples
	A.1. Interface Example
	A.1.1. Creating an Interface with a "type" Value
	A.1.2. Updating the Value of an Interface Type

	A.2. Immutable System Capabilities Modelled as "config true"
	A.3. Immutable System-defined List Entries

	Appendix B. Changes between revisions
	Authors' Addresses

