
Workgroup: NETMOD

Internet-Draft:

draft-ma-netmod-immutable-flag-05

Published: 9 March 2023

Intended Status: Standards Track

Expires: 10 September 2023

Authors: Q. Ma

Huawei

Q. Wu

Huawei

B. Lengyel

Ericsson

H. Li

HPE

YANG Extension and Metadata Annotation for Immutable Flag

Abstract

This document defines a way to formally document as a YANG extension

or YANG metadata an existing model handling behavior: modification

restrictions on data declared as configuration.

This document defines a YANG extension named "immutable" to indicate

that specific "config true" data nodes are not allowed to be

created/deleted/updated. To indicate that specific entries of a

list/leaf-list node or instances inside list entries cannot be

updated/deleted after initialization, a metadata annotation with the

same name is also defined. Any data node or instance marked as

immutable is read-only to the clients of YANG-driven management

protocols, such as NETCONF, RESTCONF and other management operations

(e.g., SNMP and CLI requests).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Applicability

2. Solution Overview

3. "Immutable" YANG Extension

3.1. Definition

3.2. Inheritance of Immutable YANG Extension

4. "Immutable" Metadata Annotation

4.1. Definition

5. Interaction between Immutable YANG Extension and Metadata

Annotation

6. Interaction between Immutable Flag and NACM

7. YANG Module

8. IANA Considerations

8.1. The "IETF XML" Registry

8.2. The "YANG Module Names" Registry

9. Security Considerations

Acknowledgements

References

Normative References

Informative References

Appendix A. Detailed Use Cases

A.1. UC1 - Modeling of server capabilities

A.2. UC2 - HW based autoconfiguration - Interface Example

A.2.1. Error Response to Client Updating the Value of an

Interface Type

A.3. UC3 - Predefined Access control Rules

A.4. UC4 - Declaring System defined configuration unchangeable

A.5. UC5 - Immutable BGP AS number and peer type

A.6. UC6 - Modeling existing data handling behavior in other

standard organizations

Appendix B. Existing implementations

Appendix C. Changes between revisions

Appendix D. Open Issues tracking

Authors' Addresses

¶

https://trustee.ietf.org/license-info

1. Introduction

This document defines a way to formally document as a YANG extension

or YANG metadata an existing model handling behavior that is already

allowed in YANG and which has been used by multiple standard

organizations and vendors. It is the aim to create one single

standard solution for documenting modification restrictions on data

declared as configuration, instead of the multiple existing vendor

and organization specific solutions. See Appendix Bfor existing

implementations.

YANG [RFC7950] is a data modeling language used to model both state

and configuration data, based on the "config" statement. However

there exists data that cannot be modified by the client(it is

immutable), but still needs to be declared as "config true" to:

allow configuration of data nodes under immutable lists or

containers;

place "when", "must" and "leafref" constraints between

configuration and immutable schema nodes.

ensure the existence of specific list entries that are provided

and needed by the system, while additional list entries can be

created, modified or deleted;

Clients believe that "config true" nodes are modifiable even though

the server is allowed to reject such a modification at any time. If

the server knows that it will reject the modification, it should

document this towards the clients in a machine readable way.

To address this issue, this document defines a YANG extension named

"immutable" to indicate that specific "config true" data nodes are

not allowed to be created/deleted/updated. To indicate that specific

entries of a list/leaf-list node or instances inside list entries

cannot be updated/deleted after initialization, a metadata

annotation [RFC7952] with the same name is also defined. Any data

node or instance marked as immutable is read-only to the clients of

YANG-driven management protocols, such as NETCONF, RESTCONF and

other management operations (e.g., SNMP and CLI requests). Marking

instance data nodes as immutable (as opposed to marking schema-

nodes) is useful when only some instances of a list or leaf-list

shall be marked as read-only.

Immutability is an existing model handling practice. While in some

cases it is needed, it also has disadvantages, therefore it SHOULD

be avoided wherever possible.

The following is a list of already implemented and potential use

cases.

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

UC1

UC2

UC3

UC4

UC5

UC6

immutable:

Modeling of server capabilities

HW based autoconfiguration

Predefined Access control Rules

Declaring System defined configuration unchangeable

Immutable BGP AS number and peer type

Modeling existing data handling behavior in other standard

organizations

Appendix A describes the use cases in detail.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are defined in [RFC6241] and [RFC8341] and are

not redefined here:

configuration data

access operation

write access

The following terms are defined in this document:

A schema or instance node property indicating that the

configuration data is not allowed to be created/deleted/updated.

1.2. Applicability

The "immutable" concept defined in this document only indicates

write access restrictions to writable datastores. A particular data

node or instance MUST have the same immutability in all writable

datastores. The immutable annotation information should also be

visible in read-only datastores (e.g., <system>, <intended>,

<operational>), however this only serves as information about the

data node itself, but has no effect on the handling of the read-only

datastore.

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

The immutability property of a particular data node or instance MUST

be protocol-independent and user-independent.

2. Solution Overview

Already some servers handle immutable configuration data and will

reject any attempt to the "create", "delete" or "update" such data.

This document allows the existing immutable data node or instance to

be marked by YANG extension or metadata annotation. Requests to

create/update/delete an immutable configuration data always return

an error (if no corresponding "exceptions" are declared in a YANG

extension). The error reporting is performed immediately at an

<edit-config> operation time, regardless what the target

configuration datastore is. For an example of an "invalid-value"

error response, see Appendix A.2.1.

However, the following operations SHOULD be allowed for immutable

nodes:

Use a create, update, delete/remove operation on an immutable

node if the effective change is null. E.g., if a leaf has a

current value of "5" it should be allowed to replace it with a

value of "5";

Create an immutable data node with a same value that already

exists in the <system> datastore.;

Note that even if a particular data node is immutable without the

exception for "delete", it still can be deleted if its parent node

is deleted, e.g., /if:interfaces/if:interface/if:type leaf is

immutable, but the deletion to the /if:interfaces/if:interface list

entry is allowed; if a particular data node is immutable without the

exception for "create", it means the client can never create the

instance of it, regardless the handling of its parent node; it may

be created by the system or have a default value when its parent is

created.

In some cases adding the immutable property is allowed but does not

have any additional semantic meaning. For example, a key leaf is

given a value when a list entry is created, and cannot be modified

and deleted unless the list entry is deleted. A mandatory leaf MUST

exist and cannot be deleted if the ancestor node exists in the data

tree.

3. "Immutable" YANG Extension

3.1. Definition

The "immutable" YANG extension can be a substatement to a "config

true" leaf, leaf-list, container, list, anydata or anyxml statement.

¶

¶

¶

*

¶

*

¶

¶

¶

It has no effect if used as a substatment to a "config false" node,

but can be allowed anyway. When present, it indicates that data

nodes based on the parent statement are not allowed to be added,

removed or updated except according to the exceptions argument. Any

such write attempt will be rejected by the server.

The "immutable" YANG extension defines an argument statement named

"exceptions" which gives a list of operations that users are

permitted to invoke for the specified node.

The following values are supported for the "exceptions" argument:

create: allow users to create instances of the data node;

update: allow users to modify instances of the data node;

delete: allow users to delete instances of the data node.

If more than one value is used, a space-separated string for the

"exceptions" argument is used. For example, if a particular data

node can be created and modified, but cannot be deleted, the

following "immutable" YANG extension with "create" and "update"

exceptions should be defined in a substatement to that data node:

Providing an empty string for the "exceptions" argument is

equivalent to a single extension without an argument followed.

Providing all 3 values can be used to override immutability

inherited from its ancestor node. For data nodes with no write

access restriction inherited from its ancestor node (see

Section 3.2), providing all 3 values has the same effect as not

using this extension at all, but can be used anyway.

Note that leaf-list instances can be created and deleted, but not

modified. Any exception for "update" operation to leaf-list data

nodes SHALL be ignored.

3.2. Inheritance of Immutable YANG Extension

Immutability specified by the use of the 'immutable' extension

statement (including any exception argument) is inherited by all

child and descendant nodes of a container or a list. It is possible

to override thhe inherited immutability property by placing another

immuable extension statement on a specific child/descendant node.

For example, given the following list definition:

¶

¶

¶

* ¶

* ¶

* ¶

¶

immutable "create update";¶

¶

¶

¶

application list entries are allowed to be created and deleted, but

cannot be modified; "protocol" cannot be changed in any way while

"port-number" can be created, modified or deleted. Using the

immutable statement with exception argument we can make immutability

stricter (for the protocol child node) or less restrictive (for the

port-number child node).

4. "Immutable" Metadata Annotation

4.1. Definition

The "immutable" flag SHALL be used to indicate the immutability of a

particular instantiated data node. It can only be used for list/

leaf-list entries. The "immutable" flag is of type boolean.

Note that "immutable" metadata annotation is used to annotate

instances of a list/leaf-list rather than schema nodes. A list may

have multiple entries/instances in the data tree, "immutable" can

annotate some of the instances as read-only, while others are read-

write.

Any list/leaf-list instance annotated with immutable="true" by the

server is read-only to clients and cannot be updated/deleted. If a

list entry is annotated with immutable="true", the whole instance is

read-only and any contained descendant configuration is not allowed

to be created, updated and deleted. Descendant nodes SHALL NOT carry

the immutable annotation.

When the client retrieves data from a particular datastore,

immutable data node instances MUST be annotated with

list application {

 im:immutable "create delete";

 key name;

 leaf name {

 type string;

 }

 leaf protocol {

 im:immutable;

 type enumeration {

 enum tcp;

 enum udp;

 }

 }

 leaf port-number {

 im:immutable "create update delete";

 type int16;

 }

}

¶

¶

¶

¶

¶

immutable="true" by the server. If the "immutable" metadata

annotation for a list/leaf-list entry is not specified, the default

"immutable" value is false. Explicitly annotating instances as

immutable="false" has the same effect as not specifying this value.

5. Interaction between Immutable YANG Extension and Metadata

Annotation

When a client reads data from a datastore, if a data node is

specified as immutable using the extension statement, the

corresponding data node instances generally SHALL NOT be marked with

the immutable annotation. However, if the immutable extension

statement has exceptions defined, the server MAY decide that for a

particular list entriy or leaf-list instance strict immutability

shall apply without exceptions. In this case the server SHALL mark

the relevant data node instances with the immutable annotation. The

immutable annotation overrides any exceptions specified for the

immutabile statement inlcuding any exception on any descendant

nodes.

6. Interaction between Immutable Flag and NACM

If a data node or some list or leaf-list entries are immutable the

server MUST reject any operation that attempts to create, delete or

update them, however the "exceptions" argument, if present, SHALL be

taken into account. Rejecting an operation due to immutability SHALL

be done indepent of any access control settings.

¶

¶

¶

7. YANG Module

<CODE BEGINS> file="ietf-immutable@2022-12-14.yang"

//RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation named 'immutable'

 to indicate the immutability of a particular instantiated

 data node. Any instantiated data node marked with

 immutable='true' by the server is read-only to the clients

 of YANG-driven management protocols, such as NETCONF,

 RESTCONF as well as SNMP and CLI requests.

 The module defines the immutable extension that indicates

 that data nodes based on the parent data-definition

 statement cannot be created, removed, or updated

 except according to the 'exceptions' argument.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-12-14 {

 description

 "Initial revision.";

 // RFC Ed.: replace XXXX and remove this comment

 reference

 "RFC XXXX: YANG Extension and Metadata Annotation for

 Immutable Flag";

 }

 extension immutable {

 argument exceptions;

 description

 "The 'immutable' extension as a substatement to a data

 definition statement indicates that data nodes based on

 the parent statement MUST NOT be added, removed or

 updated by management protocols, such as NETCONF,

 RESTCONF or other management operations (e.g., SNMP

 and CLI requests) except when indicated by the

 exceptions argument.

 Immutable data MAY be marked as config true to allow

 'leafref', 'when' or 'must' constraints to be based

 on it.

 The statement MUST only be a substatement of the leaf,

 leaf-list, container, list, anydata, anyxml statements.

 Zero or one immutable statement per parent statement

 is allowed.

 No substatements are allowed.

 The argument is a list of space-separated operations that

 are permitted to be used for the specified node, while

 other operations are forbidden by the immutable extension.

 - create: allows users to create instances of the data node

 - update: allows users to modify instances of the data node

 - delete: allows users to delete instances of the data node

 To disallow all user write access, omit the argument;

 To allow only create and delete user access, provide

 the string 'create delete' for the 'exceptions' parameter.

 Equivalent YANG definition for this extension:

 leaf immutable {

 type bits {

 bit create;

 bit update;

 bit delete;

 }

 default '';

 }

 Immutability specified by the use of the 'immutable' extension

 statement (including any exception argument) is inherited by all

 child and descendant nodes of a container or a list. It is possible

 to override the inherited immutability property by placing another

 immutable extension statement on a specific child/descendant node.

 Adding immutable or removing values from the

 exceptions argument of an existing immutable statement

 are non-backwards compatible changes.

 Other changes to immutable are backwards compatible.";

 }

 md:annotation immutable {

 type boolean;

 description

 "The 'immutable' annotation indicates the immutability of an

 instantiated data node. Any data node instance marked as

 'immutable=true' is read-only to clients and cannot be

 updated through NETCONF, RESTCONF or CLI. It applies to the

 list and leaf-list entries. If a list entry is annotated

 with immutable='true', the whole instance is read-only and

 including any contained descendant data nodes.

 The default is 'immutable=false' if not specified for an instance.";

 }

 }

<CODE ENDS>

¶

[RFC2119]

8. IANA Considerations

8.1. The "IETF XML" Registry

This document registers one XML namespace URN in the 'IETF XML

registry', following the format defined in [RFC3688].

8.2. The "YANG Module Names" Registry

This document registers one module name in the 'YANG Module Names'

registry, defined in [RFC6020].

9. Security Considerations

The YANG module specified in this document defines a YANG extension

and a metadata Annotation. These can be used to further restrict

write access but cannot be used to extend access rights.

This document does not define any protocol-accessible data nodes.

Since immutable information is tied to applied configuration values,

it is only accessible to clients that have the permissions to read

the applied configuration values.

The security considerations for the Defining and Using Metadata with

YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

defined in this document.

Acknowledgements

Thanks to Kent Watsen, Andy Bierman, Robert Wilton, Jan Lindblad,

Reshad Rahman, Anthony Somerset, Lou Berger, Joe Clarke, Scott

Mansfield for reviewing, and providing important input to, this

document.

References

Normative References

¶

URI: urn:ietf:params:xml:ns:yang:ietf-immutable

Registrant Contact: The IESG.

XML: N/A, the requested URIs are XML namespaces.

¶

¶

name: ietf-immutable

prefix: im

namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

RFC: XXXX

// RFC Ed.: replace XXXX and remove this comment

¶

¶

¶

¶

¶

¶

[RFC3688]

[RFC6020]

[RFC6241]

[RFC7950]

[RFC7952]

[RFC8341]

[I-D.ietf-netmod-system-config]

[RFC8174]

[TR-531]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Bjorklund, M., Ed., "YANG - A Data Modeling Language for

the Network Configuration Protocol (NETCONF)", RFC 6020,

DOI 10.17487/RFC6020, October 2010, <https://www.rfc-

editor.org/info/rfc6020>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Lhotka, L., "Defining and Using Metadata with YANG", RFC

7952, DOI 10.17487/RFC7952, August 2016, <https://

www.rfc-editor.org/info/rfc7952>.

Bierman, A. and M. Bjorklund, "Network Configuration

Access Control Model", STD 91, RFC 8341, DOI 10.17487/

RFC8341, March 2018, <https://www.rfc-editor.org/info/

rfc8341>.

Informative References

Ma, Q., Wu, Q., and C. Feng,

"System-defined Configuration", Work in Progress,

Internet-Draft, draft-ietf-netmod-system-config-01, 4

January 2023, <https://datatracker.ietf.org/doc/html/

draft-ietf-netmod-system-config-01>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

ONF, "UML to YANG Mapping Guidelines, <https://

wiki.opennetworking.org/download/attachments/376340494/

Draft_TR-531_UML-YANG_Mapping_Gdls_v1.1.03.docx?

version=5&modificationDate=1675432243513&api=v2>",

February 2023.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc7952
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-01
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-01
https://www.rfc-editor.org/info/rfc8174

[TS28.623]

[TS32.156]

3GPP, "Telecommunication management; Generic Network

Resource Model (NRM) Integration Reference Point (IRP);

Solution Set (SS) definitions, <https://www.3gpp.org/ftp/

Specs/archive/28_series/28.623/28623-i02.zip>".

3GPP, "Telecommunication management; Fixed Mobile

Convergence (FMC) Model repertoire, <https://www.

3gpp.org/ftp/Specs/archive/32_series/32.156/32156-

h10.zip>".

Appendix A. Detailed Use Cases

A.1. UC1 - Modeling of server capabilities

System capabilities might be represented as system-defined data

nodes in the model. Configurable data nodes might need constraints

specified as "when", "must" or "path" statements to ensure that

configuration is set according to the system's capabilities. E.g.,

A timer can support the values 1,5,8 seconds. This is defined in

the leaf-list 'supported-timer-values'.

When the configurable 'interface-timer' leaf is set, it should be

ensured that one of the supported values is used. The natural

solution would be to make the 'interface-timer' a leaf-ref

pointing at the 'supported-timer-values'.

However, this is not possible as 'supported-timer-values' must be

read-only thus config=false while 'interface-timer' must be writable

thus config=true. According to the rules of YANG it is not allowed

to put a constraint between config true and false schema nodes.

The solution is that the supported-timer-values data node in the

YANG Model shall be defined as "config true" and shall also be

marked with the "immutable" extension making it unchangable. After

this the 'interface-timer' shall be defined as a leaf-ref pointing

at the 'supported-timer-values'.

A.2. UC2 - HW based autoconfiguration - Interface Example

This section shows how to use immutable YANG extension to mark some

data node as immutable.

When an interface is physically present, the system will create an

interface entry automatically with valid name and type values in

<system> (if exists, see [I-D.ietf-netmod-system-config]). The

system-generated data is dependent on and must represent the HW

present, and as a consequence must not be changed by the client. The

data is modelled as "config true" and should be marked as immutable.

¶

*

¶

*

¶

¶

¶

¶

¶

Seemingly an alternative would be to model the list and these leaves

as "config false", but that does not work because:

The list cannot be marked as "config false", because it needs to

contain configurable child nodes, e.g., ip-address or enabled;

The key leaf (name) cannot be marked as "config false" as the

list itself is config true;

The type cannot be marked "config false", because we MAY need to

reference the type to make different configuration nodes

conditionally available.

The immutability of the data is the same for all interface

instances, thus following fragment of a fictional interface module

including an "immutable" YANG extension can be used:

Note that the "name" leaf is defined as a list key which can never

been modified for a particular list entry, there is no need to mark

"name" as immutable.

A.2.1. Error Response to Client Updating the Value of an Interface

Type

This section shows an example of an error response due to the client

modifying an immutable configuration.

¶

*

¶

*

¶

*

¶

¶

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 im:immutable "create delete";

 type identityref {

 base ianaift:iana-interface-type;

 }

 mandatory true;

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

¶

¶

¶

Assume the system creates an interface entry named "eth0" given that

an inerface is inserted into the device. If a client tries to change

the type of an interface to a value that doesn't match the real type

of the interface used by the system, the request will be rejected by

the server:

A.3. UC3 - Predefined Access control Rules

Setting up detailed rules for access control is a complex task. (see

[RFC8341]) A vendor may provide an initial, predefined set of groups

and related access control rules so that the customer can use access

control out-of-the-box. The customer may continue using these

predefined rules or may add his own groups and rules. The predefined

groups shall not be removed or altered guaranteeing that access

control remains usable and basic functions e.g., a system-security-

administrator are always available.

¶

<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

</rpc>

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

</rpc-reply>

¶

¶

The system needs to protect the predefined groups and rules,

however, the list "groups" or the list "rule-list" cannot be marked

as config=false or with the "immutable" extension in the YANG model

because that would prevent the customer adding new entries. Still it

would be good to notify the client in a machine readable way that

the predefined entries cannot be modified. When the client retrieves

access control data the immutable="true" metadata annotation should

be used to indicate to the client that the predefined groups and

rules cannot be modified.

A.4. UC4 - Declaring System defined configuration unchangeable

As stated in [I-D.ietf-netmod-system-config] the device itself might

supply some configuration. As defined in that document in section

"5.4. Modifying (overriding) System Configuration" the server may

allow some parts of system configuration to be modified while other

parts of the system configuration are non-modifiable. The immutable

extension or metadata annotation can be used to define which parts

are non-modifiable and to inform the client about this fact.

A.5. UC5 - Immutable BGP AS number and peer type

An autonomous system (AS) number is assigned and used primarily with

BGP to uniquely identify each network system. Changing AS attribute

will cause it to delete all the current routing entries and learning

new ones, during which process it might lead to traffic disruption.

It is usually not allowed to modify the AS attribute once it is

configured unless all BGP configurations are removed.

Another example is the type attribute of BGP neighbors. The peer

type of the BGP neighbor is closely related to the network topology:

external BGP (EBGP) peer type relationships are established between

BGP routers running in different ASs; while internal BGP (IBGP) peer

type relationships are established between BGP routers running in

the same AS. Thus BGP peer type cannot be changed to the value which

does not match the actual one. Since there are EBGP/IBGP-specific

configurations which need to reference the "peer-type" node (e.g.,

in "when" statement) and be conditionally available, it can only be

modelled as "config true" but immutable.

Following is the fragment of a simplified BGP module with the /bgp/

as and /bgp/neighbor/peer-type defined as immutable:

¶

¶

¶

¶

¶

container bgp {

 leaf as {

 im:immutable "create delete";

 type inet:as-number;

 mandatory true;

 description

 "Local autonomous system number of the router.";

 }

 list neighbor {

 key "remote-address";

 leaf remote-address {

 type inet:ip-address;

 description

 "The remote IP address of this entry's BGP peer.";

 }

 leaf peer-type {

 im:immutable "create delete";

 type enumeration {

 enum ebgp {

 description

 "External (EBGP) peer.";

 }

 enum ibgp {

 description

 "Internal (IBGP) peer.";

 }

 }

 mandatory true;

 description

 "Specify the type of peering session associated with this

 neighbor. The value can be IBGP or EBGP.";

 }

 leaf ebgp-max-hop {

 when "../peer-type='ebgp'";

 type uint32 {

 range "1..255";

 }

 description

 "The maximum number of hops when establishing an EBGP peer

 relationship with a peer on an indirectly-connected network.

 By default, an EBGP connection can be set up only on a

 directly-connected physical link.";

 }

 }

}

¶

A.6. UC6 - Modeling existing data handling behavior in other standard

organizations

A number of standard organizations and industry groups (ITU-T, 3GPP,

ORAN) already use concepts similar to immutability. These modeling

concepts sometimes go back to more than 10 years and cannot be and

will not be changed irrespective of the YANG RFCs. Some of these

organizations are introducing YANG modelling. Without a formal YANG

statement to define data nodes immutable the property is only

defined in plain Englist text in the description statement. The

immutable extension and/or metadata annotation can be used to define

these existing model properties in a machine-readable way.

Appendix B. Existing implementations

There are already a number of full or partial implementations of

immutability.

3GPP TS 32.156 [TS32.156] and 28.623 [TS28.623]: Requirements and

a partial solution

ITU-T using ONF TR-531[TR-531] concept on information model level

but no YANG representation.

Ericsson: requirements and solution

YumaPro: requirements and solution

Nokia: partial requirements and solution

Huawei: partial requirements and solution

Cisco using the concept at least in some YANG modules

Junos OS provides a hidden and immutable configuration group

called junos-defaults

Appendix C. Changes between revisions

Note to RFC Editor (To be removed by RFC Editor)

v04 - v05

Emphasized that the proposal tries to formally document existing

allowed behavior

Reword the abstract and introduction sections;

Restructure the document;

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

* ¶

Simplified the interface example in Appendix;

Add immutable BGP AS number and peer-type configuration example.

Added temporary section in Annex B about list of existing non-

standard solutions

Clarified inheritance of immutability

Clarified that this draft is not dependent on the existence of

the <system> datastore.

v03 - v04

Clarify how immutable flag interacts with NACM mechanism.

v02 - v03

rephrase and avoid using "server MUST reject" statement, and try

to clarify that this documents aims to provide visibility into

existing immutable behavior;

Add a new section to discuss the inheritance of immutability;

Clarify that deletion to an immutable node in <running> which is

instantiated in <system> and copied into <running> should always

be allowed;

Clarify that write access restriction due to general YANG rules

has no need to be marked as immutable.

Add an new section named "Acknowledgements";

editoral changes.

v01 - v02

clarify the relation between the creation/deletion of the

immutable data node with its parent data node;

Add a "TODO" comment about the inheritance of the immutable

property;

Define that the server should reject write attempt to the

immutable data node at an <edit-config> operation time, rather

than waiting until a <commit> or <validate> operation takes

place;

* ¶

* ¶

*

¶

* ¶

*

¶

¶

* ¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

v00 - v01

Added immutable extension

Added new use-cases for immutable extension and annotation

Added requirement that an update that means no effective change

should always be allowed

Added clarification that immutable is only applied to read-write

datastore

Narrowed the applied scope of metadata annotation to list/leaf-

list instances

Appendix D. Open Issues tracking

Can we do better about the "immutable" terminology?

Is a Boolean type for immutable metadata annotation sufficient?

Can immutable data be removed due to a when or choice statement?

Authors' Addresses

Qiufang Ma

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: maqiufang1@huawei.com

Qin Wu

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: bill.wu@huawei.com

Balazs Lengyel

Ericsson

Email: balazs.lengyel@ericsson.com

Hongwei Li

HPE

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

mailto:maqiufang1@huawei.com
mailto:bill.wu@huawei.com
mailto:balazs.lengyel@ericsson.com

Email: flycoolman@gmail.com

mailto:flycoolman@gmail.com

	YANG Extension and Metadata Annotation for Immutable Flag
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Applicability

	2. Solution Overview
	3. "Immutable" YANG Extension
	3.1. Definition
	3.2. Inheritance of Immutable YANG Extension

	4. "Immutable" Metadata Annotation
	4.1. Definition

	5. Interaction between Immutable YANG Extension and Metadata Annotation
	6. Interaction between Immutable Flag and NACM
	7. YANG Module
	8. IANA Considerations
	8.1. The "IETF XML" Registry
	8.2. The "YANG Module Names" Registry

	9. Security Considerations
	Acknowledgements
	References
	Normative References
	Informative References

	Appendix A. Detailed Use Cases
	A.1. UC1 - Modeling of server capabilities
	A.2. UC2 - HW based autoconfiguration - Interface Example
	A.2.1. Error Response to Client Updating the Value of an Interface Type

	A.3. UC3 - Predefined Access control Rules
	A.4. UC4 - Declaring System defined configuration unchangeable
	A.5. UC5 - Immutable BGP AS number and peer type
	A.6. UC6 - Modeling existing data handling behavior in other standard organizations

	Appendix B. Existing implementations
	Appendix C. Changes between revisions
	Appendix D. Open Issues tracking
	Authors' Addresses

