
Workgroup: NETMOD

Internet-Draft: draft-ma-netmod-with-system-01

Updates: RFC8342, RFC6241, RFC8526, RFC8040

(if approved)

Published: 11 February 2022

Intended Status: Standards Track

Expires: 15 August 2022

Authors: Q. Ma, Ed.

Huawei

C. Feng

Huawei

Q. Wu

Huawei

J. Lindblad

Cisco Systems

System-defined Configuration

Abstract

This document updates NMDA [RFC8342] to define a read-only

conventional configuration datastore called "system" to hold system-

defined configurations. To avoid clients' explicit copy/paste of

referenced system-defined configuration, a "resolve-system"

parameter has been defined to allow the server acting as a "system

client" to populate referenced system-defined nodes automatically.

The solution enables clients to reference nodes defined in <system>,

overwrite values of configurations defined in <system>, and

configure descendant nodes of system-defined nodes.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfcRFC8342
https://www.rfc-editor.org/rfc/rfcRFC6241
https://www.rfc-editor.org/rfc/rfcRFC8526
https://www.rfc-editor.org/rfc/rfcRFC8040
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Requirements Language

1.3. Updates to RFC 8342

1.4. Updates to RFC 6241, RFC 8526

1.5. Updates to RFC 8040

2. Kinds of System Configuration

2.1. Immediately-Active

2.2. Conditionally-Active

2.3. Inactive-Until-Referenced

3. Static Characteristics

3.1. Read-only to Clients

3.2. May Change via Software Upgrades

3.3. No Impact to <operational>

4. Dynamic Behavior

4.1. Conceptual Model

4.2. Servers Auto-populating Referenced System Configuration

4.3. Explicit Declaration of System Configuration

4.4. Modifying (overriding) System Configuration

4.5. Examples

4.5.1. Server Populating of <running> Automatically

4.5.2. Declaring a System-defined Node in <running> Explicitly

4.5.3. Modifying a System-instantiated Leaf's Value

4.5.4. Configuring Descendant Nodes of a System-defined Node

5. The <system> Configuration Datastore

6. The "ietf-system-datastore" Module

6.1. Data Model Overview

6.2. Example Usage

6.3. YANG Module

7. The "ietf-netconf-resolve-system" Module

7.1. Data Model Overview

7.2. Example Usage

7.3. YANG Module

8. IANA Considerations

8.1. The "IETF XML" Registry

8.2. The "YANG Module Names" Registry

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

10. Contributors

Acknowledgements

¶

References

Normative References

Informative References

Appendix A. Key Use Cases

A.1. Device Powers On

A.2. Client Commits Configuration

A.3. Operator Installs Card into a Chassis

Appendix B. Changes between Revisions

Appendix C. Open Issues tracking

Authors' Addresses

1. Introduction

NMDA [RFC8342] defines system configuration as the configuration

that is supplied by the device itself and should be present in

<operational> when it is in use.

However, there is a desire to enable a server to better document the

system configuration. Clients can benefit from a standard mechanism

to see what system configuration is available in a server.

In some cases, the client references a system configuration which

isn't returned when the datastore is read. Having to copy the entire

contents of the system configuration into <running> should be

avoided or reduced when possible while ensuring that all referential

integrity constraints are satisfied.

In some other cases, configuration of descendant nodes of system

defined configuration needs to be supported. For example, the system

configuration may contain an almost empty physical interface, while

the client needs to be able to add, modify, remove a number of

descendant nodes. Some descendant nodes may not be modifiable (e.g.,

"name" and "type" set by the system).

This document updates NMDA [RFC8342] to define a read-only

conventional configuration datastore called "system" to hold system-

defined configurations. To avoid clients' explicit copy/paste of

referenced system-defined configuration, a "resolve-system"

parameter has been defined to allow the server acting as a "system

client" to populate referenced system-defined nodes automatically.

The solution enables clients to reference nodes defined in <system>,

overwrite values of configurations defined in <system>, and

configure descendant nodes of system-defined nodes.

Conformance to this document requires servers to implement the

"ietf-system-datastore" YANG Module.

¶

¶

¶

¶

¶

¶

System configuration:

System configuration datastore:

Conventional configuration datastore:

1.1. Terminology

This document assumes that the reader is familiar with the contents

of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and

uses terminologies from those documents.

The following terms are defined in this document as follows:

Configuration that is provided by the system

itself [RFC8342].

A configuration datastore holding

the complete configuration provided by the system itself. This

datastore is referred to as "<system>".

This document redefines the term "conventional configuration

datastore" from RFC 8342 to add "system" to the list conventional

configuration datastores:

One of the following set of

configuration datastores: <running>, <startup>, <candidate>,

<system>, and <intended>. These datastores share a common

datastore schema, and protocol operations allow copying data

between these datastores. The term "conventional" is chosen as a

generic umbrella term for these datastores.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Updates to RFC 8342

This document updates RFC 8342 to define a configuration datastore

called "system" to hold system configuration, it also redefines the

term "conventional configuration datastore" from RFC 8342 to add

"system" to the list conventional configuration datastores. The

contents of <system> datastore are read-only to clients but may

change dynamically. The <system> aware client may retrieve all three

types of system configuration defined in Section 2, reference nodes

defined in <system>, overwrite values of configurations defined in

<system>, and configure descendant nodes of system-defined nodes.

The server will merge <running> and <system> to create <intended>.

As always, system configuration will appear in <operational> with

origin="system".

¶

¶

¶

¶

¶

¶

¶

¶

¶

The <system> datastore makes system configuration visible to clients

in order for being referenced or configurable prior to present in

<operational>.

1.4. Updates to RFC 6241, RFC 8526

This document augments <edit-config> and <edit-data> RPC operations

defined in [RFC6241] and [RFC8526] respectively, with a new

additional input parameter "resolve-system".

The "resolve-system" parameter is optional and has no value. When it

is provided and the server detects that there is a reference to a

system-defined node during the validation, the server will

automatically populate the referenced system configuration into the

validated datastore to make the configuration valid without the

client doing so explicitly. Legacy Clients interacting with servers

that support this parameter don't see any changes in <edit-config>

and <edit-data> behaviors.

According to the NETCONF constraint enforcement model defined in the

section 8.3 of [RFC7950], if the target datastore of the <edit-

config> or <edit-data> is "running" or "startup", the server-

populating of the target datastore MUST be enforced at the end of

the <edit-config> or <edit-data> operations during the validation.

If the target datastore of the <edit-config> or <edit-data> is

"candidate", the server-populating of the target datastore is

delayed until a <commit> or <validate> operation takes place.

1.5. Updates to RFC 8040

Comment: How should we update RESTCONF protocol to support the

"resolve-system" parameter ?

2. Kinds of System Configuration

There are three types of system configurations: immediately-active

system configuration, conditionally-active system configuration and

inactive-until-referenced system configuration.

2.1. Immediately-Active

Immediately-active system configurations are those applied and

active immediately (e.g., a loop-back interface) , irrespective of

physical resource present or not, a special functionality enabled or

not.

2.2. Conditionally-Active

System configurations which are provided and activated based on

specific conditions being met in a system, e.g., if a physical

¶

¶

¶

¶

¶

¶

¶

resource is present (e.g., insert interface card), the system will

automatically detect it and load pre-provisioned configuration; when

the physical resource is not present(remove interface card), the

system configuration will be automatically cleared. Another example

is when a special functionality is enabled, e.g., when QoS function

is enabled, QoS policies are automatically created by the system.

2.3. Inactive-Until-Referenced

There are some predefined objects(e.g., application ids, anti-x

signatures, trust anchor certs, etc.) as a convenience for the

clients. The clients can also define their own data objects for

their unique requirements. Inactive-until-referenced system

configurations are not applied and active immediately but only after

they are referenced by client-defined configuration.

3. Static Characteristics

3.1. Read-only to Clients

From the client's perspective, the contents of the <system>

datastore are read-only. There is no way to delete system

configuration from a server. Any deletable system-provided

configuration must be defined in <factory-default> [RFC8808], which

is used to initialize <running> when the device is first-time

powered on or reset to its factory default condition.

3.2. May Change via Software Upgrades

System configuration MAY change dynamically, e.g., depending on

factors like device upgrade or if system-controlled resources(e.g.,

HW available) change. In some implementations, when QoS function is

enabled, QoS-related predefined policies are created by system. If

the system configuration gets changed, YANG notification (e.g.,

"push-change-update" notification) [RFC8641][RFC8639][RFC6470] can

be used to notify the client.

3.3. No Impact to <operational>

This work intends to have no impact to <operational>. As always,

system configuration will appear in <operational> with

"origin=system". This work enables a subset of those system

generated nodes to be defined like configuration, i.e., made visible

to clients in order for being referenced or configurable prior to

present in <operational>. The referenced system configuration in

<running> automatically copied from <system> by the server MUST have

its origin set to "system" when present in <operational>. "Config

false" nodes are completely out of scope, hence existing "config

false" nodes are not impacted by this work.

¶

¶

¶

¶

¶

4. Dynamic Behavior

4.1. Conceptual Model

This document introduces a mandatory datastore named "system" which

is used to hold all three types of system configurations defined in

Section 2.

When the device is powered on, immediately-active system

configuration will be provided and activated immediately but

inactive-until-referenced system configuration only becomes active

if it is referenced by client-defined configuration. While

conditionally-active system configuration will be created and

immediately activated if the condition on system resources is met

when the device is powered on or running.

All above three types of system configurations will go into

<system>. The client may reference nodes defined in <system>,

overwrite values of configurations defined in <system>, and

configure descendant nodes of system-defined nodes in <running>.

Then the server will merge <running> and <system> to create

<intended>, in which process, <running> MAY overwrite and/or extend

<system>. If a server implements <intended>, <system> MUST be merged

into <intended>.

Servers MUST enforce that configuration references in <running> are

resolved within the <running> datastore and ensure that <running>

contains any referenced system objects. Clients MUST either

explicitly configure system-defined nodes in <running> or use the

"resolve-system" parameter. The server MUST enforce that the

referenced system nodes injected into <running> by the client is

consistent with <system>. Note that only <system> aware clients copy

referenced system nodes from <system>. How clients unaware of the

<system> datastore can find appropriate configurations are beyond

the scope of this document.

No matter how the referenced system objects are populated, the nodes

copied into <running> would always be returned in a read of

<running>, regardless if the client is <system> aware.

4.2. Servers Auto-populating Referenced System Configuration

This document defines a new parameter "resolve-system" to the input

for the <edit-config> and <edit-data> operations. Clients that are

aware of the "resolve-system" parameter MAY use this parameter to

avoid the requirement to provide a referentially complete

configuration in <running>.

If the "resolve-system" is present, the server MUST populate

relevant referenced system-defined nodes into the target datastore

¶

¶

¶

¶

¶

¶

without the client doing the copy/paste explicitly, to resolve any

references not resolved by the client. The server acting as a

"system client" like any other remote clients populates the

referenced system-defined nodes when triggered by the "resolve-

system" parameter. If the "resolve-system" parameter is not given by

the client, the server MUST NOT modify <running> in any way not

specified by the client.

The server may automatically configure the list entries (with at

least the keys) in the target datastore (e.g., <running>) for any

system configuration list entries that are referenced elsewhere by

the clients. Not all the contents of the list entry (i.e., the

descendant nodes) are necessarily populated by the sever - only the

parts that are required to make the <running> valid. A read back of

<running> (i.e., <get>, <get-config> or <get-data> operation)

returns those automatically populated nodes.

4.3. Explicit Declaration of System Configuration

It is also possible for a client to explicitly declare system

configuration nodes in the target datastore (e.g., <running>) with

the same values as in <system>. When a client configures a node

(list entry, leaf, etc) in <running> that matches the same node and

value in <system>, then that node becomes part of <running>. A read

back of <running> returns those explicitly configured nodes.

This explicit configuration of system configuration in <running> can

be useful, for example, when the client doesn't want a "system

client" to have a role or hasn't implemented the "resolve-system"

parameter. The client can explicitly declare (i.e. configure in

<running>) the list entries (with at least the keys) for any system

configuration list entries that are referenced elsewhere in

<running>. Similarly, The client does not necessarily need to

declare all the contents of the list entry (i.e. the descendant

nodes) - only the parts that are required to make the <running>

appear valid.

4.4. Modifying (overriding) System Configuration

In some cases, a server may allow some parts of system configuration

to be modified. List keys in system configuration can't be changed

by a client, but other descendant nodes in a list entry may be

modifiable or non-modifiable. Leafs and leaf-lists outside of lists

may also be modifiable or non-modifiable. Modification of system

configuration is achieved by the client writing configuration to

<running> that overrides the system configuration. Client

configuration statements in <running> take precedence over system

configuration nodes in <system> if the server allows the nodes to be

modified. If a system configuration node is non-modifiable, then

¶

¶

¶

¶

writing a different value for that node in <running> MUST return an

error.

A server may also allow a client to add data nodes to a list entry

in <system> by writing those additional nodes in <running>. Those

additional data nodes may not exist in <system> (i.e. an *addition*

rather than an override).

While modifying (overriding) system configuration nodes may be

supported by a server, there is no mechanism for deleting a system

configuration node. A "mandatory true" leaf, for example, may have a

value in <system> which can be modified (overridden) by a client

setting that leaf to a value in <running>. But the leaf could not be

deleted.

Comment 1: What if <system> contains a set of values for a leaf-

list, and a client configures another set of values for that leaf-

list in <running>, will the set of values in <running> completely

replace the set of values in <system>? Or the two sets of values are

merged together?

Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do

the <running> values go before or after, or is this a case where a

full-replace is needed.

4.5. Examples

This section shows the examples of server-populating of <running>

automatically, declaring a system-defined node in <running>

explicitly, modifying a system-instantiated leaf's value and

configuring descendant nodes of a system-defined node. For each

example, the corresponding XML snippets are provided.

4.5.1. Server Populating of <running> Automatically

In this subsection, the following fictional module is used:

¶

¶

¶

¶

¶

¶

¶

The server may predefine some applications as a convenience for the

clients. These predefined objects are applied only after being

referenced by other configurations, which fall into the "inactive-

until-referenced" system configuration as defined in Section 2. The

system-instantiated application entries may be present in <system>

as follows:

 module example-application {

 yang-version 1.1;

 namespace "urn:example:application";

 prefix "app";

 import ietf-inet-types {

 prefix "inet";

 }

 container applications {

 list application {

 key "name";

 leaf name {

 type string;

 }

 leaf protocol {

 type enumeration {

 enum tcp;

 enum udp;

 }

 }

 leaf destination-port {

 type inet:port-number;

 }

 }

 }

 }

¶

¶

The client may also define its customized applications. Suppose the

configuration of applications is present in <running> as follows:

A fictional ACL YANG module is used as follows, which defines a

leafref for the leaf-list "application" data node to refer to an

existing application name.

 <applications xmlns="urn:example:application">

 <application>

 <name>ftp</name>

 <protocol>tcp</protocol>

 <destination-port>21</destination-port>

 </application>

 <application>

 <name>tftp</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>smtp</name>

 <protocol>tcp</protocol>

 <destination-port>25</destination-port>

 </application>

 ...

 </applications>

¶

¶

 <applications xmlns="urn:example:application">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 </applications>

¶

¶

 module example-acl {

 yang-version 1.1;

 namespace "urn:example:acl";

 prefix "acl";

 import example-application {

 prefix "app";

 }

 import ietf-inet-types {

 prefix "inet";

 }

 container acl {

 list acl_rule {

 key "name";

 leaf name {

 type string;

 }

 container matches {

 choice l3 {

 container ipv4 {

 leaf source_address {

 type inet:ipv4-prefix;

 }

 leaf destination_address {

 type inet:ipv4-prefix;

 }

 }

 }

 choice applications {

 leaf-list application {

 type leafref {

 path "/app:applications/app:application/app:name";

 }

 }

 }

 }

 leaf packet_action {

 type enumeration {

 enum forward;

 enum drop;

 enum redirect;

 }

 }

 }

 }

 }

¶

If a client configures an ACL rule referencing system predefined

nodes which are not present in <running>, the client MAY issue an

<edit-config> operation with the parameter "resolve-system" as

follows:

Then following gives the configuration of applications in <running>

which is returned in the response to a follow-up <get-config>

operation:

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <acl xmlns="urn:example:acl">

 <acl_rule>

 <name>allow_access_to_ftp_tftp</name>

 <matches>

 <ipv4>

 <source_address>198.51.100.0/24</source_address>

 <destination_address>192.0.2.0/24</destination_address>

 </ipv4>

 <application>ftp</application>

 <application>tftp</application>

 <application>my-app-1</application>

 </matches>

 <packet_action>forward</packet_action>

 </acl_rule>

 </acl>

 </config>

 <resolve-system/>

 </edit-config>

 </rpc>

¶

¶

Then the configuration of applications is present in <operational>

as follows:

 <applications xmlns="urn:example:application">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>ftp</name>

 </application>

 <application>

 <name>tftp</name>

 </application>

 </applications>

¶

¶

 <applications xmlns="urn:example:application"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application or:origin="or:system">

 <name>ftp</name>

 <protocol>tcp</protocol>

 <destination-port>21</destination-port>

 </application>

 <application or:origin="or:system">

 <name>tftp</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 </applications>

¶

Since the configuration of application "smtp" is not referenced by

the client, it does not appear in <operational> but only in

<system>.

4.5.2. Declaring a System-defined Node in <running> Explicitly

It's also possible for a client to explicitly declare the system-

defined configurations that are referenced. For instance, in the

above example, the client MAY also explicitly configure the

following system defined applications "ftp" and "tftp" only with the

list key "name" before referencing:

Then the client issues an <edit-config> operation to configure an

ACL rule referencing applications "ftp" and "tftp" without the

parameter "resolve-system" as follows:

¶

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <applications xmlns="urn:example:application">

 <application>

 <name>ftp</name>

 </application>

 <application>

 <name>tftp</name>

 </application>

 </applications>

 </config>

 </edit-config>

 </rpc>

¶

¶

Then following gives the configuration of applications in <running>

which is returned in the response to a follow-up <get-config>

operation, all the configuration of applications are explicitly

configured by the client:

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <acl xmlns="urn:example:acl">

 <acl_rule>

 <name>allow_access_to_ftp_tftp</name>

 <matches>

 <ipv4>

 <source_address>198.51.100.0/24</source_address>

 <destination_address>192.0.2.0/24</destination_address>

 </ipv4>

 <application>ftp</application>

 <application>tftp</application>

 <application>my-app-1</application>

 </matches>

 <packet_action>forward</packet_action>

 </acl_rule>

 </acl>

 </config>

 </edit-config>

 </rpc>

¶

¶

 <applications xmlns="urn:example:application">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>ftp</name>

 </application>

 <application>

 <name>tftp</name>

 </application>

 </applications>

¶

Then the configuration of applications is present in <operational>

as follows:

Since the application names "ftp" and "tftp" are explicitly

configured by the client, they take precedence as the value in

<system>, the "origin" attribute will be set to "intended".

4.5.3. Modifying a System-instantiated Leaf's Value

In this subsection, we will use this fictional QoS data model:

¶

 <applications xmlns="urn:example:application"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>ftp</name>

 <protocol or:origin="or:system">tcp</protocol>

 <destination-port or:origin="or:system">21</destination-port>

 </application>

 <application>

 <name>tftp</name>

 <protocol or:origin="or:system">udp</protocol>

 <destination-port or:origin="or:system">69</destination-port>

 </application>

 </applications>

¶

¶

¶

Suppose a client creates a qos policy "my-policy" with 4 system

instantiated queues(1~4). The Configuration of qos-policies is

present in <system> as follows:

 module example-qos-policy {

 yang-version 1.1;

 namespace "urn:example:qos";

 prefix "qos";

 container qos-policies {

 list policy {

 key "name";

 leaf name {

 type string;

 }

 list queue {

 key "queue-id";

 leaf queue-id {

 type int32 {

 range "1..32";

 }

 }

 leaf maximum-burst-size {

 type int32 {

 range "0..100";

 }

 }

 }

 }

 }

 }

¶

¶

A client modifies the value of maximum-burst-size to 55 in queue-id

1:

Then the configuration of qos-policies is present in <operational>

as follows:

 <qos-policies xmlns="urn:example:qos">

 <name>my-policy</name>

 <queue>

 <queue-id>1</queue-id>

 <maximum-burst-size>50</maximum-burst-size>

 </queue>

 <queue>

 <queue-id>2</queue-id>

 <maximum-burst-size>60</maximum-burst-size>

 </queue>

 <queue>

 <queue-id>3</queue-id>

 <maximum-burst-size>70</maximum-burst-size>

 </queue>

 <queue>

 <queue-id>4</queue-id>

 <maximum-burst-size>80</maximum-burst-size>

 </queue>

 </qos-policies>

¶

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <qos-policies xmlns="urn:example:qos">

 <name>my-policy</name>

 <queue>

 <queue-id>1</queue-id>

 <maximum-burst-size>55</maximum-burst-size>

 </queue>

 </qos-policies>

 </config>

 </edit-config>

 </rpc>

¶

¶

4.5.4. Configuring Descendant Nodes of a System-defined Node

This subsection also uses the fictional interface YANG module

defined in Appendix C.3 of [RFC8342]. Suppose the system provides a

loopback interface (named "lo0") with a default IPv4 address of

"127.0.0.1" and a default IPv6 address of "::1".

The configuration of "lo0" interface is present in <system> as

follows:

The configuration of "lo0" interface is present in <operational> as

follows:

 <qos-policies xmlns="urn:example:qos"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <name>my-policy</name>

 <queue>

 <queue-id>1</queue-id>

 <maximum-burst-size>55</maximum-burst-size>

 </queue>

 <queue or:origin="or:system">

 <queue-id>2</queue-id>

 <maximum-burst-size>60</maximum-burst-size>

 </queue>

 <queue or:origin="or:system">

 <queue-id>3</queue-id>

 <maximum-burst-size>70</maximum-burst-size>

 </queue>

 <queue or:origin="or:system">

 <queue-id>4</queue-id>

 <maximum-burst-size>80</maximum-burst-size>

 </queue>

 </qos-policies>

¶

¶

¶

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

Later on, the client further configures the description node of a

"lo0" interface as follows:

Then the configuration of interface "lo0" is present in

<operational> as follows:

5. The <system> Configuration Datastore

NMDA servers claiming to support this document MUST implement a

<system> configuration datastore, and they SHOULD also implement the

<intended> datastore.

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:system">

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interfaces>

 <interface>

 <name>lo0</name>

 <description>loopback</description>

 </interface>

 </interfaces>

 </config>

 </edit-config>

 </rpc>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <interface>

 <name>lo0</name>

 <description>loopback</description>

 <ip-address or:origin="or:system">127.0.0.1</ip-address>

 <ip-address or:origin="or:system">::1</ip-address>

 </interface>

 </interfaces>

¶

¶

Following guidelines for defining datastores in the appendix A of

[RFC8342], this document introduces a new datastore resource named

'system' that represents the system configuration. A device MAY

implement the mechanism defined in this document without

implementing the "system" datastore, which would only eliminate the

ability to programmatically determine the system configuration.

Name: "system"

YANG modules: all

YANG nodes: all "config true" data nodes up to the root of the

tree, generated by the system

Management operations: The content of the datastore is set by the

server in an implementation dependent manner. The content can not

be changed by management operations via NETCONF, RESTCONF, the

CLI, etc, but may change itself by upgrades and/or when resource-

conditions are met. The datastore can be read using the standard

NETCONF/RESTCONF protocol operations.

Origin: This document does not define any new origin identity

when it interacts with <intended> datastore and finally flows

into <operational>. The "system" origin Metadata Annotation

[RFC7952] is used to indicate the origin of a data item is

system.

Protocols: YANG-driven management protocols, such as NETCONF and

RESTCONF.

Defining YANG module: "ietf-system-datastore".

The datastore's content is populated by the server and read-only to

clients. Upon the content is created or changed, it will be merged

into <intended> datastore. Unlike <factory-default>[RFC8808], it MAY

change dynamically, e.g., depending on factors like during device

upgrade or system-controlled resources(e.g., HW available) and the

<system> datastore does not have to persist across reboots.

<factory-reset> RPC operation defined in [RFC8808] can reset it to

its factory default configuration without including configuration

generated due to the system update or client-enabled functionality.

6. The "ietf-system-datastore" Module

6.1. Data Model Overview

This YANG module defines a new YANG identity named "system" that

uses the "ds:datastore" identity defined in [RFC8342]. A client can

discover the <system> datastore support on the server by reading the

YANG library information from the operational state datastore. Note

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

that no new origin identity is defined in this document, the

"or:system" origin Metadata Annotation [RFC7952] is used to indicate

the origin of a data item is system. Support for the "origin"

annotation is identified with the feature "origin" defined in

[RFC8526].

The following diagram illustrates the relationship amongst the

"identity" statements defined in the "ietf-system-datastore" and

"ietf-datastores" YANG modules:

6.2. Example Usage

This section gives an example of data retrieval from <system>. The

YANG module used are shown in Appendix C.2 of [RFC8342]. All the

messages are presented in a protocol-independent manner. JSON is

used only for its conciseness.

Suppose the following data is added to <running>:

REQUEST (a <get-data> or GET request sent from the NETCONF or

RESTCONF client):

An example of RESTCONF request:

¶

¶

Identities:

 +--- datastore

 | +--- conventional

 | | +--- running

 | | +--- candidate

 | | +--- startup

 | | +--- system

 | | +--- intended

 | +--- dynamic

 | +--- operational

 The diagram above uses syntax that is similar to but not defined in [RFC8340].

¶

¶

¶

{

 "bgp": {

 "local-as": "64501",

 "peer-as": "64502",

 "peer": {

 "name": "2001:db8::2:3"

 }

 }

}

¶

¶

Datastore: <system>

Target:/bgp

¶

¶

RESPONSE ("local-port" leaf value is supplied by the system):

 GET /restconf/ds/system/bgp HTTP/1.1

 Host: example.com

 Accept: application/yang-data+xml

¶

¶

{

 "bgp": {

 "peer": {

 "name": "2001:db8::2:3",

 "local-port": "60794"

 }

 }

}

¶

6.3. YANG Module

<CODE BEGINS> file="ietf-system-datastore@2021-05-14.yang"

 module ietf-system-datastore {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";

 prefix sysds;

 import ietf-datastores {

 prefix ds;

 reference

 "RFC 8342: Network Management Datastore Architecture(NMDA)";

 }

 organization

 "IETF NETMDOD (Network Modeling) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Chong Feng

 <mailto:frank.fengchong@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>";

 description

 "This module defines a new YANG identity that uses the

 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2021 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2021-05-14 {

 description

 "Initial version.";

 reference

 "RFC XXXX: System-defined Configuration";

 }

 identity system {

 base ds:conventional;

 description

 "This read-only datastore contains the complete configuration

 provided by the system itself.";

 }

}

<CODE ENDS>

7. The "ietf-netconf-resolve-system" Module

This YANG module is optional to implement.

7.1. Data Model Overview

This YANG module augments NETCONF <edit-config> and <edit-data>

operations with a new parameter "resolve-system" in the input

parameters. If the "resolve-system" parameter is present, the server

will populate the referenced system configuration into target

datastore automatically. A NETCONF client can discover the "resolve-

system" parameter support on the server by checking the YANG library

information with "ietf-netconf-resolve-system" included from the

operational state datastore.

Comment: How does a RESTCONF client know if the RESTCONF server

implements the "resolve-system" parameter?

The following tree diagram [RFC8340] illustrates the "ietf-netconf-

resolve-system" module:

The following tree diagram [RFC8340] illustrates "edit-config" and

"edit-data" rpcs defined in "ietf-netconf" and "ietf-netconf-nmda"

¶

¶

¶

¶

¶

module: ietf-netconf-resolve-system

 augment /nc:edit-config/nc:input:

 +---w resolve-system? empty

 augment /ncds:edit-data/ncds:input:

 +---w resolve-system? empty

¶

respectively, augmented by "ietf-netconf-resolve-system" YANG module

:

7.2. Example Usage

This section gives an example of an <edit-config> request to

reference system-defined data nodes which are not present in

<running> with a "resolve-system" parameter. A retrieval of

<running> to show the auto-populated referenced system objects after

the <edit-config> request is also given. The YANG module used is

shown as follows, leafrefs refer to an existing name and address of

an interface:

¶

 rpcs:

 +---x edit-config

 | +---w input

 | +---w target

 | | +---w (config-target)

 | | +--:(candidate)

 | | | +---w candidate? empty {candidate}?

 | | +--:(running)

 | | +---w running? empty {writable-running}?

 | +---w default-operation? enumeration

 | +---w test-option? enumeration {validate}?

 | +---w error-option? enumeration

 | +---w (edit-content)

 | | +--:(config)

 | | | +---w config? <anyxml>

 | | +--:(url)

 | | +---w url? inet:uri {url}?

 | +---w resolve-system? empty

 +---x edit-data

 +---w input

 +---w datastore ds:datastore-ref

 +---w default-operation? enumeration

 +---w (edit-content)

 | +--:(config)

 | | +---w config? <anydata>

 | +--:(url)

 | +---w url? inet:uri {nc:url}?

 +---w resolve-system? empty

¶

¶

Image that the system provides a loopback interface (named "lo0")

with a predefined MTU value of "1500" and a predefined IP address of

"127.0.0.1". The <system> datastore shows the following

configuration of loopback interface:

 module example-interface-management {

 yang-version 1.1;

 namespace "urn:example:interfacemgmt";

 prefix "inm";

 container interfaces {

 list interface {

 key name;

 leaf name {

 type string;

 }

 leaf description {

 type string;

 }

 leaf mtu {

 type uint16;

 }

 leaf ip-address {

 type inet:ip-address;

 }

 }

 }

 container default-address {

 leaf ifname {

 type leafref {

 path "../../interfaces/interface/name";

 }

 }

 leaf address {

 type leafref {

 path "../../interfaces/interface[name = current()/../ifname]"

 + "/ip-address";

 }

 }

 }

 }

¶

¶

<interfaces xmlns="urn:example:interfacemgmt">

 <interface>

 <name>lo0</name>

 <mtu>1500</mtu>

 <ip-address>127.0.0.1</ip-address>

 </interface>

</interfaces>

¶

The client sends an <edit-config> operation to add the configuration

of default-address with a "resolve-system" parameter:

Since the "resolve-system" parameter is provided, the server will

resolve any leafrefs to system configurations and copy the

referenced system-defined nodes into <running> automatically with

the same value (i.e., the name and ip-address data nodes of lo0

interface) in <system> at the end of <edit-config> operation

constraint enforcement. After the processing, a positive resonse is

returned:

Then the client sends a <get-config> operation towards <running>:

Given that the referenced interface "name" and "ip-address" of lo0

are populated by the server, the following response is returned:

¶

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <default-address xmlns="urn:example:interfacemgmt">

 <if-name>lo0</if-name>

 <address>127.0.0.1</address>

 </default-address>

 </config>

 </edit-config>

 <resolve-system/>

</rpc>

¶

¶

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

</rpc-reply>

¶

¶

<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 <filter type="subtree">

 <interfaces xmlns="urn:example:interfacemgmt"/>

 </filter>

 </get-config>

</rpc>

¶

¶

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <data>

 <interfaces xmlns="urn:example:interfacemgmt">

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 </interface>

 </interfaces>

 </data>

</rpc-reply>

¶

7.3. YANG Module

<CODE BEGINS> file="ietf-netconf-resolve-system@2021-05-14.yang"

 module ietf-netconf-resolve-system {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system";

 prefix ncrs;

 import ietf-netconf {

 prefix nc;

 reference

 "RFC 6241: Network Configuration Protocol (NETCONF)";

 }

 import ietf-netconf-nmda {

 prefix ncds;

 reference

 "RFC 8526: NETCONF Extensions to Support the Network

 Management Datastore Architecture";

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Chong Feng

 <mailto:frank.fengchong@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>";

 description

 "This module defines an extension to the NETCONF protocol

 that allows the NETCONF client to control whether the server

 is allowed to populate referenced system configuration

 automatically without the client doing so explicitly.

 Copyright (c) 2021 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Simplified

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2021-05-14 {

 description

 "Initial version.";

 reference

 "RFC XXXX: System-defined Configuration";

 }

 augment /nc:edit-config/nc:input {

 description

 "Allows the server to automatically populate

 referenced system configuration to make configuration

 valid.";

 leaf resolve-system {

 type empty ;

 description

 "When present, the server is allowed to automatically

 populate referenced system configuration into <running>.";

 }

 }

 augment /ncds:edit-data/ncds:input {

 description

 "Allows the server to automatically populate

 referenced system configuration to make configuration

 valid.";

 leaf resolve-system {

 type empty ;

 description

 "When present, the server is allowed to automatically

 populate referenced system configuration into <running>.";

 }

 }

 }

<CODE ENDS>

¶

8. IANA Considerations

8.1. The "IETF XML" Registry

This document registers two XML namespace URNs in the 'IETF XML

registry', following the format defined in [RFC3688].

8.2. The "YANG Module Names" Registry

This document registers two module names in the 'YANG Module Names'

registry, defined in [RFC6020] .

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

The YANG module defined in this document extends the base operations

for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF users

to a preconfigured subset of all available NETCONF protocol

operations and content.

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

The YANG module defined in this document extends the base operations

for NETCONF [RFC6241] and [RFC8526]. The lowest NETCONF layer is the

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

¶

¶

 name: ietf-system-datastore

 prefix: sys

 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-netconf-resolve-system

 prefix: ncrs

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

¶

¶

¶

[RFC2119]

secure transport layer, and the mandatory-to-implement secure

transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer

is HTTPS, and the mandatory-to-implement secure transport is TLS

[RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF users

to a preconfigured subset of all available NETCONF protocol

operations and content.

The security considerations for the base NETCONF protocol operations

(see Section 9 of [RFC6241] apply to the new extended RPC operations

defined in this document.

10. Contributors

Acknowledgements

Thanks to Robert Wilton, Balazs Lengyel, Andy Bierman, Juergen

Schoenwaelder, Alex Clemm, Martin Bjorklund, Timothy Carey for

reviewing, and providing important input to, this document.

References

Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Informative References

¶

¶

¶

 Chongfeng Xie

 China Telecom

 Beijing

 China

 Email: xiechf@chinatelecom.cn

 Kent Watsen

 Watsen Networks

 Email: kent+ietf@watsen.net

 Jason Sterne

 Nokia

 Email: jason.sterne@nokia.com

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC6241]

[RFC7950]

[RFC8174]

[RFC8342]

[RFC8407]

[RFC8525]

[RFC8808]

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., and R. Wilton, "YANG Library", RFC 8525, DOI

10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>.

Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for

Factory Default Settings", RFC 8808, DOI 10.17487/

RFC8808, August 2020, <https://www.rfc-editor.org/info/

rfc8808>.

Appendix A. Key Use Cases

Following provides three use cases related to system-defined

configuration lifecycle management. The simple interface data model

defined in Appendix C.3 of [RFC8342] is used. For each use case,

snippets of <running>, <system>, <intended> and <operational> are

shown.

A.1. Device Powers On

<running>:

<system>:

¶

¶

No configuration for “lo0” appears in <running>;¶

¶

https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8808
https://www.rfc-editor.org/info/rfc8808

<intended>:

<operational>:

A.2. Client Commits Configuration

If a client creates an interface "et-0/0/0" but the interface does

not physically exist at this point:

<running>:

<system>:

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:system">

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

¶

 <interfaces>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 </interface>

 </interfaces>

¶

¶

<intended>:

<operational>:

A.3. Operator Installs Card into a Chassis

<running>:

<system>:

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 </interface>

 <interface>

 </interfaces>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <interface or:origin="or:system">

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 </interface>

 </interfaces>

¶

¶

<intended>:

<operational>:

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <mtu>1500</mtu>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 <mtu>1500</mtu>

 </interface>

 <interface>

 </interfaces>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <interface or:origin="or:system">

 <name or:origin>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 <mtu or:origin="or:system">1500</mtu>

 </interface>

 <interface>

 </interfaces>

¶

Appendix B. Changes between Revisions

v00 - v01

Remove the "with-system" parameter to retrieve <running> with

system configuration merged in.

Add a new parameter named "resolve-system" to allow the server to

populate referenced system configuration into <running>

automatically in order to make <running> valid.

Usage examples refinement.

v02 - v00

Restructure the document content based on input in the system

defined configuration interim meeting.

Updates NMDA to define a read-only conventional configuration

datastore called "system".

Retrieval of implicit hidden system configuration via <get><get-

config> with "with-system" parameter to support non-NMDA servers.

Provide system defined configuration classification.

Define Static Characteristics and dynamic behavior for system

defined configuration.

Separate "ietf-system-datastore" Module from "ietf-netconf-with-

system" Module.

Provide usage examples for dynamic behaviors.

Provide usage examples for two YANG modules.

Provide three use cases related to system-defined configuration

lifecycle management.

Classify the relation with <factory-default>.

Appendix C. Open Issues tracking

Immutable flag

How to support the "resolve-system" parameter for a RESTCONF

server?

Should the "with-origin" parameter be supported for <intended>?

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

Authors' Addresses

Qiufang Ma (editor)

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: maqiufang1@huawei.com

Feng Chong

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: frank.fengchong@huawei.com

Qin Wu

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: bill.wu@huawei.com

Jan Lindblad

Cisco Systems

Email: jlindbla@cisco.com

mailto:maqiufang1@huawei.com
mailto:frank.fengchong@huawei.com
mailto:bill.wu@huawei.com
mailto:jlindbla@cisco.com

	System-defined Configuration
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Requirements Language
	1.3. Updates to RFC 8342
	1.4. Updates to RFC 6241, RFC 8526
	1.5. Updates to RFC 8040

	2. Kinds of System Configuration
	2.1. Immediately-Active
	2.2. Conditionally-Active
	2.3. Inactive-Until-Referenced

	3. Static Characteristics
	3.1. Read-only to Clients
	3.2. May Change via Software Upgrades
	3.3. No Impact to <operational>

	4. Dynamic Behavior
	4.1. Conceptual Model
	4.2. Servers Auto-populating Referenced System Configuration
	4.3. Explicit Declaration of System Configuration
	4.4. Modifying (overriding) System Configuration
	4.5. Examples
	4.5.1. Server Populating of <running> Automatically
	4.5.2. Declaring a System-defined Node in <running> Explicitly
	4.5.3. Modifying a System-instantiated Leaf's Value
	4.5.4. Configuring Descendant Nodes of a System-defined Node

	5. The <system> Configuration Datastore
	6. The "ietf-system-datastore" Module
	6.1. Data Model Overview
	6.2. Example Usage
	6.3. YANG Module

	7. The "ietf-netconf-resolve-system" Module
	7.1. Data Model Overview
	7.2. Example Usage
	7.3. YANG Module

	8. IANA Considerations
	8.1. The "IETF XML" Registry
	8.2. The "YANG Module Names" Registry

	9. Security Considerations
	9.1. Regarding the "ietf-system-datastore" YANG Module
	9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

	10. Contributors
	Acknowledgements
	References
	Normative References
	Informative References

	Appendix A. Key Use Cases
	A.1. Device Powers On
	A.2. Client Commits Configuration
	A.3. Operator Installs Card into a Chassis

	Appendix B. Changes between Revisions
	Appendix C. Open Issues tracking
	Authors' Addresses

