
Workgroup: NETMOD

Internet-Draft: draft-ma-netmod-with-system-05

Updates: RFC8342, RFC6241, RFC8526, RFC8040

(if approved)

Published: 29 September 2022

Intended Status: Standards Track

Expires: 2 April 2023

Authors: Q. Ma, Ed.

Huawei

Q. Wu

Huawei

C. Feng

Huawei

System-defined Configuration

Abstract

This document updates NMDA to define a read-only conventional

configuration datastore called "system" to hold system-defined

configurations. To avoid clients' explicit copy/paste of referenced

system-defined configuration into the target configuration datastore

(e.g., <running>), a "resolve-system" parameter has been defined to

allow the server acting as a "system client" to copy referenced

system-defined nodes automatically. The solution enables clients

manipulating the target configuration datastore (e.g., <running>) to

overlay and reference nodes defined in <system>, override values of

configurations defined in <system>, and configure descendant nodes

of system-defined nodes.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 2 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfcRFC8342
https://www.rfc-editor.org/rfc/rfcRFC6241
https://www.rfc-editor.org/rfc/rfcRFC8526
https://www.rfc-editor.org/rfc/rfcRFC8040
https://datatracker.ietf.org/drafts/current/

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

1.2. Requirements Language

1.3. Updates to RFC 8342

1.4. Updates to RFC 6241, RFC 8526

1.5. Updates to RFC 8040

1.5.1. Query Parameter

1.5.2. Query Parameter URI

2. Kinds of System Configuration

2.1. Immediately-Active

2.2. Conditionally-Active

2.3. Inactive-Until-Referenced

3. Static Characteristics

3.1. Read-only to Clients

3.2. May Change via Software Upgrades

3.3. No Impact to <operational>

4. Dynamic Behavior

4.1. Conceptual Model

4.2. Explicit Declaration of System Configuration

4.3. Servers Auto-configuring Referenced System Configuration

4.4. Modifying (overriding) System Configuration

4.5. Examples

4.5.1. Server Configuring of <running> Automatically

4.5.2. Declaring a System-defined Node in <running> Explicitly

4.5.3. Modifying a System-instantiated Leaf's Value

4.5.4. Configuring Descendant Nodes of a System-defined Node

5. The <system> Configuration Datastore

6. The "ietf-system-datastore" Module

6.1. Data Model Overview

6.2. Example Usage

6.3. YANG Module

7. The "ietf-netconf-resolve-system" Module

7.1. Data Model Overview

7.2. Example Usage

7.3. YANG Module

8. IANA Considerations

8.1. The "IETF XML" Registry

8.2. The "YANG Module Names" Registry

8.3. RESTCONF Capability URN Registry

¶

https://trustee.ietf.org/license-info

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

10. Contributors

Acknowledgements

References

Normative References

Informative References

Appendix A. Key Use Cases

A.1. Device Powers On

A.2. Client Commits Configuration

A.3. Operator Installs Card into a Chassis

Appendix B. Changes between Revisions

Appendix C. Open Issues tracking

Authors' Addresses

1. Introduction

NMDA [RFC8342] defines system configuration as the configuration

that is supplied by the device itself and appears in <operational>

when it is in use.

However, there is a desire to enable a server to better document the

system configuration. Clients can benefit from a standard mechanism

to see what system configuration is available in a server.

In some cases, the client references a system configuration which

isn't present in the target datastore (e.g., <running>). Having to

copy the entire contents of the system configuration into the target

datastore should be avoided or reduced when possible while ensuring

that all referential integrity constraints are satisfied.

In some other cases, configuration of descendant nodes of system-

defined configuration needs to be supported. For example, the system

configuration contains an almost empty physical interface, while the

client needs to be able to add, modify, remove a number of

descendant nodes. Some descendant nodes may not be modifiable (e.g.,

"name" and "type" set by the system).

This document updates NMDA [RFC8342] to define a read-only

conventional configuration datastore called "system" to hold system-

defined configurations. To avoid clients' explicit copy/paste of

referenced system-defined configuration into the target

configuration datastore (e.g., <running>), a "resolve-system"

parameter has been defined to allow the server acting as a "system

client" to copy referenced system-defined nodes automatically. The

solution enables clients manipulating the target configuration

datastore (e.g., <running>) to overlay and reference nodes defined

¶

¶

¶

¶

System configuration:

System configuration datastore:

Conventional configuration datastore:

in <system>, override values of configurations defined in <system>,

and configure descendant nodes of system-defined nodes.

Conformance to this document requires servers to implement the

"ietf-system-datastore" YANG module.

1.1. Terminology

This document assumes that the reader is familiar with the contents

of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and

uses terminologies from those documents.

The following terms are defined in this document as follows:

Configuration that is provided by the system

itself. System configuration is present in <system> once it's

created (regardless of being applied by the device), and appears

in <intended> which is subject to validation. Applied system

configuration also appears in <operational> with origin="system".

A configuration datastore holding

the complete configuration provided by the system itself. This

datastore is referred to as "<system>".

This document redefines the term "conventional configuration

datastore" from RFC 8342 to add "system" to the list of conventional

configuration datastores:

One of the following set of

configuration datastores: <running>, <startup>, <candidate>,

<system>, and <intended>. These datastores share a common

datastore schema, and protocol operations allow copying data

between these datastores. The term "conventional" is chosen as a

generic umbrella term for these datastores.

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.3. Updates to RFC 8342

This document updates RFC 8342 to define a configuration datastore

called "system" to hold system configuration, it also redefines the

term "conventional configuration datastore" from RFC 8342 to add

"system" to the list of conventional configuration datastores. The

contents of <system> datastore are read-only to clients but may

¶

¶

¶

¶

¶

¶

¶

¶

¶

change dynamically. The <system> aware client may retrieve all three

types of system configuration defined in Section 2, reference nodes

defined in <system>, override values of configurations defined in

<system>, and configure descendant nodes of system-defined nodes.

The server will merge <running> and <system> to create <intended>.

As always, system configuration will appear in <operational> with

origin="system" when it is in use.

The <system> datastore makes system configuration visible to clients

in order for being referenced or configurable prior to present in

<operational>.

1.4. Updates to RFC 6241, RFC 8526

This document augments <edit-config> and <edit-data> RPC operations

defined in [RFC6241] and [RFC8526] respectively, with a new

additional input parameter "resolve-system". The <copy-config> RPC

operation defined in [RFC6241] is also augmented to support

"resolve-system" parameter.

The "resolve-system" parameter is optional and has no value. When it

is provided and the server detects that there is a reference to a

system-defined node during the validation, the server will

automatically copy the referenced system configuration into the

validated datastore to make the configuration valid without the

client doing so explicitly. Legacy Clients interacting with servers

that support this parameter don't see any changes in <edit-config>/

<edit-data> and <copy-config> behaviors.

According to the NETCONF constraint enforcement model defined in the

section 8.3 of [RFC7950], if the target datastore of the <edit-

config>/<edit-data> or <copy-config> is "running" or "startup", the

server's copy referenced nodes from <system> to the target datastore

MUST be enforced at the end of the <edit-config>/<edit-data> or

<copy-config> operations during the validation. If the target

datastore of the <edit-config>/<edit-data> or <copy-config> is

"candidate", the server's copy referenced nodes from <system> to the

target datastore is delayed until a <commit> or <validate> operation

takes place.

1.5. Updates to RFC 8040

This document extends Section 4.8 and Section 9.1.1 of [RFC8040] to

add a new query parameter "resolve-system" and corresponding query

parameter capability URI.

¶

¶

¶

¶

¶

¶

¶

1.5.1. Query Parameter

The "resolve-system" parameter controls whether to allow a server

copy any referenced system-defined configuration automatically

without the client doing so explicitly. This parameter is only

allowed with no values carried. If this parameter has any unexpected

value, then a "400 Bad Request" status-line is returned.

1.5.2. Query Parameter URI

To enable the RESTCONF client to discover if the "resolve-system"

query parameter is supported by the server, the following capability

URI is defined, which is advertised by the server if supported,

using the "ietf-restconf-monitoring" module defined in RFC 8040:

2. Kinds of System Configuration

There are three types of system configurations: immediately-active

system configuration, conditionally-active system configuration and

inactive-until-referenced system configuration.

2.1. Immediately-Active

Immediately-active system configurations are those generated in

<system> and applied immediately when the device is powered on

(e.g., a loop-back interface) , irrespective of physical resource

present or not, a special functionality enabled or not.

2.2. Conditionally-Active

System configurations which are generated in <system> and applied

based on specific conditions being met in a system, e.g., if a

physical resource is present (e.g., insert interface card), the

system will automatically detect it and load pre-provisioned

configuration; when the physical resource is not present(remove

interface card), the system configuration will be automatically

cleared. Another example is when a special functionality is enabled,

¶

+----------------+---------+---+

| Name | Methods | Description |

+----------------+---------+---+

|resolve-system | POST, | resolve any references not resolved by |

| | PUT | the client and copy referenced |

| | | system configuration into <running> |

| | | automatically. This parameter can be |

| | | given in any order. |

+----------------+---------+---+

¶

¶

urn:ietf:params:restconf:capability:resolve-system:1.0¶

¶

¶

e.g., when QoS function is enabled, QoS policies are automatically

created by the system.

2.3. Inactive-Until-Referenced

There are some system configurations predefined (e.g., application

ids, anti-x signatures, trust anchor certs, etc.) as a convenience

for the clients, which must be referenced to be active. The clients

can also define their own configurations for their unique

requirements. Inactive-until-referenced system configurations are

generated in <system> immediately when the device is powered on, but

they are not applied and active until being referenced.

3. Static Characteristics

3.1. Read-only to Clients

The <system> configuration datastore is a read-only configuration

datastore (i.e., edits towards <system> directly MUST be denied),

though the client may be allowed to override the value of a system-

initialized data node (see Section 4.4). Configuration defined in

<system> is merged into <intended>, and present in <operational> if

it is actively in use by the device. Thus unless the resource is no

longer available (e.g., the interface removed physically), there is

no way to actually delete system configuration from a server, even

if a client may be allowed to delete the configuration copied from

<system> into <running>. Any deletable system-provided configuration

must be defined in <factory-default> [RFC8808], which is used to

initialize <running> when the device is first-time powered on or

reset to its factory default condition.

3.2. May Change via Software Upgrades

System configuration MAY change dynamically, e.g., depending on

factors like device upgrade or if system-controlled resources(e.g.,

HW available) change. In some implementations, when QoS function is

enabled, QoS-related policies are created by system. If the system

configuration gets changed, YANG notification (e.g., "push-change-

update" notification) [RFC8641][RFC8639][RFC6470] can be used to

notify the client. Any update of the contents in <system> will not

cause the automatic update of <running>, even if some of the system

configuration has already been copied into <running> explicitly or

automatically before the update.

3.3. No Impact to <operational>

This work intends to have no impact to <operational>. As always,

system configuration will appear in <operational> with

"origin=system". This work enables a subset of those system

generated nodes to be defined like configuration, i.e., made visible

¶

¶

¶

¶

to clients in order for being referenced or configurable prior to

present in <operational>. "Config false" nodes are out of scope,

hence existing "config false" nodes are not impacted by this work.

4. Dynamic Behavior

4.1. Conceptual Model

This document introduces a mandatory datastore named "system" which

is used to hold all three types of system configurations defined in

Section 2.

When the device is powered on, immediately-active system

configuration will be generated in <system> and applied immediately

but inactive-until-referenced system configuration only becomes

active if it is referenced by client-defined configuration. While

conditionally-active system configuration will be created and

immediately applied if the condition on system resources is met when

the device is powered on or running.

All above three types of system configurations will appear in

<system>. Clients MAY reference nodes defined in <system>, override

values of configurations defined in <system>, and configure

descendant nodes of system-defined nodes, by copying or writing

intended configurations into the target configuration datastore

(e.g., <running>).

The server will merge <running> and <system> to create <intended>,

in which process, the data node appears in <running> takes

precedence over the same node in <system> if the server allows the

node to be modifiable; additional nodes to a list entry or new list/

leaf-list entries appear in <running> extends the list entry or the

whole list/leaf-list defined in <system> if the server allows the

list/leaf-list to be updated. In addition, the <intended>

configuration datastore represents the configuration after all

configuration transformation to <system> are performed (e.g.,

system-defined template expansion, removal of inactive system

configuration). If a server implements <intended>, <system> MUST be

merged into <intended>.

Servers MUST enforce that configuration references in <running> are

resolved within the <running> datastore and ensure that <running>

contains any referenced system configuration. Clients MUST either

explicitly copy system-defined nodes into <running> or use the

"resolve-system" parameter. The server MUST enforce that the

referenced system nodes configured into <running> by the client is

consistent with <system>. Note that <system> aware clients know how

to discover what nodes exist in <system>. How clients unaware of the

¶

¶

¶

¶

¶

<system> datastore can find appropriate configurations is beyond the

scope of this document.

No matter how the referenced system configurations are copied into

<running>, the nodes copied into <running> would always be returned

after a read of <running>, regardless if the client is <system>

aware.

4.2. Explicit Declaration of System Configuration

It is possible for a client to explicitly declare system

configuration nodes in the target datastore (e.g., <running>) with

the same values as in <system>, by configuring a node (list/leaf-

list entry, leaf, etc) in the target datastore (e.g., <running>)

that matches the same node and value in <system>.

This explicit configuration of system-defined nodes in <running> can

be useful, for example, when the client doesn't want a "system

client" to have a role or hasn't implemented the "resolve-system"

parameter. The client can explicitly declare (i.e. configure in

<running>) the list entries (with at least the keys) for any system

configuration list entries that are referenced elsewhere in

<running>. The client does not necessarily need to declare all the

contents of the list entry (i.e. the descendant nodes) - only the

parts that are required to make the <running> appear valid.

4.3. Servers Auto-configuring Referenced System Configuration

This document defines a new parameter "resolve-system" to the input

for the <edit-config>, <edit-data> and <copy-config> operations.

Clients that are aware of the "resolve-system" parameter MAY use

this parameter to avoid the requirement to provide a referentially

complete configuration in <running>.

If the "resolve-system" is present, the server MUST copy relevant

referenced system-defined nodes into the target datastore (e.g.,

<running>) without the client doing the copy/paste explicitly, to

resolve any references not resolved by the client. The server acting

as a "system client" like any other remote clients copies the

referenced system-defined nodes when triggered by the "resolve-

system" parameter.

If the "resolve-system" parameter is not given by the client, the

server should not modify <running> in any way otherwise not

specified by the client. Not using capitalized "SHOULD NOT" in the

previous sentence is intentional. The intention is bring awareness

to the general need to not surprise clients with unexpected changes.

It is desirable for clients to always opt into using mechanisms

having server-side changes. This document enables a client to opt

into this behavior using the "resolve-system" parameter. RFC 7317

¶

¶

¶

¶

¶

¶

enables a client to opt into its behavior using a "0" prefix (see

ianach:crypt-hash type defined in [RFC7317]).

The server may automatically configure the list entries (with at

least the keys) in the target datastore (e.g., <running>) for any

system configuration list entries that are referenced elsewhere by

the clients. Similarly, not all the contents of the list entry

(i.e., the descendant nodes) are necessarily copied by the server -

only the parts that are required to make the <running> valid. A read

back of <running> (i.e., <get>, <get-config> or <get-data>

operation) returns those automatically copied nodes.

4.4. Modifying (overriding) System Configuration

In some cases, a server may allow some parts of system configuration

to be modified. List keys in system configuration can't be changed

by a client, but other descendant nodes in a list entry may be

modifiable or non-modifiable. Leafs and leaf-lists outside of lists

may also be modifiable or non-modifiable. Even if some system

configuration has been copied into <running> earlier, whether it is

modifiable or not in <running> follows general YANG and NACM rules,

and other server-internal restrictions. If a system configuration

node is non-modifiable, then writing a different value for that node

in <running> MUST return an error. The immutability of system

configuration is further defined in [I-D.ma-netmod-immutable-flag].

Modification of system configuration is achieved by the client

writing configuration to <running> that overrides the system

configuration. Configurations defined in <running> take precedence

over system configuration nodes in <system> if the server allows the

nodes to be modified.

A server may also allow a client to add data nodes to a list entry

in <system> by writing those additional nodes in <running>. Those

additional data nodes may not exist in <system> (i.e. an *addition*

rather than an override).

While modifying (overriding) system configuration nodes may be

supported by a server, there is no mechanism for deleting a system

configuration node in <system> unless the resource is no longer

available. For example, a "mandatory true" leaf may have a value in

<system> which can be modified (overridden) by a client setting that

leaf to a value in <running>. But the leaf could not be deleted.

Another example of this might be that system initializes a value for

a particular leaf which is overridden by the client with intended

value in <running>. The client may delete the leaf in <running>, but

system-initialized value defined in <system> will be in use and

appear in <operational>.

¶

¶

¶

¶

¶

¶

Comment 1: What if <system> contains a set of values for a leaf-

list, and a client configures another set of values for that leaf-

list in <running>, will the set of values in <running> completely

replace the set of values in <system>? Or the two sets of values are

merged together?

Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do

the <running> values go before or after, or is this a case where a

full-replace is needed.

4.5. Examples

This section shows the examples of server-configuring of <running>

automatically, declaring a system-defined node in <running>

explicitly, modifying a system-instantiated leaf's value and

configuring descendant nodes of a system-defined node. For each

example, the corresponding XML snippets are provided.

4.5.1. Server Configuring of <running> Automatically

In this subsection, the following fictional module is used:

¶

¶

¶

¶

 module example-application {

 yang-version 1.1;

 namespace "urn:example:application";

 prefix "app";

 import ietf-inet-types {

 prefix "inet";

 }

 container applications {

 list application {

 key "name";

 leaf name {

 type string;

 }

 leaf protocol {

 type enumeration {

 enum tcp;

 enum udp;

 }

 }

 leaf destination-port {

 type inet:port-number;

 }

 }

 }

 }

¶

The server may predefine some applications as a convenience for the

clients. These predefined configurations are applied only after

being referenced by other configurations, which fall into the

"inactive-until-referenced" system configuration as defined in

Section 2. The system-instantiated application entries may be

present in <system> as follows:

The client may also define its customized applications. Suppose the

configuration of applications is present in <running> as follows:

A fictional ACL YANG module is used as follows, which defines a

leafref for the leaf-list "application" data node to refer to an

existing application name.

¶

 <applications xmlns="urn:example:application">

 <application>

 <name>ftp</name>

 <protocol>tcp</protocol>

 <destination-port>21</destination-port>

 </application>

 <application>

 <name>tftp</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>smtp</name>

 <protocol>tcp</protocol>

 <destination-port>25</destination-port>

 </application>

 ...

 </applications>

¶

¶

 <applications xmlns="urn:example:application">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 </applications>

¶

¶

 module example-acl {

 yang-version 1.1;

 namespace "urn:example:acl";

 prefix "acl";

 import example-application {

 prefix "app";

 }

 import ietf-inet-types {

 prefix "inet";

 }

 container acl {

 list acl_rule {

 key "name";

 leaf name {

 type string;

 }

 container matches {

 choice l3 {

 container ipv4 {

 leaf source_address {

 type inet:ipv4-prefix;

 }

 leaf dest_address {

 type inet:ipv4-prefix;

 }

 }

 }

 choice applications {

 leaf-list application {

 type leafref {

 path "/app:applications/app:application/app:name";

 }

 }

 }

 }

 leaf packet_action {

 type enumeration {

 enum forward;

 enum drop;

 enum redirect;

 }

 }

 }

 }

 }

¶

If a client configures an ACL rule referencing system predefined

nodes which are not present in <running>, the client MAY issue an

<edit-config> operation with the parameter "resolve-system" as

follows:

Then following gives the configuration of applications in <running>

which is returned in the response to a follow-up <get-config>

operation:

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <acl xmlns="urn:example:acl">

 <acl_rule>

 <name>allow_access_to_ftp_tftp</name>

 <matches>

 <ipv4>

 <source_address>198.51.100.0/24</source_address>

 <dest_address>192.0.2.0/24</dest_address>

 </ipv4>

 <application>ftp</application>

 <application>tftp</application>

 <application>my-app-1</application>

 </matches>

 <packet_action>forward</packet_action>

 </acl_rule>

 </acl>

 </config>

 <resolve-system/>

 </edit-config>

 </rpc>

¶

¶

Then the configuration of applications is present in <operational>

as follows:

 <applications xmlns="urn:example:application">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>ftp</name>

 </application>

 <application>

 <name>tftp</name>

 </application>

 </applications>

¶

¶

 <applications xmlns="urn:example:application"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application or:origin="or:system">

 <name>ftp</name>

 <protocol>tcp</protocol>

 <destination-port>21</destination-port>

 </application>

 <application or:origin="or:system">

 <name>tftp</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 </applications>

¶

Since the configuration of application "smtp" is not referenced by

the client, it does not appear in <operational> but only in

<system>.

4.5.2. Declaring a System-defined Node in <running> Explicitly

It's also possible for a client to explicitly declare the system-

defined configurations that are referenced. For instance, in the

above example, the client MAY also explicitly configure the

following system defined applications "ftp" and "tftp" only with the

list key "name" before referencing:

Then the client issues an <edit-config> operation to configure an

ACL rule referencing applications "ftp" and "tftp" without the

parameter "resolve-system" as follows:

¶

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <applications xmlns="urn:example:application">

 <application>

 <name>ftp</name>

 </application>

 <application>

 <name>tftp</name>

 </application>

 </applications>

 </config>

 </edit-config>

 </rpc>

¶

¶

Then following gives the configuration of applications in <running>

which is returned in the response to a follow-up <get-config>

operation, all the configuration of applications are explicitly

configured by the client:

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <acl xmlns="urn:example:acl">

 <acl_rule>

 <name>allow_access_to_ftp_tftp</name>

 <matches>

 <ipv4>

 <source_address>198.51.100.0/24</source_address>

 <dest_address>192.0.2.0/24</dest_address>

 </ipv4>

 <application>ftp</application>

 <application>tftp</application>

 <application>my-app-1</application>

 </matches>

 <packet_action>forward</packet_action>

 </acl_rule>

 </acl>

 </config>

 </edit-config>

 </rpc>

¶

¶

 <applications xmlns="urn:example:application">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>ftp</name>

 </application>

 <application>

 <name>tftp</name>

 </application>

 </applications>

¶

Then the configuration of applications is present in <operational>

as follows:

Since the application names "ftp" and "tftp" are explicitly

configured by the client, they take precedence over the values in

<system>, the "origin" attribute will be set to "intended".

4.5.3. Modifying a System-instantiated Leaf's Value

In this subsection, we will use this fictional QoS data model:

¶

 <applications xmlns="urn:example:application"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <application>

 <name>my-app-1</name>

 <protocol>tcp</protocol>

 <destination-port>2345</destination-port>

 </application>

 <application>

 <name>my-app-2</name>

 <protocol>udp</protocol>

 <destination-port>69</destination-port>

 </application>

 <application>

 <name>ftp</name>

 <protocol or:origin="or:system">tcp</protocol>

 <destination-port or:origin="or:system">21</destination-port>

 </application>

 <application>

 <name>tftp</name>

 <protocol or:origin="or:system">udp</protocol>

 <destination-port or:origin="or:system">69</destination-port>

 </application>

 </applications>

¶

¶

¶

Suppose a client creates a qos policy "my-policy" with 4 system

instantiated queues(1~4). The Configuration of qos-policies is

present in <system> as follows:

 module example-qos-policy {

 yang-version 1.1;

 namespace "urn:example:qos";

 prefix "qos";

 container qos-policies {

 list policy {

 key "name";

 leaf name {

 type string;

 }

 list queue {

 key "queue-id";

 leaf queue-id {

 type int32 {

 range "1..32";

 }

 }

 leaf maximum-burst-size {

 type int32 {

 range "0..100";

 }

 }

 }

 }

 }

 }

¶

¶

A client modifies the value of maximum-burst-size to 55 in queue-id

1:

Then the configuration of qos-policies is present in <operational>

as follows:

 <qos-policies xmlns="urn:example:qos">

 <name>my-policy</name>

 <queue>

 <queue-id>1</queue-id>

 <maximum-burst-size>50</maximum-burst-size>

 </queue>

 <queue>

 <queue-id>2</queue-id>

 <maximum-burst-size>60</maximum-burst-size>

 </queue>

 <queue>

 <queue-id>3</queue-id>

 <maximum-burst-size>70</maximum-burst-size>

 </queue>

 <queue>

 <queue-id>4</queue-id>

 <maximum-burst-size>80</maximum-burst-size>

 </queue>

 </qos-policies>

¶

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <qos-policies xmlns="urn:example:qos">

 <name>my-policy</name>

 <queue>

 <queue-id>1</queue-id>

 <maximum-burst-size>55</maximum-burst-size>

 </queue>

 </qos-policies>

 </config>

 </edit-config>

 </rpc>

¶

¶

4.5.4. Configuring Descendant Nodes of a System-defined Node

This subsection also uses the fictional interface YANG module

defined in Appendix C.3 of [RFC8342]. Suppose the system provides a

loopback interface (named "lo0") with a default IPv4 address of

"127.0.0.1" and a default IPv6 address of "::1".

The configuration of "lo0" interface is present in <system> as

follows:

The configuration of "lo0" interface is present in <operational> as

follows:

 <qos-policies xmlns="urn:example:qos"

 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <name>my-policy</name>

 <queue>

 <queue-id>1</queue-id>

 <maximum-burst-size>55</maximum-burst-size>

 </queue>

 <queue or:origin="or:system">

 <queue-id>2</queue-id>

 <maximum-burst-size>60</maximum-burst-size>

 </queue>

 <queue or:origin="or:system">

 <queue-id>3</queue-id>

 <maximum-burst-size>70</maximum-burst-size>

 </queue>

 <queue or:origin="or:system">

 <queue-id>4</queue-id>

 <maximum-burst-size>80</maximum-burst-size>

 </queue>

 </qos-policies>

¶

¶

¶

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

Later on, the client further configures the description node of a

"lo0" interface as follows:

Then the configuration of interface "lo0" is present in

<operational> as follows:

5. The <system> Configuration Datastore

NMDA servers claiming to support this document MUST implement a

<system> configuration datastore, and they SHOULD also implement the

<intended> datastore.

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:system">

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interfaces>

 <interface>

 <name>lo0</name>

 <description>loopback</description>

 </interface>

 </interfaces>

 </config>

 </edit-config>

 </rpc>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <interface>

 <name>lo0</name>

 <description>loopback</description>

 <ip-address or:origin="or:system">127.0.0.1</ip-address>

 <ip-address or:origin="or:system">::1</ip-address>

 </interface>

 </interfaces>

¶

¶

Following guidelines for defining datastores in the appendix A of

[RFC8342], this document introduces a new datastore resource named

'system' that represents the system configuration. A device MAY

implement the mechanism defined in this document without

implementing the "system" datastore, which would only eliminate the

ability to programmatically determine the system configuration.

Name: "system"

YANG modules: all

YANG nodes: all "config true" data nodes up to the root of the

tree, generated by the system

Management operations: The content of the datastore is set by the

server in an implementation dependent manner. The content can not

be changed by management operations via NETCONF, RESTCONF, the

CLI, etc, but may change itself by upgrades and/or when resource-

conditions are met. The datastore can be read using the standard

NETCONF/RESTCONF protocol operations.

Origin: This document does not define any new origin identity

when it interacts with <intended> datastore and flows into

<operational>. The "system" origin Metadata Annotation [RFC7952]

is used to indicate the origin of a data item is system.

Protocols: YANG-driven management protocols, such as NETCONF and

RESTCONF.

Defining YANG module: "ietf-system-datastore".

The datastore's content is defined by the server and read-only to

clients. Upon the content is created or changed, it will be merged

into <intended> datastore. Unlike <factory-default>[RFC8808], it MAY

change dynamically, e.g., depending on factors like device upgrade

or system-controlled resources change (e.g., HW available). The

<system> datastore doesn't persist across reboots; the contents of

<system> will be lost upon reboot and recreated by the system with

the same or changed contents. <factory-reset> RPC operation defined

in [RFC8808] can reset it to its factory default configuration

without including configuration generated due to the system update

or client-enabled functionality.

The <system> datastore is defined as a conventional configuration

datastore and shares a common datastore schema with other

conventional datastores. The <system> configuration datastore must

always be valid, as defined in Section 8.1 of [RFC7950].

¶

* ¶

* ¶

*

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

6. The "ietf-system-datastore" Module

6.1. Data Model Overview

This YANG module defines a new YANG identity named "system" that

uses the "ds:datastore" identity defined in [RFC8342]. A client can

discover the <system> datastore support on the server by reading the

YANG library information from the operational state datastore. Note

that no new origin identity is defined in this document, the

"or:system" origin Metadata Annotation [RFC7952] is used to indicate

the origin of a data item is system. Support for the "origin"

annotation is identified with the feature "origin" defined in

[RFC8526].

The following diagram illustrates the relationship amongst the

"identity" statements defined in the "ietf-system-datastore" and

"ietf-datastores" YANG modules:

6.2. Example Usage

This section gives an example of data retrieval from <system>. The

YANG module used are shown in Appendix C.2 of [RFC8342]. All the

messages are presented in a protocol-independent manner. JSON is

used only for its conciseness.

Suppose the following data is added to <running>:

¶

¶

Identities:

 +--- datastore

 | +--- conventional

 | | +--- running

 | | +--- candidate

 | | +--- startup

 | | +--- system

 | | +--- intended

 | +--- dynamic

 | +--- operational

 The diagram above uses syntax that is similar to but not defined in [RFC8340].

¶

¶

¶

{

 "bgp": {

 "local-as": "64501",

 "peer-as": "64502",

 "peer": {

 "name": "2001:db8::2:3"

 }

 }

}

¶

REQUEST (a <get-data> or GET request sent from the NETCONF or

RESTCONF client):

An example of RESTCONF request:

RESPONSE ("local-port" leaf value is supplied by the system):

¶

Datastore: <system>

Target:/bgp

¶

¶

 GET /restconf/ds/system/bgp HTTP/1.1

 Host: example.com

 Accept: application/yang-data+xml

¶

¶

{

 "bgp": {

 "peer": {

 "name": "2001:db8::2:3",

 "local-port": "60794"

 }

 }

}

¶

6.3. YANG Module

<CODE BEGINS> file="ietf-system-datastore@2022-08-09.yang"

 module ietf-system-datastore {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";

 prefix sysds;

 import ietf-datastores {

 prefix ds;

 reference

 "RFC 8342: Network Management Datastore Architecture(NMDA)";

 }

 organization

 "IETF NETMDOD (Network Modeling) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Chong Feng

 <mailto:frank.fengchong@huawei.com>";

 description

 "This module defines a new YANG identity that uses the

 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-08-09 {

 description

 "Initial version.";

 reference

 "RFC XXXX: System-defined Configuration";

 }

 identity system {

 base ds:conventional;

 description

 "This read-only datastore contains the complete configuration

 provided by the system itself.";

 }

}

<CODE ENDS>

7. The "ietf-netconf-resolve-system" Module

This YANG module is optional to implement.

7.1. Data Model Overview

This YANG module augments NETCONF <edit-config>, <edit-data> and

<copy-config> operations with a new parameter "resolve-system" in

the input parameters. If the "resolve-system" parameter is present,

the server will copy the referenced system configuration into target

datastore automatically. A NETCONF client can discover the "resolve-

system" parameter support on the server by checking the YANG library

information with "ietf-netconf-resolve-system" included from the

operational state datastore.

The following tree diagram [RFC8340] illustrates the "ietf-netconf-

resolve-system" module:

The following tree diagram [RFC8340] illustrates "edit-config",

"copy-config" and "edit-data" rpcs defined in "ietf-netconf" and

"ietf-netconf-nmda" respectively, augmented by "ietf-netconf-

resolve-system" YANG module :

¶

¶

¶

¶

module: ietf-netconf-resolve-system

 augment /nc:edit-config/nc:input:

 +---w resolve-system? empty

 augment /nc:copy-config/nc:input:

 +---w resolve-system? empty

 augment /ncds:edit-data/ncds:input:

 +---w resolve-system? empty

¶

¶

 rpcs:

 +---x edit-config

 | +---w input

 | +---w target

 | | +---w (config-target)

 | | +--:(candidate)

 | | | +---w candidate? empty {candidate}?

 | | +--:(running)

 | | +---w running? empty {writable-running}?

 | +---w default-operation? enumeration

 | +---w test-option? enumeration {validate}?

 | +---w error-option? enumeration

 | +---w (edit-content)

 | | +--:(config)

 | | | +---w config? <anyxml>

 | | +--:(url)

 | | +---w url? inet:uri {url}?

 | +---w resolve-system? empty

 +---x copy-config

 | +---w input

 | +---w target

 | | +---w (config-target)

 | | +--:(candidate)

 | | | +---w candidate? empty {candidate}?

 | | +--:(running)

 | | | +---w running? empty {writable-running}?

 | | +--:(startup)

 | | | +---w startup? empty {startup}?

 | | +--:(url)

 | | +---w url? inet:uri {url}?

 | +---w source

 | | +---w (config-source)

 | | +--:(candidate)

 | | | +---w candidate? empty {candidate}?

 | | +--:(running)

 | | | +---w running? empty

 | | +--:(startup)

 | | | +---w startup? empty {startup}?

 | | +--:(url)

 | | | +---w url? inet:uri {url}?

 | | +--:(config)

 | | +---w config? <anyxml>

 | +---w resolve-system? empty

 +---x edit-data

 +---w input

 +---w datastore ds:datastore-ref

 +---w default-operation? enumeration

 +---w (edit-content)

 | +--:(config)

 | | +---w config? <anydata>

 | +--:(url)

 | +---w url? inet:uri {nc:url}?

 +---w resolve-system? empty

¶

7.2. Example Usage

This section gives an example of an <edit-config> request to

reference system-defined data nodes which are not present in

<running> with a "resolve-system" parameter. A retrieval of

<running> to show the auto-copied referenced system configurations

after the <edit-config> request is also given. The YANG module used

is shown as follows, leafrefs refer to an existing name and address

of an interface:

Image that the system provides a loopback interface (named "lo0")

with a predefined MTU value of "1500" and a predefined IP address of

¶

 module example-interface-management {

 yang-version 1.1;

 namespace "urn:example:interfacemgmt";

 prefix "inm";

 container interfaces {

 list interface {

 key name;

 leaf name {

 type string;

 }

 leaf description {

 type string;

 }

 leaf mtu {

 type uint16;

 }

 leaf ip-address {

 type inet:ip-address;

 }

 }

 }

 container default-address {

 leaf ifname {

 type leafref {

 path "../../interfaces/interface/name";

 }

 }

 leaf address {

 type leafref {

 path "../../interfaces/interface[name = current()/../ifname]"

 + "/ip-address";

 }

 }

 }

 }

¶

"127.0.0.1". The <system> datastore shows the following

configuration of loopback interface:

The client sends an <edit-config> operation to add the configuration

of default-address with a "resolve-system" parameter:

Since the "resolve-system" parameter is provided, the server will

resolve any leafrefs to system configurations and copy the

referenced system-defined nodes into <running> automatically with

the same value (i.e., the name and ip-address data nodes of lo0

interface) in <system> at the end of <edit-config> operation

constraint enforcement. After the processing, a positive resonse is

returned:

Then the client sends a <get-config> operation towards <running>:

¶

<interfaces xmlns="urn:example:interfacemgmt">

 <interface>

 <name>lo0</name>

 <mtu>1500</mtu>

 <ip-address>127.0.0.1</ip-address>

 </interface>

</interfaces>

¶

¶

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <default-address xmlns="urn:example:interfacemgmt">

 <if-name>lo0</if-name>

 <address>127.0.0.1</address>

 </default-address>

 </config>

 <resolve-system/>

 </edit-config>

</rpc>

¶

¶

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

</rpc-reply>

¶

¶

Given that the referenced interface "name" and "ip-address" of lo0

are configured by the server, the following response is returned:

<rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <get-config>

 <source>

 <running/>

 </source>

 <filter type="subtree">

 <interfaces xmlns="urn:example:interfacemgmt"/>

 </filter>

 </get-config>

</rpc>

¶

¶

<rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <data>

 <interfaces xmlns="urn:example:interfacemgmt">

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 </interface>

 </interfaces>

 </data>

</rpc-reply>

¶

7.3. YANG Module

<CODE BEGINS> file="ietf-netconf-resolve-system@2022-08-09.yang"

 module ietf-netconf-resolve-system {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system";

 prefix ncrs;

 import ietf-netconf {

 prefix nc;

 reference

 "RFC 6241: Network Configuration Protocol (NETCONF)";

 }

 import ietf-netconf-nmda {

 prefix ncds;

 reference

 "RFC 8526: NETCONF Extensions to Support the Network

 Management Datastore Architecture";

 }

 organization

 "IETF NETMOD (Network Modeling) Working Group";

 contact

 "WG Web: <http://tools.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Chong Feng

 <mailto:frank.fengchong@huawei.com>";

 description

 "This module defines an extension to the NETCONF protocol

 that allows the NETCONF client to control whether the server

 is allowed to copy referenced system configuration

 automatically without the client doing so explicitly.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust's

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',

 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-08-09 {

 description

 "Initial version.";

 reference

 "RFC XXXX: System-defined Configuration";

 }

 augment /nc:edit-config/nc:input {

 description

 "Allows the server to automatically configure

 referenced system configuration to make configuration

 valid.";

 leaf resolve-system {

 type empty ;

 description

 "When present, the server is allowed to automatically

 configure referenced system configuration into the

 target configuration datastore.";

 }

 }

 augment /nc:copy-config/nc:input {

 description

 "Allows the server to automatically configure

 referenced system configuration to make configuration

 valid.";

 leaf resolve-system {

 type empty ;

 description

 "When present, the server is allowed to automatically

 configure referenced system configuration into the

 target configuration datastore.";

 }

 }

 augment /ncds:edit-data/ncds:input {

 description

 "Allows the server to automatically configure

 referenced system configuration to make configuration

 valid.";

 leaf resolve-system {

 type empty ;

 description

 "When present, the server is allowed to automatically

 configure referenced system configuration into the

 target configuration datastore.";

 }

 }

 }

<CODE ENDS>

8. IANA Considerations

8.1. The "IETF XML" Registry

This document registers two XML namespace URNs in the 'IETF XML

registry', following the format defined in [RFC3688].

8.2. The "YANG Module Names" Registry

This document registers two module names in the 'YANG Module Names'

registry, defined in [RFC6020] .

8.3. RESTCONF Capability URN Registry

This document registers a capability in the "RESTCONF Capability

URNs" registry [RFC8040]:

¶

¶

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

¶

¶

 name: ietf-system-datastore

 prefix: sys

 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-netconf-resolve-system

 prefix: ncrs

 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

¶

¶

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

The YANG module defined in this document extends the base operations

for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF

layer is the secure transport layer, and the mandatory-to-implement

secure transport is Secure Shell (SSH) [RFC6242]. The lowest

RESTCONF layer is HTTPS, and the mandatory-to-implement secure

transport is TLS [RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF users

to a preconfigured subset of all available NETCONF protocol

operations and content.

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

The YANG module defined in this document extends the base operations

for NETCONF [RFC6241] and [RFC8526]. The lowest NETCONF layer is the

secure transport layer, and the mandatory-to-implement secure

transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer

is HTTPS, and the mandatory-to-implement secure transport is TLS

[RFC8446].

The Network Configuration Access Control Model (NACM) [RFC8341]

provides the means to restrict access for particular NETCONF users

to a preconfigured subset of all available NETCONF protocol

operations and content.

The security considerations for the base NETCONF protocol operations

(see Section 9 of [RFC6241] apply to the new extended RPC operations

defined in this document.

 Index Capability Identifier

 :resolve-system urn:ietf:params:restconf:capability:resolve-system:1.0

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC6241]

[RFC7950]

[RFC8342]

10. Contributors

Acknowledgements

Thanks to Robert Wilton, Balazs Lengyel, Andy Bierman, Juergen

Schoenwaelder, Alex Clemm, Martin Bjorklund, Timothy Carey for

reviewing, and providing important input to, this document.

References

Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "Network Management Datastore Architecture

 Kent Watsen

 Watsen Networks

 Email: kent+ietf@watsen.net

 Jan Lindblad

 Cisco Systems

 Email: jlindbla@cisco.com

 Chongfeng Xie

 China Telecom

 Beijing

 China

 Email: xiechf@chinatelecom.cn

 Jason Sterne

 Nokia

 Email: jason.sterne@nokia.com

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950

[RFC8526]

[I-D.ma-netmod-immutable-flag]

[RFC7317]

[RFC8174]

[RFC8407]

[RFC8525]

[RFC8808]

(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,

<https://www.rfc-editor.org/info/rfc8342>.

Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,

and R. Wilton, "NETCONF Extensions to Support the Network

Management Datastore Architecture", RFC 8526, DOI

10.17487/RFC8526, March 2019, <https://www.rfc-

editor.org/info/rfc8526>.

Informative References

Ma, Q., Wu, Q., Lengyel, B., and H.

Li, "YANG Extension and Metadata Annotation for Immutable

Flag", Work in Progress, Internet-Draft, draft-ma-netmod-

immutable-flag-03, 11 August 2022, <https://www.ietf.org/

archive/id/draft-ma-netmod-immutable-flag-03.txt>.

Bierman, A. and M. Bjorklund, "A YANG Data Model for

System Management", RFC 7317, DOI 10.17487/RFC7317,

August 2014, <https://www.rfc-editor.org/info/rfc7317>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bierman, A., "Guidelines for Authors and Reviewers of

Documents Containing YANG Data Models", BCP 216, RFC

8407, DOI 10.17487/RFC8407, October 2018, <https://

www.rfc-editor.org/info/rfc8407>.

Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen,

K., and R. Wilton, "YANG Library", RFC 8525, DOI

10.17487/RFC8525, March 2019, <https://www.rfc-

editor.org/info/rfc8525>.

Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for

Factory Default Settings", RFC 8808, DOI 10.17487/

RFC8808, August 2020, <https://www.rfc-editor.org/info/

rfc8808>.

Appendix A. Key Use Cases

Following provides three use cases related to system-defined

configuration lifecycle management. The simple interface data model

defined in Appendix C.3 of [RFC8342] is used. For each use case,

snippets of <running>, <system>, <intended> and <operational> are

shown.¶

https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8526
https://www.rfc-editor.org/info/rfc8526
https://www.ietf.org/archive/id/draft-ma-netmod-immutable-flag-03.txt
https://www.ietf.org/archive/id/draft-ma-netmod-immutable-flag-03.txt
https://www.rfc-editor.org/info/rfc7317
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8525
https://www.rfc-editor.org/info/rfc8808
https://www.rfc-editor.org/info/rfc8808

A.1. Device Powers On

<running>:

<system>:

<intended>:

<operational>:

A.2. Client Commits Configuration

If a client creates an interface "et-0/0/0" but the interface does

not physically exist at this point:

<running>:

¶

No configuration for "lo0" appears in <running>;¶

¶

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:system">

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

¶

 <interfaces>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 </interface>

 </interfaces>

¶

<system>:

<intended>:

<operational>:

A.3. Operator Installs Card into a Chassis

<running>:

<system>:

¶

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 </interface>

 <interface>

 </interfaces>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <interface or:origin="or:system">

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 </interface>

 </interfaces>

¶

¶

<intended>:

<operational>:

Appendix B. Changes between Revisions

v03 - v04

Clarify the "should not" statement;

 <interfaces>

 <interface>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <mtu>1500</mtu>

 </interface>

 </interfaces>

¶

¶

 <interfaces>

 <name>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 <mtu>1500</mtu>

 </interface>

 <interface>

 </interfaces>

¶

¶

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"

 or:origin="or:intended">

 <interface or:origin="or:system">

 <name or:origin>lo0</name>

 <ip-address>127.0.0.1</ip-address>

 <ip-address>::1</ip-address>

 </interface>

 <interface>

 <name>et-0/0/0</name>

 <description>Test interface</description>

 <mtu or:origin="or:system">1500</mtu>

 </interface>

 <interface>

 </interfaces>

¶

¶

* ¶

Editorial changes, like avoid using "object";

v02 - v03

Define a RESTCONF capability URI for "resolve-system" RESTCONF

query parameter;

Augment <copy-config> RPC operation to support "resolve-system"

for input parameter;

Editorial changes for clarification and explanation. E.g.,

definition of system configuration, is <system> always valid?

Will the update of <system> be reflected into <running>? Clarify

"read-only to clients" and "modifying system configuration", non-

deletable system configuration, etc

v00 - v02

Remove the "with-system" parameter to retrieve <running> with

system configuration merged in.

Add a new parameter named "resolve-system" to allow the server to

populate referenced system configuration into <running>

automatically in order to make <running> valid.

Usage examples refinement.

v02 - v00

Restructure the document content based on input in the system

defined configuration interim meeting.

Updates NMDA to define a read-only conventional configuration

datastore called "system".

Retrieval of implicit hidden system configuration via <get><get-

config> with "with-system" parameter to support non-NMDA servers.

Provide system defined configuration classification.

Define Static Characteristics and dynamic behavior for system

defined configuration.

Separate "ietf-system-datastore" Module from "ietf-netconf-with-

system" Module.

Provide usage examples for dynamic behaviors.

Provide usage examples for two YANG modules.

* ¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

Provide three use cases related to system-defined configuration

lifecycle management.

Classify the relation with <factory-default>.

Appendix C. Open Issues tracking

Should the "with-origin" parameter be supported for <intended>?

Authors' Addresses

Qiufang Ma (editor)

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: maqiufang1@huawei.com

Qin Wu

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: bill.wu@huawei.com

Feng Chong

Huawei

101 Software Avenue, Yuhua District

Nanjing

Jiangsu, 210012

China

Email: frank.fengchong@huawei.com

*

¶

* ¶

* ¶

mailto:maqiufang1@huawei.com
mailto:bill.wu@huawei.com
mailto:frank.fengchong@huawei.com

	System-defined Configuration
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology
	1.2. Requirements Language
	1.3. Updates to RFC 8342
	1.4. Updates to RFC 6241, RFC 8526
	1.5. Updates to RFC 8040
	1.5.1. Query Parameter
	1.5.2. Query Parameter URI

	2. Kinds of System Configuration
	2.1. Immediately-Active
	2.2. Conditionally-Active
	2.3. Inactive-Until-Referenced

	3. Static Characteristics
	3.1. Read-only to Clients
	3.2. May Change via Software Upgrades
	3.3. No Impact to <operational>

	4. Dynamic Behavior
	4.1. Conceptual Model
	4.2. Explicit Declaration of System Configuration
	4.3. Servers Auto-configuring Referenced System Configuration
	4.4. Modifying (overriding) System Configuration
	4.5. Examples
	4.5.1. Server Configuring of <running> Automatically
	4.5.2. Declaring a System-defined Node in <running> Explicitly
	4.5.3. Modifying a System-instantiated Leaf's Value
	4.5.4. Configuring Descendant Nodes of a System-defined Node

	5. The <system> Configuration Datastore
	6. The "ietf-system-datastore" Module
	6.1. Data Model Overview
	6.2. Example Usage
	6.3. YANG Module

	7. The "ietf-netconf-resolve-system" Module
	7.1. Data Model Overview
	7.2. Example Usage
	7.3. YANG Module

	8. IANA Considerations
	8.1. The "IETF XML" Registry
	8.2. The "YANG Module Names" Registry
	8.3. RESTCONF Capability URN Registry

	9. Security Considerations
	9.1. Regarding the "ietf-system-datastore" YANG Module
	9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

	10. Contributors
	Acknowledgements
	References
	Normative References
	Informative References

	Appendix A. Key Use Cases
	A.1. Device Powers On
	A.2. Client Commits Configuration
	A.3. Operator Installs Card into a Chassis

	Appendix B. Changes between Revisions
	Appendix C. Open Issues tracking
	Authors' Addresses

