
Network Working Group N. Madden
Internet-Draft ForgeRock
Intended status: Informational November 22, 2018
Expires: May 26, 2019

Synthetic IV (SIV) for non-AES ciphers and MACs
draft-madden-generalised-siv-00

Abstract

 This document specifies how the Synthetic Initialization Vector (SIV)
 block cipher mode of operation can be adapted to non-AES ciphers and
 message authentication codes (MACs), with block sizes and MAC tag
 sizes other than 128 bits. Concrete instantiations are defined using
 the XChaCha20 nonce-extended stream cipher combined with HMAC-SHA256.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Madden Expires May 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Generalised SIV November 2018

Table of Contents

1. Introduction . 2
1.1. Requirements Terminology 2
1.2. Motivation . 2

2. The Generic SIV Construction 3
2.1. Encryption . 4
2.2. Decryption . 5
2.3. Generalised S2V . 5
2.4. AES-SIV . 7

3. XChaCha20-HMAC-SHA256-SIV 8
4. IANA considerations . 9
4.1. AEAD_XCHACHA20_SIV_HMAC_SHA256 9

5. Security Considerations 9
6. References . 10
6.1. Normative References 10
6.2. Informative References 11

Appendix A. Test Vectors . 12
A.1. Nonce-Based Authenticated Encryption Example 12

 Author's Address . 14

1. Introduction

 The Synthetic Initialization Vector (SIV) block cipher mode of
 operation [RFC5297] provides either deterministic authenticated
 encryption (DAE) or nonce-reuse misuse-resistant authenticated
 encryption (MRAE) [DAE]. It was originally specified for the
 combination of AES-CMAC for authenticity and AES-CTR for
 confidentiality. The 128-bit AES-CMAC tag is used as the 128-bit
 (synthetic) IV for AES-CTR. This document show how to apply SIV mode
 to ciphers and MACs with IV and tag lengths other than 128 bits,
 including where the IV and tag length may differ.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC8174] when, and only when, they appear in all capitals, as
 shown here.

1.2. Motivation

 Common IV-based authenticated encryption modes of operation require a
 unique IV (or nonce) to be provided on each call to the encryption
 function with the same key. If an IV is reused, either by accident
 or through malicious action, then some combination of the
 confidentiality and/or authenticity properties is usually lost. For

https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174

Madden Expires May 26, 2019 [Page 2]

Internet-Draft Generalised SIV November 2018

 the popular Galois Counter Mode (GCM) [SP800-38D], NIST states that
 "a breach of the requirement [...] for the uniqueness of the
 initialization strings may compromise the security assurance almost
 entirely" (section 3 and Appendix A). The SIV mode of operation
 [RFC5297][SIV], when used with a unique nonce as part of the
 associated data, provides a measure of protection against nonce
 reuse. If a nonce is reused with SIV mode then there is no loss of
 authenticity, and a minimal loss of confidentiality: an attacker is
 able to determine only whether the exact same message has been
 encrypted with the same associated data and nonce using the same key.

 While the SIV mode is specified as a generic composition of an IV-
 based encryption scheme and a pseudorandom function (PRF), most uses
 of the mode have concentrated on the one concrete instantiation of
 the mode given at the time: AES-SIV. AES-SIV is built entirely from
 the AES block cipher, using AES-CMAC [RFC4493] as the PRF and AES in
 CTR mode for confidentiality. This combination is attractive as it
 requires only an AES encryption operation to implement all aspects of
 the mode. It also has the convenient property that AES-CMAC produces
 a 128-bit tag, and AES-CTR requires a 128-bit IV, which allows the
 tag to be used directly as the (synthetic) IV.

 While AES-SIV has many attractive properties, there are good reasons
 for extending SIV to other ciphers and PRFs. As stated in the
 rationale for adopting ChaCha20 and Poly1305 for IETF protocols
 [RFC8439], overreliance on a single cipher design, however good, may
 cause difficulties if a weakness is ever discovered in AES.
 Secondly, AES can be difficult to implement efficiently in software
 while avoiding timing side-channels. Finally, there is the simple
 fact that non-AES ciphers and PRFs exist and will continue to be
 used, and SIV mode is of independent interest to users of those
 alternative primitives.

2. The Generic SIV Construction

 The generic SIV construction is defined in terms two primitive
 functions:

 1. A PRF, F*, that takes a vector of strings as input.

 2. A length-preserving IV-based encryption scheme, E.

 The S2V function can be used to build F* from a PRF, F, that takes a
 single string input. The generalised version of this function is
 described in the next section.

 The following constants MUST be defined for any concrete
 instantiation of E and F*:

https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc4493
https://datatracker.ietf.org/doc/html/rfc8439

Madden Expires May 26, 2019 [Page 3]

Internet-Draft Generalised SIV November 2018

 IV_LEN - the length of IV/nonce expected by E, in bits.

 TAG_LEN - the length of the output tag produced by F*, in bits.

 PRF_KEY_LEN - the length of key required for F*, in bits.

 CIPHER_KEY_LEN - the length of key required for E, in bits.

 For any choice of E and F*, TAG_LEN MUST be greater than or equal to
 IV_LEN.

 We denote the encryption operation of E as E.encrypt(key, iv,
 plaintext), and the decryption operation as E.decrypt(key, iv,
 ciphertext).

2.1. Encryption

 Encryption takes as input a key, K, a plaintext P, and zero or more
 associated data headers to be authenticated but not encrypted. The
 key K MUST be as long as the sum of the key length of F* and the key
 length of E. For example, if F* requires a 256-bit key and E
 requires a 128-bit key, then K must be 384 bits long.

 Encryption proceeds as follows. Firstly, keys K1 and K2 are derived
 from K by taking the leftmost PRF_KEY_LEN bits of K as K1, and the
 rightmost CIPHER_KEY_LEN bits of K as K2. Secondly, the PRF F* is
 applied to K1, the plaintext P, and all of the n associated data
 strings AD1, ..., ADn. This results in an authentication tag, T.
 The SIV is defined as the leftmost IV_LEN bits of T. If TAG_LEN =
 IV_LEN, then T is used in its entirety. The plaintext P is then
 encrypted using E, with K2 as the key and SIV as the IV, producing
 ciphertext C. The concatenation of T with C is returned as the
 output of the function.

 In pseudocode, generalised SIV encryption is as follows:

 SIV-ENCRYPT[F*,E](K, P, AD1, ..., ADn) {
 K1 = leftmost(K, PRF_KEY_LEN)
 K2 = rightmost(K, CIPHER_KEY_LEN)
 T = F*(K1, AD1, ..., ADn, P)
 SIV = leftmost(T, IV_LEN)
 C = E.encrypt(K2, SIV, P)

 return T || C
 }

Madden Expires May 26, 2019 [Page 4]

Internet-Draft Generalised SIV November 2018

2.2. Decryption

 Decryption takes as input a key, K, an authenticated ciphertext Z,
 and zero or more associated data blocks to be authenticated but not
 decrypted.

 Keys K1 and K2 are derived as for encryption. The leftmost TAG_LEN
 bits of Z are taken as the tag T, while the remaining bits are the
 ciphertext C. As for encryption, the SIV is taken as the leftmost
 IV_LEN bits of T. The ciphertext C is then decrypted using E with
 the key K2 and SIV as the IV, producing plaintext P. The expected
 authentication tag T' is then computed using F* over the key K1, the
 associated data AD1, ..., ADn, and the plaintext P. If T' exactly
 matches T then the plaintext P is returned. If T' does not match T
 then the implementation MUST NOT return P and MUST destroy P and T'
 and return a failure. Authentication tag comparisons SHOULD be
 performed in constant time to avoid leaking the true value of T'
 through timing differences.

 SIV-DECRYPT[F*,E](K, Z, AD1, ..., ADn) {
 T = leftmost(Z, TAG_LEN)
 C = rightmost(Z, len(Z) - TAG_LEN)
 K1 = leftmost(K, PRF_KEY_LEN)
 K2 = rightmost(K, CIPHER_KEY_LEN)
 SIV = leftmost(T, IV_LEN)

 P = E.decrypt(K2, SIV, C)
 T' = F*(K1, AD1, ..., ADn, P)

 if T = T' then
 return P
 else
 destroy P and T'
 return FAIL
 fi
 }

2.3. Generalised S2V

 SIV requires a PRF that takes a vector of strings as input, while
 most PRFs in current use are designed to only take a single string.
 In principle, any unambiguous encoding can be used to convert a
 vector of inputs into a single string, but SIV defines a particularly
 efficient encoding provided by the function S2V (for "string to
 vector") that converts a single-string PRF to a vector input PRF.
 S2V is defined using bitwise exclusive OR (XOR) and a doubling
 operation in the finite field GF(2^n) where n is the bit length of
 the output of the PRF. For AES-SIV, which uses AES-CMAC as the PRF,

Madden Expires May 26, 2019 [Page 5]

Internet-Draft Generalised SIV November 2018

 this is GF(2^128). In this section we show how to define S2V for
 PRFs with different tag lengths.

 Points in the finite field GF(2^n) are represented as n-bit strings
 a_(n-1) ... a_1 a_0, which can also be seen as binary coefficients
 for a polynomial f(x) = a_(n-1) * x^(n-1) + ... + a_1 * x + a_0.
 Multiplication is then defined as the product of two polynomials,
 with the remainder taken after division by a fixed polynomial. In
 S2V, the fixed polynomial is the lexicographically first minimum-
 weight primitive polynomial [SIV] (section 2). For GF(2^128), such a
 primitive polynomial is:

 f(x) = x^128 + x^7 + x^2 + x + 1

 Primitive polynomials for other fields can be found in published
 tables, such as [HPL-98-135]. The following polynomials are
 indicated for common PRF output sizes:

 +-----------+-------------------------------------+
 | Field | Primitive Polynomial |
 +-----------+-------------------------------------+
 | GF(2^64) | f(x) = x^64 + x^4 + x^3 + x + 1 |
 | GF(2^96) | f(x) = x^96 + x^10 + x^9 + x^6 + 1 |
 | GF(2^128) | f(x) = x^128 + x^7 + x^2 + x + 1 |
 | GF(2^160) | f(x) = x^160 + x^5 + x^3 + x^2 + 1 |
 | GF(2^192) | f(x) = x^192 + x^7 + x^2 + x + 1 |
 | GF(2^224) | f(x) = x^224 + x^9 + x^8 + x^3 + 1 |
 | GF(2^256) | f(x) = x^256 + x^10 + x^5 + x^2 + 1 |
 | GF(2^384) | f(x) = x^384 + x^12 + x^3 + x^2 + 1 |
 | GF(2^512) | f(x) = x^512 + x^8 + x^5 + x^2 + 1 |
 +-----------+-------------------------------------+

 Doubling for S2V is defined as multiplication with the binary value
 0^(n-2)10 (i.e., the number 2 represented as an n-bit binary string).
 The doubling operation can be efficiently implemented as a left-shift
 operation followed by a conditional XOR with an n-bit constant
 derived from the binary coefficients of the primitive polynomial.
 The condition being whether the most significant bit of the value
 being shifted off is 1. For GF(2^128), the constant is
 0^(120)10000111, with one bits corresponding to x^7, x^2, x and 1
 respectively. The following table lists the constants for common PRF
 output sizes in binary and hexadecimal form. Leading zero octets are
 omitted from the hexadecimal format.

Madden Expires May 26, 2019 [Page 6]

Internet-Draft Generalised SIV November 2018

 +-----------+----------------------------+-------------------------+
 | Field | Doubling Constant - Binary | Doubling Constant - Hex |
 +-----------+----------------------------+-------------------------+
GF(2^64)	0^(59)11011	0x1b
GF(2^92)	0^(150)1100100001	0x0321
GF(2^128)	0^(120)10000111	0x87
GF(2^160)	0^(154)101101	0x2d
GF(2^192)	0^(184)10000111	0x87
GF(2^224)	0^(214)1100001001	0x0309
GF(2^256)	0^(245)10000100101	0x0425
GF(2^384)	0^(371)1000000001101	0x100d
GF(2^256)	0^(503)100100101	0x0125
 +-----------+----------------------------+-------------------------+

 It is recommended that the conditional XOR be performed in constant
 time. A constant time bit-sliced implementation is provided in

Appendix A.

 The S2V algorithm parameterised over a particular PRF, F, written
 S2V[F] is as follows, where TAG_LEN is the output size of the PRF in
 bits, dbl(x) is the appropriate doubling operation for TAG_LEN, and
 xorend is defined as in [RFC5297]. The constant <zero> is the
 TAG_LEN sequence of all zero bits, and <one> is TAG_LEN-1 zero bits
 followed by a single 1 bit. The function pad(X) pads the input to
 TAG_LEN bits by appending a single 1 bit followed by as many 0 bits
 as necessary.

 S2V[F](K, S1, ..., Sn) {
 if n = 0 then
 return F(K, <one>)
 fi
 D = F(K, <zero>)
 for i = 1 to n-1 do
 D = dbl(D) xor F(K, Si)
 done
 if len(Sn) >= TAG_LEN then
 T = Sn xorend D
 else
 T = dbl(D) xor pad(Sn)
 fi
 return F(K, T)
 }

2.4. AES-SIV

 This section is non-normative.

https://datatracker.ietf.org/doc/html/rfc5297

Madden Expires May 26, 2019 [Page 7]

Internet-Draft Generalised SIV November 2018

 The original AES-SIV mode of [RFC5297] can be seen as an
 instantiation of the generic SIV construction in this document, with
 the following parameters:

 F* = S2V[AES-CMAC]

 E = AES-CTR where the 31st and 63rd bits of the IV are zeroed
 prior to use as described in [RFC5297] section 2.5.

 PRF_KEY_LEN = 128, 192 or 256 bits

 CIPHER_KEY_LEN = 128, 192 or 256 bits (to match PRF_KEY_LEN).

 IV_LEN = TAG_LEN = 128 bits.

3. XChaCha20-HMAC-SHA256-SIV

 ChaCha20 is a stream cipher that has been adopted for use in IETF
 protocols by [RFC8439]. It has several attractive properties, most
 notably that it can be implemented efficiently in software and is
 relatively easy to make resistant to cache-timing side-channel
 attacks. As originally specified, ChaCha20 takes a 256-bit key and a
 64-bit nonce, which was extended to 96-bits when adopted by the IETF.
 A 96-bit nonce is too small to be safely generated randomly (or
 pseudorandomly as in SIV) without artificially limiting the number of
 messages that can be encrypted with a single key. To address this
 problem, an extended nonce variant known as XChaCha20
 [I-D.arciszewski-xchacha] has been proposed, which increase the nonce
 to 192-bits. This makes it an excellent choice for an SIV
 instantiation, providing a MRAE cipher mode alternative to AES.

 In principle, any PRF that produces at least a 192-bit output could
 be used with XChaCha20. For concreteness, we specify the use of HMAC
 [RFC2104] with the SHA-256 secure hash function [RFC6234] as HMAC-
 SHA256 is widely implemented. The S2V function of section 2.3 is
 used to allow HMAC-SHA256 to take a vector of strings as input, with
 the primitive polynomial for GF(2^256) used for point doubling and
 the leftmost 192 bits of the S2V[HMAC-SHA256] tag used as the
 synthetic IV for XChaCha20.

 The encryption and decryption procedures are as described in sections
 2.1 and 2.2 above, with the following constant values:

 PRF_KEY_LEN = 256 bits.

 CIPHER_KEY_LEN = 256 bits.

 IV_LEN = 192 bits.

https://datatracker.ietf.org/doc/html/rfc5297
https://datatracker.ietf.org/doc/html/rfc5297#section-2.5
https://datatracker.ietf.org/doc/html/rfc8439
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc6234

Madden Expires May 26, 2019 [Page 8]

Internet-Draft Generalised SIV November 2018

 TAG_LEN = 256 bits.

 Test vectors for XChaCha20-HMAC-SHA256-SIV are provided in
Appendix A.

4. IANA considerations

 This section registers AEAD algorithms as per the registry
 established in [RFC5116]. As specified in [RFC5297] section 6, the
 interface of RFC 5116 only allows a single associated data (AD)
 component. When SIV is accessed via this interface, multiple AD
 components must be marshalled into a single string prior to calling
 the SIV procedures.

4.1. AEAD_XCHACHA20_SIV_HMAC_SHA256

 The AEAD_XCHACHA20_SIV_HMAC_SHA256 algorithm is an instantiation of
 the generalised SIV mode described in Sections 2.1 and 2.2 with the
 XChaCha20 extended-nonce stream cipher [I-D.arciszewski-xchacha] and
 HMAC-SHA256 as the PRF, as described in Section 3. XChaCha20 uses a
 32-bit block counter and a 512-bit block size, therefore the maximum
 size of plaintext that can be encrypted in a single invocation is
 2^38 octets, around 256 GB. The ciphertext length is equal to the
 length of the plaintext plus 32 octets for the HMAC-SHA256
 authentication tag (of which the leftmost 24 octets comprise the
 SIV).

 The input and output lengths for AEAD_XCHACHA20_SIV_HMAC_SHA256 as
 defined by [RFC5116] are:

 K_LEN is 64 octets.
 P_MAX is 2^38 octets.
 A_MAX is unlimited.
 N_MIN is 1 octet.
 N_MAX is unlimited.
 C_MAX is 2^38 + 32 octets.

5. Security Considerations

 The security considerations of [RFC5297] apply here.

 The security proofs for SIV [DAE] require that F* (and F if
 constructing F* using S2V) behaves as a pseudorandom function (PRF).
 E must be a length-preserving semantically-secure encryption scheme.

 It is RECOMMENDED that SIV mode is always used with a unique random
 component included as the last element of the header (associated
 data) to ensure semantic security. While SIV mode loses a minimal

https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297#section-6
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297

Madden Expires May 26, 2019 [Page 9]

Internet-Draft Generalised SIV November 2018

 amount of security if this component is omitted (or accidentally
 reused), an attacker in this case is able to determine if the same
 plaintext has been encrypted under the same key and with the same
 associated data. Depending on the application this may still be a
 significant loss of confidentiality. For example, a service that
 produces yes/no answers to questions would lose all confidentiality
 of its responses in this case. The misuse resistance of SIV should
 be considered a failsafe and not as a way to do without a nonce.

 The requirement that E be length-preserving means that the ciphertext
 produced by SIV mode will be equal in length to the input plaintext,
 plus the authentication tag (which is of fixed size for any concrete
 instantiation of this mode). If the length of the plaintext on its
 own may reveal information then care should be taken to obscure this
 prior to encryption -- by padding to a known maximum length, for
 example. In the case of the yes/no answer service the English words
 "yes" and "no" can be distinguished purely by length, to give a
 simple example.

 In [tightness], Chatterjee, Menezes and Sarkar show an attack on SIV
 within the multi-user setting. It is RECOMMENDED that concrete
 instantiations intended for such use define a MAC_KEY_LENGTH of at
 least 256 bits or describe other countermeasures.

 The number of components passed to any invocation of S2V (including
 the plaintext) must not exceed TAG_LEN - 1. For example, a 128-bit
 PRF such as AES-CMAC should allow no more than 127 components. For
 XChaCha20-HMAC-SHA256-SIV no more than 255 components should be
 allowed.

6. References

6.1. Normative References

 [I-D.arciszewski-xchacha]
 Arciszewski, S., "XChaCha: eXtended-nonce ChaCha and
 AEAD_XChaCha20_Poly1305", draft-arciszewski-xchacha-02
 (work in progress), October 2018.

 [RFC5116] McGrew, D., "An Interface and Algorithms for Authenticated
 Encryption", RFC 5116, DOI 10.17487/RFC5116, January 2008,
 <https://www.rfc-editor.org/info/rfc5116>.

 [RFC5297] Harkins, D., "Synthetic Initialization Vector (SIV)
 Authenticated Encryption Using the Advanced Encryption
 Standard (AES)", RFC 5297, DOI 10.17487/RFC5297, October
 2008, <https://www.rfc-editor.org/info/rfc5297>.

https://datatracker.ietf.org/doc/html/draft-arciszewski-xchacha-02
https://datatracker.ietf.org/doc/html/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://datatracker.ietf.org/doc/html/rfc5297
https://www.rfc-editor.org/info/rfc5297

Madden Expires May 26, 2019 [Page 10]

Internet-Draft Generalised SIV November 2018

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [DAE] Rogaway, P. and T. Shrimpton, "Deterministic
 Authenticated-Encryption. A Provable-Security Treatment of
 the Key-Wrap Problem.", IACR ePrint 2006/221, August 2007.

 [HPL-98-135]
 Seroussi, G., "Table of Low-Weight Binary Irreducible
 Polynomials", HPL HPL-98-135, August 1998.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June
 2006, <https://www.rfc-editor.org/info/rfc4493>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC8439] Nir, Y. and A. Langley, "ChaCha20 and Poly1305 for IETF
 Protocols", RFC 8439, DOI 10.17487/RFC8439, June 2018,
 <https://www.rfc-editor.org/info/rfc8439>.

 [SIV] Rogaway, P. and T. Shrimpton, "The SIV Mode of Operation
 for Deterministic Authenticated-Encryption (Key Wrap) and
 Misuse-Resistant Nonce-Based Authenticated-Encryption.",
 August 2007.

 [SP800-38D]
 Dworkin, M., "Recommendation for Block Cipher Modes of
 Operation: Galois/Counter Mode (GCM) and GMAC.", NIST
 Special Publication 800-38D, November 2007.

 [tightness]
 Chatterjee, S., Menezes, A., and P. Sarkar, "Another Look
 at Tightness", Proceedings of SAC 2011, Lecture Notes in
 Computer Science 7118, August 2011.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/rfc4493
https://www.rfc-editor.org/info/rfc4493
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc8439
https://www.rfc-editor.org/info/rfc8439

Madden Expires May 26, 2019 [Page 11]

Internet-Draft Generalised SIV November 2018

Appendix A. Test Vectors

A.1. Nonce-Based Authenticated Encryption Example

 Input

 Key:
 000 80 81 82 83 84 85 86 87 88 89 8a 8b 8c 8d 8e 8f
 016 90 91 92 93 94 95 96 97 98 99 9a 9b 9c 9d 9e 9f
 032 a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 aa ab ac ad ae af
 048 b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

 Plaintext:
 000 4c 61 64 69 65 73 20 61 6e 64 20 47 65 6e 74 6c Ladies and Gentl
 016 65 6d 65 6e 20 6f 66 20 74 68 65 20 63 6c 61 73 emen of the clas
 032 73 20 6f 66 20 27 39 39 3a 20 49 66 20 49 20 63 s of '99: If I c
 048 6f 75 6c 64 20 6f 66 66 65 72 20 79 6f 75 20 6f ould offer you o
 064 6e 6c 79 20 6f 6e 65 20 74 69 70 20 66 6f 72 20 nly one tip for
 080 74 68 65 20 66 75 74 75 72 65 2c 20 73 75 6e 73 the future, suns
 096 63 72 65 65 6e 20 77 6f 75 6c 64 20 62 65 20 69 creen would be i
 112 74 2e t.

 Nonce:
 000 50 51 52 53 c0 c1 c2 c3 c4 c5 c6 c7 PQRS........

 IV:
 000 40 41 42 43 44 45 46 47 @ABCDEFG

 S2V[HMAC-SHA256]

 HMAC-SHA256(<zero>):
 318dcd14 73a3c69c 643eb853 e66eb357
 c5bcb67b cd96ea83 4af2a3c6 f462136f

 dbl():
 631b9a28 e7478d38 c87d70a7 ccdd66af
 8b796cf7 9b2dd506 95e5478d e8c426de

 HMAC-SHA256(AD1):
 8b80c006 47844e6b 54617036 b1c09145
 0ab8ad63 1e7ca653 326a8d4f e135dafb

 xor:
 e89b5a2e a0c3c353 9c1c0091 7d1df7ea
 81c1c194 85517355 a78fcac2 09f1fc25

 dbl():
 d136b45d 418786a7 38380122 fa3befd5

Madden Expires May 26, 2019 [Page 12]

Internet-Draft Generalised SIV November 2018

 03838329 0aa2e6ab 4f1f9584 13e3fc6f

 HMAC-SHA256(Nonce):
 7c07875c 75e0021c 6f58cbd2 052675e3
 2690107a 1f618e40 34b79efc d23d3a57

 xor:
 ad313301 346784bb 5760caf0 ff1d9a36
 25139353 15c368eb 7ba80b78 c1dec638

 xorend:
 4c616469 65732061 6e642047 656e746c
 656d656e 206f6620 74686520 636c6173
 73206f66 20273939 3a204966 20492063
 6f756c64 206f6666 65722079 6f75206f
 6e6c7920 6f6e6520 74697020 666f7220
 7468c811 55744012 f6de7b40 b985916e
 f9444076 fd7362ac 1d871f88 691de1b7
 b216

 HMAC-SHA256(final):
 28fdb5d4 d89e4860 11774606 5456a5df
 924e8f4b 0f42bc77 a7415bd0 e0430628

 XChaCha20

 SIV:
 28fdb5d4 d89e4860 11774606 5456a5df
 924e8f4b 0f42bc77

 Block Counter:
 00000000

 XChaCha20 Subkey:
 70c5831f 36e439c1 b90e375e 2b98c3da
 ef42de2e c120e1d1 2706af76 45381de1

 XChaCha20 Nonce:
 00000000 924e8f4b 0f42bc77

 Output

 T || C:
 000 28 fd b5 d4 d8 9e 48 60 11 77 46 06 54 56 a5 df (.....H`.wF.TV..
 016 92 4e 8f 4b 0f 42 bc 77 a7 41 5b d0 e0 43 06 28 .N.K.B.w.A[..C.(
 032 26 53 ea bf c6 ae cc 14 d0 46 aa 7e 3c 0b a2 8e &S.......F.~<...
 048 fd 68 f3 d5 91 fc ac 6d b1 2e a2 3c f4 28 69 01 .h.....m...<.(i.
 064 3b 2b e4 83 ce 08 8a f8 2d e4 29 3a 07 e2 40 07 ;+......-.):..@.

Madden Expires May 26, 2019 [Page 13]

Internet-Draft Generalised SIV November 2018

080 f3 7b d1 e3 78 81 a0 4b 11 5b 11 09 94 78 ae 34 .{..x..K.[...x.4
 096 75 05 43 26 8e 57 0d 1f 27 f4 da fc 5a d8 71 97 u.C&.W..'...Z.q.
 112 7f 08 b3 0b af df b5 3b 19 ef 34 2c d9 5c e7 91 ;..4,.\..
 128 5c b4 f6 79 db 64 0d 8e c4 8a 06 b6 f3 ef 50 8c \..y.d........P.
 144 53 30 S0

Author's Address

 Neil Madden
 ForgeRock
 Broad Quay House
 Prince Street
 Bristol BS1 4DJ
 United Kingdom

 Email: neil.madden@forgerock.com

Madden Expires May 26, 2019 [Page 14]

