
 <Push-IMAP> March 2006

Lemonade
Internet Draft: P-IMAP S. H. Maes
Document: draft-maes-lemonade-p-imap-12 C. Kuang
 R. Lima
 R. Cromwell
 E. Chiu
 J. Day
 R. Ahad
 Oracle Corporation
 Wook-Hyun Jeong
 Samsung
 Electronics Co.,
 LTD
 Gustaf Rosell
 Sony Ericsson
 J. Sini
 -
 Sung-Mu Son
 LGE
 Fan Xiaohui
 Zhao Lijun
 China Mobile
 D. Bennett
 Consilient

Expires: September 2006 March 2006

 Push Extensions to the IMAP Protocol (P-IMAP)

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

https://datatracker.ietf.org/doc/html/draft-maes-lemonade-p-imap-12
https://datatracker.ietf.org/doc/html/bcp79#section-6

Maes [Page 1]

 <Push-IMAP> March 2006

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 Push Extensions to the IMAP protocol (P-IMAP) defines extensions to
 the IMAPv4 Rev1 protocol [RFC3501] for optimization in a mobile
 setting, aimed at delivering extended functionality for mobile
 devices with limited resources. The first enhancement of P-IMAP is
 extended support to push changes actively to a client, rather then
 requiring the client to initiate contact to ask for state changes.
 In addition, P-IMAP contains extensions for email filter management,
 message delivery, and maintaining up-to-date personal information.
 Bindings to specific transport are explicitly defined. Eventually P-
 IMAP aims at being neutral to the network transport neutrality.

 P-IMAP is a recommendation for interoperable intermediate
 implementations awaiting [LEMONADEPROFILEBIS] or the realization of
 the OMA MEM enabler using it.

Conventions used in this document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 An implementation is not compliant if it fails to satisfy one or more
 of the MUST or REQUIRED level requirements for the protocol(s) it
 implements. An implementation that satisfies all the MUST or REQUIRED
 level and all the SHOULD level requirements for a protocol is said to
 be "unconditionally compliant" to that protocol; one that satisfies
 all the MUST level requirements but not all the SHOULD level
 requirements is said to be "conditionally compliant." When
 describing the general syntax, some definitions are omitted as they
 are defined in [RFC3501].

Table of Contents

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 2]

 <Push-IMAP> March 2006

 Status of this Memo...1
 Copyright Notice..2
 Abstract..2
 Conventions used in this document.................................2
 Table of Contents...2

1. Introduction...4
1.1. The Poll Model vs. the Push Model.........................5
1.2. Synchronization Techniques................................6

1.2.1. State-Comparison-Based Synchronization...............6
1.2.2. Event-based Synchronization..........................8
1.2.3. Reconnecting in a same session.......................8
1.2.3. Clarification note on the term P-IMAP Session9

1.3. The Server-Side Filtering in P-IMAP......................10
1.4. Extra Functionality in P-IMAP............................11

 2. Relation with the Lemonade Profile and other E-mail
 specifications..12

3. The P-IMAP Design...13
3.1. Implementing Filters.....................................13

3.1.1. The View Filter.....................................14
3.1.2. The Notification Filter.............................14
3.1.3. The Event Filter....................................14

3.2. Connectivity Models......................................15
3.2.1. In-Response Connectivity............................15
3.2.2. In-band Connectivity................................15
3.2.3. Out-of-band Connectivity............................16

3.3. Recommended Connectivity Models..........................17
3.4. Keeping the Client In Sync with the Mobile Repository....17

4. Events..18
4.1. Message Events Sent During In-band and In-response Mode..18

5. Interactions between the P-IMAP Client and P-IMAP Server......19
5.1. Revisions to IMAPv4 Rev1 Behavior........................21

5.1.1. Mobile Repository...................................21
5.1.2. The CAPABILITY Command..............................21
5.1.3. P-IMAP Session/Login................................22
5.1.4. IDLE..23
5.1.5. XENCRYPTED..23

5.2. Registering with the server..............................24
5.3. P-IMAP Extension Commands and Responses..................25

5.3.1. XPROVISION..26
5.3.2. XSETPIMAPPREF & XGETPIMAPPREFS......................27
5.3.3. XZIP..29
5.3.4. XDELIVER..30
5.3.5. IMAPURL extensions..................................30
5.3.6. The XDELIVER command................................31
5.3.7. Note on XDELIVER, SMTP and Lemonade Profile.........32
5.3.8. XCONVERT BODY and BINARY data item extension........32
5.3.9. FETCH response extensions...........................34

5.3.10. Status responses, Response code extensions.........34

Maes Expires September 2006 [Page 3]

 <Push-IMAP> March 2006

5.3.11. Formal Syntax......................................35
5.3.12. XVFOLDER...36

6. Considerations beyond the P-IMAP protocol.....................38
6.1. P-IMAP client security...................................38
6.2. P-IMAP client updates....................................38
6.3. P-IMAP client-side behavior..............................38
6.4. Minimum binding interoperability requirements............39

 Security Considerations..39
 References...39
 Normative Appendices...42

A. Implementation Guidelines for Using HTTP with P-IMAP.......42
 A.1. Non-Persistent HTTP for In-response Connectivity Mode.46
 A.2. Using Persistent HTTP/HTTPS + Chunked Transfer
 Encoding for In-band Connectivity Mode..............47

A.3. Using HTTP CONNECT....................................48
B. Event Payload..49

B.1. Event Payload in Clear Text for P-IMAP Sessions.......49
B.2. Out-of-band Channel Event Payload.....................49
B.3. Out-of-band SMS channel binding.......................51

C. Security Issues for Proxy-Based Implementations of P-IMAP..52
D. XCONVERT transcoding parameters............................53
E. Note on XDELIVER, SMTP and Lemonade Profile................54

 Non-Normative Appendices...54
F. Use Cases..54

F.1. State Comparison-Based Sync...........................54
F.2. Event-Based Sync......................................55

G. Other Issues...56
G.1. Using a Side Channel for a P-IMAP session.............56
G.2. Client event filtering................................56

 Future Work..57
 Version History..57
 Acknowledgments..65
 Authors Addresses..65
 Intellectual Property Statement..................................67
 Disclaimer of Validity...67
 Copyright Statement..68
 Acknowledgement..68

1.
 Introduction

 The Push-IMAP protocol (P-IMAP) is based on IMAPv4 Rev1 [RFC3501],
 but contains additional enhancements for optimization in a mobile
 setting. Thus, the client devices in this document are assumed to be
 mobile with limited resources. P-IMAP takes into account the limited
 resources of mobile devices, as well as extra functionality desired.
 This document covers key P-IMAP concepts, defines the syntax and

https://datatracker.ietf.org/doc/html/rfc3501

 functionality of the server and client, as well as provides examples
 of interactions within the protocol. P-IMAP can be bound to any

Maes Expires September 2006 [Page 4]

 <Push-IMAP> March 2006

 transport protocol for in-band and out-of-band connectivity. Appendix
A provides a normative binding to HTTP.

 The organization of this document is as follows. The rest of this
 section introduces the core enhancements of P-IMAP so the reader can
 gain an understanding of the concepts that drive this design.

Section 2 positions P-IMAP and the Lemonade Pull Model described in
 [LEMONADEPROFILE]. Section 3 discusses actual design decisions for
 P-IMAP. Section 4 defines the bindings for expressing events, while

Section 5 is the main body of the protocol, which describes the
 interactions between the P-IMAP server and client. Next are sections
 concerning the formal syntax, security considerations, and
 references. Finally, there are normative and non-normative
 appendices, which provide useful information for those who wish to
 implement the P-IMAP protocol. The normative appendices, including
 Appendices A, B, and C cover some extra guidelines needed to support
 implementation level issues. The non-normative appendices, D and E,
 provide interesting use cases and examples.

 1.1.
 The Poll Model vs. the Push Model

 Today, most of the existing email clients implement a polling model,
 where the end user is notified of changes to an email account only
 after the email client polls the server for changes. How long it
 takes a client to learn of a change on the server is thus dependent
 on how often the client polls for changes. Many clients can poll at
 high rates so that the client can quickly learn of changes and
 reflect them on the client display to achieve a quasi-real time
 synchronization experience for the end user. The periodic poll model
 is used on conventional email clients. Because the client must
 continuously poll the server for changes, the bandwidth requirements
 can be quite high and the connection quality must be good in order to
 provide a quasi-real time experience to the user. This also
 generates additional load on the IMAP server. The periodic poll
 model is illustrated in Figure 1.

 +--------------------+ Poll +--------------+
 | | <------------ | |
 | Mail Server | | Email Client |
 | | ------------> | |
 +--------------------+ Response +--------------+

 Figure 1: Periodic Poll Model

 Another way to achieve synchronization is for the email server to
 tell the client when a crucial change to an email occurs, which is

 the push model. When important events happen to a user's email

Maes Expires September 2006 [Page 5]

 <Push-IMAP> March 2006

 account, the server informs the client device about the event, and
 then the client can respond to that event as necessary. In this
 case, the client device does not need to periodically poll the mail
 server, so the push model is particularly effective in the mobile
 computing environment when the cost of constant polling is high. The
 P-IMAP protocol defines the semantics for pushing events to a client.
 The push model is seen in Figure 2.

 Event +----------------+ Push +--------------+
 --------> | Mail Server | ---------> | Email Client |
 +----------------+ +--------------+

 Figure 2: Push Model

 1.2.
 Synchronization Techniques

 After a client receives a notification that informs it that changes
 have occurred to a mailbox, it needs to employ a synchronization
 technique to reflect the server side changes onto the client device
 and the client device changes onto the server side. There are many
 techniques for determining what the changes between a server and
 client are. In this section, two techniques are presented that aim
 to keep a client device in sync with a given email account, meaning
 that the set of messages on the client device is the same as that in
 the given email account.

1.2.1. State-Comparison-Based Synchronization

 IMAPv4Rev1 clients use a state-comparison-based synchronization
 technique to be in sync with an email account. This technique is used
 when the client device connects to the server and establishes a new
 session. This technique requires the client to ask the server for
 information regarding all the folders and all the messages in each
 folder stored on the server. Client changes must be applied on the
 server first. The client must then compute the difference between
 the server state and the client device state, and make all necessary
 changes so that the client device state matches the server state. An
 non-optimal but illustrative example of the interaction between the
 client and server in the IMAPv4 Rev1 protocol for performing a state-
 comparison-based sync follows.

 First, the client must retrieve a list of interesting folders from
 the server. The client should issue LIST to figure out which folders
 have to be retrieved. It could then use LSUB to determine which

 folders are subscribed. For example:

Maes Expires September 2006 [Page 6]

 <Push-IMAP> March 2006

 C: A002 LIST "" "%"
 S: * LIST (\NoInferiors) "/" "Drafts"
 S: * LIST () "/" "Friends"
 S: * LIST (\NoInferiors) "/" "INBOX"
 S: A002 OK completed
 C: A002 LSUB "" "*"
 S: * LSUB () "/" "Drafts"
 S: * LSUB () "/" "Friends"
 S: * LSUB () "/" "INBOX"
 S: A002 OK LSUB completed

 After applying the changes from the client to the server, the client
 must compare its folders with the responses of the command above. If
 it does not have a folder, it must create that folder on the client
 device. If there is a folder on the device that is not in any of
 these responses, then the client may delete or keep that folder. In
 order to avoid losing changes performed on the client, the client
 should apply its changes first. In case when the client has changes
 to a folder that was deleted on the server, it should ask the user
 whether the changes should be uploaded to a different folder or be
 discarded (or be configured to automatically do one of the two).

 Next, the client needs to make sure that the emails in each of its
 folders match the server. It performs a SELECT and then a FETCH
 command for each folder. A sample of a SELECT and FETCH command for
 the inbox is as follows:

 C: A003 SELECT "INBOX"
 S: * 60 EXISTS
 S: ... more untagged responses with information about the folder
 S: A003 OK SELECT completed
 C: A004 FETCH 1:* (FLAGS UID)
 S: * 1 FETCH (FLAGS (\Answered) UID 120)
 S: * 2 FETCH (FLAGS (\Seen) UID 121)
 S: ... flags for messages with message sequence numbers 3-59
 S: * 60 FETCH (FLAGS () UID 250)
 S: A004 OK FETCH completed

 The client must go through the full list of email messages in each
 folder. It must add an email in this list if it is not already on
 the client. It must modify any email in this list on the client
 device to reflect any changes to the mutable flags of that message
 using IMAP STORE command. Also, it should remove any emails on the
 client device not in this list. After performing these operations,
 the client is in sync with the server.

 P-IMAP recommends that P-IMAP disconnected clients follow the

 recommendations of [IMAP-DISC] and utilize the IMAP extensions that

Maes Expires September 2006 [Page 7]

 <Push-IMAP> March 2006

 are available as UIDPLUS [UIDPLUS], CONDSTORE [CONDSTORE}, LITERAL+
 [LITERAL+], and MULTIAPPEND [RFC3502].

1.2.2. Event-based Synchronization

 Another technique is event-based synchronization. Event-based
 synchronization is used to keep the client device in sync with the
 server by communicating from the server to the client that a change
 has taken place on the server and what the change is and conversely
 from the client to the server that a change has taken place on the
 client and what the change is. This method requires that the client
 has been fully synchronized with the server at some earlier point.
 In the IMAPv4Rev1 protocol, the client must perform a state-
 comparison-based sync when it selects a folder, but then it can use
 event-based synchronization to keep itself in sync after that.
 Although event-based synchronization cannot totally replace state-
 comparison-based synchronization, it is a faster alternative for the
 client to maintain synchrony when the server is capable of change
 tracking for a client. Of course the client maintains tracks of its
 changes too.

 In event-based synchronization, the server keeps track of what
 changes (called events) have occurred to the email account that are
 not yet reflected on the client device. When the client finishes
 processing all events since the last time it was in sync with the
 server, it is again in sync with the server. Event-based
 synchronization is particularly effective when the server can push
 events to the client for immediate processing. In this case, there
 are likely to be only a small number of events the client needs to
 process at one time.

 Also, when a P-IMAP client drops a connection or accidentally
 disconnects, the P-IMAP server can retain the associated session (to
 facilitate reconnection, authentication and to guarantee valid UIDs
 etc) and cache all events during the time the client is
 disconnected. When the client reconnects and is able to obtain the
 same session, it does not need to perform a state-comparison-based
 synchronization all over again, but rather, the server sends the list
 of pending events to the client. In order to avoid losing changes
 performed on the client during the time the client is disconnected,
 the client should apply its changes first.

1.2.3. Reconnecting in a same session

 The IMAP protocol is predicated upon the assumption that the client
 establishes a session that is maintained during the client server
 interaction. The IMAP protocol depends on the underlying transport
 protocol to provide the session. Attempts have been made to lower

https://datatracker.ietf.org/doc/html/rfc3502

Maes Expires September 2006 [Page 8]

 <Push-IMAP> March 2006

 cost of establishing sessions via schemes like the quick reconnect
 technique being proposed for IMAP [CONNECT].

 If the underlying transport is inherently unstable, such as over a
 wireless network, the transport protocol may drop the session
 frequently. Also if P-IMAP were to be implemented over session-less
 protocol such as SMS, or over an asynchronous messaging system (e.g.
 MOM -- Message Oriented Middleware), then the session may not even be
 maintained by the underlying transport protocol. For this reason a
 future extension may allow P-IMAP commands to optionally carry a
 session ID in them so that the P-IMAP server can relate any command
 to the right session if it exists, or respond with the LOGIN response
 if the session does not exist. If the session exists, the P-IMAP
 client can behave as if it never lost the session to the server. This
 technique is immune to the characteristics of the underlying
 transport protocol from the perspective of session reliability.

 It is possible to include a session id in P-IMAP commands is to
 encode them as a prefix of the tags. For a definition of tagged and
 untagged exchanges, see later on. In this scheme, when the client
 logs in into the P-IMAP server with the device ID (defined later)
 appended to the user name, it will establish a session and associate
 a unique id (SID) with the session. For security reasons, the SID
 should be a random number generated over a very large range. The SID
 is sent back to the P-IMAP client (so that it be knowledgeable of it)
 as part of the authentication. The P-IMAP client will then construct
 P-IMAP command tags using the SID as a prefix. For any P-IMAP
 command, the P-IMAP client may receive an untagged LOGIN response. In
 this case, the P-IMAP client must assume that the session to the
 server is severed and must take the appropriate action. So with such
 a scheme, the P-IMAP client must always assume that the session is
 still alive unless the P-IMAP server informs it otherwise. The client
 therefore will behave like a connected client (i.e. logged in within
 a valid P-IMAP session) until such time as the server returns a LOGIN
 response. When a session is severed, the client may initiate the
 disconnected mode synchronization approach (i.e. start a state-
 comparison-based synchronization), unless if this can be avoided as
 discussed below.

 Loss of session to the server does not necessarily mean the P-IMAP
 client has to resort to the state comparison based synchronization.
 It depends on the P-IMAP client and server capabilities. For example,
 if the server supports UID based operations and is able to return
 EXPUNGE untagged responses with UIDs instead of message sequence
 numbers, the P-IMAP client may do event based synchronization as long
 as the UIDs are still valid for the folder.

1.2.3. Clarification note on the term �P-IMA�P Session

Maes Expires September 2006 [Page 9]

 <Push-IMAP> March 2006

 P-IMAP session in this document differs from the definition of
 session (conventional IMAP session) in [RFC3501]. In RFC3501, the
 term session refers to time spent in a folder via SELECT/EXAMINE and
 the sequence of commands executed for that duration. SELECT or
 EXAMINE on another folder ends the session

 The concept of P-IMAP session defined in this document pertains to
 all of the user associated state since LOGIN/AUTHENTICATE similar to
 [CONNECT]. This is significant, because event based synchronization
 adds significant amount of state to the session. The server is
 presumed to temporarily maintain for a limited duration, a list of
 changes made to every folder the user is subscribed to, which the
 client may receive when it SELECTs a folder. This is in addition to
 the normal IMAP state, such as remembering what the current selected
 mailbox is.

 1.3.
 The Server-Side Filtering in P-IMAP

 The P-IMAP protocol is meant to support mobile client devices with
 memory and connectivity constraints. Due to these constraints, an
 end user may want to specify filters to limit the number of
 notifications sent. These filters separate the user s messages into
 different sets that the server should handle differently. All end
 users have a complete repository, which is the place where a user s
 messages are stored on the server. The end user may want to receive
 a subset of these messages on their client device. The messages on
 the device are split further into two categories, lower priority
 messages that the user chooses to wait for until he can poll (i.e.
 pull from) the server and higher priority messages that the user
 would like to be notified of (ie pushed from the server) as soon as
 possible by the server. All three repositories have the same set of
 folders.

 +----------------+ +---------------+ +------------+
COMPLETE		MOBILE		MOBILE
		POLL		PUSH
REPOSITORY	View	REPOSITORY	Notification	REPOSITORY
all the emails	Filters	emails to be	Filters	important
in an end user's	========	on the mobile	============	emails of
email account		client(VFOLDER)		end user
 +----------------+ +---------------+ +------------+

 Figure 3: Filters and Repositories

 Formally, a repository consists of a set of folders, and each folder
 has both a name and a set of messages associated with it. The

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501

 complete repository consists of all folders of an end user and all

Maes Expires September 2006 [Page 10]

 <Push-IMAP> March 2006

 the associated messages for each of those folders. Messages in the
 complete repository that pass the view filter make up the poll
 repository. In addition, there is a second layer of filtering,
 called notification filter, and there is exactly one notification
 filter per folder per device. The mobile push repository is the
 set of all the messages in the complete repository that pass both the
 view and the notification filters. Note these repositories are only
 logical components.

 From this point forth, it can be assumed that an event in this
 document refers to only and all changes to messages in the mobile
 repositories. When the client connects to the server and polls for
 messages, it can determine what changes have occurred to messages
 that passed the view filters. Whenever an event occurs to a message
 that passes the view and notification filters, that message becomes a
 candidate to be pushed.

 Whenever a change occurs to the complete repository, it is first
 determined whether this change concerns a message or a folder. If it
 concerns a folder, it is a folder event and all folder events are
 push events. If the change concerns a message that passes the view
 filters, it is a message event. Otherwise, this change does not
 concern the mobile repository and thus is not considered an event for
 the purposes of P-IMAP. Next, if a message event concerns a message
 that passed the notification filter and that event passes the event
 filter, it is a pushed message event. Otherwise, if the message
 event concerns a message that does not pass the notification filters,
 it is a polled message event.

 Note UIDs are assumed the same in these repositories for the same
 message.

 1.4.
 Extra Functionality in P-IMAP

 The P-IMAP server supports a rich set of extra functionality over the
 IMAP server to support extra features for a mobile client, and these
 features are presented:

 [1] Compression - The P-IMAP protocol allows for compression of
 literal IMAP data in a command or response.

 [2] Sending emails - The P-IMAP server can be used to send email,
 thus eliminating the need for the P-IMAP client to connect to a
 separate SMTP server. This is not intended to replace SMTP but
 rather to provide a mechanism that can be easily and rapidly
 implemented by servers and that is especially well adapted to
 gateways / proxies used to enable e-mail and submission servers.

Maes Expires September 2006 [Page 11]

 <Push-IMAP> March 2006

 [3] Support for unstable mobile connections - After a client drops
 a connection, the P-IMAP server can temporarily maintain the
 session for the mobile client. During this time, the server caches
 any events concerning the mobile repository while the client is
 disconnected, which it can then send to the client upon
 reconnection.

 [4] Longer periods of inactivity tolerated - A P-IMAP server can
 wait for certain period of time before logging out an inactive
 mobile client and ending its session.

 [5] Attachments forward/reply behavior - When forwarding/replying
 to a message from the P-IMAP client, the end user may edit portions
 of the original message and re-compose the edited body parts
 (addressees, body, attachments) using CATENATE [CATENATE] and
 IMAPURLs [RFC2192], [IMAPURLbis].

 [6] Attachments conversion - The P-IMAP server can convert
 attachments to other formats to be viewed on a mobile device. The
 client can explicitly request a particular conversion. The server
 complies on a best effort basis. When not possible, the server
 determines based on its own strategy (e.g. based on knowledge of
 the client as discussed hereafter) how to convert, unless the
 client disables server fallback. If the server knows the
 characteristics of the device or can determine them (out of scope
 of P-IMAP), the attachments can also be optimized for the
 capabilities of the devices (e.g. form factor of pictures). See
 discussion in Appendix D. This is a recommended server behavior.

 [7] PIM (personal information management) - The protocol can also
 provide support for updating personal information on a client
 device, even when these changes are initiated from another client
 (i.e. a personal assistant connects to an end user's account from a
 desktop and changes contact information.) Vendors may rely on P-
 IMAP to exchange calendar events and address book changes as
 attachments or messages. With the name reserved by [VFOLDER], it
 should be clear that folders starting with Calendar* and Contacts*
 can be used for this purpose. PIM (calendar and address book) MAY
 of course be separate services from email.

2.
 Relation with the Lemonade Profile and other E-mail specifications

 P-IMAP is a recommendation for interoperable intermediate
 implementations awaiting [LEMONADEPROFILEBIS] or the realization of
 the OMA MEM enabler using it.

https://datatracker.ietf.org/doc/html/rfc2192

Maes Expires September 2006 [Page 12]

 <Push-IMAP> March 2006

 As the LEMONADE profile [LEMONADEPROFILE, LEMONADEPROFILEBIS] work
 progresses, the P-IMAP specifications are expected to further
 converge towards the profile.

 Note that P-IMAP defines multiple bindings. When it relies on TCP
 bindings for P-IMAP requests and responses, P-IMAP can be viewed as a
 direct extension of IMAPv4 Rev1 (or IMAP4 profile for mobile) and
 therefore a good candidate for the Lemonade mobile optimization. With
 other bindings, it becomes a way to implement optimized mobile and
 push e-mail using IMAP semantics appropriately extended and
 transported on other bindings.

3.
 The P-IMAP Design

 P-IMAP extends IMAP and has the same basic model, where the client
 connects to the server to open a session to access its email account.
 A P-IMAP client may fetch the contents of the email account or make
 changes to it just as in IMAP. P-IMAP does, however, have many
 enhancements to IMAP, and this section introduces the core design
 changes. There are many requirements given in this section, as well
 as concepts that are essential to understanding the protocol.

 3.1.
 Implementing Filters

 A P-IMAP server should support multiple mobile devices for each email
 user, and should allow each device to have one unique event filter
 and a set of view filters and notification filters. A mobile client
 connects to the P-IMAP server by supplying its login information. P-
 IMAP extends the IMAP login information by permitting the username to
 be appended with a device ID. The device ID is a unique identifier,
 with respect to the server, for the client device issued by the
 server. If no device ID is given during authentication, then a
 regular IMAP session is initiated instead of a P-IMAP session. The
 credentials sent during the LOGIN/AUTHENTICATE exchange are used to
 identify and authenticate the user, while the device ID is used to
 determine the user s profile (a set of filters) for the device as
 well as determining whether a valid session already exists for the
 user for the device. Associated with the user and device ID is one
 view or more view filters and exactly one notification filter for
 each view. These filters are saved and thus persist across P-IMAP
 sessions. Filters can be modified when a P-IMAP session is open,
 however modifications may impose a cost on the client (full state
 sync).

 P-IMAP does not constrain how notification filters are defined. They

 may be based on SIEVE [RFC3028] and following work. Creation of view
 filters are achieved via the P-IMAP extension VFOLDER.

Maes Expires September 2006 [Page 13]

https://datatracker.ietf.org/doc/html/rfc3028

 <Push-IMAP> March 2006

3.1.1. The View Filter

 View filters are used to filter out email messages, which match
 certain criteria. If an email passes through the view filter, it is
 stored in the mobile repository. View filters are implemented using
 the VFOLDER CREATE extension which is used to create IMAP folders
 which are views of other folders. A P-IMAP server MAY choose to
 impose the restriction that vfolders are per-device and thus two
 vfolders with the same name can exist for the same P-IMAP user. The
 syntax for defining a vfolder follows the syntax for creating an IMAP
 folder combined with an IMAP search. The vfolder search syntax
 includes any combination of most of the search criteria as defined
 for the SEARCH command of IMAP, in Section 6.4.4 and 7.2.5 of RFC

3501. Creating a filter of messages received starting a certain
 number of days before the current day can be achieved with the new
 SEARCH WITHIN [WITHIN] extension. The ALL search criteria, when
 used alone, means that every email event satisfies the criteria.

 A view filter (vfolder) cannot be modified, it can only be deleted
 and recreated. Whenever this happens the client associated to the
 user must to perform a state-comparison-based sync to keep in sync
 with the mobile repository.

3.1.2. The Notification Filter

 Notification filters are used to form a subset of higher priority or
 special messages by logically copying messages, from the mobile
 repository into the mobile push repository, that match certain
 criteria. The syntax for defining a notification filter is the same
 as defining a view filter.

 Because the view filter defaults to ALL and the notification filter
 to NONE, the mobile poll repository will mirror the complete
 repository, but none of the messages are added to the mobile push
 repository. This implies that the default behavior is equal to the
 IMAPv4 Rev1 model.

 The client does not need to do anything after it resets a
 notification filter or event filter (i.e. sets all NONE and ALL to
 default values). The server should then only send out notifications
 that correspond to the most up-to-date filters.

3.1.3. The Event Filter

 The event filter is used to filter out message events concerning
 messages in the push repository. The syntax for defining an event
 filter is ALL, NONE, or NEW. An event filter applies for all folders
 in a push repository.

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 14]

 <Push-IMAP> March 2006

 ALL -- All message events concerning messages of the push
 repository will be sent to the client, such as if the message becomes
 seen or deleted.
 NONE -- No events should be pushed to the client.
 NEW -- Only events that concern new messages arriving to the push
 repository should be pushed to the client.

 3.2.
 Connectivity Models

 There are three connectivity models for P-IMAP, depending on the
 capabilities of the P-IMAP server, the client, and the connection
 available between them. These models include in-response, in-band,
 and out-of-band. It is explicitly stated in what situations these
 three connectivity models can be used.

3.2.1. In-Response Connectivity

 The in-response binding scenario is the most basic one and implements
 the poll model. In this case the client initiates the commands to the
 P-IMAP server and the server responds to client commands with events.
 In this case there is no need for a persistent connection between the
 client and the server. The client opens a connection only when it
 needs to send commands to the P-IMAP server, and that is the only
 time it is notified of new events.

 +--------+ +++ HTTP, etc. +--------+
 | | Command +++ | |
 | Client |--------------------+++--------------->| P-IMAP |
 | Device | +++ | Server |
 | | Response + Event +++ | |
 | |<-------------------+++----------------| |
 +--------+ +++ +--------+
 Figure 4: In-Response connection

 Cases of in-response connection:
 [1] HTTP/HTTPS binding
 - Server Requires: HTTP/HTTPS listener for P-IMAP
 - Client Requires: HTTP/HTTPS client with P-IMAP processing
 [2] TCP Binding
 - Server Requires: P-IMAP
 - Client Requires: P-IMAP + no IDLE

3.2.2. In-band Connectivity

 The in-band binding scenario corresponds to a reliable push model.
 In this case the server pushes events to the client whenever they
 occur. To do so, it must have a reliable means of communication with
 the client, and the client should be ready to accept such

 notifications. In this case, there needs to be a persistent

Maes Expires September 2006 [Page 15]

 <Push-IMAP> March 2006

 connection between the client and the server so that the server can
 push an event at any time. The client may optionally issue a request
 to retrieve more information concerning an event.

 +--------+ OOO TCP, Persistent +--------+
 | | Push Event OOO HTTP, etc. | |
 | Client |<------------------OOO-----------------| P-IMAP |
 | Device | OOO | Server |
 | | Optional Request OOO | |
 | |...................OOO................>| |
 +--------+ OOO +--------+
 Figure 5: In-band Connection

 Cases of in-band connection:
 [1] TCP Binding, Always connected, IDLE
 - Server Requires: P-IMAP + IDLE
 - Client Requires: P-IMAP + IDLE, constant TCP connection
 [2] Any other persistent two-way connection
 - Server Requires: P-IMAP + IDLE on persistent connection (e.g.
 HTTP/HTTPS)
 - Client Requires: P-IMAP + IDLE on persistent connection (e.g.
 HTTP/HTTPS), constant connection

 Persistent HTTP/HTTPS may sometimes be difficult to achieve with
 today s intermediaries if the HTTP server does not support HTTP 1.1
 correctly or has a very short timeout period for persistent
 connections.

 Both connectivity models above (In-response and in-band) involve a
 maintained data connection with notification exchanged within the P-
 IMAP band (i.e. P-IMAP exchanges).

3.2.3. Out-of-band Connectivity

 This case covers notification outside the P-IMAP band :
 - In a different connection
 - Within the same data connection but outside the P-IMAP band

 The out-of-band binding scenario corresponds to a push model that may
 be unreliable. In this case the server pushes events to the client
 whenever they occur, to the best of its ability. To do so, it should
 be able to send messages to the client without necessarily the need
 for a persistent connection. However, the out-of-band channel can
 possibly lose and reorder messages. In addition, there are no timing
 guarantees.

 Examples of out-band channels include SMS (and GSMSMS),WAP Push (and
 WAPWDP), SIP notification and UDP. As in the in-band scenario, the
 client may optionally open a P-IMAP session over an in-band or in-

Maes Expires September 2006 [Page 16]

 <Push-IMAP> March 2006

 response connection and send a command as a result of receiving an
 event.

 +--------+ Push Event XXX SMS/SIP/MMS/UDP +--------+
 | |<--------------XXX---------------------| |
 | Client | XXX /WAP Push/... | P-IMAP |
 | Device | Optional In-band or | Server |
 | | Request +O+ In-response | |
 | |---------------O+O-------------------->| |
 +--------+ +O+ +--------+
 Figure 6: Out-of-band Connection

 Cases of out-of-band connectivity:
 [1] A notification service from the server to the client
 - Server Requires: A notification generator (defined by
 notification channel)..
 - Client Requires: A notification processor (defined by
 notification channel)..

 In-band or In-response exchanges are on:
 - HTTP or HTTPS
 - TCP
 - Other transport

 3.3.
 Recommended Connectivity Models

 To address the problems discussed in [MEMAIL], it is a good idea to
 always support the out-of-band connectivity model with HTTP/HTTPS
 binding.

 Support of HTTP/HTTPS binding is recommended as a minimum option.

 Recommended out-of-band channels include SMS, UDP (if supported by
 target networks and deployment model) and SIP event notification all
 using the payload format discussed in appendix B.

 3.4.
 Keeping the Client In Sync with the Mobile Repository

 Whenever a client device opens a new P-IMAP session with a P-IMAP
 server and the P-IMAP server has to open a new session with the IMAP
 server for this client, the client must perform a state-comparison-
 based sync with the mobile repository. Since the client has no way
 of directly detecting only changes to the repository since the last
 login, it needs to retrieve information about every message in the
 mobile repository and calculate the changes itself. After that

 point, the client can use event-based synchronization to keep the
 device in sync.

Maes Expires September 2006 [Page 17]

 <Push-IMAP> March 2006

 The P-IMAP server tracks changes to all folders and returns them to
 the client for the duration of a session. Until the session is
 expired, the server must log all events that occur while a client is
 disconnected. This way, if the client temporarily loses a
 connection, it does not have to worry about missing any events and
 needing to perform another state-comparison-based sync. A client
 does have the option though to prematurely end a session by issuing a
 LOGOUT command. Additionally, P-IMAP clients can remain inactive
 for a certain period of time without being logged off the server and
 without the session expiring.

 Events are only returned to the client for the currently selected
 folder, although they are still tracked for folders that aren t
 currently selected. To support event-based synchronization for
 multiple folders, the client will have to issue a SELECT for each
 folder of interest to the user and receive the queued up events for
 that folder.

 In other words, P-IMAP supports multi-folder semantics, including
 separate notification and event filters for each folder, as well as
 tracking changes to each folder, with the caveat that during event
 retrieval from the P-IMAP server within a session, the client must
 SELECT each folder separately to receive the changes for that folder.

4.
 Events

 This section contains the syntax that the server uses to send events
 to the client.

 4.1.
 Message Events Sent During In-band and In-response Mode

 The client can receive the following untagged responses from the
 server:

 [1] The client receives an EXISTS/RECENT event from the server
 indicating a new message.
 S: * 501 EXISTS
 S: * 1 RECENT
 Next, the client retrieves this new message using a FETCH command.
 C: A02 FETCH 501 (ALL BODY[])
 S: * 501 FETCH ...
 S: A02 OK FETCH completed

 [2] The client receives an EXPUNGE event from the server from a
 message has been permanently removed from a folder.

 S: * 25 EXPUNGE

Maes Expires September 2006 [Page 18]

 <Push-IMAP> March 2006

 The client deletes this message from the client device, as it has
 been removed permanently from the folder. The client does not need
 to send any command back to the server.

 [3] The client receives an untagged FETCH event from the server,
 which can contain just FLAG information if the event is regarding an
 old message or FLAG plus possibly other information if the event is
 regarding a new message. This event is received if a message's flags
 are changed, or for a new message if the user's preferences are set
 to do so.
 S: * 101 FETCH (FLAGS (\Seen \Deleted))
 The client saves the information contained in this response
 accurately in the client device.

5.
 Interactions between the P-IMAP Client and P-IMAP Server

 A P-IMAP server must support all IMAPv4Rev1 commands from client
 devices following the syntax defined in [RFC3501]. Thus, a P-IMAP
 client may issue any existing IMAP commands to the P-IMAP server, and
 both the server and client must behave as specified in RFC3501 except
 for the changes specified in Section 5.1. In addition, P-IMAP
 defines extension commands for IMAPv4 Rev1 using the
 Experimental/Expansion mechanism defined in [RFC3501, Sec 6.5] and,
 as per RFC definition, P-IMAP command names must start with X. P-IMAP
 commands are tagged and asynchronous following the same rules as in
 IMAPv4 Rev1.

 Client commands, as well as the server responses to them, are
 included in this section. The P-IMAP protocol also defines events to
 be sent by the server to the client. These events notify the client
 when there are changes to messages that match an end user's view
 filters and notification filters, as well as any changes to a
 client's email folders. The syntax defined in this section is an
 abstract syntax, and payloads may vary according to the communication
 mechanism used. The normative appendix of this document describes
 some specific payloads.

 The format for presenting commands is defined as follows (SEE
RFC3501]:

 <COMMAND NAME>

 <Command Description - contains an explanation of the command>

 Formal Syntax: <command syntax described in ABNF [RFC2234]>

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc2234

Maes Expires September 2006 [Page 19]

 <Push-IMAP> March 2006

 Valid States: <states of the P-IMAP session in which this command
 can be used>

 [Extension to: <states what IMAP command this command should be
 used in place of>]

 Responses: <server responses for this command>

 Result: <possible result that comes after the responses. This
 usually indicates the status of the execution of a particular
 command. Possible values are:
 - OK if the execution was successful
 - BAD for unknown commands, or when arguments syntax is
 incorrect
 - NO when argument semantics are incorrect, or when command
 processing fails
 - BYE when internal system or network error happens and
 processing cannot continue>

 Example: <Description of what this example is meant to illustrate>
 C: <client issued commands>
 S: <server returned results>

 This section describes commands where the client initiates contact
 with the server, like all the commands in the IMAPv4 Rev1 protocol.
 These commands include extensions to the IMAP protocol that have been
 created in order to better support mobile devices, and these
 extensions are all prefixed with X. They are used to perform actions
 on messages: retrieve, delete, search, etc., as well as set up the
 filters and notification methods of a mobile client. These commands
 are sent over a reliable connection as required for IMAP, see
 [RFC3501, Sec. 2.1] for more details. Client devices can send
 several commands at one time and, thus, these commands must be
 tagged. The server can send tagged and untagged responses to the
 client. Untagged responses contain information requested by a
 command. Tagged responses give the status of the command execution
 and its tag identifies the command it corresponds to.

 To connect to a P-IMAP server, the client must first follow the
 procedure for establishing an IMAP session. The client starts out in
 NOT AUTHENTICATED state and issues a LOGIN/AUTHENTICATE command with
 a valid P-IMAP device ID appended to the username. Once this is
 accepted, the P-IMAP session is started and the client enters the
 AUTHENTICATED state where it can use all the P-IMAP extension
 commands, as opposed to a regular IMAP session, which will return
 errors to all P-IMAP defined extensions other than XZIP, XDELIVER,
 and XPROVISION. To establish a regular IMAP session, the client may
 also login in the usual fashion with their username and password.

Maes Expires September 2006 [Page 20]

 <Push-IMAP> March 2006

 The server responds to XPROVISION commands by returning any service
 specific parameters of the server, such as which out-of-band channels
 are supported. The XZIP command can be used to fetch body parts and
 zip returned literal data. XDELIVER allows the client to send an
 email message through this server, instead of having to connect with
 an SMTP server.

 Once entered into the P-IMAP session, the client can issue XCONVERT,
 XSETPIMAPPREF, XGETPIMAPPREFS, and XVFOLDER related commands as
 needed. XCONVERT is used for body parts.

 5.1.
 Revisions to IMAPv4 Rev1 Behavior

 The section describes all the differences between how an IMAPv4 Rev1
 server vs. a P-IMAP server responds to all IMAPv4Rev1 commands for
 implementing the custom mobile features. A compliant P-IMAP server
 must implement all the commands in IMAPv4 Rev1, with these revisions.
 The IMAPv4Rev1 syntax on commands and responses are found in sections
 6 and 7 in [RFC3501]. The rest of this section defines any
 additional modifications to the IMAP commands that a P-IMAP server
 must implement to be compliant.

5.1.1. Mobile Repository

 In a P-IMAP session, the client can access messages in the mobile
 repository (e.g a VFOLDER defined on INBOX) or it may choose to
 access messages in the complete repository.

5.1.2. The CA�PABILITY Command

 The CAPABILITY command is defined in RFC3501, section 6.1.1. The
 client sends a CAPABILITY command so it can query the server to find
 out what commands it supports. In RFC3501, the IMAP server is
 allowed to specify additional capabilities not included in that
 specification. A P-IMAP server conforms to that requirement, and
 must list what P-IMAP version it supports.

 XPIMAPv1r2 means that the server supports PIMAP version 1.2, which
 includes the commands, XPROVISION, XSETPIMAPPREF, XGETPIMAPPREF,
 XDELIVER, XZIP, XCONVERT, XVFOLDER, XENCRYPTED and BINARY. It also
 implies support for LITERAL+ [LITERAL+].

 A server can also enumerate individually the P-IMAP commands and
 additional commands that it supports.

 capability_cmd = tag SP "CAPABILITY"

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501#section-6.1.1
https://datatracker.ietf.org/doc/html/rfc3501

 Valid States: NOT AUTHENTICATED, AUTHENTICATED, SELECTED, or LOGOUT

Maes Expires September 2006 [Page 21]

 <Push-IMAP> March 2006

 Responses: REQUIRED untagged response: CAPABILITY
 Result: OK - capability completed
 BAD - command unknown or arguments invalid

 Example: A P-IMAP server that implements P-IMAP Version 1rev2.
 C: a001 CAPABILITY
 S: * CAPABILITY IMAP4rev1 AUTH=LOGIN IDLE xPIMAPv1r2
 S: a001 OK CAPABILITY completed

 A P-IMAP server can declare the draft revision that it complies to
 via: xPIMAPcomplyrev12 for revision 12 etc...

5.1.3. �P-IMA�P Session/Login

 An email user's username for a P-IMAP session is its regular username
 + "#" + its P-IMAP device ID + the email domain. P-IMAP device IDs
 might be "P" + the device ID issued by the P-IMAP server (e.g. it may
 be the client's digit telephone number. Note the length of the phone
 number should not be limited to a specific value as it may change
 from country to country). To initiate a P-IMAP session, the client
 uses a LOGIN/AUTHENTICATE command with this new username.

 The P-IMAP server will automatically try to resume a previous session
 for this client. It can check the device ID to see if the session
 exists (which will work for connection-based transport such as TCP),
 or it can rely on the new mechanisms described in section 1.2.3
 otherwise the server can inform the client of the state of the server
 by sending an untagged SESSION response. If that state is SELECTED,
 the server also tells the client what the selected folder is by
 sending an untagged FOLDER response. Next, the server sends the
 client any pending events that have occurred in this folder while the
 client has been disconnected. Thus, the client can just service
 these pending events and need not perform a full sync. If these
 events could not be cached for some reason or the server senses the
 client may have not received some events, the RESYNC Response is
 returned, and the client should perform a state-comparison based
 sync. A SESSIONID Response is returned whenever a PIMAP session is
 initiated/resumed.

 untagged SESSION Response = "*" SP "SESSION" SP ("AUTHENTICATED" /
 "SELECTED")untagged SESSIONID Response = ""*" SP "SESSION" SP
 untagged FOLDER Response = "*" SP "FOLDER" SP folder
 untagged RESYNC Response = "*" SP "RESYNC"

 When there is no active P-IMAP session - either because this is the
 very first time client logins, or because the client explicitly sent
 a LOGOUT command to close a previous session - then the server
 returns a new session ID response and the tagged response to the

Maes Expires September 2006 [Page 22]

 <Push-IMAP> March 2006

 LOGIN command, and the client needs to perform state-comparison-sync
 to synchronize its contents.

 Example: First login, the client needs to perform a state-
 comparison-sync to get in sync.
 C: A01 LOGIN joe#P6505551234 password
 S: * SESSIONID 123456
 S: A01 OK LOGIN completed

 Example: A successful P-IMAP login resuming an old session
 C: A02 LOGIN joe#P6505551234@foo.com password
 S: * SESSION AUTHENTICATED
 S: * SESSIONID 123456
 S: A02 OK LOGIN completed

 Example: A successful P-IMAP login resuming an old session in
 SELECTED state with the INBOX selected.
 C: A02 LOGIN joe#P6505551234 password
 S: * SESSION SELECTED
 S: * FOLDER INBOX
 S: * 14 EXISTS
 S: * 49 FETCH (....
 S: * SESSIONID 123456
 S: A02 OK LOGIN completed

 Example: A successful P-IMAP login resuming an old session in
 SELECTED state with the INBOX selected, but where the server could
 not cache all the events since the last disconnect.
 C: A02 LOGIN joe#P6505551234 password
 S: * SESSION SELECTED
 S: * FOLDER INBOX
 S: * RESYNC
 S: * SESSIONID 123456
 S: A02 OK LOGIN completed

5.1.4. IDLE

 The server must implement the IDLE command from RFC 2177. When the
 client issues this command, the server can push changes to a folder
 to the client. The server may replace the EXISTS/RECENT message with
 an untagged FETCH command as specified in Section 5.3.2. The client
 should send this command while in-session to enter in-band mode,
 where the server will actively push notifications to the client.

5.1.5. XENCRY�PTED

https://datatracker.ietf.org/doc/html/rfc2177

Maes Expires September 2006 [Page 23]

 <Push-IMAP> March 2006

 For certain proxy-based implementation of P-IMAP (see Security
 Considerations and Appendix C), it may be necessary to object level
 encryption for FETCH responses of email content. In that case, the
 server uses a new encrypted literal syntax for any FETCH data that
 it s security policy wants unreadable by a proxy. The server should
 return XENCRYPTED in response to the CAPABILITY command if it
 implements this security mechanism and must announce the encryption
 methods specified (see the example following).

 Server's response to the CAPABILITY command announcing XENCRYPTED
 methods.
 C: A02 CAPABILITY
 S: * CAPABILITY IMAP4rev1 XENCRYTPED=3DES,RC40,AES
 S: A02 CAPABILITY completed

 The new encrypted literal extends the IMAP BINARY literal8 syntax,
 and has the following syntax:

 literalx = �~{X number [+] } CRLF *BINCHAR /
 {X number [+] } CRLF base64

 string =/ literalx

 BINCHAR = <0x00 0xFF>
 ; encrypted data payload
 ; subject to RFC2630 Section 6.3 padding before encrypting

 The key used to encrypt data using algorithms such as 3DES or AES,
 must be computed or provisioned into the device. If the client uses
 SASL [RFC2222] to authenticate, then a session key should be computed
 according to Section 2.4 of [RFC2831]. Otherwise, a key must be
 provisioned via a mechanism which is out-of-band with respect to the
 proxy server, either through an alternate TCP or HTTP mechanism, such
 as a TLS or HTTPS connection, a secure SMS, or manually by user entry
 of a shared secret.

 The user s password or shared secret with the server may also be used
 to derive this key.

 Keys and key updates can be provided via XPROVISION only in the case
 that the connection is secured against the proxy, such as using SSL
 through the proxy to provision keys, or via an out-of-band (with
 respect to the proxy) method such as XPROVISION executed over an
 HTTPS binding. Otherwise, a session key may be derived in the same
 way that SASL derives session keys when confidentiality is requested.
 See also the analysis presented in Appendix C.

 5.2.
 Registering with the server

https://datatracker.ietf.org/doc/html/rfc2630#section-6.3
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2831#section-2.4

Maes Expires September 2006 [Page 24]

 <Push-IMAP> March 2006

 When the client registers itself with the server, it sends a HELLO
 message with the device ID in plain text and a payload, which is the
 device ID, encrypted using the encryption key associated with the
 server, to the Notification Delivery Service. The format of this
 message is:

 HELLO sp deviceID sp encrypted-deviceID and network-characteristics

 Network-characteristics may be the device IP address or any other
 information the device wants to send. The server is expected to use
 what it understands and disregard the rest.

 The server will look up the encryption key associated with the
 device. If the encryption key does not exists, INVALID ENCRYPTION
 KEY response is sent to the Notification Processor in plain text. If
 the encryption key exists the Notification Delivery Service will use
 it to decrypt the payload using 64-bit Advanced Encryption Standard
 or 64-bit Triple-DES algorithms and compare it to the device ID. If
 they match, it will retrieve information that it has on the device.
 It will then send the OK response to the caller (client). When UDP
 notifications are used it will send with the encrypted server IP
 Address and port number of the Notification Delivery Service as
 described in XPROVISION.

 Whenever the server must send a notification to the client, the
 server generates a unique sequence number and content for the
 notification, encrypts it using the encryption key, and sends it to
 the device. The mechanism to send it may be a UDP/IP session if one
 is available to the device or any other out-of-band message
 otherwise.

 When XENCRYPTED is used, all in-band messages from the server are
 similarly encrypted.

 The client can use the same key to encrypt its messages to the
 server.

 Note that if proxies are not an issue (see Appendix C and section on
 Security considerations), STARTTLS may be used by the client. In such
 cases, XENCRYPTED does not present any advantages and should not be
 used.

 5.3.
 P-IMAP Extension Commands and Responses

 The following subsections define P-IMAP extension commands and as per
RFC 3501, their names start with X.

https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 25]

 <Push-IMAP> March 2006

5.3.1. X�PROVISION

 The XPROVISION command is used to allow a device to obtain service
 specific parameters of the server. This includes what filters have
 been defined. Also, it will supply a list of all P-IMAP preferences
 and the values they can be set to. In addition, UDP information
 may be given when UDP notification is supported, such as the host
 name and port. A P-IMAP server can return other parameters as long
 as its syntax is agreed upon with the P-IMAP client.

 xprovision_cmd = tag SP "XPROVISION" SP device-id [notif-id]
 Valid States: AUTHENTICATED or SELECTED
 Responses: REQUIRED untagged responses XPROVISION
 Result: OK - provision completed
 NO - can't provision this device
 BAD - command unknown, invalid argument

 untagged XPROVISION XPIMAPPREF response = "*" SP "XPROVISION" SP
 "XPIMAPPREF" SP prev-name SP "(" pref_val_list ")"
 untagged XPROVISION UDP_HOST response = "*" SP "XPROVISION" SP
 "PIMAP_UDP_HOST" SP "(" udp_hostname ")"
 untagged XPROVISION UDP_PORT response = "*" SP "XPROVISION" SP
 "PIMAP_UDP_PORT" SP "(" udp_portnum ")"
 untagged XPROVISION ENC_KEY response = "*" SP "XPROVISION" SP
 "PIMAP_ENC_KEY " SP "(" encryptionkey ")"

 If LPROVISION is returning keys, the server should only do so in the
 following circumstances:

 a) TLS/SSL is being used
 b) SASL [RFC2222] confidentiality protection has been negotiated and
 enabled.

 Example: The client issues an XPROVISION command. The server
 returns the values of various PIMAPPREF's
 and the values they can be set to. The server responds by
 returning the encryption key, modes, and channels supported
 by P-IMAP. Note the syntax for returning parameters.

 C: A002 XPROVISION

 S: * XPROVISION XPIMAPPREF PIMAP_OUTBAND_CHANNEL (SMS NONE)
 S: * XPROVISION XPIMAPPREF PIMAP_INBAND_NEW_FORMAT (NONE)
 S: * XPROVISION XPIMAPPREF PIMAP_INBAND_PUSH (ON OFF)
 S: * XPROVISION XPIMAPPREF PIMAP_EVENT_FILTER (NEW)
 S: * XPROVISION XPIMAPPREF PIMAP_OUTBAND_FORMAT (EMN EXTENDED)
 S: * XPROVISION PIMAP_NOTIFICATION ADDRESS (address)
 S: * XPROVISION PIMAP_NOTIFICATION PORT (portnum)

https://datatracker.ietf.org/doc/html/rfc2222

Maes Expires September 2006 [Page 26]

 <Push-IMAP> March 2006

 S: * XPROVISION PIMAP_ENC_KEY (enc_key)
 S: A002 OK XPROVISION completed

 The following two instructions should be deprecated but are currently
 maintained for backward compatibility to earlier versions of P-IMAP:

 S: * XPROVISION PIMAP_UDP_HOST (udp_hostname)
 S: * XPROVISION PIMAP_UDP_PORT (udp_portnum)

 UDP HOST and UDP PORT define where the client initiates a UDP session
 for UDP notification.

 Event payloads are discussed in Appendix B.

5.3.2. XSET�PIMA�P�PREF & XGET�PIMA�P�PREFS

 The XSETPIMAPPREF command allows a user to define certain
 configuration parameters, while the XGETPIMAPPREFS command allows a
 user to retrieve the configuration values. Any server that
 implements these commands must respond with XPIMAPPREF as one of the
 capabilities in response to a CAPABILITY command. It must also
 announce the values these parameters can be set to in the XPROVISION
 command as specified as follows. These parameters affect how out-of-
 band notifications are sent to the client, as well as the format for
 sending new event notifications. If the server supports XPIMAPPREF
 they are required to support all of the following preferences.

 The preferences that can set with this command are as follows and
 their names start with PIMAP to identify them as P-IMAP parameters.
 (They may not apply in some configuration (e.g. no PIMAP OUTBAND
 ADDRESS when using UDP notifications)):

 [1] PIMAP_OUTBAND_ADDRESS - the number or email address to send
 out-of-band notification messages to the client. This must be a
 valid address according to the out-of-band channel requirements.
 This will not be returned in the XPROVISION command. This is not
 applicable to out-of-band UDP notifications.

 [2] PIMAP_OUTBAND_CHANNEL - the channel to send out-of-band
 notifications, either SMS, GSMSMS, WAP_PUSH, WAPWDP, MMS, SIP, UDP
 or NONE. When NONE, the P-IMAP server does not send the client any
 out-of-band notifications. The list of values may be extended with
 new values when different out-of-band channels are available. The
 valid values for this preference that the server supports will be
 given in response to the XPROVISION command.

 [3] PIMAP_IN-BAND_NEW_FORMAT - the FETCH parameters to
 automatically send to the client when there is a new message and
 there is a valid P-IMAP session, or NONE. If NONE, the server

Maes Expires September 2006 [Page 27]

 <Push-IMAP> March 2006

 sends the client a traditional EXISTS message when a new message
 arrives in the folder. Otherwise, in place of the EXISTS message,
 the server sends an untagged FETCH response with the given
 information. The valid values for this preference that the server
 supports will be given in response to the XPROVISION command.

 [4] PIMAP_INBAND_PUSH - whether or not the server should
 automatically IDLE the server when a folder is selected. The valid
 values for this preference that the server supports will be given
 in response to the XPROVISION command.

 [5] PIMAP_OUTBAND_FORMAT - the format to send the out-of-band
 notifications, i.e. EMN or EXTENDED.

 [6] PIMAP_EVENT_FILTER - The event filter for this user. Possible
 values are ALL or NONE or NEW, depending on the server's
 capabilities.

 xgetpimappref_cmd = tag SP "XGETPIMAPPREFS" SP "("
 pimap_pref_list ")"
 pimap_pref_list = pimap_pref [SP pimap_pref_list]
 pimap_pref = (PIMAP_OUTBAND_ADDRESS /
 PIMAP_OUTBAND_CHANNEL / PIMAP_INBAND_NEW_FORMAT /
 PIMAP_INBAND_PUSH / PIMAP OUTBAND FORMAT /
 PIMAP_EVENT_FILTER)
 Valid States: AUTHENTICATED or SELECTED
 Responses: REQUIRED untagged XGETPIMAPPREFS response with the value
 of the requested parameter.
 untagged XGETPIMAPPREFS response - "*" XGETPIMAPPREFS pref-pair
 pref-pair = "(" pimap-pref SP pimap-pref-val [pref-pair] ")"
 Result: OK - command completed
 NO - command failure: can't alter preference
 BAD - command unknown or arguments invalid

 Example: The client wishes to know the current out-of-band
 notification method it has set up. It sends an XGETPIMAPPREFS
 command.
 C: A003 XGETPIMAPPREFS (PIMAP_OUTBAND_CHANNEL)
 S: * XGETPIMAPPREFS (PIMAP_OUTBAND_CHANNEL SMS)
 S: A003 0K XGETPIMAPPREFS completed

 xsetpimappref_cmd = tag SP "XSETPIMAPPREF" SP
 (("PIMAP_OUTBAND_ADDRESS" SP device_address) /
 ("PIMAP_OUTBAND_CHANNEL" SP
 ("SMS"/"GSMSMS"/"WAP_PUSH"/"WAPWDP"/"MMS"/"UDP"/"SIP"/ "NONE"))
 /
 ("PIMAP_INBAND_NEW_FORMAT" SP fetch_criteria) /

Maes Expires September 2006 [Page 28]

 <Push-IMAP> March 2006

 ("PIMAP_INBAND_PUSH" SP ("ON" / "OFF")) /
 ("PIMAP_OUTBAND_FORMAT SP ("EMN" / "EXTENDED"))

 Valid States: AUTHENTICATED or SELECTED
 Responses: No specific responses.
 Result: OK - command completed
 NO - command failure: can't get a preference
 BAD - command unknown or arguments invalid

 Example: The client sets up its SMS device address and then selects
 that it wants SMS messages sent to the device, and the format of the
 SMS it wants.
 C: A002 XSETPIMAPPREF PIMAP_OUTBAND_ADDRESS 13335559999
 S: A002 OK XSETPIMAPPREF completed
 C: A003 XSETPIMAPPREF PIMAP_OUTBAND_CHANNEL SMS
 S: A003 OK XSETPIMAPPREF completed
 C: A004 XSETPIMAPPREF PIMAP_OUTBAND_FORMAT EXTENDED
 S: A004 OK XSETPIMAPPREF completed

 Example: The client sets the in-band NEW format to be ALL, meaning it
 wants the server to automatically send it all the headers for any new
 message.
 C: A002 XSETPIMAPPREF PIMAP_INBAND_NEW_FORMAT ALL
 S: A002 OK XSETPIMAPPREF PIMAP_INBAND_NEW_FORMAT completed
 From now on, whenever a new message arrives in a folder during a
 valid P-IMAP session, the server will try to send an untagged FETCH
 response of the new message with the specified information to the
 client at the earliest opportunity. This untagged FETCH response
 replaces the untagged EXISTS response that IMAP sends regarding a new
 message.
 S: * 60 FETCH ...<headers>

5.3.3. XZI�P

 XZIP should be seen as a way to address the issues of bandwidth
 optimization.

 The XZIP command is an extension of [RFC3516] IMAP BINARY, which
 introduces three new commands XZIP , XZIP.PEEK , XZIP.SIZE that
 parallel the syntax and semantics of BINARY , BINARY.PEEK , and
 BINARY.SIZE in [RFC3516]. In general, XZIP inherits all of the
 requirements and semantics of [RFC3516] s BINARY and BINARY.PEEK ,
 except that the content transfer encoding being requested is
 understood to be the result of what would be returned from BINARY
 decoding, followed by the application of the DEFLATE algorithm.

https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3516

Maes Expires September 2006 [Page 29]

 <Push-IMAP> March 2006

 Example: Zipping a body part fetch
 C: A1 FETCH 123 XZIP.PEEK[1.2]
 S: * XZIP[1.2]�~{1234}
 S: .binary decoded and deflated data .
 S: A1 OK FETCH completed

 As mentioned in RFC3516, XZIP.SIZE is a potentially expensive
 operation, as in XLZIP, so clients should be aware that making
 successive requests for the same part may be expensive.

5.3.4. XDELIVER

 XDELIVER enables the efficient composition and transmission of email
 using IMAP commands. This provides simple ways to provide reply and
 forward without download complete messages utilizing a gateway to the
 email and submit servers.

 XDELIVER is not intended to replace SMTP [RFC2821]. Instead it is
 envisaged as a simple way to implement gateways that support features
 like reply and forward without downloading complete messages when the
 email and submit servers may not support the commands described in
 [LEMONADEPROFILE] to support such capabilities.

 XDELIVER may allow some clients to reduce the amount of protocols
 supported ports in use, parameters to set or provisioned, or network
 protocols required.

 All these are important features required in particular to support
 mobile email use cases [MEMAIL],[OMA-ME-RD]:
 - Forward and reply without download
 - Ease of provisioning over the air
 - Ease of manual provisioning
 - Reduction of resources on the client
 - Ease of implementation and deployment with existing email and
 submit servers

 The XDELIVER specification proposes a new command and also requires
 the CATENATE [CATENATE], LITERAL+ [LITERAL+] and RFC2192BIS IMAPURL
 extensions {IMAPURLbis].

5.3.5. IMA�PURL extensions

 IMAPURL is hereby modified according to RFC2192BIS [IMAPURLbis] to
 support the partial specifier in IMAPURLs which allows byte ranges of
 messages to be addressed. The format is
 /;PARTIAL=<offset>[.<length>]

https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc2821

Maes Expires September 2006 [Page 30]

 <Push-IMAP> March 2006

5.3.6. The XDELIVER command

 After a message has been composed, it can be handed off to a submit
 server. The mechanism by which it does this is by proxying a batched
 set of SMTP commands to an SMTP server. XDELIVER is not an active
 SMTP tunnel, but instead works similarly to Batch SMTP [RFC2442], by
 allowing the client to compose a set of SMTP commands to be executed.
 The major difference is that those commands are not delivered via a
 special MIME message, but rather XDELIVER is the batch SMTP
 processor. Moreover, since XDELIVER exposes SMTP extensions that are
 available, the client need not make any assumptions about which SMTP
 extensions are available.

 Finally, XDELIVER reuses the CATENATE and IMAPURL extensions when
 building the batch in order to allow inclusion of pre-composed
 messages or editing of envelope parameters.

Formal Syntax

 xdeliver-cmd = XDELIVER SP (CAPABILITY / text-literal)

Examples

 The following example will pick up the message that has been
 previously composed (via APPEND/CATENATE)

 Example:

 C: a004 XDELIVER CAPABILITY
 S: * XDELIVER CAPABILITY (8BITMIME EXPN HELP)
 C: a005 XDELIVER TEXT {123+}
 C: EHLO
 C: MAIL FROM: john@smith.com
 C: RCPT TO: mooch@owatagu.siam.edu
 C: DATA
 C: URL /Inbox;UIDVALIDITY=9999/;UID=33;Section=BODY
 .
 S: * XDELIVER {321}
 S: 220 mail.metastructure.net ESMTP
 S: 250-mail.metastructure.net
 S: 250-AUTH LOGIN CRAM-MD5 PLAIN
 S: 250-AUTH=LOGIN CRAM-MD5 PLAIN
 S: 250-PIPELINING
 S: 250 8BITMIME
 S: 250 ok
 S: 250 ok
 S: 354 go ahead
 S: 250 ok 1126337586 qp 28229

https://datatracker.ietf.org/doc/html/rfc2442

Maes Expires September 2006 [Page 31]

 <Push-IMAP> March 2006

5.3.7. Note on XDELIVER, SMT�P and Lemonade �Profile

 A P-IMAP server MAY advertise support for SMTP. A P-IMAP client MAY
 then select to rely on SMTP instead of XDELIVER. This of course may
 reduce the forward / reply without download capabilities that may be
 available.

 A server MAY also advertise via capability support for Lemonade
 Profile [LEMONADEPROFILE] or the subset of commands (see
 [LEMONADEPROFILE] needed to support forward without download. In such
 case, the client MAY rely on the Lemonade profile forward without
 download mechanisms.

 It is generally not expected that mobile clients will run mailing
 list services from mobile devices, utilize large distribution lists,
 or run automated mail notification services. Therefore, XDELIVER is
 not designed to support SMTP functions that take advantage of full
 control of the SMTP envelope, or SMTP extensions like NOTARY.

 In general, because of mobile device resource constraints, and
 corporate firewall and security policies, XDELIVER is easier to
 deploy for mobile devices, than exposing and restricting SMTP
 services to mobile devices, especially those devices without VPN
 functionality.

5.3.8. XCONVERT BODY and BINARY data item extension

 The client and server SHOULD support the IMAP Binary specification
 [RFC3516] and declare it via CAPABILITY.

 XCONVERT is a FETCH extension used to transcode the media type of a
 leaf MIME part into another media type, and/or the same media type,
 with different encoding parameters. It adds new options to the
 section-spec part of the BODY data item, a new FETCH response data
 item BODYPARTSTRUCTURE, and new response codes. It is also expected
 to work with IMAP BINARY data item extension, whose grammar is
 modified as well.

 XCONVERT s syntax is modeled after the HEADER.FIELDS syntax in
RFC3501, and is generally structured as:

 BODY[section-part.XCONVERT[.STRICT] (media type/subtype
 (parameters))]

 BODY.PEEK[section-part.XCONVERT[.STRICT] (media type/subtype
 (parameters))]<partial>

https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 32]

 <Push-IMAP> March 2006

 BINARY[section-part.XCONVERT[.STRICT] (media type/subtype
 (parameters))]<partial>

 BINARY.PEEK[section-part.XCONVERT[.STRICT] (media type/subtype
 (parameters))]<partial>

 BINARY.SIZE[section-part.XCONVERT[.STRICT] (media type/subtype
 (parameters))]<partial>

 Example: The client fetches body part section 3 in the message with
 the message sequence number of 2 and asks to have that attachment
 converted to pdf format.

 C: a001 FETCH 2 BODY[3.XCONVERT (APPLICATION/PDF)]
 S: * 2 FETCH (BODYPARTSTRUCTURE[3] ("APPLICATION PDF" () NIL
 NIL "Base64" 2135 NIL NIL NIL) BODY[3] {2135}
 <the document in .pdf format>
)
 S: a001 OK FETCH COMPLETED

 Example: The client requests for conversion of a text/html section
 as text/plain and asks for a charset of us-ascii. The server cannot
 respect the charset request because there are non-us-ascii characters
 in the html code. Thus, in the untagged response, the server returns
 the charset of UTF-8 and utilizes a content transfer encoding capable
 of representing the full 8-bit range, along with the converted text.

 C: a001 FETCH 2 BODY[3.XCONVERT (text/plain (charset us-
 ascii))]
 S: * 2 FETCH (BODYPARTSTRUCTURE[3] ("TEXT" "PLAIN" () NIL
 NIL "Base64" 2135 181 NIL NIL NIL) BODY[3] {2135}
 the document in text/plain format
)
 S: a001 OK FETCH COMPLETED

 Example: The client requests for conversion of a text/html section
 as text/plain, but only wants 1000 bytes, starting from byte 2001.
 C: a001 FETCH 2 BODY[3.XCONVERT (TEXT/PLAIN (CHARSET us-
 ascii))]<2001.1000>
 S: * 2 FETCH (BODYPARTSTRUCTURE[3] ("TEXT" "PLAIN" () NIL
 NIL "7bit" 2135 181 NIL NIL NIL) BODY[3]<2001> {135}
 bytes 2001 - 2135 of the document in text/plain format
)
 S: a001 OK FETCH COMPLETED

Maes Expires September 2006 [Page 33]

 <Push-IMAP> March 2006

 The server is not required to respect a particular transcoding
 request or its request parameters, although it MAY try to make a best
 effort to fulfill that request. Indeed, the server may know a priori
 information about the client obtained through a different mechanism
 outside the scope of P-IMAP (e.g. dynamically through device
 description mechanisms or when the device was associated to the
 account). These preferences may be used to predefine what conversions
 are possible. Ideally the client should request the same conversions.
 In addition, this information may also allow attachment adaptation
 (e.g. picture form factor) instead of solely format conversion.

5.3.9. FETCH response extensions

 The BODYPARTSTRUCTURE data item is introduced when using the XCONVERT
 extension. It follows the exact syntax specified in the [RFC3501]
 BODYSTRUCTURE data item, but contains information for only the
 converted part. All information contained in BODYPARTSTRUCTURE
 pertains to the state of the part after it is converted, such as the
 converted mime-type, sub-type, size, or charset. The client must
 respect the return values and not assume the conversion request
 succeeds.

5.3.10. Status responses, Response code extensions

 Some transcodings may require parameters. If a transcoding request is
 sent for a format which requires parameters, the server can reply
 with a BAD response. Likewise, malformed mime types may also generate
 BAD responses.

 If the server is unable to perform the requested conversion because a
 resource is unavailable (internal error, transcoding service down)
 than a BAD response should be returned.

 If a request is denied because of an operational error, such as lack
 of disk space, or because the requested conversion for some reason
 cannot be performed, and there is no fallback for this particular
 device (such as the case where a proprietary document format has no
 existing transcoding implementation, and the server recognizes that
 the client has no default viewer for it), the server SHOULD return a
 NO response.

 Otherwise, the server should return an OK response. The client in
 general can tell from the BODYPARTSTRUCTURE response whether or not
 its request was honored exactly, but may not know exactly why it
 different.

 The following extension response codes are provided for OK and NO
 responses to disambiguate those situations, or warn about possible
 important data loss.

https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 34]

 <Push-IMAP> March 2006

 INFORMATIONLOSS the conversion was satisfied for conversion
 request, but it may have resulted in the loss of important data
 (primarily of use for loss of text data, since richmedia is often
 compressed with loss)

 BADPARAMETERS (xconvert-params) the listed parameters were
 not understood, or could not be honored for the reasons noted in
 section-text

 SERVEROVERRIDE the server overrode the request because it
 determined it could substitute a better one based on preferences,
 device capability knowledge, or server policy.

5.3.11. Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (ABNF) notation as used in [ABNF], and incorporates by reference
 the Core Rules defined in that document.

 This syntax augments the grammar specified in [RFC3501] and
 [RFC3516].

 In the ABNF syntax section-binary of [RFC3516], is amended to:

 section-binary = "[" [section-part [.XCONVERT [.STRICT] SP
 convert-params] "]"

 In the ABNF syntax msg-att-static of [RFC3501], is amended to:

 msg-att-static =/ BODYPARTSTRUCTURE (body-type-1part)

 In the ABNF syntax resp-text-code of [RFC3501], is amended to:

 Resp-text-code =/ INFORMATIONLOSS / SERVEROVERRIDE /
 BADPARAMETERS SP (bad-param-list)

 bad-param-list = transcoding-params

 In addition, the following ABNF describes the syntax of the
 GETANNOTATION entries in Section 4.2

 convert-entry-req = available-conversions / available-
 transcoding-parameters

 available-conversions = /convert/ from-mime-type

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3516
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 35]

 <Push-IMAP> March 2006

 from-mime-type = * /(astring [/ (astring / *)]
 ; i.e. * or type/* or type/subtype

 from-concrete-mime-type = astring / astring
 ; i.e. type/subtype

 to-mime-type = astring / astring

 available-transcoding-parameters = /convert/ from-concrete-
 mime-type / to-mime-type
 ;i.e.
 /convert/fromtype/fromsubtype/totype/tosubtype

 Finally, two standard annotation attributes are defined. Under
 available-conversions entry, there will be an attribute named
 types.shared with the following ABNF:

 types-shared-value = from-concrete-mime-type(; from-concrete-
 mime-type)*

 And under an available-transcoding-parameters entry, there will be an
 attribute named params.shared with the following ABNF:

 params-shared-value = transcoding-param-name (; transcoding-
 param-name)*

 params = "(" (media-basic / default-conversion) [SP "("
 transcoding-params ")"] ")"

 transcoding-params = transcoding-param-name SP transcoding-param-
 value
 *(SP transcoding-param-name SP transcoding-param-value)

 transcoding-param-name = string

 transcoding-param-value = string

 default-conversion = "NIL" "NIL"

 In the ABNF syntax section-binary of [RFC3516], is amended to:

 section-binary = "[" [section-part [. SP convert-params]
 "]"

5.3.12. XVFOLDER

https://datatracker.ietf.org/doc/html/rfc3516

Maes Expires September 2006 [Page 36]

 <Push-IMAP> March 2006

 The XVFOLDER extension is present in any IMAP4 implementation which
 returns XVFOLDER as one of the supported capabilities in the
 CAPABILITY command.

 A virtual folder is an IMAP4 folder with attached search criteria.
 The search criteria specify the backing mailbox, as well as a subset
 IMAP SEARCH grammar which may be applied to the immutable properties
 of messages in the backing mailbox. Once created, all operations
 applied to the virtual mailbox, such as APPEND and STORE, are
 actually applied to the backing mailbox. For all intents and
 purposes, the virtual folder looks and behaves like a real IMAP4
 folder.

 Any changes made to the underlying folder must pass the search
 criteria for the virtual folder before being visible. UIDs are
 preserved, and as well as the UIDVALIDITY value. In general, most
 mailbox state and metadata present on the backing folder should be
 identical on the virtual folder, except where it doesn t make sense.
 (e.g. EXISTS, RECENT, in general, values which are based on then
 number of messages which have/do not have a certain property in the
 mailbox)

 Message sequence numbers will be different, but the order of the
 messages in the sequence, and the ordering of UIDs, MUST be
 preserved.

 From the client s perspective, whether or not a mailbox is a vfolder
 is not visible, and for all intents and purposes, it appears as any
 other mailbox name. This includes the ability for a new virtual
 folder to be created by using another virtual folder as a backing
 mailbox.

 For the purposes of this draft, immutability refers to message
 flags and non-immutable messages annotations.

 Format Syntax:

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation. Elements not defined here can be found in
 the formal syntax of the [ABNF], [RFC3501], and [ABNFEXTEND].

 The create ABNF grammar in [RFC3501] is hereby modified to the
 grammar defined in [ABNFEXTEND]. An additional CREATE param
 LPSEARCH is introduced whose value is a list containing the backing
 store mailbox and the search parameters.

 create_param =/ XPSEARCH SP (backing-mailbox psearch)

https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/rfc3501

Maes Expires September 2006 [Page 37]

 <Push-IMAP> March 2006

 ;; conforms to generic "create-param" syntax as
 defined in [ABNFEXTEND]

 backing-mailbox = mailbox

 psearch = search-program
 ; defined in [ABNFEXTEND], amended by [WITHIN]

6.
 Considerations beyond the P-IMAP protocol

 6.1.
 P-IMAP client security

 It is recommended that P-IMAP clients SHOULD encrypt the email stored
 on the client and relies on password or other authentication to
 access the e-mail client.

 To ensure revocation of the client when it is lost or compromised, it
 is recommended that clients SHOULD support the notification extension
 LOCK_DOWN described in Appendix B.2 to lock the client and delete all
 available e-mails.

 6.2.
 P-IMAP client updates

 It is recommended that P-IMAP client SHOULD be designed and deployed
 in ways that allow easy updates as the protocol evolves. Until
 standardization is completed, it is expected that P-IMAP will evolve
 from release to release.

 Although servers MAY seek backward compatibility from release to
 release; it is rather encouraged to provides ways to update the
 client when required by the server.

 Recommended approaches include:
 - server being knowledgeable of the client revision support
 - server able to provision over the air (e.g. OMA Device Management
 and OMA Client Provisioning) the new client or able to notify (e.g.
 via email) for update over cradle, or other means of the client.

 6.3.
 P-IMAP client-side behavior

 P-IMAP clients MAY allow additional user preferences like not
 reflecting to the server changes that have taken place on the client
 (e.g. email deleted on the client) or some changes on the server
 (e.g. flag changes or deleted email on the server). In such cases,
 the client is responsible for maintaining its own state and it MUST

 make sure that it behaves with respect to the server as if it had
 reflected all the changes as expected by a P-IMAP server. This is
 further discussed in Appendix G.2.

Maes Expires September 2006 [Page 38]

 <Push-IMAP> March 2006

 6.4.
 Minimum binding interoperability requirements

 For now, it is recommended to always support at the minimum
 HTTP/HTTPS binding for P-IMAP with EMN (SMS, GSM SMS or WAP WDP) for
 out-of-band notifications and IDLE over HTTP/HTTPS for in-band. The
 server SHOULD then also support other bindings to offer
 interoperability of preferred by the client.

Security Considerations

 The protocol calls for the same security requirements for an in-
 response and in-band connectivity mode as IMAP.

 For the out-of-band connectivity mode, servers should use encryption
 methods for notifications if sensitive information is included in the
 payload of that notification.

 When an implementation of P-IMAP is proxy-based, this may create new
 security issues. These issues are discussed in detail in Appendix C,
 because the issues are dependent on the implementation of this
 protocol rather than inherent to the protocol itself.

 The use of HTTPS as described in appendix A can provide end-to-end
 security.

 On bandwidth limited mobile networks where users pay per data volumes
 and/or notifications, spam may become an important issue. It can be
 mitigated with appropriate filters and server-side spam prevention
 tools. These are of course outside the scope of the P-IMAP protocol.

Section 6.1 discusses encryption and passwords on the client.

 It is also recommended that P-IMAP clients be explicitly registered
 with the P-IMAP server through separate channels / application.
 Exchanges should then be paired.

References

 [ABNF] D. Crocker, et al. "Augmented BNF for Syntax Specifications:
 ABNF , RFC 2234, November 1997.

http://www.ietf.org/rfc/rfc2234

 [BURL] Newman, C., "Message Composition", draft-ietf-lemonade-burl-xx
 (work in progress).

 [CATENATE] Resnick, P. IMAP CATENATE Extension , draft-ietf-

https://datatracker.ietf.org/doc/html/rfc2234
http://www.ietf.org/rfc/rfc2234
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-burl-xx
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-catenate-xx.txt

lemonade-catenate-xx.txt, (work in progress).

Maes Expires September 2006 [Page 39]

https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-catenate-xx.txt

 <Push-IMAP> March 2006

 [CONDSTORE] Melnikov, A. and S. Hole, "IMAP Extension for Conditional
 STORE", work in progress.

 [CONNECT] Melnikov, A. et al. "IMAP4 extension for quick reconnect",
draft-ietf-lemonade-reconnect-XX.txt, (work in progress)

 [GSM03.40] GSM 03.40 v7.4.0 Digital cellular telecommunications
 system (Phase 2+); Technical realization of the Short Message
 Service (SMS). ETSI 2000

 [IMAP-DISC] Melnikov, A. "Synchronization operations for
 disconnected IMAP4 clients ,

draft-melnikov-imap-disc-xx, (work in progress).

 [IMAPURLbis] Newman, C, Melnikov, A. and Maes, S. H. "IMAP URL
 Scheme , draft-ietf-lemonade-rfc2192bis-xx (work in progress).

 [LEMONADEPROFILE] Maes, S.H. and Melnikov A., "Lemonade Profile",
draft-ietf-lemonade-profile-xx.txt, (work in progress).

 [LEMONADEPROFILEBIS] Maes, S.H., Melnikov A. and D. Cridland, "
 LEMONADE profile bis", draft-ietf-lemonade-profile-bis-xx.txt,
 (work in progress).

 [LITERAL+] Myers, J., "IMAP4 non-synchronizing literals", RFC 2088,
 January 1997.

 [MEMAIL] Maes, S.H., Lemonade and Mobile e-mail", draft-maes-
lemonade-mobile-email-xx.txt, (work in progress).

 [OMA-EN] Open Mobile Alliance Email Notification Version 1.0, August
 2002. http://www.openmobilealliance.org/tech/docs/EmailNot/OMA-

Push-EMN-V1_0-20020830-C.pdf

 [OMA-ME-AD] Open Mobile Alliance Mobile Email Architecture Document,
 (Work in progress). http://www.openmobilealliance.org/

 [OMA-ME-RD] Open Mobile Alliance Mobile Email Requirement Document,
 (Work in progress). http://www.openmobilealliance.org/

 [OMA-DS] Open Mobile Alliance Data Synchronization, versions 1.1.2
 and 1.2,

http://www.openmobilealliance.org/release_program/ds_v112.html,
http://www.openmobilealliance.org/release_program/ds_v12.html.

 [OMA-STI] Open Mobile Alliance, Standard Transcoding Interface
 Specification, version 1.0, [Work in progress]

https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-reconnect-XX.txt
https://datatracker.ietf.org/doc/html/draft-melnikov-imap-disc-xx
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-rfc2192bis-xx
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-profile-xx.txt
https://datatracker.ietf.org/doc/html/draft-ietf-lemonade-profile-bis-xx.txt
https://datatracker.ietf.org/doc/html/rfc2088
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-mobile-email-xx.txt
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-mobile-email-xx.txt
http://www.openmobilealliance.org/tech/docs/EmailNot/OMA-Push-EMN-V1_0-20020830-C.pdf
http://www.openmobilealliance.org/tech/docs/EmailNot/OMA-Push-EMN-V1_0-20020830-C.pdf
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/
http://www.openmobilealliance.org/release_program/ds_v112.html
http://www.openmobilealliance.org/release_program/ds_v12.html

Maes Expires September 2006 [Page 40]

 <Push-IMAP> March 2006

 (http://member.openmobilealliance.org/ftp/Public_documents/BAC/STI
/Permanent_documents/OMA-STI-V1_0-20050209-D.zip).

 [OMA-vObject] Open Mobile Alliance, vObject Minimum Interoperability
 Profile, v 1.0,

http://www.openmobilealliance.org/release_program/docs/CopyrightCl
 ick.asp?pck=vObject&file=v1_0-20050118-C/OMA-TS-vObjectOMAProfile-
 V1_0-20050118-C.pdf

 [RFC1951] Deutsch, P. DEFLATE Compressed Data Format Specification
 version 1.3 , RFC1951, May 1996.

http://www.ietf.org/rfc/rfc1951

 [RFC2088] Myers, J. IMAP non-synchronizing literals , RFC2088,
 January 1997.

http://www.ietf.org/rfc/rfc2088

 [RFC2119] Brader, S. "Keywords for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

http://www.ietf.org/rfc/rfc2119

 [RFC2180] Gahrns, M. "IMAP4 Multi-Accessed Mailbox Practice", RFC
2180, July 1997.
http://www.ietf.org/rfc/rfc2180

 [RFC2192] Newman, C. IMAP URL Scheme , RFC 2192, September 1997.
http://www.faqs.org/rfcs/rfc2192.html

 [RFC2222] Myers, J. "Simple Authentication and Security Layer
 (SASL)", RFC 2222, October 1997.

http://www.ietf.org/rfc/rfc2222

 [RFC2234] Crocker, D. and Overell, P. "Augmented BNF for Syntax
 Specifications", RFC 2234, Nov 1997.

http://www.ietf.org/rfc/rfc2234

 [RFC2420] Kummert, H. "The PPP Triple-DES Encryption Protocol
 (3DESE)", RFC 2420, September 1998.

http://www.ietf.org/rfc/rfc2420

 [RFC2442] Freed, N., Newman, C., Belissent, J. and Hoy, M., "The
 Batch SMTP Media Type", RFC 2442, November 1998.

http://www.ietf.org/rfc/rfc2442.txt?number=2442.

 [RFC2616] Fielding, R. et al. "Hypertext Transfer Protocol --
 HTTP/1.1", RFC 2616, June 1999.

http://www.ietf.org/rfc/rfc2616

http://member.openmobilealliance.org/ftp/Public_documents/BAC/STI/Permanent_documents/OMA-STI-V1_0-20050209-D.zip
http://member.openmobilealliance.org/ftp/Public_documents/BAC/STI/Permanent_documents/OMA-STI-V1_0-20050209-D.zip
http://www.openmobilealliance.org/release_program/docs/CopyrightCl
https://datatracker.ietf.org/doc/html/rfc1951
http://www.ietf.org/rfc/rfc1951
https://datatracker.ietf.org/doc/html/rfc2088
http://www.ietf.org/rfc/rfc2088
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf.org/rfc/rfc2119
https://datatracker.ietf.org/doc/html/rfc2180
https://datatracker.ietf.org/doc/html/rfc2180
http://www.ietf.org/rfc/rfc2180
https://datatracker.ietf.org/doc/html/rfc2192
http://www.faqs.org/rfcs/rfc2192.html
https://datatracker.ietf.org/doc/html/rfc2222
http://www.ietf.org/rfc/rfc2222
https://datatracker.ietf.org/doc/html/rfc2234
http://www.ietf.org/rfc/rfc2234
https://datatracker.ietf.org/doc/html/rfc2420
http://www.ietf.org/rfc/rfc2420
https://datatracker.ietf.org/doc/html/rfc2442
http://www.ietf.org/rfc/rfc2442.txt?number=2442
https://datatracker.ietf.org/doc/html/rfc2616
http://www.ietf.org/rfc/rfc2616

Maes Expires September 2006 [Page 41]

 <Push-IMAP> March 2006

 [RFC2617] Franks, J. et al. "HTTP Authentication: Basic and Digest
 Access Authentication", RFC 2617, June 1999.

http://www.ietf.org/rfc/rfc2617

 [RFC2683] Leiba, B. "IMAP4 Implementation Recommendations", RFC 2683
 Sep 1999.

http://www.ietf.org/rfc/rfc2683

 [RFC2177] Leiba, B. "IMAP4 IDLE Command", RFC 2177, June 1997.
http://www.ietf.org/rfc/rfc2177

 [RFC2818] Rescorla, E. "HTTP over TLS", RFC 2818, May 2000.
http://www.ietf.org/rfc/rfc2818

 [RFC2822] Resnick, P. "Internet Message Format", RFC 2822, April
 2001. http://www.ietf.org/rfc/rfc2822

 [RFC2831] Leach, P., and Newman, C. "Using Digest Authentication as a
 SASL Mechanism", RFC 2831, May 2000.

http://www.ietf.org/rfc/rfc2831

 [RFC3028] Showalter, T. "Sieve: A Mail Filtering Language", RFC 3028,
 January 2001. http://www.ietf.org/rfc/rfc3028.txt?number=3028

 [RFC3501] Crispin, M. "IMAP4, Internet Message Access Protocol
 Version 4 rev1", RFC 3501, March 2003.

http://www.ietf.org/rfc/rfc3501

 [RFC3502] Crispin, M. " Internet Message Access Protocol (IMAP) -
 MULTIAPPEND Extension", RFC 3502, March 2003.

http://www.ietf.org/rfc/rfc3502

 [RFC3516] Nerenberg, L. IMAP4 Binary Content Extension , RFC3516,
 April 2003.

http://www.ietf.org/rfc/rfc3516

 [UIDPLUS] Crispin, M., "Internet Message Access Protocol (IMAP) -
 UIDPLUS extension", work in progress, draft-crispin-imap-

rfc2359bis-XX.txt.

 [WAPWDP] Wireless Datagram Protocol, Version 14-Jun-2001, Wireless
 Application Protocol WAP-259-WDP- 20010614-aWAP (WDP)

Normative Appendices

A.
 Implementation Guidelines for Using HTTP with P-IMAP

https://datatracker.ietf.org/doc/html/rfc2617
http://www.ietf.org/rfc/rfc2617
https://datatracker.ietf.org/doc/html/rfc2683
http://www.ietf.org/rfc/rfc2683
https://datatracker.ietf.org/doc/html/rfc2177
http://www.ietf.org/rfc/rfc2177
https://datatracker.ietf.org/doc/html/rfc2818
http://www.ietf.org/rfc/rfc2818
https://datatracker.ietf.org/doc/html/rfc2822
http://www.ietf.org/rfc/rfc2822
https://datatracker.ietf.org/doc/html/rfc2831
http://www.ietf.org/rfc/rfc2831
https://datatracker.ietf.org/doc/html/rfc3028
http://www.ietf.org/rfc/rfc3028.txt?number=3028
https://datatracker.ietf.org/doc/html/rfc3501
http://www.ietf.org/rfc/rfc3501
https://datatracker.ietf.org/doc/html/rfc3502
http://www.ietf.org/rfc/rfc3502
https://datatracker.ietf.org/doc/html/rfc3516
http://www.ietf.org/rfc/rfc3516
https://datatracker.ietf.org/doc/html/draft-crispin-imap-rfc2359bis-XX.txt
https://datatracker.ietf.org/doc/html/draft-crispin-imap-rfc2359bis-XX.txt

Maes Expires September 2006 [Page 42]

 <Push-IMAP> March 2006

 This appendix describes how HTTP can optionally be used to transfer
 P-IMAP commands and responses (as an optional HTTP binding). This
 binding is intended to facilitate the use of P-IMAP in deployments
 involving a variety of intermediaries, and offers a standardized
 alternative to de facto proprietary implementations of such a
 feature.

 The need for an optional HTTP binding is driven by the needs of the
 mobile network operator community (see [MEMAIL], [OMA-ME-RD]), where
 the reuse of an existing and well-understood technology will allow
 operators to apply their experience in solving practical deployment
 issues. Specifically, HTTP allow operators to reuse a similar setup
 and model that is already used for many other similar and related
 services, such as certain proprietary push e-mail and synchronization
 offerings, OMA Data Synchronization, Web services and Web access.

 Using HTTP/HTTPS can simplify deployment in a corporate network
 through the potential use of a reverse proxy to achieve end-to-end
 encryption. This also has the advantage of not requiring changes to
 any firewall configurations and reduces the concerns that this often
 presents to corporation. In general the solution is compatible with
 any existing firewall. A reverse proxy can also support deployment
 models that offer roles to other service providers in the value
 chains, as discussed in [OMA-ME-AD].

 The security, encryption and compression capabilities used with HTTP
 and already implemented in a wide range of existing mobile device,
 which be also be reused.

 Studies have also shown that a persistent HTTP session has usually
 proven more resilient than an IMAP IDLE over TCP connection over an
 unreliable bearer such as a GPRS-based mobile network.

 The use of HTTP as an underlying protocol for other application
 protocols has received much attention (see [RFC3205]). In particular,
 the concern exists that this circumvents firewall security policies.
 Another concern is the potential misuse or neglect of HTTP semantics
 by the application protocol that uses HTTP as a substrate.

 Note that if the suppression of P-IMAP (or indeed any other
 application) traffic on HTTP/HTTPS is an issue, firewall
 administrators can still prevent such passage and this can provide
 incentives to re-configure firewalls to allow solutions on other
 transports (e.g. TLS) or offer the HTTP-based solution using another
 provisioned port (via the P-IMAP XGETPIMAPPREFS (L_HTTP_TUNNEL)
 instruction). The aim, therefore, is to allow for the use of this
 solution in the widest possible set of circumstances by codifying a
 standard way to do so that works with existing, deployed (i.e., HTTP

https://datatracker.ietf.org/doc/html/rfc3205

 only) firewalls, while explicitly allowing the possibility of

Maes Expires September 2006 [Page 43]

 <Push-IMAP> March 2006

 detecting and filtering such traffic in deployments using the HTTP
 Content-Type in deployments where this is not permitted.

 To use HTTP/HTTPS as the transfer protocol for IMAP commands and
 responses between the IMAP client and server, the client MUST send an
 HTTP POST request to the server, and embed IMAP commands (commands to
 an IMAPv4 Rev1 server or IMAP servers supporting Lemonade extensions)
 in the body of the request. A server MUST reject a HTTP GET request
 from the client. The content-type header of the POST request MUST be
 set to "application/vnd.lemonade". Multiple IMAP commands may be
 included in one POST request. In general, the HTTP server is expected
 to preserve session state between HTTP commands to the best of its
 ability, therefore the client does not need to reauthenticate and
 reissue a SELECT until it receives an (IMAP) error response showing
 that it is not authenticated.

 In what follows, the term Lemonade client/server is used to refer to
 a client/server that supports both IMAPv4 Rev1 as well as any
 LEMONADE extensions.

 When the HTTP binding is used, the Lemonade server listens on
 whatever port has been configured for this.

 The following is an example of a possible Lemonade HTTP request:

 POST /lemonadeServletPPath HTTP/1.1 <CRLF>
 Content-Type: application/vnd.lemonade <CRLF>
 [other headers]
 <CRLF>
 (<tag> SP <Lemonade command> <CRLF> | literal)
 [(<tag> SP <Lemonade command> <CRLF> | literal)]

 The Lemonade command MUST be plain text (7bit).

 Multiple Lemonade commands MAY be sent on the same request. Thus
 Lemonade commands must be tagged. The client must be able to deal
 with recovering from errors when commands are batched. See RFC2442
 Batch SMTP for a further discussion. In general, if a command is
 expected to produce a synchronized literal or continuation request,
 it MUST be the last command in the batch.

 The Content-Type header is the only HTTP headers that MUST be sent to
 a Lemonade server. Other headers such as Cache-Control MAY be
 included.

 When the Lemonade server sends back a response it is in following
 format:

 HTTP/1.1 <HTTP Status Code> <CRLF>

https://datatracker.ietf.org/doc/html/rfc2442

Maes Expires September 2006 [Page 44]

 <Push-IMAP> March 2006

 Content-Type: text/plain <CRLF>
 <CRLF>
 [<untagged responses>]
 <tag> SP <Lemonade Server response> <CRLF>
 [<untagged responses>]
 <tag> SP <Lemonade Server response> <CRLF>

 Notes:
 The Lemonade Server uses the following HTTP status codes, and what
 each code indicates is given below:
 - 100
 - This indicates the presence of a synchronizing literal or
 continuation request. The server is waiting for more data from
 the client (another HTTP request) before continuing. If the
 HTTP request includes batched commands after the command which
 generates a continuation request or synchronized literal, the
 server MUST generate a 5xx request.

 - 200
 - This indicates normal execution of the Lemonade commands
 from an IMAP perspective. The client should further parse
 the response body to get the tagged responses to the
 commands and process those accordingly.
 - 401
 - This indicates that the execution of the IMAP commands might
 have been successful, but the session is no longer
 authenticated. The client should try to reauthenticate to the
 IMAP server, and then resend the commands.

 - 5xx
 - This indicates that at least one command was
 malformed/protocol level error, or, a command could not
 complete due to a problem in the IMAP server. In conforming to
 HTTP semantics, this means the IMAP server responses such as
 BAD or NO on a tagged response generate a HTTP 500 response
 code.

 When using HTTP to transfer IMAP commands and responses, the client
 SHOULD utilize built-in features of HTTP to their advantage. For
 example, the client SHOULD use HTTPS instead of HTTP whenever
 possible, since HTTPS has built in encryption and MAY have
 compression capabilities. STARTTLS should not be needed in this
 case, as it just requires additional overhead without any additional
 benefit.

 HTTP can be used in both in-response and in-band modes. Details
 about these transport modes are given in the following two
 subsections.

Maes Expires September 2006 [Page 45]

 <Push-IMAP> March 2006

A.1.
 Non-Persistent HTTP for In-response Connectivity Mode

 If the client uses a traditional HTTP connection (either by
 establishing a different socket for each HTTP request to the Lemonade
 server, or by reusing the same socket for all HTTP requests, but
 sending each request under its own header), it has in-response
 connectivity to the server. The client can issue as many commands as
 it would like in one HTTP request to the server, and the server
 responds by sending back one HTTP response with all the responses to
 all the commands in the HTTP request. With this connectivity mode,
 the IDLE command cannot be issued. Other commands that use a
 continuation response or synchronized literal cannot be issued unless
 they are the last command in the batch. [LITERAL+] SHOULD be used to
 eliminate synchronized literals when using APPEND.

 In order for the server to identify separate HTTP requests as
 belonging to the same session, an in-response HTTP client needs to
 accept cookies. A session-id is passed in the cookie to identify the
 session.

 Example: the headers for a HTTP In-response Response after the client
 has issued its first HTTP request to the server.

 HTTP/1.1 <HTTP Status Code> <CRLF>
 Content-Type: text/plain <CRLF>
 Set-Cookie:JSESSIONID=94571a8530d91e1913bfydafa;
 path=/lemonade<CRLF>
 <CRLF>
 [<untagged responses>]
 <tag> SP <Lemnade Server response> <CRLF>
 [[<untagged responses>]
 <tag> SP <Lemonade Server response> <CRLF>]

 Example: the headers for a HTTP In-response Response after the client
 has issued its first HTTP request to the server, with the final
 command generating a continuation request.

 HTTP/1.1 100 Continue <CRLF>
 Content-Type: text/plain <CRLF>
 Set-Cookie:JSESSIONID=94571a8530d91e1913bfydafa;
 path=/lemonade<CRLF>
 <CRLF>
 [<untagged responses>]
 <tag> SP <Lemnade Server response> <CRLF>
 +continuation-request

Maes Expires September 2006 [Page 46]

 <Push-IMAP> March 2006

 The client must then save this cookie and send it back to the server
 with the next request in order for the server to reattach these
 commands to the same session as the previous commands.

 POST /lemonadeServletPath HTTP/1.1 <CRLF>
 Content-Type: application/vnd.lemonade <CRLF>
 Cookie: JSESSIONID=94571a8530d91e1913bfydafa
 [other headers]
 <CRLF>
 <tag> SP <Lemonade command> <CRLF>
 [<tag> SP <Lemonade command> <CRLF>]

A.2.
 Using Persistent HTTP/HTTPS + Chunked Transfer Encoding for In-band
 Connectivity Mode

 It is possible to use persistent HTTP or persistent HTTPS plus
 chunked- transfer-encoding so that the server can instantly send
 notifications to the client while a session is open. The client
 needs to open a persistent connection and keep it active. In this
 case, the HTTP headers must be sent the first time the client device
 opens the connection to the Lemonade Server and these headers MUST
 set the transfer coding to be chunk-encoded [RFC2616, Sec. 3.6.1].
 All subsequent client-server requests are written to the open
 connection, without needing any additional headers negotiations. The
 server can use this open channel to push events to the client device
 at any time. In this case, the client SHOULD NOT accept cookies.

 The client must send the HTTP headers one time only:

 POST /lemonadeServletPath HTTP/1.1 <CRLF>
 Content-Type: application/vnd.lemonade <CRLF>
 Connection: keep-alive <CRLF>
 Pragma: no-cache <CRLF>
 Transfer-Encoding: chunked <CRLF>

 The server responds with the following header:

 HTTP/1.1 <HTTP Status Code> <CRLF>
 Cache-Control: private
 Keep-Alive: timeout=15, max=100 (or other suitable setting)
 Connection: Keep-Alive
 Transfer-Encoding: chunked
 Content-Type: text/plain

 Then the client can send a command anytime it wants with the

 following format:

Maes Expires September 2006 [Page 47]

 <Push-IMAP> March 2006

 <length of Lemonade command, including bytes in CRLF> <CRLF>
 <tag> SP <Lemonade command> <CRLF>
 <CRLF>

 And example of an actual client command is:
 e <CRLF>
 2 CAPABILITY<CRLF>
 <CRLF>

 The server responds to each command with as many untagged responses
 as needed, and one tagged response, where each response is in the
 format that follows:
 <length of a single response, including bytes in CRLF> <CRLF>
 <tagged or untagged response> <CRLF>
 <CRLF>

 An actual Server response might be:
 d5 <CRLF>
 * CAPABILITY IMAP4REV1 AUTH=LOGIN NAMESPACE SORT MULTIAPPEND
 LITERAL+ UIDPLUS IDLE XORACLE X-ORACLE-LIST X-ORACLE-COMMENT X-
 ORACLE-QUOTA X-ORACLE-PREF X-ORACLE-MOVE X-ORACLE-DELETE ACL X-
 ORACLE-PASSWORD LDELIVER LZIP LCONVERT LFILTER LSETPREF LGETPREF
 <CRLF> <CRLF>
 1b <CRLF>
 2 OK CAPABILITY completed <CRLF>
 <CRLF>

 Note however that the HTTP protocol is in general not meant to be
 used in such a way. To maintain such an open channel might be a
 practical challenge to proxies/firewalls, which might not forward the
 requests chunk by chunk to the server, and meanwhile route responses
 back to the client chunk by chunk. Consequently the session closes.
 Chunked transfer encoding requests MAY not be honored by an HTTP
 server. In cases where such requests are denied, the client should be
 prepared to use the non-chunked encoding technique from section 2.1

 The same challenges exist for TCP session.

 In any case, the session can be automatically started again by the
 client after a lost connection or by the server through out-of-band;
 after some defined time-out.

A.3.
 Using HTTP CONNECT

 If a HTTP proxy server is available to the client which supports the
 HTTP CONNECT method, and the IMAP server the user wishes to reach

 allows external connections outside the destination network s

Maes Expires September 2006 [Page 48]

 <Push-IMAP> March 2006

 firewall, the client may wish to tunnel a regular TCP connection
 through the HTTP proxy.

 See [LUOTONEN] or section 5.2 of [RFC2817] for a detailed description
 of the technique. Note that HTTP Proxy servers may not honor all
 CONNECT requests, and may in fact, limit CONNECT requests to a small
 number of common ports, such as 80, 443, 8080, etc. It is advised
 that networks wishing to allow their users to use this feature allow
 clients within their network to CONNECT to ports 25, 143, 587, and
 993.

B.
 Event Payload

B.1.
 Event Payload in Clear Text for P-IMAP Sessions

 The event payload for a P-IMAP session follows the general format
 explained in Section 4, and is in clear text. P-IMAP treats the event
 as a signal to the client to fetch the information on the server that
 awaits it.

 In-band anything sent from the server is treated as an wake-up
 signal.

B.2.
 Out-of-band Channel Event Payload

 One suggested payload for notifications is that suggested by the OMA,
 see [OMA-EN]. This notification basically informs the client that
 some push event has happened on the server, so it must connect to
 fetch the information.

 P-IMAP treats the event as a client wake up event to fetch the
 information on the server that awaits it. The client may present
 other behaviors that exploit additional information provided in the
 notification. However this is out of scope of the P-IMAP
 specifications.

 Wake-up events consists of the following payload: <emn
 mailbox="mailat:john.doe@somewhere.com"
 timestamp="date_format_as_specified_in_[EMN]"></emn>

 When the client finally connects, the P-IMAP server has opportunity
 to send other pending events for this client.

https://datatracker.ietf.org/doc/html/rfc2817#section-5.2

 Example: new message arrives on the server and this is notified via
 out-of-band.
 S: pushes SMS with the following text:

Maes Expires September 2006 [Page 49]

 <Push-IMAP> March 2006

 <emn
 mailbox="mailat:joe@foo.com"
 timestamp="2004-02-20T06:40:00Z">
 </emn>
 C: needs to connect and send any command to get the pending events
 and act upon them.
 C: A00 Login joe password
 S: * SESSION SELECTED
 S: * FOLDER INBOX
 S: * 100 EXITS
 S: * 87 EXPUNGE
 S: * 90 FETCH (FLAGS \Seen)
 S: A00 OK LOGIN completed
 C: must now act on the events on the order they are received,
 meaning, first perform a FETCH to get new message, then expunge
 message 87 and change flags of message 90.

 If EXTENDED notification format is supported by the client, the
 following notification may be send instead of the wake-up event as:
 The notification message is of the form:

 <tag> <notification seq no> <client-email-account -name> <event>
 [<uid>, <sender>, <date>, <time>, <subject>, [<body.]]

 where <tag> is <tag> is _%$P-IMAP$%_ ,
 and <event> is one of
 NEW_MESSAGE
 DELETED_MESSAGE
 CHANGED_MESSAGE
 SYNC
 FULL_SYNC
 STATE_COMPARISON_SYNC
 NEW_ENC_KEY
 LOCK_DOWN

 Except for the <tag>, the notification message is encrypted using the
 encryption key.

 The different tags are:
 NEW_MESSAGE: a new message has arrived on the server
 DELETED_MESSAGE: a message has been deleted on the server
 CHANGED_MESSAGE: a message has changed on the server
 SYNC: Initiate an incremental synchronization
 FULL_SYNC: Initiate a full synchronization
 STATE_COMPARISON_SYNC: Compare state
 NEW_ENC_KEY: New encryption key is available to be obtained by
 XPROVISION
 LOCK_DOWN: Lock the client (in case of lost device).

Maes Expires September 2006 [Page 50]

 <Push-IMAP> March 2006

 The latter assumes that the client is able to support client lock to
 prevent usage / access to data of lost devices, or in general when
 desired by the server administrator.

 In the case of new encryption (NEW_ENC_KEY) and to cater for the
 unreliable nature of the notification channel, messages encrypted
 using old encryption key from a device MUST be accepted be the server
 until the server receives a message encrypted using the new key. From
 that point onward it MUST only accept the messages encrypted using
 the new key.

 In the case of SYNC requests (incremental synchronization), the
 client sends its messages that are to be sent, describes the delete
 or change status operations to do on the server or and sending a NOOP
 message to the server and processing the responses. New messages are
 fetched using UID FETCH command with the range (lastUID + 1):*. Where
 lastUID is that lastUID received so far. This typically happens when
 the server determines that the session is valid and the UID VALIDITY
 (See [IMAP-DISC]) is the same in client and server.

 In the case of FULL_SYNC requests (full synchronization), the client
 sends its messages that are to be sent, discards delete or change
 status operations to do on the server, discard its local emails (e.g.
 in INBOX) and populating the Inbox with messages using the FETCH 1:*
 command. It also rebuilds the UID-Sequence map. Full synchronization
 also takes care of the new client whose UID_VALIDITY is initially set
 to -1. This typically happens when the server determines that the
 session is invalid and the UID VALIDITY is different in client and
 server.

 In the case of STATE COMPARISON_SYNC requests (state comparison
 synchronization), the client sends its messages that are to be sent,
 describes the delete or change status operations to do on the server,
 requests for and updates the flag values for each of the messages in
 the Inbox folder of the client message store, removes message from
 the Client Message Store that are no longer in Server Message Store
 and requests for new messages. This typically happens when the server
 determines that the session is valid and the UID VALIDITY is
 different in client and server.

B.3.
 Out-of-band SMS channel binding

 One method for delivering wake-up notifications is by pushing the
 notification payload as a binary SMS message. Upon receiving an SMS,
 a client would then parse the payload, determine if it is a P-IMAP
 notification or some other SMS message, and process the message
 appropriately.

Maes Expires September 2006 [Page 51]

 <Push-IMAP> March 2006

 This has the unfortunate side effect of forcing the client to parse
 every message trying to sense what kind of message it is. The
 proposed mechanism to fix this is to utilize the binary

 SMS User Data Header (UDH) to specify a destination port, according
 to the Application Port

 Addressing Scheme in [GSM03.40] or alternatively, on CDMA networks,
 to use the WAP WDP mapping to GSM SMS [WAPWDP].

 Although any port number is usable, it might make sense to use port
 143 for consistency, which is the IANA IMAP port. Thus, OMA EMN or
 extended format notifications for P-IMAP should be sent to port 143
 via GSM SMS or WAP WDP. The client upon receiving the SMS will check
 the port number, and if the port is the P-IMAP port, the message will
 be routed to the appropriate P-IMAP client application for
 processing.

 Because such mechanisms are network specific, a P-IMAP server should
 determine if a port specific SMS or WAP WDP mapping can be used based
 on knowledge of the device / network or on strategies that determine
 if the device reacts to such notifications. However, a client may
 also declare it / selecting the out-of-band notification channel as
 GSMSMS or WAPWDP as for any other notification channel.

C.
 Security Issues for Proxy-Based Implementations of P-IMAP

 In some implementations of P-IMAP, the client may connect to a proxy
 that sits in an operator network, but the backend email storage
 server sits in a separate enterprise network. The enterprise network
 is assumed to be secure, but the operator network may not be trusted.
 If unencrypted information lies in the operator network, that
 information is vulnerable to attacks.

 If the P-IMAP extensions are all implemented in the enterprise
 network, then the proxy on the carrier should be an encrypted SSL
 pass-through proxy. SSL ensures confidentiality and integrity of the
 proxied datastream, ensuring that the proxy cannot monitor the
 content of messages, nor inject commands to modify or corrupt the
 enterprise email server to corrupt the user's mailbox.

 The proxy is unaware of the encryption keys and thus cannot encrypt
 any data. Without the encryption key, this proxy cannot see any of
 the information sent from the client, nor can it send any bogus
 commands to the backend enterprise email server to corrupt the user's
 mailbox. The additional cost for this design is that the backend
 enterprise email server and the client devices must have additional

 processing to handle this encryption.

Maes Expires September 2006 [Page 52]

 <Push-IMAP> March 2006

 If the P-IMAP server is implemented as a backend IMAP server with
 additional command processing done on the proxy, there are more
 complex security issues. This proxy must be able to send commands to
 the backend server to accomplish its tasks, as well as read IMAP
 response syntax information coming from the backend server. An
 attacker who compromises the proxy thus can send commands to the
 backend to change the state of the mail storage, possibly corrupting
 it. In addition, it can read responses from the mail server that
 might contain confidential email information. This proxy may also
 send bogus responses back to the client. Clearly, this setup is not
 an ideal one and many complications that make this problem complex to
 solve. The suggestion recommended is to remedy the problem of
 unencrypted, untagged FETCH responses that may contain confidential
 information. Sensitive data may be encrypted and sent via an
 encrypted literal to the client as detailed in the XENCRYPTED
 extension. XENCRYPTED (see Section 5.1.5) should be used in any
 untagged FETCH responses, which contain encrypted message information
 to be passed through the P-IMAP proxy on the operator network. The
 key exchange for encryption should not occur through the proxy unless
 the key can be derived during a SASL authentication exchange.
 Otherwise, it must be done through another channel: manually entered
 by user (e.g. password), or via an HTTP SSL request to the enterprise
 server. Any other additional server responses containing sensitive
 information (passwords, etc.) should be XENCRYPTED. The server
 should implement 3DES encryption and use the client's password as the
 key.

 It is beyond the scope of this document to define the implementation
 of transcoding services. In general, it is recommended that they
 reside within the same domain as the IMAP server, and are not
 performed by third party services, which may compromise the privacy
 of the data being transcoded.

D.
 XCONVERT transcoding parameters

 P-IMAP servers MAY support additional transcoding parameters for each
 media type. All P-IMAP compliant servers MUST minimally support
 recognition of charset and encoding parameters for text/* mime types,
 although they may decline to honor some requests. For media types
 other than text, it is beyond the scope of this document to define
 conversion parameters. In general however, P-IMAP compliant servers
 MAY choose to support additional parameters, and if so, they SHOULD
 follow the OMA STI 1.0 spec [OMA-STI] adopting the same parameter
 names as defined in second 5.2.4 and above for the most popular
 image/*, video/*, and audio/* codecs

Maes Expires September 2006 [Page 53]

 <Push-IMAP> March 2006

 As an example, in section 5.2.6.2 of [OMA-STI], the parameters
 "width" and "height" are defined. The following example illustrates
 how these OMA STI parameters can be used with XCONVERT.

 C: a001 UID FETCH 100 BINARY[2.XCONVERT (IMAGE JPG (WIDTH
 128 HEIGHT 96))]
 S: * 2 FETCH (UID 100 BODYPARTSTRUCTURE[2] ("IMAGE" "JPG"
 () NIL NIL "8bit" 4182 NIL NIL NIL) BINARY[2] {4182}
 <this part of a document is a rescaled image in JPG format
 with width=128, height=96.>
)
 S: a001 OK UID FETCH COMPLETED

E.
 Note on XDELIVER, SMTP and Lemonade Profile

 A server MAY always rather support SMTP instead of XDELIVER. A client
 MAY then select to rely on SMTP instead of XDELIVER. This of course
 may reduce the forward / reply without download capabilities that may
 be available.

 A server MAY also advertise via capability support for Lemonade
 Profile [LEMONADEPROFILE] or the subset of commands (see
 [LEMONADEPROFILE] needed to support forward without download. In such
 case, the client MAY rely on the Lemonade profile forward without
 download mechanisms.

 In general, because of mobile device resource constraints, and
 corporate firewall and security policies, XDELIVER is easier to
 deploy for mobile devices, than exposing and restricting SMTP
 services to mobile devices, especially those devices without VPN
 functionality.

Non-Normative Appendices

F.
 Use Cases

 In this section some use cases on P-IMAP are presented so that it is
 possible to correctly understand concepts and message flow.

F.1.
 State Comparison-Based Sync

 Each time a client logs into a new P-IMAP session, it must perform a
 state comparison-based sync. To synchronize with the server, the
 client needs to fetch all the new messages, and all the flags of the
 old messages.

 The client has N messages in a given folder with highest UID = X and
 is disconnected from the P-IMAP server. It connects to the server
 and performs the following command:

Maes Expires September 2006 [Page 54]

 <Push-IMAP> March 2006

 First, it retrieves all the new messages.
 C: A01 UID FETCH X+1:* ALL
 S: * m FETCH ...
 S: ... <more new messages if they exist>
 S: A01 OK FETCH completed

 The client stores all this information on the device and displays
 it. Next, it wishes to sync up the old messages.
 C: A02 FETCH 1:m-1 (UID FLAGS)
 S: * 1 FETCH (UID 3242 FLAGS (\Seen ...))
 S: ... <info for 2 through n-1>
 S: * n FETCH (UID 3589 FLAGS (\Seen ...))
 S: A02 OK FETCH completed

F.2.
 Event-Based Sync

 During a P-IMAP session, the client will receive events in the form
 of untagged EXISTS, RECENT, EXPUNGE, or FETCH responses. The client
 must respond to these events. Sometimes, it will receive these
 events by polling, by issuing a P-IMAP command, such as NOOP. It can
 also use IDLE so that the server can push events to the client. The
 example following shows how the client acts during an IDLE command,
 but it should also take the same actions (minus firing and exiting
 IDLE mode) when it receives these events through polling.

 A client can choose to issue an IDLE command to get events pushed to
 it, or it can receive events from polling using NOOP or any other
 IMAP command. First the client issues the IDLE command:
 C: A02 IDLE
 S: + Ready for argument

 Now the client can receive any of the three following untagged
 responses from the server.

 When the client receives an EXISTS/RECENT response from the server:
 S: * 501 EXISTS
 First, the client must exit from this IDLE command.
 C: DONE
 S: A02 OK IDLE completed
 Next, the client retrieves this new message using a FETCH command.
 C: A02 FETCH 501 ALL
 S: * 501 FETCH ...
 S: A02 OK FETCH completed
 The client returns to IDLE mode by issuing another IDLE command.
 C: A03 IDLE
 S: + Ready for argument

Maes Expires September 2006 [Page 55]

 <Push-IMAP> March 2006

 When the client receives an EXPUNGE response from the server:
 S: * 25 EXPUNGE
 The client deletes this message from the client device, as it has
 been removed permanently from the folder. The client can remain in
 IDLE mode.

 When the client receives an untagged FETCH response from the server,
 either signally a flag change to an old message or a new message:
 S: * 101 FETCH (FLAGS (\Seen \Deleted))
 The client updates the information on the device for this message
 appropriately.

G.
 Other Issues

G.1.
 Using a Side Channel for a P-IMAP session

 In some cases, it may be more efficient for a mobile client to
 connect to a P-IMAP session through a side channel rather than
 directly. This side channel opens a P-IMAP session, acting as the
 client device and must conform to all requires of the client in this
 document. The requirement is that the side channel must ensure that
 the client is in sync with the mobile repository.

 An example would be if a mobile client connected to a desktop on a
 cradle, and then that desktop opens a P-IMAP session as the mobile
 client via a fast connection. The desktop should then retrieve the
 state of the client device and modify it using event-based or state-
 comparison-based synchronization over the cradle. The connection
 from the client to the server over the cradle and then the desktop to
 server connection might be much faster or easier than any connection
 the client could maintain itself. The desktop might also perform
 most of the computation needed for a state-comparison-based
 synchronization, easing up the burden on the mobile client.

 If the client uses some other kind of side channel that does not
 connect to the P-IMAP server when checking email, it is the client's
 responsibility to make sure to ignore pending events as appropriate.

G.2.
 Client event filtering

 It is recommended that a P-IMAP client allows the user to select
 what client-side events are to be propagated to the server (e.g. are
 messages read or deleted on the client to be read or deleted on the
 server).

 This is out-of-scope of the P-IMAP specifications.

Maes Expires September 2006 [Page 56]

 <Push-IMAP> March 2006

 A client may keep track of such changes and:
 - not transmit them to the server via P-IMAP
 - selectively present to the user status changes later received
 from the server (e.g. not re-display a message locally deleted).

 This is considered as client implementation specific behavior, out
 of scope but recommended.

Future Work

 [1] Investigate adding a client to server command to ask the server
 to stop pushing notifications.
 [2] Investigate the use of P-IMAP to trigger / notify other
 applications.
 [3] Integrate/relate more in detail with SIEVE [RFC3028] and related
 work
 [4] Cleanup and/or generalize the effect that the login deviceID has
 on namespace collisions (e.g. can two VFOLDERs with the same name
 exist)

 In addition, as P-IMAP has now evolved significantly as part of the
 [LEMONADEPROFILE] and [LEMONADEPROFILEBIS] work as well as OMA MEM
 activities, we plan to release an update that re-builds the document
 from the ground up to summarize in a cleaner manner the current
 normative and informative statements.

Version History

 Updates for Release 12
 - Fix quick reconnect session terminology that did not mention
 AUTHENTICATE
 - Remove XCOMPOSE in favor of CATENATE+IMAPURL (RFC2192bis
 extension)
 - Incorporate [IMAP-DISC] by reference for state-sync best
 practices
 - Incorporate changes in latest XZIP, XENCRYPTED, XCONVERT,
 XVFOLDER, and HTTP Binding drafts
 - Add [WITHIN] reference
 - More text discussing key exchange mechanisms for XENCRYPT
 and notification encryption
 - Remove XFILTER
 - Updated References

 Updates for Release 11
 - Mobile Repository concept altered to be a VFOLDER
 - Updates to XCONVERT syntax to track lemonade
 - Removal of XFILTER

https://datatracker.ietf.org/doc/html/rfc3028

Maes Expires September 2006 [Page 57]

 <Push-IMAP> March 2006

 Updates for Release 10
 - Correction in section 5.3.5 regarding the message literals
 introduced
 - Correction of the description of the first example.

 Updates for Release 09
 - Section 1.3: Clarification that UIDs are the same across
 repositories.
 - Section 3.1: Addition of mention of SIEVE and outband filter
 management
 - Remove section 5.1.1. on MONOINCUID as it tunr sout not to be
 needed.
 - Section 5.3.4: Updates to add support for block encryption to
 follow the changes in draft-maes-lemonade-lzip-02 with respect to

draft-maes-lemonade-lzip-01.
 - Section 5.3.14: Addition of details on folder manipulation.
 - Appendix A: Updates to follow the changes in draft-maes-lemonade-

http-binding-02 with respect to draft-maes-lemonade-http-binding-
01:

 - Clarification of binding and motivations
 - Editorial updates and corrections
 - Section 5.3.5
 - Updated based on comments received on Lemonade mailing list and
 from Sun and to follow the changes in draft-maes-lemonade-ldeliver-01
 with respect to draft-maes-lemonade-ldeliver-00.
 - New command LCOMPOSE
 - Updated command LDELIVER
 - Updated references
 - Updates future work

 Updates for Release 08
 - Updates to follow the changes in draft-maes-lemonade-lconvert-01
 with respect to draft-maes-lemonade-lconvert-00.
 - Updates to follow the changes in draft-maes-lemonade-lzip-01 with
 respect to draft-maes-lemonade-lzip-00.
 - Updates to follow the changes in draft-maes-lemonade-monoincuid-01
 with respect to draft-maes-lemonade-monoincuid-00.
 - Editorial fixes
 - Author updates
 - Clarification of P-IMAP session in section 1.2.3.

 Updates for Release 07
 - Section 1.2.3: Editorial updates and qualification of SID as a
 random number.

https://datatracker.ietf.org/doc/html/draft-maes-lemonade-lzip-02
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-lzip-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-http-binding-02
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-http-binding-02
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-http-binding-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-http-binding-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-ldeliver-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-ldeliver-00
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-lconvert-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-lconvert-00
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-lzip-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-lzip-00
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-monoincuid-01
https://datatracker.ietf.org/doc/html/draft-maes-lemonade-monoincuid-00

 - Section 1.3: Editorial updates.

Maes Expires September 2006 [Page 58]

 <Push-IMAP> March 2006

 - Section 1.4:
 - Editorial updates
 - Addition of edits of messages parts and IMAP URL
 - Additional motivation of XDELIVER
 - Additional details on server driven and client request
 conversions and adaptation
 - Re-introducing PIM as supported data objects.
 - Section 2: Updates of the relationship between P-IMAP and
 [LEMONADEPROFILE].
 - Section 3.1: Update of login details.
 - Section 3.1.1: Update on session validity.
 - Section 3.2.2: Editorial updates
 - Section 3.2.3: Addition of [GSMSMS] and [WAPWDP].
 - Section 3.4: Update of the explanation on opening a new session and
 support of multiple folders
 - Section 5.1.1: Addition of monotonically increasing UID and
 MONOINCUID CAPABILITY feature.
 - Section 5.1.3: Correction of client versus server and addition of
 the declaration of compliance to a P-IMAP revision.
 - Section 5.1.4: Update / clarification of the login details
 consistent with updates in section 3.1 and SID consistent with
 updates in section 1.2.3.
 - New section 5.2 on registering with the server by splitting pas

section 5.1.6.
 - Section 5.3.1: deprecation of explicit UDP port num and host num
 address and introduction of NOTIFICATION ADDRESS and PORT.
 - Section 5.3.2: Editorial updates and addition of support for
 [GSMSMS] and [WAPWDP].
 - Section 5.3.3: Editorial updates.
 - Section 5.3.4: Support for XZIP with XDELIVER.
 - Section 5.3.5:
 - Clarification of text / attachment append
 - Additional support of IMAP-URL.
 - Manipulation of address field.
 - Update XDELIVER to address issues with respect to what would be
 expected based on SMTP (add ENVELOP parameter).
 - New section 5.3.6 on IMAP-URL.
 - New section 5.3.7 on SMTP and [LEMONADEPROFILE] forward without
 download mechanisms and add details on XDELIVER.
 - Section 5.3.8:
 - Addition of mechanisms to support of document based on [OMA-
 STI].
 - Mechanism to request DEFAULT conversion.
 - New section 6 on P-IMAP:
 - Client security
 - Client updates
 - Client-side behavior
 - Minimum binding interoperability requirements

 - Update of Security section.

Maes Expires September 2006 [Page 59]

 <Push-IMAP> March 2006

 - Updates of Reference section.
 - Appendix A: updates of usage of HTTP / HTTPS binding.
 - Appendix B.2: editorial updates
 - New Appendix B.3 on usage of [GSMSMS] and [WAPWDP].
 - New appendix E.3 on using [OMA-STI] for transcoding with XCONVERT
 and XUIDCONVERT.
 - Clarification of future work item [2] and addition of item [8].
 - Corrections of author s names.

 Updates for Release 06
 [1] Update of the author list
 [2] Section 1.4: Update of the details on attachment conversion
 and PIM
 [3] Section 2: Clarification of positioning with respect to other
 e-mail specifications
 [4] Editorial improvement of section 3.1.2.
 [5] Improvement of explanations in section 3.2.
 [6] New section with recommendations on the connectivity model
 [7] Removal of sections 4.2 and 4.3 on Folder events and PIM
 events.
 [2] Editorial improvement in section 5.
 [3] Section 5.1.3. The Capability command can now return XPIMAPv1.
 [4] Section 5.1.4: Supplying an Email Domain is no longer optional
 during login to a PIMAP session. Addition of the notion of
 SESSIONID. Removal of the constrain on 10 digits for phone
 numbers.
 [5] Section 5.1.6: Additional details on how keys are selected,
 exchanged, updated and used for encryption of out-of-band
 notifications and in-band messages.
 [6] Section 5.2.1: Additional details on XPROVISION of encryption
 key and UDP notification details when supported. Other
 information included also such as XFILTER's available.
 [7] Section 5.2.2: Addition of support for richer out-of-band
 notification formats than simply [EMN]. Also, allows user to set
 the active view and notification filters, as well as the active
 event filter. Add explicitly UDP as an out-of-band notification
 mechanism.
 [8] Section 5.2.3: Changes in XFilter usage and syntax. Now
 XFilter is used to name and describe a set of criteria for a
 filter. The active view and notification filters are now set
 with XSETPIMAPPREF.
 [9] Section 5.2.5: Now, there is only an XDELIVER command, but no
 UID XDELIVER command. XDELIVER requires both a uid validity and

 uid for a message to be forwarded or replied.

Maes Expires September 2006 [Page 60]

 <Push-IMAP> March 2006

 [10] Section 5.2.8: Extension of XCONVERT. XCONVERT has been
 extended to allow the client to alter the server's character set
 encoding, as well as the transfer encoding (compression). Namely,
 XCONVERT now provides the ability to request a character set
 conversion, which may or may not be honored. If it is not
 honored, default is either the original encoding, or UTF-8.
 Principally, if the message part the client is requesting
 conversion of is text, it may attempt to convert it from US-
 ASCII, ISO-8859, UTF-8, UCS-2/UCS-4, etc to compatible encodings.
 Also, the client may request a transfer encoding from base64,
 quoted-printable, or 8-bit clean. Converting from say, base-64 to
 8-bit, may result is a savings of up to 33% before compression.
 Addition also of the details on how device information obtained
 outside P-IMAP is expected to be used.
 [11] Section 5.2.7: Correction of some typos
 [12] Security Considerations: Indications that server tools are
 out of scope of P-IMAP.
 [13] Update of references
 [14] Update of section A.1 according to section 3.3.
 [15] Update of section A.3 to qualify problem raised by
 intermediaries.
 [16] Section B.2 extensions of the out-of-band notification format
 to beyond [EMN].
 [17] Update of Future Work.
 [18] Update of version history.
 [19] Update of Authors Addresses.

 Updates for Release 05
 [1] Abstract update to explicitly call out the objective of
 network transport neutrality
 [2] Section 1.2: Add explicitly that the clients changes are
 transmitted to the server.
 [3] Section 1.2.1: Clarifies when new session and State-based-
 comparison synchronization is used.
 [4] Added section 1.2.3.
 [5] Clarification by renaming in section 1.3 and after
 notification / priority filter as notification filter only.
 [6] Section 1.4: removed explicit duration before logging out the
 client + editorial improvements
 [7] Section 2: removed explicit assumption that P-IMAP is the
 mobile profile of Lemonade. This is still to be determined.
 [8] Section 3.1: Editorial improvement by removing unnecessary
 implementation specific sentence on amount of session supported
 per user and device.
 [9] Section 3.1.2: Clarification of the explanation of
 notification filter.
 [10] Section 3.1.3: Clarification of the explanation of event

 filter.

Maes Expires September 2006 [Page 61]

 <Push-IMAP> March 2006

 [11] Section 3.2.3: Added SIP notification as a possible out-of-
 band notification mechanism.
 [12] Section 3.3: Editorial changes and removal of exact time
 amount before session expiration.
 [13] Section 4.3: Added a clarification on how PIM events can be
 supported.
 [14] Section 5.1.6: Added detail on key exchange via XPROVISION
 and recommendation not to use XENCRYPTED when STARTTLS is used
 (and when proxies are not used or an issue).
 [15] Section 5.2.2: Added support for SIP notifications.
 [16] Section 5.2.4: Remove mandate to use gzip if STARTTLS is
 used.
 [17] Section 5.2.6: Add consideration on using XCONVERT to
 compress or encrypt.
 [18] Security considerations: Add spam as an issue.
 [19] Added [CONNECT] to references
 [20] Update example syntax for chunked encoding versus long live.
 [21] Appendix A.3: Add caveat when using HTTP long live sessions.
 [22] Appendix B.1: Clarification of the explanations
 [23] Appendix B.2: Clarification of the explanations
 [24] Added Appendix E.2.
 [25] Additional future work items ([5] and [6])
 [26] Updates for Release 05
 [27] Update of authors

 Updates for Release 04
 [1] Section 5.1.1. - Made the UID change condition SHOULD to be
 consistent with IMAP.
 {2} Appendix A.2 added to discuss choosing between HTTPS and HTTP.

 Updates for Release 03
 [1] Throughout this document - editorial fixes.
 [2] Section 1.1: Additional positioning of pull / poll model
 versus push model.
 [3] Clarification in section 1.2 of the reaction of P-IMAP clients
 to events.
 [4] Clarifications of sections 1.2.1, 1.2.2 and 1.3.
 [5] Addition of details about the "attachments forward/reply
 behavior".
 [6] Section 2 has been added to position P-IMAP and the Lemonade
 Pull Model described in [LEMONADEPROFILE].
 [7] Throughout the document - Terminology change to
 prioritization/notification filter.
 [8] Section 3.1 - Reorganization of the text for clarification.
 [9] Section 3.2.3 - Additional motivation for using out-of-band
 notification
 [10] Change of title for section 4.1
 [11] Section 5.1.1 - Change of normative statement from SHOULD to

 MUST, back to SHOULD

Maes Expires September 2006 [Page 62]

 <Push-IMAP> March 2006

 [12] Clarifications in section 5.1.3 and 5.1.5.
 [13] Section 5.2.3 - Extension of the type of out-of-band
 notification channels.
 [14] Section 5.2.3 - Fixes of examples: Changes of N to P.
 [15] Section 5.2.4 - Clarification of XZIP normative statements
 depending on the selected binding for P-IMAP.
 [16] Mention of HTTPS under security considerations
 [17] Reference updates to reflect [LEMONADEPROFILE].
 [18] Appendix A.1 - Fixes of some HTTP/HTTPS Request/Response
 Formats.
 [19] Updates to release history (Release 03)
 [20] Updates of authors
 [21] Additions of sections on Intellectual Property Statement and
 Full Copyright Statement

 Updates for Release 02
 [1] Throughout this document - took out references to mailbox
 since its definition was ambiguous. Now, the terms folder, email
 account, and repository are used instead.
 [2] Section 1.2.2 - took out message events, which is now
 described in new section 3.
 [3] Section 1.4 - removed attachments behavior
 [4] Section 3 - new section containing event payloads
 [5] Old section 3.1.3 - removed this section on forwarded flags
 [6] Old section 3.1.4 - added resync, folder, and session
 untagged response syntax
 [7] Old section 3.1.5 - UID becomes should instead of must
 requirement
 [8] Old section 3.1.7 - took out resync, which is now in login
 section
 [9] New section 4.1.6 - a new section concerning untagged
 XENCRYPTED responses in place of untagged FETCH responses.
 [10] Old 3.2.1 - XPROVISION now just returns what XFILTERS are
 supported and what values some PIMAP Prefs can take on
 [11] Old 3.2.2
 [a] Took out PIMAP_OUTBAND_NEW_FORMAT
 [b] Added in PIMAP_INBAND_PUSH format
 [c] valid values for some preferences are given in XPROVISION
 [d] XGETPIMAPPREF -> XGETPIMAPPREFS
 [e] defined XGETPIMAPPREFS untagged response
 [12] Old 3.2.3 - defined XFILTER untagged response
 [13] Old 3.2.4 - dropped this section on XTERSE
 [14] Old 3.2.6 - changed syntax so only V & N can be given for
 get.
 [15] Old 3.2.7
 [a] XUIDCONVERT -> UID CONVERT
 [b] added untagged response syntax

Maes Expires September 2006 [Page 63]

 <Push-IMAP> March 2006

 [16] Security Considerations section - added in that there are
 additional security considerations when the server is implemented
 through a proxy on a distrusted operator network.
 [17] Appendix B.2 - changed example where client gets events in
 response to a login command (instead of noop)
 [18] Appendix C - new appendix to cover security issues for
 proxy-based deployments of P-IMAP.
 [19] Appendix E.2 on further considerations, which are things to
 add in the upcoming releases.

 Updates for Release pre-01
 [1] Sections 1.1, 1.3, 2.2.1, 2.2.2, and 2.2.3
 Added diagrams to better explain P-IMAP concepts
 [2] Section 1.4
 [a] Point 1 - changed term definition to Compression
 [b] Added points 5 and 6 regarding Attachment Handling
 [3] Section 3.1.4
 Updated minimal P-IMAP server requirements
 [4] Section 3.1.5
 [a] Fixed the title - P-IMAP Session/Login
 [b] Added examples for "First Login" and "Login after Logout"
 [c] Added Section 3.1.7
 [d] RESYNC untagged response when missed notifications occur
 [5] Section 3.2.2
 [a] XSETPREF and XGETPREF -> XSETPIMAPPREF and XGETPIMAPPREF
 [b] Reduced the number of preference parameters
 [6] Section 3.2.3
 Added a Days Before Today filter
 [7] Removed section 4
 [8] References
 [a] Added references to IMAP-DISC and RFC 2180
 [b] Removed references to MIMAP, NSMS
 [9] Appendix B
 [a] added example of out-of-band notification
 [b] explained client behavior in response to notifications
 [10] Old Appendix C
 Removed completely, as attachment conversion is described in
 XCONVERT command and ways of retrieving it are discussed in RFC

2683
 [11] New Appendix C

Appendix C now features security considerations for proxy-based
 implementations of P-IMAP.

 Release 00
 Initial release published on Feb. 8th 2004

https://datatracker.ietf.org/doc/html/rfc2180
https://datatracker.ietf.org/doc/html/rfc2683
https://datatracker.ietf.org/doc/html/rfc2683

Maes Expires September 2006 [Page 64]

 <Push-IMAP> March 2006

Acknowledgments
 The authors want to thank all who have contributed key insight and
 extensively reviewed several versions of the P-IMAP concepts and
 early P-IMAP specifications.

 Special thanks to authors of past versions including Vida Ha.

 A special thanks is addressed to several employees of Nokia and
 Openwave.

 A special thanks to editors and reviewers of some of the derived
 drafts whose input was reflected back in the P-IMAP draft including
 especially D. Cridland, N. Mitra (Ericsson), A. Melnikov (Isode), C.
 Newman (Sun), M. Pozefsky (IBM), A. Srivastava (Sun).

Authors Addresses

 Stephane H. Maes
 Oracle Corporation
 500 Oracle Parkway
 M/S 4op634
 Redwood Shores, CA 94065
 USA
 Phone: +1-650-607-6296
 Email: stephane.maes@oracle.com

 Rafiul Ahad
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

 Eugene Chiu
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

 Ray Cromwell
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

 Jia-der Day
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

Maes Expires September 2006 [Page 65]

 <Push-IMAP> March 2006

 Wook-Hyun Jeong
 Samsung Electronics,CO., LTD
 416, Maetan-3dong, Yeongtong-gu,
 Suwon-city, Gyeonggi-do,
 Korea 442-600
 Tel: +82-31-279-8289
 E-mail: wh75.jeong@samsung.com

 Chang Kuang
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

 Rodrigo Lima
 Oracle Corporation
 500 Oracle Parkway
 Redwood Shores, CA 94065
 USA

 Gustaf Rosell
 Sony Ericsson
 P.O. Box 64
 SE-164 94 Kista,
 Sweden
 Tel: +46 8 508 780 00

 Jean Sini
 6480 Via Del Oro
 San Jose, CA 95119
 USA

 Sung-Mu Son
 LG Electronics
 Mobile Communication Technology Research Lab.
 Tel: +82-31-450-1910
 E-Mail: sungmus@lge.com

 Fan Xiaohui
 Product Development Division
 R&D CENTER
 CHINA MOBILE COMMUNICATIONS CORPORATION (CMCC)
 ADD: 53A, Xibianmennei Ave.,Xuanwu District,
 Beijing,100053
 China
 TEL:+86 10 66006688 EXT 3137

 Zhao Lijun

Maes Expires September 2006 [Page 66]

 <Push-IMAP> March 2006

 CMCC R&D
 ADD: 53A, Xibianmennei Ave.,Xuanwu District,
 Beijing,100053
 China
 TEL:.8610
 .66006688.3041

 Dwayne Bennett
 Consilient
 P.O. Box 2172
 St. John's, NL A1C 6E6
 Canada
 Tel: +1 709 576 1706
 E-mail: bennett@consilient.com

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Maes Expires September 2006 [Page 67]

 <Push-IMAP> March 2006

Copyright Statement

 Copyright (C) The Internet Society (2006). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Maes Expires September 2006 [Page 68]

https://datatracker.ietf.org/doc/html/bcp78

