
TCP Maintenance and Minor M. Jethanandani
Extensions Cisco Systems
Internet-Draft M. Bashyam
Intended status: Informational Ocarina Systems, Inc
Expires: April 19, 2008 October 17, 2007

TCP Robustness in Persist Condition
draft-mahesh-persist-timeout-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 19, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document describes how a connection can remain infinitely in
 persist condition, and its Denial of Service (DoS) implication on the
 system, if there is no mechanism to recover from this anomaly.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

Jethanandani & Bashyam Expires April 19, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TCP Robustness in Persist Condition October 2007

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Table of Contents

1. Introduction . 3
2. Denial of Service Experimentation 4
3. Solution . 6
4. Role of Application . 8
5. IANA Considerations . 8
6. Security Considerations 9
7. Acknowledgements . 9
8. References . 9
8.1. Normative References 9
8.2. Informative References 9

Appendix A. An Appendix . 9
 Authors' Addresses . 9
 Intellectual Property and Copyright Statements 11

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Jethanandani & Bashyam Expires April 19, 2008 [Page 2]

Internet-Draft TCP Robustness in Persist Condition October 2007

1. Introduction

RFC 1122 [RFC1122] Section 4.2.2.17, page 92 says that: A TCP MAY
 keep its offered receive window closed indefinitely. As long as the
 receiving TCP continues to send acknowledgments in response to the
 probe segments, the sending TCP MUST allow the connection to stay
 open.

 The RFC goes on to say that it is important to remember that ACK
 (acknowledgement) segments that contain no data are not reliably
 transmitted by TCP. Therefore zero window probing SHOULD be
 supported to prevent a connection from hanging forever if ACK
 segments that re-opens the window is lost.

 While the RFC is clear why the sender needs to continue to probe the
 receiver, it is not clear why this process needs to be indefinite,
 particularly if the receiver continually responds with a ACK and a
 window of zero. This draft documents a negative consequence of this
 indefinite attempt by the sender to probe for the receiver's offered
 window.

 One negative consequence of this indefinite attempt is that it makes
 the sender vulnerable to a connection and send buffer exhaustion
 attack by one or more malicious receivers. This leads to a Denial of
 Service (DoS) where legitimate connections stop getting established
 and well behaved already established connections stop making progress
 in terms of data transmission.

 Having the sender accumulate buffers and connection table entries
 when the receiver has deliberately and maliciously closed the window
 can ultimately lead to resource exhaustion on the sender. This
 particular dependence on the receiver to open its zero window can be
 easily exploited by a malicious receiver to launch a DoS attack
 against the sender.

 The condition where the sender has at least one buffer in the send
 queue is referred to as persist condition. In this condition the
 sender is waiting indefinitely for the receiver to open up its
 window.

 Resources that are compromised due to this sender behavior include
 connections and send buffers, since both of these are finite pools in
 any server.

 The problem is applicable to TCP and TCP derived transport protocol
 like SCTP.

 We have done some experimention to demonstrate this problem and

https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc1122#section-4.2.2.17

Jethanandani & Bashyam Expires April 19, 2008 [Page 3]

Internet-Draft TCP Robustness in Persist Condition October 2007

 looked at how many servers on the Internet are susceptible to it.
 The rest of the draft will detail the experiment, suggest how the
 problem needs to be addressed, why we believe it is the right
 solution and what role application can play in solving this problem.

 For TCP to persist indefinitely makes the end point vulnerable to a
 DoS attack. We therefore clarify the purpose of zero window as
 described in RFC 1122 and suggest that TCP end point SHOULD NOT keep
 a connection in persist condition for an indefinite amount of time.

 In most implementations, TCP runs in kernel mode as part of the
 operating system. In this mode the operating system may share the
 same address space as TCP. For the purposes of discussion, this
 draft considers TCP protocol implementation to be a separate module
 responsible for all resources such as buffers and connection control
 blocks that it borrows from the operating system. The operating
 system can enforce the maximum number of buffers it is willing to
 give to TCP but beyond that it lets TCP decide how to manage them.

2. Denial of Service Experimentation

 The effect of the receiver that stops reading data is that the sender
 continues to send data till the receiver advertised window goes to
 zero at which time the connection enters persist condition. Since
 the sender has more buffers with data for the client, it will
 continue to probe the receiver. If the sender is servicing several
 such clients the effect compounds itself to the extent that the
 sender runs out of buffers and/or connection resources. The sender
 at this point cannot service new legitimate connections and even the
 existing connections start seeing degraded service. Further, each
 connection reserves a connection control block, which are of a finite
 amount. Several connections in persist condition can exhaust the
 connection control block pool.

 To demonstrate the problem we wrote a user level program that puts
 TCP connections on the HTTP server in persist condition. The client
 can run on any machine and does not require a change in the kernel or
 the operating system.

 The client opens a TCP connection to the HTTP server with a
 advertised MSS of 1460. It then sends a GET request for a large
 page. The page size is large enough to ensure that the connections
 send buffer always has more data than receivers maximum advertised
 window. Once the window has been opened, the client application
 stops reading data resulting in TCP closing the window and
 advertising zero window towards the sender. For each request of a
 multi-megabyte response, the connection can result in the sender

https://datatracker.ietf.org/doc/html/rfc1122

Jethanandani & Bashyam Expires April 19, 2008 [Page 4]

Internet-Draft TCP Robustness in Persist Condition October 2007

 holding on to all the requested data minus the receivers advertised
 window, in its send queue. If the receiver never closes the
 connection, the server will continue to hold that data indefinitely
 in its send queue.

 The same program was then run from each client with it opening one
 thousand connections towards the HTTP server. This was run from
 several different machines with the result that now the server was
 holding onto several thousand connections, each with more than one
 megabyte worth of data on the send queue.

 After verifying this behavior in the laboratory against both a Apache
 and a IIS server, we then proceeded to test HTTP servers on the
 Internet. To verify this behavior we needed to open only few
 connections towards the servers. We chose three well known sites,
 identified here as Site A, Site B and Site C for our test. We then
 ran a network analyzer on the client machine to monitor the behavior
 of the connection. These were our observations.

 Connections to Site A went into ESTABLISHED state and after receiving
 receivers advertised window worth of data went into persist
 condition. The connection persisted in this mode for approximately
 11 minutes and was then RST by the server.

 Connections to Site B went and stayed in ESTABLISHED state. They
 stayed in that state as long as the client kept the connection open.
 The server in this case was Apache version 2.0. The size of the file
 requested was 12.12M. The client received 200K worth of data and the
 rest of the data was either queued on the send queue or in
 application.

 Connection to Site C went into and stayed in ESTABLISHED state. They
 too stayed in that state as long as the client kept the connection
 open, which was as long as five days. The server in this case was a
 IIS server version 6.0. The size of the requested page was 1.09M (a
 pdf file). The client had received 200K worth of data and the rest
 of the data was either queued on the send queue or in application.

 As can be seen from the experimentation the behavior of TCP varied
 greatly between different sites. Site A appears to implement a User
 Time Out (UTO) or application timeout on their connections. That
 allowed it to clear the connections. However, once it was known what
 the fixed timeout was, it was easy to modify the client program to
 open another set of connections after the timeout. We discuss the
 role of application and the use of UTO in a later section. It was
 difficult to establish how much data was sitting on the send queue of
 each one of these public servers as that depends on send socket
 buffer size and how much data was written by the application.

Jethanandani & Bashyam Expires April 19, 2008 [Page 5]

Internet-Draft TCP Robustness in Persist Condition October 2007

 Please note that it is not required for the client to issue a request
 for a large page or for the server to open its window completely to
 reproduce the DoS scenario. A page size larger than the advertised
 window size is enough. We decided to do it with a larger response
 because it enabled us to reproduce the problem with fewer number of
 connections and client machines.

 Persist condition clearly has a more significant impact on servers
 that deal with a large number of connections (e.g. 200-300K
 connections), than on end workstations that might deal with a few
 connections at a time. This is because the server has a finite
 number of buffers for a larger pool of connections. With dynamic
 allocation of buffers, each connection is given resources as it needs
 them. A high water mark set on each connection prevents the number
 of enqueued buffers exceeding that mark till such time that the
 number of buffers fall below a low water mark. However, that in
 itself does not solve the problem as the high water mark is more than
 the advertised window size.

3. Solution

 The current behavior of the connection in persist condition SHALL
 continue to exist as the default behavior. The solution proposed
 will control the amount of time a TCP sender will spend in persist
 condition waiting for receiver to open its window. Outlined are some
 of the ways that this can be achieved. Default values are suggested
 values and the implementor is free to choose their own value.

 If the administrator of the system decides to use the proposed
 solution, they will need to enable it explicitly. Optionally, the
 administrator can configure a minimum and maximum threshold values
 for connections and buffer resources for the total pool. Default
 values of 60 and 80% of the total pool for minimum and maximum
 respectively are assumed.

 While implementing the solution it is important to make sure that
 legitimate and well behaved receivers are not penalized for offering
 zero or reduced window. Hence the solution needs to be robust. It
 is also important that the solution be adaptive. While resources are
 plenty, connections are allowed to spend more time in persist
 condition. However, as resources become scarce the connections are
 aborted sooner.

 A fixed timeout value is not a effective solution. Malicious clients
 can discover the timeout value and can (re)launch an attack after the
 fixed timeout period.

Jethanandani & Bashyam Expires April 19, 2008 [Page 6]

Internet-Draft TCP Robustness in Persist Condition October 2007

 If the solution is enabled, the global persist-condition-expiry -time
 value will be set to infinity (or a very large value). Thereafter it
 will adapted based on system resources availability. The persist-
 condition-expiry-time is bounded above by the default value of 60
 seconds and a minimum value of five seconds (or minimum persist
 timeout). The administrator has the option to change the default
 value. To prevent wild fluctuations in this timeout value, the time
 will be recomputed only when resources change by at least 1%. If the
 total pool of resources is less than minimum threshold, the persist-
 condition-expiry-time value is set to infinity (a very large value).
 If the resource utilization increases to being between minimum and
 maximum, then persist-condition-expirty-time is first set to the
 default value and thereafter decreased additively by two seconds. If
 resources exceed the maximum, the persist-condition-expiry-time is
 decreased multiplicatively by a factor or two. If the resource
 utilization starts to decrease then persist-condition-expirty-time is
 increased additively by four seconds. If the utilization falls below
 minimum, the time is set to infinity.

 The solution focuses on figuring on how to keep track of connections
 in persist condition. The configured option of persist-condition-
 expiry-time implies how long the connection will be allowed to stay
 in persist condition. When the connection enters persist condition,
 i.e. the receiver advertises a window of zero, the value of current
 time - now, is saved in the connection entry. This entry is called
 persist-condition-entry-time. In addition, the sequence number on
 the connection is stored as persist-condition-sequence-number.
 Thereafter every time the persist timer expires or when an ACK is
 received that continues to advertise zero window, a check is done to
 make sure that the difference between current time and persist-
 condition-entry-time is not more than persist-condition-expiry-time.
 If it is then the connection is aborted and the connection resources
 are reclaimed.

 The receiver's silly window avoidance mechanism will make sure that
 the receiver cannot read a small amount of data and fool the sender
 into taking it out of persist condition.

 For the solution to be robust, it is also important to determine
 which connection among the set of connections in persist condition is
 selected to be terminated. To implement this effectively, we
 maintain two priority queues of connections in persist condition, one
 based on the amount of data in the send queue and another based on
 the persist-condition-entry-time, i.e. when the connection entered
 persist condition.

 Whenever a buffer resource is required and the resource utilization
 is more than the maximum, the connection with the highest amount of

Jethanandani & Bashyam Expires April 19, 2008 [Page 7]

Internet-Draft TCP Robustness in Persist Condition October 2007

 data in the send queue is dropped, and its buffers recycled.
 Whenever a connection resource is required and the connection
 utilization is higher than the maximum, the connection with the
 oldest persist-condition-entry-time is selected and dropped. This
 achieves fairness by penalizing the connection which are consuming
 the most resources.

4. Role of Application

 Applications are agnostic to why TCP connections are not making
 progress in terms of data transmission. TCP connections may not be
 able to transmit data for a variety of reasons. Today TCP does not
 provide an indication of the progress of the connection explicitly.
 It is up to the application to conclude based on an examination of
 the send queue backlog or implement a UTO as defined in RFC 793
 [RFC0793]. A lot of commonly used applications do not implement the
 UTO scheme, e.g. World Wide Web (WWW). Even if the application did
 implement a UTO scheme, all applications running the system need to
 have implemented the UTO for the solution to be effective. A single
 application that has not implemented the UTO can cause the entire
 system to be impacted negatively.

 There are cases where the system is application agnostic. A classic
 case of this is a TCP proxy. In that particular case, there is no
 end application that can be informed of the state of the connection
 for the application to take action.

 Resources like TCP buffers are system wide resources and are not tied
 to any particular application. TCP needs to be able to monitor
 resource usage system wide when connections are in persist condition.
 The application does not have the connection's sender state knowledge
 to implement a robust and adaptive solution such as the one outlined
 here.

 Applications can assist TCP's role in solving this problem. They can
 register for an event notification when the TCP connection enters or
 exits persist condition. They can use the notification mechanism to
 implement their own scheme of deciding which persist connections to
 clear. They can also suggest timeout or retry values to TCP.

5. IANA Considerations

 This document makes no request of IANA.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793

Jethanandani & Bashyam Expires April 19, 2008 [Page 8]

Internet-Draft TCP Robustness in Persist Condition October 2007

6. Security Considerations

 This document discusses one security consideration. That is the
 possible DoS attacks discussed in Section 2.

7. Acknowledgements

 Thanks to Anantha Ramaiah who spent countless hours reviewing,
 commenting and proposing changes to the draft. Ted Faber helped us
 in clarifying the objective of this RFC. Thanks also to Fred Baker
 and Elliot Lear for providing their feedback on the draft.

 Our thanks to Nanda Bhajana who helped arrange the test setup to be
 able to reproduce the DoS scenario.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1122] Braden, R., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8.2. Informative References

Appendix A. An Appendix

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Jethanandani & Bashyam Expires April 19, 2008 [Page 9]

Internet-Draft TCP Robustness in Persist Condition October 2007

Authors' Addresses

 Mahesh Jethanandani
 Cisco Systems
 170 West Tasman Drive
 San Jose, California 95134
 USA

 Phone: +1-408-527-8230
 Fax: +1-408-527-0147
 Email: mahesh@cisco.com
 URI: www.cisco.com

 Murali Bashyam
 Ocarina Systems, Inc
 Fremont, CA
 USA

 Phone:
 Fax:
 Email: mbashyam@ocarinatech.com
 URI:

Jethanandani & Bashyam Expires April 19, 2008 [Page 10]

Internet-Draft TCP Robustness in Persist Condition October 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Jethanandani & Bashyam Expires April 19, 2008 [Page 11]

