
Workgroup: MIMI

Internet-Draft: draft-mahy-mimi-content-02

Published: 13 March 2023

Intended Status: Informational

Expires: 14 September 2023

Authors: R. Mahy

Wire

More Instant Messaging Interoperability (MIMI) message content

Abstract

This document describes content semantics common in Instant

Messaging (IM) systems and describes an example profile suitable for

instant messaging interoperability of messages end-to-end encrypted

inside the MLS (Message Layer Security) Protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Terminology

2. Introduction

3. Overview

3.1. Naming schemes

3.2. Message Container

3.3. Message Status Report

4. MIMI Content Container Message Semantics

4.1. Required Fields

4.2. Message Behavior Fields

4.3. Message Bodies

4.4. Derived Data Values

5. Examples

5.1. Original Message

5.2. Reply

5.3. Reaction

5.4. Mentions

5.5. Edit

5.6. Delete

5.7. Unlike

5.8. Expiring

5.9. Attachments

5.10. Conferencing

5.11. Threading

5.12. Delivery Reporting and Read Receipts

6. Support for Specific Media Types

6.1. MIMI Required and Recommended media types

6.2. Use of proprietary media types

7. IANA Considerations

7.1. MIME subtype registration of application/mimi-message-status

7.2. MIME subtype registration of application/mimi-content

8. Security Considerations

9. Normative References

10. Informative References

Appendix A. Multipart examples

A.1. Proprietary and Common formats sent as alternatives

A.2. Mulitple Reactions Example

A.3. Complicated Nested Example

A.4. TLS Presentation Language multipart container format

Author's Address

1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2219].¶

The terms MLS client, MLS group, and KeyPackage have the same

meanings as in the MLS protocol [I-D.ietf-mls-protocol].

2. Introduction

MLS [I-D.ietf-mls-protocol] is a group key establishment protocol

motivated by the desire for group chat with efficient end-to-end

encryption. While one of the motivations of MLS is interoperable

standards-based secure messaging, the MLS protocol does not define

or prescribe any format for the encrypted "application messages"

encoded by MLS. The development of MLS was strongly motivated by the

needs of a number of Instant Messaging (IM) systems, which encrypt

messages end-to-end using variations of the Double Ratchet protocol

[DoubleRatchet].

End-to-end encrypted instant messaging was also a motivator for the

Common Protocol for Instant Messaging (CPIM) [RFC3862], however the

model used at the time assumed standalone encryption of each message

using a protocol such as S/MIME [RFC8551] or PGP [RFC3156] to

interoperate between IM protocols such as SIP [RFC3261] and XMPP

[RFC6120]. For a variety of practical reasons, interoperable end-to-

end encryption between IM systems was never deployed commercially.

There are now several instant messaging vendors implementing MLS,

and the MIMI (More Instant Messaging Interoperability) Working Group

is charted to standardize an extensible interoperable messaging

format for common features to be conveyed "inside" MLS application

messages. Most of these features can reuse the semantics of

previously-defined URIs, message headers, and media types. This

document represents a solution to one part of the MIMI problem

outline [I-D.mahy-mimi-problem-outline].

This document assumes that MLS clients advertise media types they

support and can determine what media types are required to join a

specific MLS group using the content advertisement extensions in

[I-D.ietf-mls-extensions]. It allows implementations to define MLS

groups with different media type requirements and allows MLS clients

to send extended or proprietary messages that would be interpreted

by some members of the group while assuring that an interoperable

end-to-end encrypted baseline is available to all members, even when

the group spans multiple systems or vendors.

Below is a list of some features commonly found in IM group chat

systems:

plain text and rich text messaging

mentions

replies

reactions

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

edit or delete previously sent messages

expiring messages

delivery notifications

read receipts

shared files/audio/videos

calling / conferencing

message threading

3. Overview

3.1. Naming schemes

IM systems have a number of types of identifiers. These are

described in detail in [I-D.mahy-mimi-identity]. A few of these used

in this document are:

handle identifier (external, friendly representation). This is

the type of identifier described later as the senderUserUrl in

the examples, which is analogous to the From header in email.

client/device identifier (internal representation). This is the

type of identifier described as the senderClientUrl in the

examples.

group or conversation or channel name (either internal or

external representation). This is the type of identifier

described as the MLS group URL in the examples.

This proposal relies on URIs for naming and identifiers. All the

example use the im: URI scheme (defined in [RFC3862]), but any

instant messaging scheme could be used.

3.2. Message Container

Most common instant messaging features are expressed as individual

messages. A plain or rich text message is obviously a message, but a

reaction (ex: like), a reply, editing a previous message, deleting

an earlier message, and read receipts are all typically modeled as

another message with different properties.

This document describes the semantics of a message container, which

contains a message ID and timestamp and represents most of these

previously mentioned messages. The container typically carries one

or more body parts with the actual message content (for example, an

emoji used in a reaction, a plain text or rich text message or

reply, a link, or an inline image).

3.3. Message Status Report

This document also describes the semantics of a status report of

other messages. The status report has a timestamp, but does not have

a message ID of its own. Because some messaging systems deliver

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

messages in batches and allow a user to mark several messages read

at a time, the report format allows a single report to convey the

read/delivered status of multiple messages (by message ID) within

the same MLS group at a time.

4. MIMI Content Container Message Semantics

Each MIMI Content message is a container format with three

categories of information:

the required message ID and timestamp fields,

the message behavior fields (which can have default or empty

values), and

the body part(s) and associated parameters

To focus on the semantics of a MIMI Content message, we use C/C++

struct notation to describe its data fields. These fields are

numbered in curly braces for reference in the text. We do not

propose any specific syntax for the format, but two reasonable

constraints are:

we do not want to scan body parts to check for boundary marker

collisions. This rules out using multipart MIME types.

we do not want to base64 encode body parts with binary media

types (ex: images). This rules out using JSON to carry the binary

data.

4.1. Required Fields

Every MIMI content message has a message ID {1}. The message ID has

a local part and a domain part. The domain part corresponds to the

domain of the sender of the message. The local part must be unique

among all messages sent in the domain. Using a UUID for the local

part is RECOMMENDED.

¶

¶

* ¶

*

¶

* ¶

¶

*

¶

*

¶

¶

struct MessageId {

 Octets localPart;

 String domain;

};

struct MimiContent {

 MessageId messageId; // required value {1}

 double timestamp; // seconds since 01-Jan-1970 {2}

 MessageId inReplyTo; // {3}

 MessageId replaces; // {4}

 MessageId threadId; // {5}

 uint32 expires; // 0 = does not expire {6}

 NestablePart body; // {7}

};

¶

Every MIMI content message has a timestamp {2}, represented as the

number of (fractional) seconds since the start of the UNIX epoch

(01-Jan-1970 00:00:00 UTC).

4.2. Message Behavior Fields

The inReplyTo {3} data field indicates that the current message is a

related continuation of the message ID of another message sent in

the same MLS group. For all three message behavior fields which take

a message ID, if the field is empty (i.e. both the message ID

localPart and the domain are zero length), the receiver assumes that

the current message has not identified any special relationship with

another previous message.

The replaces {4} data field indicates that the current message is a

replacement or update to a previous message whose message ID is in

the replaces data field. It is used to edit previously-sent

messages, delete previously-sent messages, and adjust reactions to

messages to which the client previously reacted.

The threadId {5} data field indicates that the current message is

part of a logical thread of messages which begins with a message

with the message ID specified in the threadId data field.

The expires {6} data field is a hint from the sender to the receiver

that the message should be locally deleted and disregarded at a

specific timestamp in the future. Indicate a message with no

specific expiration time with the value zero. The data field is an

unsigned integer number of seconds after the start of the UNIX

epoch. Using an 32-bit unsigned integer allows expiration dates

until the year 2106. Note that specifying an expiration time

provides no assurance that the client actually honors or can honor

the expiration time, nor that the end user didn't otherwise save the

expiring message (ex: via a screenshot).

4.3. Message Bodies

Every MIMI content message has a body {7} which can have multiple,

possibly nested parts. A body with zero parts is permitted when

deleting or unliking {8}. When there is a single body, its IANA

media type, subtype, and parameters are included in the contentType

field {9}.

¶

¶

¶

¶

¶

¶

With some types of message content, there are multiple media types

associated with the same message which need to be rendered together,

for example a rich-text message with an inline image. With other

messages, there are multiple choices available for the same content,

for example a choice among multiple languages, or between two

different image formats. The relationship semantics among the parts

is specified as an enumeration {10}.

The nullPart part semantic is used when there is no body part—

(U+2014)for deleting and unliking. The singlePart part semantic is

used when there is a single body part.

typedef std::monostate NullPart; // {8}

struct SinglePart {

 String contentType; // An IANA media type {9}

 Octets content; // The actual content

};

typedef std::vector<NestablePart> MultiParts;

enum PartSemantics { // {10}

 nullPart = 0,

 singlePart = 1, // the bodyParts is a single part

 chooseOne = 2, // receiver picks exactly one part to process

 singleUnit = 3 // receiver processes all parts as single unit

 processAll = 4 // receiver processes all parts individually

};

enum Disposition {

 unspecified = 0,

 render = 1,

 reaction = 2,

 profile = 3,

 inline = 4,

 icon = 5,

 attachment = 6,

 session = 7

};

struct NestablePart {

 Disposition disposition; // {11}

 String language; // {12}

 uint16 partIndex; // {13}

 PartSemantics partSemantics;

 std::variant<NullPart, SinglePart, MultiParts> part;

};

¶

¶

¶

The chooseOne part semantic is roughly analogous to the semantics of

the multipart/alternative media type, except that the ordering of

the nested body parts is merely a preference of the sender. The

receiver can choose the body part among those provided according to

its own policy.

The singleUnit part semantic is roughly analogous to the semantics

of the multipart/related media type, in that all the nested body

parts at this level are part of a single entity (for example, a rich

text message with an inline image). If the receiver does not

understand even one of the nested parts at this level, the receiver

should not process any of them.

The processAll part semantic is roughly analogous to the semantics

of the multipart/mixed media type. The receiver should process as

many of the nested parts at this level as possible. For example, a

rich text document with a link, and a preview image of the link

target could be expressed using this semantic. Processing the

preview image is not strictly necessary for the correct rendering of

the rich text part.

The disposition {11} and language {12} of each part can be specified

for any part, including for nested parts. The disposition represents

the intended semantics of the body part or a set of nested parts. It

is inspired by the values in the Content-Disposition MIME header

[RFC2183]. The render and inline dispositions mean that the content

should be rendered "inline" directly in the chat interface. The

attachment disposition means that the content is intended to be

downloaded by the receiver instead of being rendered immediately.

The reaction disposition means that the content is a single reaction

to another message, typically an emoji, but which could be an image,

sound, or video. The disposition was originally published in

[RFC9078], but was incorrectly placed in the Content Disposition

Parameters IANA registry instead of in the Content Disposition

Values registry. The session disposition means that the content is a

description of a multimedia session, or a URI used to join one. The

preview disposition means that the content is a sender-generated

preview of something, such as the contents of a link. The value of

the language data field is an empty string or a comma-separated list

of one or more Language-tags as defined in [RFC2382].

Each part also has an part index {13}, which is a zero-indexed,

depth-first integer. It is used to efficiently refer to a specific

body part (for example, an inline image) within another part. See

{Nested body examples} for an example of how the part index is

calculated.

¶

¶

¶

¶

¶

4.4. Derived Data Values

In addition to fields which are contained in a MIMI content message,

there are also two fields which the implementation can definitely

derive (the MLS group ID {14}, and the leaf index of the sender

{15}). Many implementations could also determine one or more of: the

senders client identifier URL {16}, the user identifier URL of the

credential associated with the sender {17}, and the identifier URL

for the MLS group {18}.

5. Examples

In the following examples, we assume that an MLS group is already

established and that either out-of-band or using the MLS protocol or

MLS extensions that the following is known to every member of the

group:

The membership of the group (via MLS).

The identity of any MLS client which sends an application message

(via MLS).

The MLS group ID (via MLS)

The human readable name(s) of the MLS group, if any (out-of-band

or extension).

Which media types are mandatory to implement (MLS content

advertisement extensions).

For each member, the media types each supports (MLS content

advertisement extensions).

Messages sent to an MLS group are delivered to every member of the

group active during the epoch in which the message was sent.

5.1. Original Message

In this example, Alice Smith sends a rich-text (Markdown) [RFC7763]

message to the Engineering Team MLS group. The following values are

derived from the client:

Sender leaf index: 4

Sender client ID URL: im:3b52249d-68f9-45ce-8bf5-c799f3cad7ec/

0003@example.com

Sender user handle URL: im:%40alice-smith@example.com

MLS group ID: 7u4NEqe1tbeBFa0aHdsTgRyD/XOHxD5meZpZS+7aJr8=

¶

struct MessageDerivedValues {

 Octets mlsGroupId; // value always available {14}

 uint32 senderLeafIndex; // value always available {15}

 ImUrl senderClientUrl; // {16}

 ImUrl senderUserUrl; // "From" {17}

 ImUrl mlsGroupUrl; // "To" {18}

};

¶

¶

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

The MLS group URL: im:#engineering_team@example.com

The MLS group name: "Engineering Team"

Below are the relevant data fields set by the sender:

5.2. Reply

A reply message looks similar, but contains the message ID of the

original message in the inReplyTo data field. The derived MLS group

ID, URL, and name do not change in this example. The derived

senderClientId and senderLeafIndex are not especially relevant so

all but the user handle URL will be omitted.

Sender user handle URL: im:%40bob-jones@example.com

The data fields needed:

5.3. Reaction

A reaction, uses the Disposition token of reaction. It is modeled on

the reaction Content-Disposition token defined in [RFC9078]. Both

indicate that the intended disposition of the contents of the

message is a reaction.

The content in the sample message is a single Unicode heart

character (U+2665). Discovering the range of characters each

implementation could render as a reaction can occur out-of-band and

is not within the scope of this proposal. However, an implementation

which receives a reaction character string it does not recognize

could render the reaction as a reply, possibly prefixing with a

localized string such as "Reaction: ". Note that a reaction could

theoretically even be another media type (ex: image, audio, or

video), although not currently implemented in major instant

* ¶

* ¶

¶

messageId = "28fd19857ad7@example.com";

timestamp = 1644387225.019; // 2022-02-08T22:13:45-00:00

expires = 0;

body.partIndex = 0;

body.contentType = "text/markdown;charset=utf-8";

body.content = "Hi everyone, we just shipped release 2.0." +

 " __Good work__!";

¶

¶

* ¶

¶

messageId = "e701beee59f9@example.com";

timestamp = 1644387237.492; // 2022-02-08T22:13:57-00:00

inReplyTo: "28fd19857ad7@example.com";

expires = 0;

body.partIndex = 0;

body.contentType = "text/markdown;charset=utf-8";

body.content = "Right on! _Congratulations_ 'all!";

¶

¶

messaging systems. Note that many systems allow mutiple independent

reactions per sender.

Sender user handle URL: im:cathy-washington@example.com

5.4. Mentions

In instant messaging systems and social media, a mention allows

special formatting and behavior when a name, handle, or tag

associated with a known group is encountered, often when prefixed

with a commercial-at "@" character for mentions of users or a hash

"#" character for groups or tags. A message which contains a mention

may trigger distinct notifications on the IM client.

We can convey a mention by linking the user handle URI, or group URI

in Markdown or HTML rich content. For example, a mention using

Markdown is indicated below.

Sender user handle URL: im:cathy-washington@example.com

The same mention using HTML [W3C.CR-html52-20170808] is indicated

below.

5.5. Edit

Unlike with email messages, it is common in IM systems to allow the

sender of a message to edit or delete the message after the fact.

Typically the message is replaced in the user interface of the

¶

* ¶

messageId = "1a771ca1d84f@example.com";

timestamp = 1644387237.728; // 2022-02-08T22:13:57-00:00

inReplyTo: "28fd19857ad7@example.com";

expires = 0;

body.disposition = reaction;

body.partIndex = 0;

body.contentType = "text/plain;charset=utf-8";

body.content = "♥";

¶

¶

¶

* ¶

messageId = "4dcab7711a77@example.com";

timestamp = 1644387243.008; // 2022-02-08T22:14:03-00:00

expires = 0;

body.partIndex = 0;

body.contentType = "text/markdown;charset=utf-8";

body.content = "Kudos to [@Alice Smith](im:alice-smith@example.com)"

 + "for making the release happen!";

¶

¶

body.contentType = "text/html;charset=utf-8";

body.content = "<p>Kudos to " +

 "@Alice Smith for making the release happen!</p>"

¶

receivers (even after the original message is read) but shows a

visual indication that it has been edited.

The replaces data field includes the message ID of the message to

edit/replace. The message included in the body is a replacement for

the message with the replaced message ID.

Here Bob Jones corrects a typo in his original message:

Sender user handle URL: im:%40bob-jones@example.com

5.6. Delete

In IM systems, a delete means that the author of a specific message

has retracted the message, regardless if other users have read the

message or not. Typically a placeholder remains in the user

interface showing that a message was deleted. Replies which

reference a deleted message typically hide the quoted portion and

reflect that the original message was deleted.

If Bob deleted his message instead of modifying it, we would

represent it using the replaces data field, and using an empty body

(NullPart), as shown below.

5.7. Unlike

In most IM systems, not only is it possible to react to a message

("Like"), but it is possible to remove a previous reaction

("Unlike"). This can be accomplished by deleting the message which

creates the original reaction

¶

¶

¶

* ¶

messageId = "89d3472622a4@example.com";

timestamp = 1644387248.621; // 2022-02-08T22:14:08-00:00

replaces: "e701beee59f9@example.com";

expires = 0;

body.partIndex = 0;

body.contentType = "text/markdown;charset=utf-8";

body.content = "Right on! _Congratulations_ y'all!";

¶

¶

¶

messageId = "89d3472622a4@example.com";

timestamp = 1644387248.621; // 2022-02-08T22:14:08-00:00

replaces: "e701beee59f9@example.com";

expires = 0;

body.partSemantics = nullPart;

body.part = NullPart;

¶

¶

If Cathy removes her reaction, we would represent the removal using

a replaces data field with an empty body, referring to the message

which created the reaction, as shown below.

Sender user handle URL: im:cathy-washington@example.com

5.8. Expiring

Expiring messages are designed to be deleted automatically by the

receiving client at a certain time whether they have been read or

not. As with manually deleted messages, there is no guarantee that

an uncooperative client or a determined user will not save the

content of the message, however most clients respect the convention.

The expires data field contains the timestamp when the message can

be deleted. The semantics of the header are that the message is

automatically deleted by the receiving clients at the indicated time

without user interaction or network connectivity necessary.

Sender user handle URL: im:alice-smith@example.com

5.9. Attachments

The message/external-body MIME Type is a convenient way to present a

URL to download an attachment which should not be rendered inline.

The disposition data field is set to attachment.

¶

* ¶

messageId = "d052cace46f8@example.com";

timestamp = 1644387250.389; // 2022-02-08T22:14:10-00:00

replaces: "1a771ca1d84f@example.com";

expires = 0;

body.disposition = reaction;

body.partIndex = 0;

body.partSemantics = nullPart;

body.part = NullPart;

¶

¶

¶

* ¶

messageId = "5c95a4dfddab@example.com";

timestamp = 1644389403.227; // 2022-02-08T22:49:06-00:00

expires = 1644390004; // ~10 minutes later

body.partIndex = 0;

body.contentType = "text/markdown;charset=utf-8";

body.content = "__*VPN GOING DOWN*__\n" +

 "I'm rebooting the VPN in ten minutes unless anyone objects."

¶

¶

body.disposition = attachment;

body.contentType = "message/external-body; access-type=URL;" +

 "URL=\"https://example.com/storage/bigfile.m4v\"" +

 "size=708234961";

¶

5.10. Conferencing

Joining a conference via URL is also possible. The link could be

rendered to the user, requiring a click. Alternatively the

disposition could be specified as session which could be processed

differently by the client (for example, alerting the user or

presenting a dialog box). Further discussion of calling and

conferencing functionality is out-of-scope of this document.

5.11. Threading

Clients participating in a thread populate the threadId with the

message ID of the first message sent in the thread. The sort order

for messages within a thread uses the timestamp field. If more than

one message has the same timestamp, the lexically lowest message ID

sorts earlier.

5.12. Delivery Reporting and Read Receipts

In instant messaging systems, read receipts typically generate a

distinct indicator for each message. In some systems, the number of

users in a group who have read the message is subtly displayed and

the list of users who read the message is available on further

inspection.

Of course, Internet mail has support for read receipts as well, but

the existing message disposition notification mechanism defined for

email in [RFC8098] is completely inappropriate in this context:

notifications can be sent by intermediaries

only one notification can be sent about a single message per

recipient

a human-readable version of the notification is expected

each notification can refer to only one message

it is extremely verbose

Instead we would like to be able to include status changes about

multiple messages in each report, the ability to mark a message

delivered, then read, then unread, then expired for example.

The proposed format below, application/mimi-message-status is sent

by one member of an MLS group to the entire group and can refer to

multiple messages in that group. The format contains its own

timestamp, and a list of message ID / status pairs. As the status at

the recipient changes, the status can be updated in a subsequent

notification.

¶

body.disposition = session;

body.contentType = "message/external-body; access-type=URL;" +

 "URL=\"https://example.com/join/12345\"";

¶

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

¶

¶

Sender user handle URL: im:bob-jones@example.com

6. Support for Specific Media Types

6.1. MIMI Required and Recommended media types

As the MIMI Content container is just a container, the plain text or

rich text messages sent inside, and any image or other formats needs

to be specified. Clients compliant with MIMI MUST be able to receive

the following media types:

application/mimi-content — (U+2014) the MIMI Content container

format (described in this document)

text/plain;charset=utf-8

text/markdown;variant=GFM — (U+2014) Github Flavored Markdown

[GFM])

message/external-body [RFC4483]

enum MessageStatus {

 unread = 0,

 delivered = 1,

 read = 2,

 expired = 3,

 deleted = 4,

 hidden = 5,

 error = 6

};

struct PerMessageStatus {

 MessageId messageId;

 MessageStatus status;

};

struct MessageStatusReport {

 double timestamp;

 // a vector of message statuses in the same MLS group

 std::vector<PerMessageStatus> statuses;

};

¶

* ¶

timestamp = 1644284703.227;

statuses[0].messageId = "4dcab7711a77@example.com";

statuses[0].status = read;

statuses[1].messageId = "285f75c46430@example.com";

statuses[1].status = read;

statuses[2].messageId = "c5e0cd6140e6@example.com";

statuses[2].status = unread;

statuses[3].messageId = "5c95a4dfddab@example.com";

statuses[3].status = expired;

¶

¶

*

¶

* ¶

*

¶

* ¶

[GFM]

[I-D.ietf-mls-extensions]

Note that it is acceptable to render the contents of a received

markdown document as plain text.

The following MIME types are RECOMMENDED:

text/markdown;variant=CommonMark CommonMark

text/html

application/mimi-message-status (described in this document)

image/jpeg

image/png

6.2. Use of proprietary media types

As most messaging systems are proprietary, standalone systems, it is

useful to allow clients to send and receive proprietary formats

among themselves. Using the functionality in the MIMI Content

container, clients can send a message using the basic functionality

described in this document AND a proprietary format for same-vendor

clients simultaneously over the same group with end-to-end

encryption. An example is given in the Appendix.

7. IANA Considerations

7.1. MIME subtype registration of application/mimi-message-status

This document proposes registration of a media subtype with IANA.

7.2. MIME subtype registration of application/mimi-content

This document proposes registration of a media subtype with IANA.

8. Security Considerations

TBC

9. Normative References

GitHub, "GitHub Flavored Markdown Spec, Version 0.29-

gfm", 6 March 2019, <https://github.github.com/gfm/>.

Robert, R., "The Messaging Layer Security

(MLS) Extensions", Work in Progress, Internet-Draft,

draft-ietf-mls-extensions-01, 13 March 2023, <https://

datatracker.ietf.org/doc/html/draft-ietf-mls-

extensions-01>.

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

TBC¶

¶

TBC¶

¶

https://spec.commonmark.org/0.30
https://github.github.com/gfm/
https://datatracker.ietf.org/doc/html/draft-ietf-mls-extensions-01
https://datatracker.ietf.org/doc/html/draft-ietf-mls-extensions-01
https://datatracker.ietf.org/doc/html/draft-ietf-mls-extensions-01

[I-D.mahy-mimi-problem-outline]

[RFC2219]

[RFC2382]

[RFC3862]

[RFC4483]

[RFC7763]

[DoubleRatchet]

[I-D.ietf-mls-protocol]

[I-D.mahy-mimi-identity]

Mahy, R., "More Instant Messaging Interoperability (MIMI)

problem outline", Work in Progress, Internet-Draft,

draft-mahy-mimi-problem-outline-01, 24 October 2022,

<https://datatracker.ietf.org/doc/html/draft-mahy-mimi-

problem-outline-01>.

Hamilton, M. and R. Wright, "Use of DNS Aliases for

Network Services", BCP 17, RFC 2219, DOI 10.17487/

RFC2219, October 1997, <https://www.rfc-editor.org/info/

rfc2219>.

Crawley, E., Ed., Berger, L., Berson, S., Baker, F.,

Borden, M., and J. Krawczyk, "A Framework for Integrated

Services and RSVP over ATM", RFC 2382, DOI 10.17487/

RFC2382, August 1998, <https://www.rfc-editor.org/info/

rfc2382>.

Klyne, G. and D. Atkins, "Common Presence and Instant

Messaging (CPIM): Message Format", RFC 3862, DOI

10.17487/RFC3862, August 2004, <https://www.rfc-

editor.org/info/rfc3862>.

Burger, E., Ed., "A Mechanism for Content Indirection in

Session Initiation Protocol (SIP) Messages", RFC 4483,

DOI 10.17487/RFC4483, May 2006, <https://www.rfc-

editor.org/info/rfc4483>.

Leonard, S., "The text/markdown Media Type", RFC 7763,

DOI 10.17487/RFC7763, March 2016, <https://www.rfc-

editor.org/info/rfc7763>.

10. Informative References

Perrin, T. and M. Marlinspike, "The Double Ratchet

Algorithm", 20 November 2016, <https://signal.org/docs/

specifications/doubleratchet/>.

Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

Omara, E., and K. Cohn-Gordon, "The Messaging Layer

Security (MLS) Protocol", Work in Progress, Internet-

Draft, draft-ietf-mls-protocol-18, 13 March 2023,

<https://datatracker.ietf.org/doc/html/draft-ietf-mls-

protocol-18>.

Mahy, R., "More Instant Messaging

Interoperability (MIMI) Identity Concepts", Work in

Progress, Internet-Draft, draft-mahy-mimi-identity-01, 24

https://datatracker.ietf.org/doc/html/draft-mahy-mimi-problem-outline-01
https://datatracker.ietf.org/doc/html/draft-mahy-mimi-problem-outline-01
https://www.rfc-editor.org/info/rfc2219
https://www.rfc-editor.org/info/rfc2219
https://www.rfc-editor.org/info/rfc2382
https://www.rfc-editor.org/info/rfc2382
https://www.rfc-editor.org/info/rfc3862
https://www.rfc-editor.org/info/rfc3862
https://www.rfc-editor.org/info/rfc4483
https://www.rfc-editor.org/info/rfc4483
https://www.rfc-editor.org/info/rfc7763
https://www.rfc-editor.org/info/rfc7763
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-18
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-18

[RFC2046]

[RFC2183]

[RFC3156]

[RFC3261]

[RFC6120]

[RFC8098]

[RFC8551]

[RFC9078]

[W3C.CR-html52-20170808]

October 2022, <https://datatracker.ietf.org/doc/html/

draft-mahy-mimi-identity-01>.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Troost, R., Dorner, S., and K. Moore, Ed., "Communicating

Presentation Information in Internet Messages: The

Content-Disposition Header Field", RFC 2183, DOI

10.17487/RFC2183, August 1997, <https://www.rfc-

editor.org/info/rfc2183>.

Elkins, M., Del Torto, D., Levien, R., and T. Roessler,

"MIME Security with OpenPGP", RFC 3156, DOI 10.17487/

RFC3156, August 2001, <https://www.rfc-editor.org/info/

rfc3156>.

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Saint-Andre, P., "Extensible Messaging and Presence

Protocol (XMPP): Core", RFC 6120, DOI 10.17487/RFC6120,

March 2011, <https://www.rfc-editor.org/info/rfc6120>.

Hansen, T., Ed. and A. Melnikov, Ed., "Message

Disposition Notification", STD 85, RFC 8098, DOI

10.17487/RFC8098, February 2017, <https://www.rfc-

editor.org/info/rfc8098>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Crocker, D., Signes, R., and N. Freed, "Reaction:

Indicating Summary Reaction to a Message", RFC 9078, DOI

10.17487/RFC9078, August 2021, <https://www.rfc-

editor.org/info/rfc9078>.

Faulkner, S., Eicholz, A., Leithead, T.,

Danilo, A., and S. Moon, "HTML 5.2", World Wide Web

Consortium CR CR-html52-20170808, 8 August 2017,

<https://www.w3.org/TR/2017/CR-html52-20170808>.

https://datatracker.ietf.org/doc/html/draft-mahy-mimi-identity-01
https://datatracker.ietf.org/doc/html/draft-mahy-mimi-identity-01
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2183
https://www.rfc-editor.org/info/rfc2183
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3156
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc6120
https://www.rfc-editor.org/info/rfc8098
https://www.rfc-editor.org/info/rfc8098
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc9078
https://www.rfc-editor.org/info/rfc9078
https://www.w3.org/TR/2017/CR-html52-20170808

Appendix A. Multipart examples

A.1. Proprietary and Common formats sent as alternatives

TODO: Revise to use the built-in NestedPart data structure.

Example sending this profile and proprietary messaging protocol

simultaneously.

A.2. Mulitple Reactions Example

This shows sending a reaction with multiple separate emojis.

TBC

A.3. Complicated Nested Example

This example shows separate English and French versions of HTML

message with inline images. Each of the images is presented in

alternate formats: an animated GIF, and a single PNG.

TBC

A.4. TLS Presentation Language multipart container format

TODO: Revise to use the built-in NestedPart data structure.

In a heterogenous group of IM clients, it is often desirable to send

more than one media type as alternatives, such that IM clients have

a choice of which media type to render. For example, imagine an IM

group containing a set of clients which support a common video

format and a subset which only support animated GIFs. The sender

¶

¶

Content-type: multipart/alternative; boundary=XcrSXMwuRwk9

--XcrSXMwuRwk9

Content-type: message/cpim

From: <im:alice-smith@example.com>

DateTime: 2022-02-08T22:13:45-00:00

Message-ID: <28fd19857ad7@example.com>

Content-Type: text/plain; charset=utf-8

Test Message

--XcrSXMwuRwk9

Content-type: application/vnd.examplevendor-fancy-im-message

<content of example vendor's fancy proprietary format>

--XcrSXMwuRwk9

¶

¶

¶

¶

¶

¶

could send a multipart/alternative [RFC2046] container containing

both media types. Every client in the group chat could render

something resembling the media sent.

Likewise it is often desirable to send more than one media type

intended to be rendered together as in (for example a rich text

document with embedded images), which can be represented using the

multipart/mixed [RFC2046] media type.

Some implementors complain that the multipart types are unnatural to

use inside a binary protocol which requires explicit lengths such as

MLS [I-D.ietf-mls-protocol]. Concretely, an implementation has to

scan through the entire content to construct a boundary token which

is not contained in the content.

While the author does not care about the specific syntax used, for

comparison purposes presents a multipart container format using the

TLS presentation language syntax used by the MLS protocol.

Note that there is a minor semantic difference between multipart/

alternative and the proposal below. In multipart/alternative, the

parts are presented in preference order by the sender. The receiver

is support to render the first type which it supports. This

container includes an ordering flag. As well, even if the flag is

ordered, it is up to the IETF community to decide if it is

acceptable for the receiver to choose its "best" format to render

among an ordered preference list provided by the sender, or if the

receiver must respect the ordered preference of the sender.

¶

¶

¶

¶

¶

Author's Address

Rohan Mahy

Wire

Email: rohan.mahy@wire.com

struct {

 /* a valid "Language-tag" as defined in RFC 5646 */

 opaque language_tag<1..52>;

} LanguageTag;

struct {

 ContentType content_type;

 LanguageTag content_languages<V>;

 opaque<V> body;

} Part;

enum {

 reserved(0),

 multipart_container_v1(1),

 (255)

} MultipartVersion;

enum {

 reserved(0),

 mixed(1),

 alternative(2),

 (255)

} MultipartSemantics;

enum {

 reserved(0),

 unordered(1),

 ordered(2),

 (255)

} MultipartOrdering;

struct {

 uint8 container_version;

 uint16 number_of_parts;

 MultipartSemantics semantics;

 MultipartOrdering ordering;

 Part parts<V>;

} MultipartContainer;

¶

mailto:rohan.mahy@wire.com

	More Instant Messaging Interoperability (MIMI) message content
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Terminology
	2. Introduction
	3. Overview
	3.1. Naming schemes
	3.2. Message Container
	3.3. Message Status Report

	4. MIMI Content Container Message Semantics
	4.1. Required Fields
	4.2. Message Behavior Fields
	4.3. Message Bodies
	4.4. Derived Data Values

	5. Examples
	5.1. Original Message
	5.2. Reply
	5.3. Reaction
	5.4. Mentions
	5.5. Edit
	5.6. Delete
	5.7. Unlike
	5.8. Expiring
	5.9. Attachments
	5.10. Conferencing
	5.11. Threading
	5.12. Delivery Reporting and Read Receipts

	6. Support for Specific Media Types
	6.1. MIMI Required and Recommended media types
	6.2. Use of proprietary media types

	7. IANA Considerations
	7.1. MIME subtype registration of application/mimi-message-status
	7.2. MIME subtype registration of application/mimi-content

	8. Security Considerations
	9. Normative References
	10. Informative References
	Appendix A. Multipart examples
	A.1. Proprietary and Common formats sent as alternatives
	A.2. Mulitple Reactions Example
	A.3. Complicated Nested Example
	A.4. TLS Presentation Language multipart container format

	Author's Address

