
Network Working Group A. Main
Internet-Draft: draft-main-ipaddr-text-rep-00 Black Ops Ltd
Category: Informational May 2003
Expires: November 2003

Textual Representation of IPv4 and IPv6 Addresses

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 Historically, the conventional textual representations of IPv4 and
 IPv6 addresses have been poorly specified. This document gives
 precise definitions of these conventions, together with advice for
 implementors.

1 Introduction

 For as long as IP has existed, there has been a need to represent IP
 addresses in textual contexts, but the nature of these requirements
 has changed. IP addresses are textually represented much more widely
 than appears to have been originally envisioned; in particular, such
 representation has become a part of many network protocols. There is
 an increasing need for interoperability in IP address textual
 representations, for it is more commonly software than humans that
 read and write addresses in this format.

 Historically, the definitions of IP address textual representations

Main expires November 2003 [Page 1]

https://datatracker.ietf.org/doc/html/draft-main-ipaddr-text-rep-00
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet-Draft Textual Representation of IP Addresses May 2003

 have been loose, underspecifying the syntax. They have also always
 been a minor part of a standard whose main focus is some other
 problem. This makes them difficult to locate and inconvenient to
 cite. With IPv6 address textual representation incorporating the
 IPv4 format by reference, the IPv6 format has not previously been
 completely specified in a single RFC.

 This document collects together the complete syntax for textual
 representation of IPv4 and IPv6 addresses, clarifying the
 underspecified parts. It is intended to be a complete and
 unambiguous specification of these address formats, located together
 in a single document for ease of reference.

Section 2 of this document discusses the history of the specification
 and implementation of textual representation of IP addresses.

Section 3 gives the complete syntax. Section 4 gives some advice for
 implementors.

1.1 Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
 interpreted as described in [REQ-TERM].

1.2 Augmented BNF Notation

 Syntax specifications in this document use augmented BNF notation as
 defined in [ABNF]. The `core rules' in appendix A of [ABNF] are used
 as defined there.

2 History

2.1 IPv4 Dotted Octet Format

2.1.1 Early Practice

 The original IPv4 "dotted octet" format was never fully defined in
 any RFC, so it is necessary to look at usage, rather than merely find
 an authoritative definition, to determine what the effective syntax
 was. The first mention of dotted octets in the RFC series is in
 [MTP], a predecessor of SMTP, which interestingly mentions two
 address formats that evidently by then had some currency:

 One form is a decimal integer prefixed by a pound sign, "#",
 which indicates the number is the address of the host. Another
 form is four small decimal integers separated by dots and
 enclosed by brackets, e.g., "[123.255.37.321]", which indicates
 a 32 bit ARPA Internet Address in four eight bit fields.

Main expires November 2003 [Page 2]

Internet-Draft Textual Representation of IP Addresses May 2003

 A few months later, [IPV4-NUMB] (the "Assigned Numbers" RFC published
 at the same time as [IPV4]) gave, for the first time, a table of
 assigned IP addresses. (Previous "Assigned Numbers" RFCs, predating
 classful addressing, had merely had a table of "network numbers".
 Although the new table retained the title "assigned network numbers",
 it was actually expressed in terms of address blocks.) This table
 used dotted decimal format, zero-filling each encoded octet to three
 digits. The notes accompanying the table said:

 One notation for internet host addresses commonly used divides
 the 32-bit address into four 8-bit fields and specifies the
 value of each field as a decimal number with the fields
 separated by periods. For example, the internet address of ISIF
 is 010.020.000.052. This notation will be used in the listing
 of assigned network numbers.

 Shortly thereafter, [NCP-TCP] gave a handful of live IP addresses
 without comment on the format, for example, "ARPANET/SATNET gateway
 at BBN (10.3.0.40)".

 The next description of dotted octet notation is in [HOST-TBL-2],
 defining the host table file format, which describes the notation as
 "four decimal numbers separated by a period. Each decimal number
 represents 1 octet.". One of its example host table entries was
 "GATEWAY : 10.0.0.77, 18.8.0.4 : MIT-GW :: MOS : IP/GW :".

 [HREQ-APP], a much later and more significant standard, describes IP
 address text representation in recommending that applications allow
 users to specify IP addresses directly as well as via DNS host names.
 It merely describes the format as "dotted-decimal ("#.#.#.#") form".
 It gives no example of an address in this format.

 So far we have seen dotted octet format in five different types of
 situation: a network protocol (machine-parsed email address), a table
 of address blocks, English text (discussion the NCP to TCP/IP
 switch), a machine-readable database (the host table), and human
 interfaces to network applications. All are consistent about
 dividing the address into octets and representing each octet purely
 in decimal, but there are two variants of the format due to a more
 subtle issue. The explicit descriptions of the format given so far
 have been silent about the permissibility of leading zeroes in octet
 representations; only one example, a human-oriented table of
 addresses, used leading zeroes.

 This variation in the format, presumably initially intended to be of
 no consequence, lives on today. The direct descendent of
 [IPV4-NUMB]'s "assigned network numbers" table is the IANA-maintained
 "ipv4-address-space" table, which at the date of this document still

Main expires November 2003 [Page 3]

Internet-Draft Textual Representation of IP Addresses May 2003

 shows octet values in zero-filled three-digit decimal. In all non-
 table contexts in which IPv4 addresses appear, including anything
 intended to be machine-readable, almost universally leading zeroes
 are suppressed. (Curiously, a different IANA-maintained table, the
 "multicast-addresses" table of IPv4 multicast addresses, uses a
 mixture of zero-filled and zero-suppressed octet values.)

 Meanwhile, a very popular implementation of IP networking went off in
 its own direction. 4.2BSD introduced a function inet_aton(), whose
 job was to interpret character strings as IP addresses. It
 interpreted both of the syntaxes mentioned in [MTP] (see above): a
 single number giving the entire 32-bit address, and dot-separated
 octet values. It also interpreted two intermediate syntaxes: octet-
 dot-octet-dot-16bits, intended for class B addresses, and octet-
 dot-24bits, intended for class A addresses. It also allowed some
 flexibility in how the individual numeric parts were specified: it
 allowed octal and hexadecimal in addition to decimal, distinguishing
 these radices by using the C language syntax involving a prefix "0"
 or "0x", and allowed the numbers to be arbitrarily long.

 The 4.2BSD inet_aton() has been widely copied and imitated, and so is
 a de facto standard for the textual representation of IPv4 addresses.
 Nevertheless, these alternative syntaxes have now fallen out of use
 (if they ever had significant use). The only practical use that they
 now see is for deliberate obfuscation of addresses: giving an IPv4
 address as a single 32-bit decimal number is favoured among people
 wishing to conceal the true location that is encoded in a URL. All
 the forms except for decimal octets are seen as non-standard (despite
 being quite widely interoperable) and undesirable.

2.1.2 Revision From IPv6 Work

 When the textual format for IPv6 addresses was developed, part of the
 syntax involved representing an embedded IPv4 address by embedding an
 IPv4 address textual representation in the IPv6 textual format.
 [IPV6-AA-1], describing the IPv6 format for the first time, referred
 simply to "decimal values of the four low-order 8-bit pieces of the
 address (standard IPv4 representation)", giving "::13.1.68.3" as an
 example of the format in practice.

 [IPV6-AA-2] added an ABNF grammar, giving the first formal
 specification of IPv4 textual address syntax in the RFC series. This
 grammar showed dot-separated segments of one to three decimal digits
 each. Unfortunately, there were some errors in related bits of the
 grammar, and even with errors corrected the IPv6 address grammar was
 loose, syntactically permitting addresses of the wrong length. This,
 together with the similar looseness of the IPv4 address grammar
 (which would match "123.456.789.999"), left open the question of

Main expires November 2003 [Page 4]

Internet-Draft Textual Representation of IP Addresses May 2003

 whether the grammar's acceptance of leading zeroes in IPv4 addresses
 was an intentional feature, an error, or deliberate looseness.
 [IPV6-AA-3], rather than correct the errors, withdrew the grammar.

 The IPv6 effort also had an opportunity to advance the other branch
 of development of IPv4 address representation. [BSI-IPV6-1] doesn't
 attempt to modify inet_aton(), but defines a new function
 inet_pton(), which, in handling IPv4 addresses, accepts dotted
 decimal octets where each octet is encoded as "a one to three digit
 decimal number between 0 and 255". The variant forms traditionally
 accepted by inet_aton() are explicitly excluded. This definition is
 still not explicit about the handling of leading zeroes, but it seems
 to be intended to allow them, and it is being implemented
 accordingly.

2.1.3 Finale

 So far we've seen two parallel versions of IPv4 address textual
 syntax, which we may label the IETF version and the BSD version. The
 difference has persisted for so long because the two are just
 sufficiently interoperable: they both handle in the same way the
 overwhelmingly dominant syntax, dotted decimal octets with leading
 zeroes suppressed. In all the other address forms they support they
 disagree: the IETF syntax makes nothing of most of the variants that
 BSD allows, and the two interpret differently a large group of
 representations involving leading zeroes, which is why zeroes have
 been mentioned so much in the foregoing history.

 As of this writing, IPv4 addresses written with leading zeroes are de
 facto ambiguous. Although all IETF output that expresses an opinion
 has consistently indicated that these should be interpreted as
 decimal, implementations that interpret them as octal are far too
 widespread to ignore. For this reason it is not safe to generate
 such addresses; the only way to generate an interoperable textual
 IPv4 address is to suppress leading zeroes. Overwhelmingly popular
 practice is, indeed, to avoid leading zeroes.

 The most recent version of the URI syntax [URI] attempts to reconcile
 these variants in order to give a precise definition for acceptable
 IP address syntax in a URL. (Its predecessors had incorporated the
 traditionally ambiguous syntax by reference.) [URI] is the first RFC
 to require a completely rigorous definition of IP address syntax.
 The approach taken was to standardise the safe common subset of the
 IETF and BSD syntaxes, which achieves standardisation on IETF-like
 syntax while also retaining backward compatibility with existing BSD-
 based implementations.

 This document, in section 3.1, presents the IPv4 address grammar from

Main expires November 2003 [Page 5]

Internet-Draft Textual Representation of IP Addresses May 2003

 [URI].

2.2 IPv6 Presentation Format

 The development of the IPv6 address presentation format has been
 simpler than the IPv4 history. The divergence between specification
 and implementation has been less significant, and there has been
 conscious effort to fully specify the format rather than leave it as
 oral tradition.

 The first appearance of IPv6 address textual format in the RFC series
 is the specification of the format in [IPV6-AA-1]. This
 specification's relevant features are: a basic format of eight colon-
 separated 16-bit pieces; each piece represented in hexadecimal, with
 leading zeroes "not necessary" (examples are given both with and
 without leading zeroes); optional use of "::", once in an address, to
 indicate a run of zero-valued 16-bit pieces; optional use of
 "standard IPv4 representation" for the least-significant 32 bits of
 the address.

 Note that this doesn't say what the maximum length of a piece
 representation is, or whether "::" can be used in an address where
 all 16-bit pieces are given explicitly (the "::" would represent a
 sequence of zero consecutive zero-valued pieces).

 [IPV6-AA-2] didn't substantially modify the description of the
 syntax, but augmented it with an ABNF grammar. The grammar specified
 that a 16-bit piece could be represented in one to four case-
 insensitive hexadecimal digits, ruling out the use of more than four
 digits per piece. There were some errors in the grammar, making it
 inappropriate as a reference, and some looseness that makes it
 impossible to clear up any other syntactic uncertainty from it.

 [IPV6-AA-3] dropped the ABNF grammar, and amended the format
 description to say that "::" represents "one or more" 16-bit pieces.
 This amended description leaves unclear only the issue of whether a
 16-bit piece is permitted to be written with more than four
 hexadecimal digits; fortunately the intended answer (which is that it
 is not permitted) is known from the [IPV6-AA-2] ABNF grammar. This
 document, in section 3.2, presents this syntax.

Main expires November 2003 [Page 6]

Internet-Draft Textual Representation of IP Addresses May 2003

3 Syntax and Semantics

3.1 IPv4 Dotted Octet Format

 A 32-bit IPv4 address is divided into four octets. Each octet is
 represented numerically in decimal, using the minimum possible number
 of digits (leading zeroes are not used, except in the case of 0
 itself). The four encoded octets are given most-significant first,
 separated by period characters.

 IPv4address = d8 "." d8 "." d8 "." d8

 d8 = DIGIT ; 0-9
 / %x31-39 DIGIT ; 10-99
 / "1" 2DIGIT ; 100-199
 / "2" %x30-34 DIGIT ; 200-249
 / "25" %x30-35 ; 250-255

3.2 IPv6 Presentation Format

 A 128-bit IPv6 address is divided into eight 16-bit pieces. Each
 piece is represented numerically in case-insensitive hexadecimal,
 using one to four hexadecimal digits (leading zeroes are permitted).
 The eight encoded pieces are given most-significant first, separated
 by colon characters. Optionally, the least-significant two pieces
 may instead be represented in IPv4 address textual format (the
 <IPv4address> production given above). Optionally, once in the
 address, a sequence of one or more consecutive zero-valued 16-bit
 pieces may be elided, omitting all their digits and leaving exactly
 two consecutive colons in their place to mark the elision.

 IPv6address = 6(h16 ":") ls32
 / "::" 5(h16 ":") ls32
 / [h16] "::" 4(h16 ":") ls32
 / [*1(h16 ":") h16] "::" 3(h16 ":") ls32
 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32
 / [*3(h16 ":") h16] "::" h16 ":" ls32
 / [*4(h16 ":") h16] "::" ls32
 / [*5(h16 ":") h16] "::" h16
 / [*6(h16 ":") h16] "::"

 ls32 = h16 ":" h16 / IPv4address

 h16 = 1*4HEXDIG

Main expires November 2003 [Page 7]

Internet-Draft Textual Representation of IP Addresses May 2003

4 Recommendations

4.1 Be Stringent in What You Accept

 Interpreting textual network addresses is a case where being liberal
 in what one receives is not a virtue. In addition to the well-known
 problem of interoperability testing against a liberal implementation
 leading to insufficiently conservative sending behaviour, variations
 on the address syntaxes tend to result in strings whose intended
 meaning is unclear. Since a misinterpreted network address is quite
 useless, whereas in most other contexts partial misinterpretation is
 forgivable, it is particularly important to reject any address whose
 interpretation is in question.

 For backward compatibility, some applications will wish to continue
 supporting some of the variations discussed in section 2. New
 applications, however, SHOULD accept only the syntax given in section

3. Regardless of any alternative syntax that is supported, the
 standard syntax given in section 3 MUST be interpreted exactly as
 described there.

4.2 Generation of Representations of IPv6 Addresses

 The standard format for IPv6 addresses has several options, granting
 some discretion in the choice of representation. The choices
 available are:

 o which case to use for hexadecimal digits above 9;

 o whether to use leading zeroes in the representation of 16-bit
 pieces whose upper four bits are all zero;

 o whether to represent the least-significant 32 bits as two pieces
 in hexadecimal or in IPv4 format;

 o whether to elide a sequence of zero-valued pieces, and which such
 sequence to elide.

 For specific applications there may be needs that dictate some of
 these choices. For example, if laying out IPv6 addresses vertically
 in a table, comparison is eased by using a fixed format by including
 all leading zeroes and not eliding zero-valued pieces.

 For general-purpose use, common practice is to use lowercase, use
 nearly the shortest possible representation, and to represent
 IPv4-compatible and IPv4-mapped addresses using the embedded IPv4
 address representation. This format has shown to be nearly optimal
 for human comprehension of an address presented in isolation, and so

Main expires November 2003 [Page 8]

Internet-Draft Textual Representation of IP Addresses May 2003

 is RECOMMENDED when there are no strong considerations promoting a
 different format. To generate this format:

 o Use the embedded IPv4 address format for addresses in
 ::ffff:0:0/96 (IPv4-mapped addresses), and in ::/96
 (IPv4-compatible addresses) except for :: (the unspecified
 address) and ::1 (the loopback address) which are not
 IPv4-compatible addresses.

 o Omit all optional leading zeroes in the representations of 16-bit
 pieces.

 o If there are any sequences of consecutive zero-valued pieces,
 elide the longest such sequence. In case of a tie, it seems to be
 most common to pick the leftmost candidate.

4.3 Delimitation

 Textually-represented IPv4 and IPv6 addresses have a sufficiently
 narrow format that delimitation is rarely a problem. In human-
 readable text they look sufficiently like words that additional
 delimitation is usually not required; adjacent punctuation mostly
 wouldn't be a valid character in the address, and even with
 punctuation that can appear in the addresses (period and colon)
 trailing punctuation creates no ambiguity due to the restricted use
 of punctuation in the addresses.

 A significant area where there is a delimitation issue is when an IP
 address is presented together with an alphanumeric subaddress such as
 a TCP port number. Some applications separate an IP address and port
 number using a period, which, particularly in the case of IPv4, makes
 the port number visually appear to be part of the address. This is
 particularly tricky to read if a bare IP address without port number
 might appear in the same context. Some applications use a colon to
 separate IP address and port number, which is good for IPv4 but in
 IPv6 it creates the same kind of problem that the period did in IPv4,
 and can actually give an ambiguous result if a bare IPv6 address is
 permitted in the same context. Applications SHOULD, therefore, pick
 some other character to separate IP addresses and port numbers; BIND,
 for example, uses "#". "/" is not recommended, due to a clash with
 address prefix syntax.

 In contexts where an IP address needs to be distinguished from
 similar-looking data that can appear in the same place, there is
 precedent (from email addresses and URLs) for enclosing an IP address
 in brackets ("[]") as a distinguisher.

Main expires November 2003 [Page 9]

Internet-Draft Textual Representation of IP Addresses May 2003

5 Security Considerations

 In a network protocol, representation of network addresses in a
 textual format raises no inherent issues over representation in a
 binary format. Care should be taken to ensure that textual addresses
 are parsed safely, so that bad syntax will not cause unwanted
 behaviour. Where a textually-represented address is expected, it
 should be decoded by a subroutine that will decode only the expected
 address format and will not do anything (besides report an error) if
 given some other input such as a host name.

 In applications, the capability for the user to specify a network
 node by address as well as by name is both powerful and potentially
 dangerous. If an application does not intend to let the user specify
 absolutely any network resource, then it should either have only a
 more restrictive means of identifying network nodes or apply
 reasonableness checks on the address that the user enters.

6 Acknowledgements

 This document is a spin-off from the development of [URI], which was
 the first RFC to give such a precise definition of IP address textual
 syntax as is given here. The ABNF rules in section 3 were developed
 collaboratively by Roy T. Fielding (author of [URI]) and the author
 of this document.

7 Normative References

 [ABNF] D. Crocker, Ed., P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 2234, November 1997.

 [REQ-TERM] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

8 Informative References

 [BSI-IPV6-1] R. Gilligan, S. Thomson, J. Bound, W. Stevens, "Basic
 Socket Interface Extensions for IPv6", RFC 2133, April
 1997.

 [HOST-TBL-2] E.J. Feinler, K. Harrenstien, Z. Su, V. White, "DoD
 Internet host table specification", RFC 810,
 Mar-01-1982.

 [HREQ-APP] R.T. Braden, "Requirements for Internet hosts -
 application and support", STD 3, RFC 1123, Oct-01-1989.

 [IPV4] J. Postel, "Internet Protocol", RFC 791, Sep-01-1981.

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2133
https://datatracker.ietf.org/doc/html/rfc810
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc791

Main expires November 2003 [Page 10]

Internet-Draft Textual Representation of IP Addresses May 2003

 [IPV4-NUMB] J. Postel, "Assigned numbers", RFC 790, Sep-01-1981.

 [IPV6-AA-1] R. Hinden, S. Deering, Eds., "IP Version 6 Addressing
 Architecture", RFC 1884, December 1995.

 [IPV6-AA-2] R. Hinden, S. Deering, "IP Version 6 Addressing
 Architecture", RFC 2373, July 1998.

 [IPV6-AA-3] R. Hinden, S. Deering, "Internet Protocol Version 6
 (IPv6) Addressing Architecture", RFC 3513, April 2003.

 [MTP] S. Sluizer, J. Postel, "Mail Transfer Protocol", RFC
780, May-01-1981.

 [NCP-TCP] J. Postel, "NCP/TCP transition plan", RFC 801,
 Nov-01-1981.

 [URI] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", draft-

fielding-uri-rfc2396bis-01, March 3, 2003.

9 Author's Address

 Andrew Main
 Black Ops Ltd
 12 Montagu Mews South
 London
 W1H 7ER
 United Kingdom

 Phone: +44 7887 945779
 EMail: zefram@fysh.org

https://datatracker.ietf.org/doc/html/rfc790
https://datatracker.ietf.org/doc/html/rfc1884
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/rfc780
https://datatracker.ietf.org/doc/html/rfc780
https://datatracker.ietf.org/doc/html/rfc801
https://datatracker.ietf.org/doc/html/draft-fielding-uri-rfc2396bis-01
https://datatracker.ietf.org/doc/html/draft-fielding-uri-rfc2396bis-01

Main expires November 2003 [Page 11]

