Internet Engineering Task T0C

M. Scott, Ed.
Force

Internet-Draft D. Wagner-Hall

Intended status:

. J. Crowcroft
Informational

University of
Cambridge

October 18, 2010

Expires: April 21, 2011

Addressing the Scalability of Ethernet with MOOSE
draft-malc-armd-moose-00

Abstract

Ethernet does not scale well to large networks. The flat MAC address
space, whilst having obvious benefits for the user and administrator,
is the primary cause of this poor scalability; other recent efforts to
improve upon Ethernet's scalability have addressed symptoms, rather
than this underlying cause. MOOSE, Multi-level Origin-Organised
Scalable Ethernet, is an Ethernet switch architecture that performs in-
place rewriting of MAC addresses in order to impose a hierarchy upon
the address space without reconfiguration or modification of connected
devices. This removes the need for switches to maintain large
forwarding databases, is of direct use in implementing improved
routing, and allows for a variety of other scalability and security
innovations. MOOSE also includes a globally-scalable, distributed and
resilient protocol for the automatic assignment of addresses to
switches, and for detecting and cheaply resolving addressing conflicts.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on April 21, 2011.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

Introduction

1.1. Requirements Language

Ethernet's Underlying Problem

Related Work

MOOSE Architecture

4.1. Shortest Path Routing

4.2. Address Selection and Conflict Resolution

4.3. Broadcast and Multicast

4.4. Example

4.5. Directory Service

4.6. Mobility

Interoperability Considerations

5.1. Layer-violating Protocols

5.2. Edge Virtual Bridging

Prototype Implementation

Conclusions

IANA Considerations

Security Considerations
Informative References

Authors' Addresses

=

Al

o

‘H ‘@ ‘OO ‘\I ‘CT)

[n

1. Introduction TOC

Ethernet has lasted well since its inception in the '70s with Ethernet
frame-structure and addressing remaining ubiquitous in the data centre
environment as in many others. Alongside IP and IP-transported services
such as iSCSI, it is now commonplace to see converged network services
such as physical disk interfaces and cluster interconnects layered
directly over Ethernet (e.g. ATA-over-Ethernet and variants of

Infiniband). However, Ethernet exhibits scalability issues on networks
of more than a few thousand devices, such as costly and energy-dense
address table logic and storms of broadcast traffic.

Aside from more physical devices, virtualised infrastructure further
increases the density of Ethernet addresses in data centres. Widely-
used layer-2 virtualisation (Clark, C. and others, “Live Migration of
Virtual Machines,” 2005.) [ClO05] mandates a unique Ethernet address per
virtual machine. This means that each physical machine in a data centre
may represent many tens of Ethernet devices.

The traditional method of avoiding such problems is the artificial
subdivision of a network, but this introduces an administrative burden,
requires significant routing equipment and also precludes seamless
migration--a necessity for virtualised infrastructure. While IP
Mobility (Perkins, C., “IP Mobility Support for IPv4,” August 2002.)
[RFC3344] addresses the problem of maintaining higher-layer connections
when roaming between subnets, it requires client support that is
neither ubiquitous or reliable. Common practice sees the provision of
one physical Ethernet network covering an entire data centre, or even
an entire WAN of data centres.

Our approach, Multi-level Origin-Organised Scalable Ethernet (MOOSE),
provides all the advantages of an Ethernet network without the capital
and running costs and administrative overhead of a IP router-based
approach. MOOSE does this by providing a hierarchical addressing scheme
without requiring host reconfiguration or modification.

Ethernet's scalability is limited firstly by the forwarding database
that every switch in an Ethernet (IEEE, “802.1D: Standard for Local and

Metropolitan Area Networks: Media Access Control (MAC),” 2004.)
[802.1D] network must maintain. A switch's forwarding database contains
one entry per source address seen in any frame passing through that
switch, and stores that MAC address together with the learnt location
of that address--the port on which packets from that address were last
seen. This is later used to determine on which port to transmit frames
destined for that address. Devices frequently broadcast frames
throughout the network (e.g. ARP queries) so active devices on the
network are listed in most switches' forwarding databases most of the
time.

In modern switches the capacity of this database is generally of the
order of 16,000 entries. (Higher-capacity forwarding databases exist
but are currently constrained to very high-end switches.) On a
moderately large network, full databases are a serious risk. If the
database becomes full, entries will be discarded; frames for unknown
addresses are flooded to all ports and the resulting traffic storm
could cause major problems, especially in the presence of low-capacity
edge links.

Traditionally the forwarding database has been stored in a content-
addressable memory (CAM) as lookups must be very fast, particularly as
10 Gbit/s Ethernet becomes ubiquitous. As networks grow, the number of
entries in a switch's forwarding database must naturally increase;
however, increasing the capacity of CAMs without sacrificing speed

whilst constraining energy consumption is proving to be challenging.
Cheaper switches use DRAM in place of a CAM, but this is likely to
remain slower especially for large tables.

Secondly, Ethernet's inability to handle networks containing loops also
presents a scalability problem. The Rapid Spanning Tree Protocol, RSTP,
must remove loops by disabling any redundant links. On a dense mesh
network, RSTP will disable a large proportion of links; this constrains
frames to suboptimal routes and may introduce bottlenecks in the
network, particularly around the root of the spanning tree. In a data
centre environment, this potentially amounts to a very large proportion
of capacity being wasted wherever redundant fibres are installed, e.g.
between cabinet switches and between data centres.

Thirdly, not only does Ethernet flood frames destined for unknown
hosts, but it also uses--and encourages higher-layer protocols to use--
broadcast for control messages. For example, ARP (Plummer, D.,
“Ethernet Address Resolution Protocol: Or converting network protocol
addresses to 48.bit Ethernet address for transmission on Ethernet
hardware,” November 1982.) [RFC0826] performs address resolution via
broadcast queries, and DHCP (Droms, R., “Dynamic Host Configuration
Protocol,” March 1997.) [RFC2131] uses broadcast messages for automatic
configuration. It is impractical to replace these protocols entirely as
this would require software upgrades to every device, but it would be
desirable for the network to minimise the amount of broadcast traffic
required to be forwarded.

In this document we identify the relevant underlying problems in the
design of Ethernet, review previous work and present the MOOSE switch
architecture, which addresses inadequacies in the fundamental operation
of Ethernet in a novel yet backwards-compatible way. By revisiting the
addressing scheme itself, rather than simply addressing symptoms of the
problem as many previous proposed solutions have done, we can go about
solving all of the above scalability problems and more.

1.1. Requirements Language TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

2. Ethernet's Underlying Problem TOC

The original Ethernet was a shared-medium network, where every frame
was broadcast and no switching took place. Modern-day wired Ethernet-
based networks instead consist almost entirely of point-to-point links;
as a result of this, the distinction between unicast, broadcast and

multicast has become more important. 802.11 wireless LANs are the one
remaining vestige of Ethernet operating over shared media, where one
switch (access point) serves many hosts on the same radio channel.
Ethernet's poor scalability arises in various guises, as outlined
above. It would seem at first glance that these are entirely distinct
and unrelated. However, there is a common underlying cause: that MAC
addresses provide no location information.

Globally-unique MAC addresses are structured such that the first three
bytes of a device's address contain an organisationally unique
identifier (OUI) allocated to the device's manufacturer by the IEEE,
with the remaining three bytes allocated by the manufacturer. This
hierarchy exists solely for the purpose of allocating unique addresses
in a decentralised fashion, and is of no use to Ethernet switches,
which must treat the unicast address space as flat.

A flat address space has the advantage that no configuration of devices
is required; a device can use its unique, manufacturer-assigned MAC
address anywhere on any network. However, this leaves each switch with
the task of discovering and storing the location of every addressable
device.

If the MAC address space were not flat, but instead contained enough
information to locate the device possessing the address, several
advantages would be gained. Firstly, large forwarding databases would
no longer have to be maintained on every switch. This location
information could instead be distributed across the network so that
frames are directed towards their destinations according to successive
stages of a hierarchy.

Secondly, a hierarchical MAC address space would also make the addition
of shortest-path routing considerably easier. Shortest-path routing is
clearly a desirable property for a network, yet it is one that Ethernet
does not provide. Flat addressing does not lend itself to easy routing:
any address can be located anywhere on the network, which means either
advertising every host's MAC address via the routing protocol--which
scales very poorly--or providing some other location lookup service.
The use of hierarchical addresses, with each switch handling a block of
sequential addresses akin to an IP subnet, would reduce the routing
problem to the one that routing protocols were designed to solve.
Thirdly, this would allow for reduction of broadcast traffic in a
variety of different ways. Hierarchical MAC addresses could, for
example, be mapped directly and deterministically onto the IP address
space, if appropriate for the specific deployment. This would allow
switches to respond directly and simply to DHCP and ARP queries,
avoiding the need to forward the most common sources of broadcast
frames. Alternatively, a distributed directory service can be used,
which is less limiting and is thus our preferred approach as detailed
below.

The facility for network administrators to assign locally administered
addresses (LAAs) to devices has existed for as long as Ethernet.
However, configuring and maintaining the LAA on every device based upon
where they are connected would be a considerable and unwelcome

administrative overhead. We therefore present MOOSE, a system for
applying hierarchical addressing to an Ethernet transparently and
without any configuration to edge devices.

3. Related Work TOC

It is well-known that traditional Ethernet scales poorly, and there
have been various attempts in recent years to rectify this. The most
widely-used of these in real-world networks is MPLS-VPLS (Rosen, E.,
Viswanathan, A., and R. Callon, “Multiprotocol Label Switching
Architecture,” January 2001.) [RFC3031] (Multiprotocol Label
Switching--Virtual Private LAN Service). This connects Ethernet islands
together through tunnels across a MPLS cloud. MPLS works by adding one
or more labels to the start of every frame, i.e. encapsulating the
frame inside its own protocol.

In MPLS-VPLS, the label edge routers (LERs) must determine the frame's
initial label(s) based upon the destination address via a lookup table.
Frames follow prenegotiated label-switched paths (LSPs) that, unlike
Ethernet, are not constrained to follow a spanning tree; LSPs are
precomputed at connection setup time and the relevant next hop is
stored in a lookup table on each intermediate switch. Each switch must
hence use each frame's label to index into this lookup table to
determine how to switch the frame.

The effect, once the connection has been negotiated, is to provide what
appears to be one or more large Ethernet networks, transparently
overlaid on the MPLS cloud. Whilst this solves effectively the problem
of shortest-path routing across the MPLS cloud, the overlay Ethernets
are still susceptible to the usual scalability problems--and in fact
VPLS adds further large lookup tables on every switch that can in some
configurations scale even worse than Ethernet's forwarding databases.
LERs must map every MAC address to a LSP; label switch routers (LSRs)
must store the next hop for every LSP in which they participate, which
in the core of the network could scale as 0(hostsn2).

A similar scheme is proposed by Hadzic (Hadzic, I., “Hierarchical MAC
Address Space in Public Ethernet Networks,” 2001.) [Ha01], with the
difference that Ethernet-inside-Ethernet encapsulation is used rather
than a new protocol. This has the advantage that less processing is
required on intermediate switches in the backbone network. However,
routes across the backbone are constrained to a spanning tree, and
encapsulating switches must obtain a new destination address for every
frame using a lookup table that--like Ethernet's forwarding database--
must contain every transmitting MAC address. Due to its heavy basis on
Ethernet, this shares many of Ethernet's scalability problems.
SmartBridge (Rodeheffer, T., Thekkath, C., and D. Anderson,
“SmartBridge: A Scalable Bridge Architecture,” 2000.) [Ro00] and
RBridges (Perlman, R., “RBridges: Transparent Routing,” March 2004.)

[Pe04] (TRILL (Touch, J. and R. Perlman, “Transparent Interconnection
of Lots of Links (TRILL): Problem and Applicability Statement,”

May 2009.) [RFC5556]) both encapsulate Ethernet frames in a new inter-
switch protocol, and run a link-state routing protocol between
switches. The link state graph includes the location of every MAC
address--necessary because the address space remains flat and any
address could appear anywhere--i.e. it again contains every host.
Furthermore, switches must perform expensive computation to update
routing tables whenever a MAC address joins or leaves the network.
Myers et al (Myers, A., Ng, E., and H. Zhang, “Rethinking the Service
Model: Scaling Ethernet to a Million Nodes,” November 2004.) [My@4]
suggest that Ethernet's main failing is its broadcast service, and
propose a new architecture in which hosts make explicit use of
directory services operated by switches rather than broadcasting
queries. It is clear that switches' participation is necessary in order
to deal with the broadcast problem; however the modifications to
Ethernet suggested are not backwards-compatible and would require at
least software modifications to all connected devices. Ethernet is,
perhaps unfortunately, too widespread for this to be practical;
transparent interception of broadcast frames and subsequent local
handling or redirection via multicast or unicast remains the only
practical solution. The use of hierarchical addressing is a useful
stepping-stone to such a system, and our architecture includes a
transparent directory service (ELK) for this purpose.

SEATTLE (Kim, C., Caesar, M., and J. Rexford, “Floodless in SEATTLE: A
Scalable Ethernet Architecture for Large Enterprises,” 2008.) [Ki08]
takes a more scalable approach. A routing protocol is operated between
switches, but in contrast to the approaches described above and in
common with MOOSE, the routing protocol only propagates switch location
information, rather than every MAC address on the network. Flat MAC
addresses are still used, and hence a mechanism is required to look up
the switch to which a given address is connected. This is achieved by
using a distributed hash table (DHT) operating on participating
switches with local caching to alleviate load. This is certainly a step
in the right direction but introduces considerable complexity to
switches, since they now must maintain and update the DHT continually,
and it is clear that a SEATTLE switch would have a significant software
component in the data path. MOOSE alleviates some of the complexity of
SEATTLE by a combination of hierarchical addresses and delegation to a
separate directory service.

4. MOOSE Architecture TOC

The basic operation of MOOSE is to assign a new hierarchical MAC
address to each host on the network, assigned dynamically and
automatically from the unicast LAA space. This dynamically-assigned

address is referred to as a MOOSE address to avoid confusion with
hosts' static, manufacturer-assigned MAC addresses.

Every frame entering the network has its source address rewritten in-
place to the sending host's MOOSE address by the first MOOSE-aware
switch it traverses. The switch that performs address rewriting for a
host--i.e. the closest MOOSE switch to that host--is the host's home
switch and is responsible for assigning a MOOSE address to that host.
(If non-MOOSE switches or hubs are in use, a host may have more than
one '"closest" MOOSE switch, in which case an RSTP-like protocol must be
used to elect a switch to handle each edge segment.)

The destination address is left intact in the expectation that it
already is a MOOSE address. Hosts' ARP caches will already contain the
MOOSE addresses of any hosts being communicated with as any packet
received will already have had its source address rewritten; a host's
manufacturer-assigned MAC address is never seen outside of the segment
containing that host. This is a crucial point since encapsulation-based
technologies such as MPLS do not reveal to the destination host the
address used for routing; as a result, switches must also convert
destination as well as source addresses of frames entering the network.
In other words, once again switches must maintain large tables of
remote hosts on the network. The only destination rewriting that MOOSE
switches perform, however, is of the destination addresses of frames
destined for local hosts back to their manufacturer-assigned MAC
addresses; this is simple as the required information is already known,
and necessary because otherwise that host's network interface card
would discard the frame as misaddressed.

A MOOSE address consists of a switch identifier followed by a host
identifier. For our examples, we simply use a fixed three-byte switch
identifier followed by a fixed three-byte host identifier:

S ERUppE . + S S +
| switch | | switch |_ _ _ _ hosts 02:22:22:00:00:01,
| ©62:11:11 | | 02:22:22 | 02:22:22:00:00:02, etc.
[S, + S SR +
I
I
Fomm e oo oo +
| switch |_ _ _ _ hosts 02:33:33:00:00:01,
| 02:33:33 | 02:33:33:00:00:02, etc.
tommmmeaa +

Since these two identifiers when concatenated must form a unicast LAA,
the settings of two bits in the first byte of the switch identifier are
fixed: the least significant bit must be 0 to indicate a unicast
address, and the second-least significant bit must be 1 to indicate a
LAA. To cater for variable length switch identifiers, some means of

introducing separation between the switch and host identifiers is
required. Two possible implementations would be for:

1. the first three bits of the address to indicate how many of the
following 5-bit blocks make up the switch prefix;

2. some constant delimiter to appear between the switch identifier
and host identifier, with switch identifiers not allowed to
contain the delimiter.

The former is simple and gives eight classes of switch identifier.
Because the size of a MOOSE network is limited by the placement of IP
routers, these classes should be sufficient. Additionally, because
switches are free to change their identifiers, they may trivially
switch to a larger class if they have too many attached hosts, or if a
smaller class becomes full.

The latter removes the fixed classes, allowing for more flexibility
with the sizes of switch identifiers, at the cost of complexity, and a
reduction in the available address space.

Each switch can select for itself a unique switch identifier, as
identifier conflict resolution is cheap (see below). When first joining
the routing protocol, conflict should be very unlikely, as the switch
will in the process gain an up-to-date list of in-use identifiers.
Depending on requirements, the switch identifier may itself be a
hierarchical address--e.g. six bits to identify a network area followed
by two bytes to identify a switch within that area--which could then be
used to aid routing decisions.

Each host is assigned a host identifier by its home switch from the
pool of identifiers available to that switch. Only a host's home switch
ever bases a switching decision on the host identifier, so the detail
of how these are allocated can vary from switch to switch. Suitable
schemes include:

1. sequential assignment;

2. the port number followed by a sequential portion (to allow for
multiple hosts connected to one port);

3. a hash of the host's real MAC address.

The latter two approaches are preferable to a simple sequential
assignment, as they better isolate certain kinds of denial-of-service
attack in which a malicious host attempts to use up all available host
identifiers on the switch. They also require less state to be shared
between ports. The third option has the further advantage that it is
deterministic and hence can be recovered easily in the event of a
crash.

It is hence possible to route frames through the network to remote
hosts by simply inspecting the switch identifier in the destination

address, and ignoring the host identifier until the frame reaches the
destination host's home switch. Switches no longer need to keep a table
of all MAC addresses seen recently; they only need store the locations
of other switches and of any directly-connected hosts.

As well as reducing the amount of data that must be consulted in order
to make switching decisions, this provides extra resilience by making
this data much more predictable. The number of MAC addresses in a
network can increase unexpectedly in the event of an address flooding
attack or even under normal operation if the network contains open
wireless access points; relying on the MAC address list for forwarding
leads to some of the vulnerabilities of Ethernet. The set of switch
identifiers participating in MOOSE switching, on the other hand, is
kept predictable and manageable by ensuring that neighbouring switches
(discovered using LLDP (IEEE, “802.1AB: Station and Media Access
Control Connectivity Discovery,” 2009.) [802.1AB]) are authenticated
before they can participate in the routing protocol. This
authentication can be achieved at layer 3 using the security features
found in most popular routing protocols and/or at layer 2 (IEEE,
“802.1X: Port Based Network Access Control,” 2004.) [802.1X]. As the
switch identifier is the only address consulted for forwarding
decisions, a MOOSE switch is likely to remain reliable in the face of
attacks that could have brought down a traditional Ethernet.
Furthermore, any attacks based upon MAC address spoofing cannot
function on a MOOSE network as the user-provided MAC address is
translated immediately.

4.1. Shortest Path Routing TOC

As described so far, MOOSE switches must still forward frames along a
spanning tree. As discussed above, this is an undesirable property of
Ethernet as it can cause frames to take a highly suboptimal path
through the network. The foundations are in place to do much better
than this using shortest-path routing.

For the purpose of frame forwarding, a MOOSE switch can be considered
akin to a layer 3 router; it has one locally-connected subnet--
containing all addresses starting with its switch identifier--and
delivers frames to other subnets by passing them to an appropriate
neighbouring switch. Bearing this in mind, the switch can run a routing
protocol of the kind normally used for IP, such as a variant of OSPF
(Moy, J., "OSPF Version 2,” April 1998.) [RFC2328]. This allows frames
to be routed along the shortest available path, rather than being
constrained to a spanning tree. A multipath variant such as OSPF-OMP
may be particularly desirable due to its ability to make use of
multiple equal-cost routing paths in order to improve performance.

4.2. Address Selection and Conflict Resolution TOC

For reasons akin to those of the flaws of Ethernet, it is undesirable
to guarantee universally unique pre-determined MOOSE switch
identifiers. Due to the reduced size of the switch ID space compared to
the MAC address space, this would also be infeasible. We therefore
propose that each switch selects an initial address for itself during
startup. This could result in more than one switch claiming an address,
which would be undesirable, so to mitigate the potential for MOOSE
addresses to find themselves in conflict we additionally propose a
simple and inexpensive conflict resolution protocol.

Suppose two switches each have the same identifer. We note that if
these switches are on separate MOOSE networks (on disconnected
networks, or separated by an IP router), this situation brings no
issue. Should they be on the same MOOSE network, however, a conflict
exists and must be resolved. Any routing protocol would require a
switch to know which port other switches are connected to, for instance
by OSPF neighbour lists, or simply by receiving frames and noting the
switch port and source MOOSE address. When a switch receives a MOOSE
frame, it looks up the source switch in its forwarding database, which
is likely in fast Content Addressable Memory. If it finds that source
switch to be on a port other than that which it recognises from its
table, one of three situations may be possible:

1. the source switch may be the same as the known switch, and have
physically moved, or a topology change has occurred;

2. the source switch may be a different one to the known switch,
and they are in conflict;

3. the source switch may be the same as the known switch, but is
sending frames down a different route to the last used route.

To avoid disruption to the network in the first case, and to give scope
for switches to migrate within the network, the switch which detected
the possible conflict should ascertain whether the known switch is
still alive and present. The conflict-resolving switch thus attempts to
send a unicast frame to the known switch, via the port stored in the
forwarding database, asking whether it is there at a regular interval
until a timeout. This will reach the known switch rather than the new
switch if it is still present as other switches beyond that port must
not have detected the conflict yet. The nature of the timeout we leave
unspecified, and can be implementation specific. It may, for instance,
be a pre-defined constant, or it may vary based on QoS information
gathered if such capabilities are supported. When a MOOSE switch
receives such a frame, it should promptly respond with an
acknowledgement frame, showing that it is alive.

If, within the timeout period, the conflict resolver finds the known
host not to be alive, no conflict exists, so the switch updates its
view of the network by removing the old entry from its forwarding
database and triggering a routing protocol refresh.

If, on the other hand, the host is found to be alive, a conflict
exists. The conflict resolver then sends a frame to the more recently
found switch indicating that it is in conflict and should change its
address. That switch, upon receiving this frame, changes its address
and sends a gratuitous ARP for each of its connected hosts, so that the
rest of the network is aware of the change. To mitigate the risks of a
denial of service attack, or faulty equipment sending out conflict
frames, an exponential backoff algorithm should be used when receiving
conflict notification frames.

A switch should have a timer, and counter influencing the maximum value
of the timer, both initialised to ©. When a conflict notification frame
is received, the counter is incremented (subject to a saturation value
to avoid excessive timeouts). After a conflict has been resolved--i.e.
the switch has changed its address--a timer starts counting down from
some time exponential in that counter; subsequently the switch will
only change its address if the timer has returned to © by the time the
conflict frame is received. The counter should be reset to @ when the
timer reaches 0. Using this scheme the event of true conflict is
handled quickly, even in the unlikely case that the newly acquired
address is also in conflict. Any node emitting malicious or erroneous
conflict notifications, however, is rate-limited enough that their
damage potential is much restricted, subject to a sufficient timer
being chosen.

Pseudocode: Conflict resolution backoff:

if timer > 0O:
if counter < counter_max:
counter = counter + 1
Discard conflict notification frame
else:
timer = kAcounter
change_address()

Pseudocode: Conflict resolution timer:

foreach clock tick do:
if timer > 0O:
timer = timer - 1
else:
counter = 0

This could be further enhanced by detecting repeated conflicts
involving the same switch or switches, in a manner similar to BGP Route
Flap Damping (Villamizar, C., Chandra, R., and R. Govindan, “BGP Route
Flap Damping,” November 1998.) [RFC2439], and performing more

aggressive steps to avoid further conflicts--for example using a
significantly increased timeout, and/or having *both* switches in
conflict select new addresses.

The conflict resolution algorithm brings a marked improvement on the
equivilent vulnerability of Ethernet, that MAC addresses can be
spoofed. We build in a flexible, well-defined system of recovery. The
decentralised nature of the system makes it much less open to denial of
service attack than any centralised directory may be. Having every
MOOSE switch acting as a barrier to the propagation of packets from
addresses in conflict provides a strong separation between recently
bridged networks with conflicting addresses, so that communication
within the individual networks may continue without modification, until
bridge-crossing traffic appears, at which point resolution quickly
happens. We also remove the possibility for forwarding databases to
frequenty have to switch their entry for a conflicted address, which
can happen with MAC conflicts in traditional Ethernet. Additionally, in
the case of a switch identifier spoofing attack, the conflict resolver
acts as a hard boundary for the effects of such an attack.

It is possible that the switch performing conflict resolution could
send a suggested replacement switch address to the switch in conflict,
known by the conflict resolver to have a low probability of being
present on the network (because it is not present in its forwarding
database). This would reduce the chance of repeated collisions, and
potentially allow for longer backoff periods, but may be premature
optimisation.

Because multi-path routing is often desirable, we could introduce an
extra datum during the source address rewriting performed by MOOSE
switches. When an ingress MOOSE switch rewrites the source address of
an Ethernet frame to a MOOSE address, it could also prepend some hash
of its manufacturer-assigned MAC address to the data field, and
increment the length field as necessary. The egress switch, when
rewriting the MOOSE destination address to a host's MAC address, then
strips out this added datum. This allows the conflict resolver to check
whether conflicts actually exist by local lookup, rather than probing
other switches, at the cost of added memory requirements in every
switch. This may push the frame to be larger than Ethernet's maximum,
so may require fragmenting the packet into two, at small added cost.
Alternatively, assuming jumbo frames are permitted by the hardware, the
maximum frame size could be marginally reduced to allow for this in the
same manner as for 802.1Q VLAN tags.

From the cheapness of conflict resolution, certain other address
management tasks become simple. A switch is free to choose its address
when it joins the network however it wishes--attempting to re-use its
last-used address, from a list of preferred addresses, or by generating
an address entirely at random. More intricate addressing schemes may be
used on managed networks if desired, perhaps encapsulating deeper
layers of hierarchy.

4.3. Broadcast and Multicast TOC

Since Ethernet does still need to support arbitrary broadcast frames,
these must still be forwarded along a spanning tree in order that they
reach each host exactly once. An explicit spanning tree protocol is not
required however, as the tree can be deduced from the routing table via
reverse path forwarding in a similar manner to Protocol-Independent
Multicast (PIM) (Adams, A., Nicholas, J., and W. Siadak, “Protocol
Independent Multicast - Dense Mode (PIM-DM): Protocol Specification
(Revised),” January 2005.) [RFC3973]. In other words, broadcast packets
are routed as if they had been sent to the all-hosts multicast group.
More general multicast groups can be implemented using a combination of
IGMP snooping (Christensen, M., Kimball, K., and F. Solensky,
“Considerations for Internet Group Management Protocol (IGMP) and
Multicast Listener Discovery (MLD) Snooping Switches,” May 2006.)
[RFC4541] as used by modern Ethernet switches, and participation of the
MOOSE switches in PIM routing.

4.4. Example TOC

To illustrate the basic behaviour of MOOSE switches, before we go on to
describe further features, we will offer a simple example. We will
describe the steps involved in forwarding a broadcast frame containing
a query in some higher-layer IPv4-based protocol, and subsequent
unicast frame containing the response, between two hosts A and B via
three MOOSE switches 02:11:11, 02:22:22 and 02:33:33.

4.4.1. Query TOC

1. Host A transmits the broadcast query frame as it would on any
Ethernet network, with its own manufacturer-assigned MAC
address in the Ethernet header's source field and the broadcast
address (FF:FF:FF:FF:FF:FF) in the destination field.

2. The frame is received by switch 02:11:11, which observes the
non-MOOSE address in the frame's source field, and rewrites the
source field into a MOOSE address containing the switch
identifier and the appropriate host identifier. As this is Host
A's first frame, the switch must allocate a host identifier (in
this case 00:00:01, making Host A's complete MOOSE address
02:11:11:00:00:01).

3. The three switches broadcast the frame using reverse path
forwarding away from Host A.

4. The frame is received by Host B (and any other hosts on the
network) in its current form; no further rewriting is
performed.

4.4.2. Response TOC

1. Host B looks up Host A's IP address in its ARP cache to
determine a suitable destination address for the response
frame. Since the rewritten query frame arrived at Host B with
the source field containing the MOOSE address
02:11:11:00:00:01, this is the address returned by the cache
lookup.

2. As above, switch 02:33:33 assigns a MOOSE address to Host B
(02:33:33:00:00:01) and rewrites the source address of the
frame.

3. The frame is now routed through the network based solely on the
destination switch identifier--the host identifier is ignored
for now. The routing table is consulted for the location of
switch 02:11:11 and the frame is forwarded accordingly.

4. On receiving the frame, switch 02:11:11 observes that it is
destined for a directly-connected host (02:11:11:00:00:01). It
prepares the frame for transmission along its final hop by
rewriting the destination address to Host A's manufacturer-
assigned MAC address. The source field of the frame is again
left as the MOOSE address of Host B in order that this address
is used for any further communication with Host B.

4.5. Directory Service TOC

A directory service, Enhanced Lookup (ELK), runs in conjunction with
the basic MOOSE switch described so far. ELK exists to handle ARP and
DHCP queries in a broadcast-free manner by learning mappings from IP
addresses to MOOSE addresses. The master ELK directory is served by one
or multiple systems for resilience and is reached using an anycast
MOOSE address; the layer-2 anycast feature is a convenient side-effect
of running a routing protocol. Slave copies of the directory can be

held nearer the edge of the network in order to take load away from the
masters; slaves can be reached for lookups via a separate anycast
address, and the entire herd of ELK can be kept synchronised via the
masters using a combination of multicast and unicast.

MOOSE switches intercept ARP and DHCP packets broadcast by hosts and
convert them into anycast ELK queries to the nearest slave (for ARP) or
master (for DHCP). (DHCP handling could make use of the protocol's
existing DHCP relay mechanism.) The ELK slave answers ARP queries
directly using information in the directory; as it does so, if the
query is from a host not in the directory, it learns the sender's IP
address to MOOSE address mapping. The ELK master can also act as a DHCP
server, populating the ELK directory as it grants IP address leases to
clients.

The one case in which the ELK directory will not contain the answer to
a query is when answering an ARP request for a host that is not
configured to use DHCP and that has not yet itself sent an ARP packet
(i.e. has not yet communicated via IP). This must be dealt with by
flooding the query to every active switch port, in a manner akin to
current Ethernet switches, and caching the result in the ELK directory.
Although this is not ideal, it is necessary in order to deal with this
scenario in a compatible manner, and is unlikely to happen frequently.

4.6. Mobility TOC

A consequence of introducing location-based hierarchy into MAC
addresses is the need to explicitly handle host mobility. In a
traditional Ethernet, hosts can migrate between switches as the
switches will learn the host's new location as soon as it sends a
frame. With MOOSE, if a host relocates to a new switch its address
changes and any ARP cache entries on other hosts pertaining to the
migrated host become incorrect; frames will continue to be sent to the
host's o0ld location for a while. There are two strategies for dealing
with this, which can be used separately or in conjunction:

1. The previous home switch of the migrated host can forward
frames sent to the host's old address until outdated ARP cache
entries expire. This is similar to IP Mobility: the previous
home switch essentially becomes a care-of agent for the host.
However, unlike IP Mobility, it requires no host support. A
handover protocol is necessary for the old and new home
switches to set up such forwarding: on the arrival of a new
host at a switch, that switch would ask all other switches (via
multicast) whether any had seen this host before, identifying
it using its manufacturer-assigned MAC address, and would
instruct such switches to redirect frames.

2. A broadcast ARP announcement (or "gratuitous ARP") can be sent
by the new home switch to immediately update remote ARP caches
and the ELK directory with the new MOOSE address. This is the
technique used by Xen when migrating live virtual machines.
Unlike the previous approach, this works even if the previous
switch is no longer reachable, for example if this host
migration was as a result of a switch failure. This is a
simpler approach as a handover protocol is not required, but
results in additional broadcast traffic.

Unless the frequency of host migrations is very high, the additional
load introduced by either mobility approach is expected to be
negligible.

Illustration of the two ways to handle a host A roaming onto another
switch whilst maintaining communication with another host B:

(1) R +
#ff============== | Host B | <=== ARP ===## (2) gratuitous
|] Fo-mo--- + | ARP sent by
|] | | new home switch
| oo |1
[e | X Jemmmeeeees |1
7/ t---+ A
\/ |1
+---+ (1) data forwarded +---+
| X | ==========================> | X |
+---+ by care-of switch | [+---+
I \/
+ - - - + Fommmm oo - +
| |- - host relocated to - >| Host A |
+ - - -+ new switch R +
5. Interoperability Considerations TOC
5.1. Layer-violating Protocols TOC

In an ideal world, free from layering violations, all layer 3 protocols
would operate correctly on top of MOOSE in exactly the same way that
they currently operate on top of Ethernet, with no protocol-specific
handling necessary in the switch. In reality, however, protocols abound
which use hosts' MAC addresses for purposes other than layer 2

addressing or which place MAC addresses in the frame payload. DHCP and
ARP have already been mentioned as such protocols which must be
specifically handled by edge switches in order to operate; luckily, the
rewriting required for these important protocols is simple.

Of particular concern are recent standards for layering on top of
Ethernet protocols which were previously used solely on dedicated
hardware interconnects, such as Fibre Channel over Ethernet (FCoE (T11
FC-BB-5 working group, “Fibre Channel Backbone - 5,” June 2009.)
[FC-BB-5]). In order to support FCoE and similar protocols on a MOOSE
network, each edge switch will need to be able to interpret and rewrite
individual protocols that are in use. A production MOOSE switch would,
therefore, need to be implemented such that it is possible to add
rewriting support for additional protocols after manufacture, for
example by loading an additional software or FPGA configuration module.
Ultimately, in the general case, this problem could be addressed more
satisfactorily by extending the Ethernet standard to provide a
protocol-agnostic method for a layer 2 network to inform hosts of their
own addresses; LLDP (IEEE, “802.1AB: Station and Media Access Control
Connectivity Discovery,” 2009.) [802.1AB] would make a good basis for
this extension. This would allow the use of network-assigned MAC
addresses for any protocol, with some rewriting performed either
partially (within the frame payload) or fully by the host itself, and
furthermore would allow higher-layer protocols to respond to changes of
the host's network-assigned address (e.g. due to mobility). Such a
mechanism could be deployed incrementally as needed, with switches able
to perform address rewriting for hosts which are not able to do this
themselves. This is, however, a very long-term solution, and protocol-
specific rewriting on the switch is likely to be required for the
foreseeable future.

FCOE in particular is unusual, however, as it already does its own
dynamic allocation of MAC address to devices. It is conceivable that an
extension to FCoE could be developed which allows a network-wide
dynamic address assignment scheme such as MOOSE to be exploited to
provide addresses directly to fibre channel devices.

5.2. Edge Virtual Bridging TOC

The rise of virtualisation has caused an unanticipated proliferation of
software switches, usually in the host operating system or hypervisor
which provides network connectivity to multiple virtual machines. Since
software switches are almost always neither fast nor centrally
manageable in the same way as hardware switches, there is ongoing work
to standardise--by Cisco as Port Extension and by the IEEE as Edge
Virtual Bridging (Jeffree, A., Congdon, P., and J. Pelissier,
“P802.1Q0bg: Edge Virtual Bridging,” September 2009.) [P802.1Qbg]--a
means of making these software switches act merely as additional ports

which are logically part of a more central hardware switch. This
reduces the work required by a virtual edge switch: frames from local
virtual edge ports can be forwarded straight out via the uplink to a
physical switch without consideration, and frames from the uplink will
arrive simply tagged with a virtual edge port identifier.

(The scope of Port Extension in particular is greater than this, and
allows for physical port extenders to exist in place of switches where
a large number of ports but a small amount of processing is required,
but virtualisation is likely to be the most significant use case.)

Edge Virtual Bridging and Port Extension require very little adaptation
to be implemented on a MOOSE switch. It is unlikely, although too early
in the standardisation process to say for certain, that the virtual
bridge will need to be MOOSE-aware. A virtual-bridging-aware physical
MOOSE switch will thus simply need to take into account the possibility
that one physical port may hide a large number of virtual ports when
allocating host identifiers, as it would if it had an Ethernet switch
connected on that port. If, however, the virtual bridge is made MOOSE-
aware, the hierarchical addressing of MOOSE could be exploited to allow
the virtual bridge to allocate host identifiers itself, given that it
is likely to be aware of the exact number and nature of virtual edge
ports. The parent MOOSE switch would accordingly allocate an address
prefix to each child virtual bridge, and hosts' full MOOSE addresses
could be formed as:

SWITCH ID : CHILD ID : HOST ID
(parent) (allocated (allocated
by parent) by child)
6. Prototype Implementation TOC

We have implemented a MOOSE switch in OpenFlow and NOX, which can be
run on off-the-shelf switches. Details can be found in our paper
(wWwagner-Hall, D., “A Prototype Implementation of MOOSE on a NetFPGA/
OpenFlow/NOX Stack,” September 2010.) [Wal0].

7. Conclusions TOC

Ethernet remains popular due to its simplicity and ubiquity, but is
showing its age and exhibits serious scalability issues in large
deployments. Previously-proposed improvements address either a few of
the problems in a simple way, or most of the problems in a highly
complex or backwards-incompatible way. We have demonstrated a simple,
novel and easily-implementable approach for significantly boosting the

scalability of Ethernet, which has a working prototype switch firmware

implementation.

8. IANA Considerations TOC

This memo includes no request to IANA.

9. Security Considerations TOC

Security will be considered in a later revision of this document.

10. Informative References

[802.1AB]

[802.1D]

[802.1X]

[C105]

[FC-BB-5]

[Hao1]

[Ki08]

[My©4]

[P802.1Qbg]

[Pe04]

[RFCO826]

[RFC2131]

TOC
IEEE, “802.1AB: Station and Media Access Control
Connectivity Discovery,” 2009.
IEEE, “802.1D: Standard for Local and Metropolitan Area
Networks: Media Access Control (MAC),” 2004.
IEEE, “802.1X: Port Based Network Access Control,”
2004.
Clark, C. and others, “Live Migration of Virtual
Machines,” USENIX NSDI 2005, 2005.
T11 FC-BB-5 working group, “Fibre Channel Backbone -
5,” June 2009.
Hadzic, I., “Hierarchical MAC Address Space in Public
Ethernet Networks,” IEEE GLOBECOM vol 3, 2001, 2001.
Kim, C., Caesar, M., and J. Rexford, “Floodless in
SEATTLE: A Scalable Ethernet Architecture for Large
Enterprises,” ACM SIGCOMM 2008, 2008.
Myers, A., Ng, E., and H. Zhang, “Rethinking the
Service Model: Scaling Ethernet to a Million Nodes,”
ACM SIGCOMM Workshop on Hot Topics in Networking 2004,
November 2004.
Jeffree, A., Congdon, P., and J. Pelissier, “P802.1Qbg:
Edge Virtual Bridging,” September 2009.
Perlman, R., “RBridges: Transparent Routing,” Proc.
INFOCOM vol 2, 2005, March 2004.
Plummer, D., “Ethernet Address Resolution Protocol: Or
converting network protocol addresses to 48.bit
Ethernet address for transmission on Ethernet
hardware,” STD 37, RFC 826, November 1982 (TXT).

mailto:DCP@MIT-MC
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc826
http://tools.ietf.org/html/rfc826
http://www.rfc-editor.org/rfc/rfc826.txt

[RFC2328]

[RFC2439]

[RFC3031]

[RFC3344]

[RFC3973]

[RFC4541]

[RFC5556]

[RO0O]

[Wal0]

Droms, R., “Dynamic Host Configuration Protocol,”

RFC 2131, March 1997 (TXT, HTML, XML).

Moy, J., “OSPF Version 2,” STD 54, RFC 2328, April 1998
(TXT, HTML, XML).

Villamizar, C., Chandra, R., and R. Govindan, “BGP
Route Flap Damping,” RFC 2439, November 1998 (TXT,
HTML, XML).

Rosen, E., Viswanathan, A., and R. Callon,
“Multiprotocol Label Switching Architecture,” RFC 3031,
January 2001 (TXT).

Perkins, C., “IP Mobility Support for IPv4,” RFC 3344,
August 2002 (TXT).

Adams, A., Nicholas, J., and W. Siadak, “Protocol
Independent Multicast - Dense Mode (PIM-DM): Protocol
Specification (Revised),” RFC 3973, January 2005 (TXT).
Christensen, M., Kimball, K., and F. Solensky,
“Considerations for Internet Group Management Protocol
(IGMP) and Multicast Listener Discovery (MLD) Snooping
Switches,” RFC 4541, May 2006 (TXT).

Touch, J. and R. Perlman, “Transparent Interconnection
of Lots of Links (TRILL): Problem and Applicability
Statement,” RFC 5556, May 2009 (TXT).

Rodeheffer, T., Thekkath, C., and D. Anderson,
“SmartBridge: A Scalable Bridge Architecture,” ACM
SIGCOMM 2000, 2000.

wWagner-Hall, D., “A Prototype Implementation of MOOSE
on a NetFPGA/OpenFlow/NOX Stack,” First European
NetFPGA Developers' Workshop Cambridge, September 2010.

Authors' Addresses

TOC
Malcolm Scott (editor)
University of Cambridge
15 JJ Thomson Ave
Cambridge, CB3 OFD
UK
Phone: +44 1223 763500
Fax: +44 1223 334678
Email: Malcolm.Scott@cl.cam.ac.uk
URI: http://www.cl.cam.ac.uk/~mas90/MOOSE/

Daniel Wagner-Hall
University of Cambridge
Email: dwh@cantab.net

Jon Crowcroft

mailto:droms@bucknell.edu
http://tools.ietf.org/html/rfc2131
http://www.rfc-editor.org/rfc/rfc2131.txt
http://xml.resource.org/public/rfc/html/rfc2131.html
http://xml.resource.org/public/rfc/xml/rfc2131.xml
mailto:jmoy@casc.com
http://tools.ietf.org/html/rfc2328
http://www.rfc-editor.org/rfc/rfc2328.txt
http://xml.resource.org/public/rfc/html/rfc2328.html
http://xml.resource.org/public/rfc/xml/rfc2328.xml
mailto:curtis@ans.net
mailto:rchandra@cisco.com
mailto:govindan@isi.edu
http://tools.ietf.org/html/rfc2439
http://tools.ietf.org/html/rfc2439
http://www.rfc-editor.org/rfc/rfc2439.txt
http://xml.resource.org/public/rfc/html/rfc2439.html
http://xml.resource.org/public/rfc/xml/rfc2439.xml
http://tools.ietf.org/html/rfc3031
http://www.rfc-editor.org/rfc/rfc3031.txt
http://tools.ietf.org/html/rfc3344
http://www.rfc-editor.org/rfc/rfc3344.txt
http://tools.ietf.org/html/rfc3973
http://tools.ietf.org/html/rfc3973
http://tools.ietf.org/html/rfc3973
http://www.rfc-editor.org/rfc/rfc3973.txt
http://tools.ietf.org/html/rfc4541
http://tools.ietf.org/html/rfc4541
http://tools.ietf.org/html/rfc4541
http://www.rfc-editor.org/rfc/rfc4541.txt
http://tools.ietf.org/html/rfc5556
http://tools.ietf.org/html/rfc5556
http://tools.ietf.org/html/rfc5556
http://www.rfc-editor.org/rfc/rfc5556.txt
mailto:Malcolm.Scott@cl.cam.ac.uk
http://www.cl.cam.ac.uk/~mas90/MOOSE/
mailto:dwh@cantab.net

University of Cambridge
15 JJ Thomson Ave
Cambridge, CB3 OFD
UK
Phone: +44 1223 763500
Fax: +44 1223 334678
Email: Jon.Crowcroft@cl.cam.ac.uk

mailto:Jon.Crowcroft@cl.cam.ac.uk

	Addressing the Scalability of Ethernet with MOOSEdraft-malc-armd-moose-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. Ethernet's Underlying Problem
	3. Related Work
	4. MOOSE Architecture
	4.1. Shortest Path Routing
	4.2. Address Selection and Conflict Resolution
	4.3. Broadcast and Multicast
	4.4. Example
	4.4.1. Query
	4.4.2. Response
	4.5. Directory Service
	4.6. Mobility
	5. Interoperability Considerations
	5.1. Layer-violating Protocols
	5.2. Edge Virtual Bridging
	6. Prototype Implementation
	7. Conclusions
	8. IANA Considerations
	9. Security Considerations
	10. Informative References
	Authors' Addresses

