
Network Working Group E. Maler, Ed.
Internet-Draft ForgeRock
Intended status: Informational M. Machulak
Expires: August 17, 2019 HSBC
 J. Richer
 Bespoke Engineering
 T. Hardjono
 MIT
 February 13, 2019

Federated Authorization for User-Managed Access (UMA) 2.0
draft-maler-oauth-umafedauthz-00

Abstract

 This specification defines a means for an UMA-enabled authorization
 server and resource server to be loosely coupled, or federated, in a
 secure and authorized resource owner context.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 17, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Maler, et al. Expires August 17, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft February 2019

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3
1.2. Abstract Flow . 4
1.3. HTTP Usage, API Security, and Identity Context 5
1.4. Separation of Responsibility and Authority 6
1.5. Protection API Summary 7
1.5.1. Permissions . 8

2. Authorization Server Metadata 8
3. Resource Registration Endpoint 9
3.1. Resource Description 11
3.1.1. Scope Description 12

3.2. Resource Registration API 13
3.2.1. Create Resource Description 14
3.2.2. Read Resource Description 15
3.2.3. Update Resource Description 16
3.2.4. Delete Resource Description 17
3.2.5. List Resource Descriptions 17

4. Permission Endpoint . 18
4.1. Resource Server Request to Permission Endpoint 20

 4.2. Authorization Server Response to Resource Server on
 Permission Request Success 22
 4.3. Authorization Server Response to Resource Server on
 Permission Request Failure 23

5. Token Introspection Endpoint 23
 5.1. Resource Server Request to Token Introspection Endpoint . 24
 5.1.1. Authorization Server Response to Resource Server on
 Token Introspection Success 25

6. Error Messages . 26
7. Security Considerations 27
8. Privacy Considerations 27
9. IANA Considerations . 28
9.1. OAuth 2.0 Authorization Server Metadata Registry 28
9.1.1. Registry Contents 28

9.2. OAuth Token Introspection Response Registration 28
9.2.1. Registry Contents 28

10. Acknowledgments . 29
11. References . 29
11.1. Normative References 29
11.2. Informative References 31

 Authors' Addresses . 31

Maler, et al. Expires August 17, 2019 [Page 2]

Internet-Draft February 2019

1. Introduction

 This specification extends and complements [UMAGrant] to loosely
 couple, or federate, its authorization process. This enables
 multiple resource servers operating in different domains to
 communicate with a single authorization server operating in yet
 another domain that acts on behalf of a resource owner. A service
 ecosystem can thus automate resource protection, and the resource
 owner can monitor and control authorization grant rules through the
 authorization server over time. Further, authorization grants can
 increase and decrease at the level of individual resources and
 scopes.

 Building on the example provided in the introduction in [UMAGrant],
 bank customer (resource owner) Alice has a bank account service
 (resource server), a cloud file system (different resource server
 hosted elsewhere), and a dedicated sharing management service
 (authorization server) hosted by the bank. She can manage access to
 her various protected resources by spouse Bob, accounting
 professional Charline, financial information aggregation company
 DecideAccount, and neighbor Erik (requesting parties), all using
 different client applications. Her bank accounts and her various
 files and folders are protected resources, and she can use the same
 sharing management service to monitor and control different scopes of
 access to them by these different parties, such as viewing, editing,
 or printing files and viewing account data or accessing payment
 functions.

 This specification, together with [UMAGrant], constitutes UMA 2.0.
 This specification is OPTIONAL to use with the UMA grant.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 [RFC2119].

 Unless otherwise noted, all parameter names and values are case
 sensitive. JSON [RFC7159] data structures defined in this
 specification MAY contain extension parameters that are not defined
 in this specification. Any entity receiving or retrieving a JSON
 data structure SHOULD ignore extension parameters it is unable to
 understand. Extension names that are unprotected from collisions are
 outside the scope of this specification.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159

Maler, et al. Expires August 17, 2019 [Page 3]

Internet-Draft February 2019

1.2. Abstract Flow

 The UMA grant defined in [UMAGrant] enhances the abstract protocol
 flow of OAuth. This specification enhances the UMA grant by defining
 formal communications between the UMA-enabled authorization server
 and resource server as they act on behalf of the resource owner,
 responding to authorization and resource requests, respectively, by a
 client that is acting on behalf of a requesting party.

 A summary of UMA 2.0 communications, combining the UMA grant with
 federated authorization, is shown in Figure 1.

 +------------------+
 | resource |
 +------------manage (out of scope)----| owner |
 | +------------------+
 | |
 | protection |
 | API access control
 | token (PAT) (out of scope)
 | |
 v v
 +------------+ +----------+------------------+
		protection	
resource		API	authorization
server	<-----protect-------	(needs	server
		PAT)	
+------------+ +----------+------------------+			
protected		UMA	
resource		grant	
(needs RPT)	requesting	(PCT optional)	
 +------------+ party token +------------------+
 ^ (RPT) ^ persisted ^
 | | claims |
 | push token |
 | claim (PCT) |
 | tokens interact
 | +--------+ for
 +------------access--------------------| client | claims
 +--------+ gathering
 +---------------+
 | requesting |
 | party |
 +---------------+

 Figure 1: Federated Authorization Enhancements to UMA Grant Flow

Maler, et al. Expires August 17, 2019 [Page 4]

Internet-Draft February 2019

 This specification uses all of the terms and concepts in [UMAGrant].
 This figure introduces the following new concepts:

 protection API The API presented by the authorization server to the
 resource server, defined in this specification. This API is
 OAuth-protected.

 protection API access token (PAT) An [RFC6749] access token with the
 scope "uma_protection", used by the resource server as a client
 of the authorization server's protection API. The resource
 owner involved in the UMA grant is the same entity taking on
 the role of the resource owner authorizing issuance of the PAT.

1.3. HTTP Usage, API Security, and Identity Context

 This specification is designed for use with HTTP [RFC2616], and for
 interoperability and security in the context of loosely coupled
 services and applications operated by independent parties in
 independent domains. The use of UMA over any protocol other than
 HTTP is undefined. In such circumstances, it is RECOMMENDED to
 define profiles or extensions to achieve interoperability among
 independent implementations (see Section 4 of [UMAGrant]).

 The authorization server MUST use TLS protection over its protection
 API endpoints, as governed by [BCP195], which discusses deployment
 and adoption characteristics of different TLS versions.

 The authorization server MUST use OAuth and require a valid PAT to
 secure its protection API endpoints. The authorization server and
 the resource server (as an OAuth client) MUST support bearer usage of
 the PAT, as defined in [RFC6750]. All examples in this specification
 show the use of bearer-style PATs in this format.

 As defined in [UMAGrant], the resource owner -- the entity here
 authorizing PAT issuance -- MAY be an end-user (natural person) or a
 non-human entity treated as a person for limited legal purposes
 (legal person), such as a corporation. A PAT is unique to a resource
 owner, resource server used for resource management, and
 authorization server used for protection of those resources. The
 issuance of the PAT represents the authorization of the resource
 owner for the resource server to use the authorization server for
 protecting those resources.

 Different grant types for PAT issuance might be appropriate for
 different types of resource owners; for example, the client
 credentials grant is useful in the case of an organization acting as
 a resource owner, whereas an interactive grant type is typically more
 appropriate for capturing the approval of an end-user resource owner.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6750

Maler, et al. Expires August 17, 2019 [Page 5]

Internet-Draft February 2019

 Where an identity token is desired in addition to an access token, it
 is RECOMMENDED to use [OIDCCore] in addition.

1.4. Separation of Responsibility and Authority

 Federation of authorization for the UMA grant delivers a conceptual
 separation of responsibility and authority:

 o The resource owner can control access to resources residing at
 multiple resource servers from a single authorization server, by
 virtue of authorizing PAT issuance for each resource server. Any
 one resource server MAY be operated by a party different from the
 one operating the authorization server.

 o The resource server defines the boundaries of resources and the
 scopes available to each resource, and interprets how clients'
 resource requests map to permission requests, by virtue of being
 the publisher of the API being protected and using the protection
 API to communicate to the authorization server.

 o The resource owner works with the authorization server to
 configure policy conditions (authorization grant rules), which the
 authorization server executes in the process of issuing access
 tokens. The authorization process makes use of claims gathered
 from the requesting party and client in order to satisfy all
 operative operative policy conditions.

 The separation of authorization decision making and authorization
 enforcement is similar to the architectural separation often used in
 enterprises between policy decision points and policy enforcement
 points. However, the resource server MAY apply additional
 authorization controls beyond those imposed by the authorization
 server. For example, even if an RPT provides sufficient permissions
 for a particular case, the resource server can choose to bar access
 based on its own criteria.

 Practical control of access among loosely coupled parties typically
 requires more than just messaging protocols. It is outside the scope
 of this specification to define more than the technical contract
 between UMA-conforming entities. Laws may govern authorization-
 granting relationships. It is RECOMMENDED for the resource owner,
 authorization server, and resource server to establish agreements
 about which parties are responsible for establishing and maintaining
 authorization grant rules and other authorization rules on a legal or
 contractual level, and parties operating entities claiming to be UMA-
 conforming should provide documentation of rights and obligations
 between and among them. See Section 4 of [UMAGrant] for more
 information.

Maler, et al. Expires August 17, 2019 [Page 6]

Internet-Draft February 2019

 Except for PAT issuance, the resource owner-resource server and
 resource owner-authorization server interfaces -- including the
 setting of policy conditions -- are outside the scope of this
 specification (see Section 8 and Section 6.1 of [UMAGrant] for
 privacy considerations). Some elements of the protection API enable
 the building of user interfaces for policy condition setting (for
 example, see Section 3.2, which can be used in concert with user
 interaction for resource protection and sharing and offers an end-
 user redirection mechanism for policy interactions).

 Note: The resource server typically requires access to at least the
 permission and token introspection endpoints when an end-user
 resource owner is not available ("offline" access). Thus, the
 authorization server needs to manage the PAT in a way that ensures
 this outcome. [UMA-Impl] discusses ways the resource server can
 enhance its error handling when the PAT is invalid.

1.5. Protection API Summary

 The protection API defines the following endpoints:

 o Resource registration endpoint as defined in Section 3. The API
 available at this endpoint provides a means for the resource
 server to put resources under the protection of an authorization
 server on behalf of the resource owner and manage them over time.

 o Permission endpoint as defined in Section 4. This endpoint
 provides a means for the resource server to request a set of one
 or more permissions on behalf of the client based on the client's
 resource request when that request is unaccompanied by an access
 token or is accompanied by an RPT that is insufficient for access
 to that resource.

 o OPTIONAL token introspection endpoint as defined in [RFC7662] and
 as extended in Section 5. This endpoint provides a means for the
 resource server to introspect the RPT.

 Use of these endpoints assumes that the resource server has acquired
 OAuth client credentials from the authorization server by static or
 dynamic means, and has a valid PAT. Note: Although the resource
 identifiers that appear in permission and token introspection request
 messages could sufficiently identify the resource owner, the PAT is
 still required because it represents the resource owner's
 authorization to use the protection API, as noted in Section 1.3.

 The authorization server MUST declare its protection API endpoints in
 the discovery document (see Section 2).

https://datatracker.ietf.org/doc/html/rfc7662

Maler, et al. Expires August 17, 2019 [Page 7]

Internet-Draft February 2019

1.5.1. Permissions

 A permission is (requested or granted) authorized access to a
 particular resource with some number of scopes bound to that
 resource. The concept of permissions is used in authorization
 assessment, results calculation, and RPT issuance in [UMAGrant].
 This concept takes on greater significance in relation to the
 protection API.

 The resource server's resource registration operations at the
 authorization server result in a set of resource owner-specific
 resource identifiers. When the client makes a resource request that
 is unaccompanied by an access token or its resource request fails,
 the resource server is responsible for interpreting that request and
 mapping it to a choice of authorization server, resource owner,
 resource identifier(s), and set of scopes for each identifier, in
 order to request one or more permissions -- resource identifiers and
 a set of scopes -- and obtain a permission ticket on the client's
 behalf. Finally, when the client has made a resource request
 accompanied by an RPT and token introspection is in use, the returned
 token introspection object reveals the structure of permissions,
 potentially including expiration of individual permissions.

2. Authorization Server Metadata

 This specification makes use of the authorization server discovery
 document structure and endpoint defined in [UMAGrant]. The resource
 server uses this discovery document to discover the endpoints it
 needs.

 In addition to the metadata defined in that specification and
 [OAuthMeta], this specification defines the following metadata for
 inclusion in the discovery document:

 permission_endpoint
 REQUIRED. The endpoint URI at which the resource server requests
 permissions on the client's behalf.

 resource_registration_endpoint
 REQUIRED. The endpoint URI at which the resource server registers
 resources to put them under authorization manager protection.

 Following are additional requirements related to metadata:

 introspection_endpoint
 If the authorization server supports token introspection as
 defined in this specification, it MUST supply this metadata value
 (defined in [OAuthMeta]).

Maler, et al. Expires August 17, 2019 [Page 8]

Internet-Draft February 2019

 The authorization server SHOULD document any profiled or extended
 features it supports explicitly, ideally by supplying the URI
 identifying each UMA profile and extension as an
 "uma_profiles_supported" metadata array value (defined in
 [UMAGrant]), and by using extension metadata to indicate specific
 usage details as necessary.

3. Resource Registration Endpoint

 The API available at the resource registration endpoint enables the
 resource server to put resources under the protection of an
 authorization server on behalf of the resource owner and manage them
 over time. Protection of a resource at the authorization server
 begins on successful registration and ends on successful
 deregistration.

 The resource server uses a RESTful API at the authorization server's
 resource registration endpoint to create, read, update, and delete
 resource descriptions, along with retrieving lists of such
 descriptions. The descriptions consist of JSON documents that are
 maintained as web resources at the authorization server. (Note
 carefully the similar but distinct senses in which the word
 "resource" is used in this section.)

 Figure 2 illustrates the resource registration API operations, with
 requests and success responses shown.

Maler, et al. Expires August 17, 2019 [Page 9]

Internet-Draft February 2019

 authorization resource resource
 server server owner
 | | |
 |*PROTECTION API: | |
 |*Resource registration | |
 |endpoint/API | |
 | | |
 |*Create resource (POST)| |
 |<----------------------| |
 |*201 Created with | |
 |resource ID | |
 |---------------------->| |
 | | |
 |Set policy conditions (anytime |
 |before deletion/deregistration) |
 |<- - - - - - - - - - - - - - - - - - - -|
 | | |
 |*Read (GET) with | |
 |resource ID | |
 |<----------------------| |
 |*200 OK with resource | |
 |representation | |
 |---------------------->| |
 |*Update (PUT) with | |
 |resource ID | |
 |<----------------------| |
 |*200 OK with resource | |
 |ID | |
 |---------------------->| |
 |*List (GET) | |
 |<----------------------| |
 |*200 OK with list of | |
 |resource IDs | |
 |---------------------->| |
 |*Delete (DELETE) with | |
 |resource ID | |
 |<----------------------| |
 |*200 OK or 204 No | |
 |Content | |
 |---------------------->| |

 Figure 2: Resource Registration Endpoint and API: Requests and
 Success Responses

 The resource server MAY protect any subset of the resource owner's
 resources using different authorization servers or other means
 entirely, or to protect some resources and not others. Additionally,
 the choice of protection regimes MAY be made explicitly by the

Maler, et al. Expires August 17, 2019 [Page 10]

Internet-Draft February 2019

 resource owner or implicitly by the resource server. Any such
 partitioning by the resource server or owner is outside the scope of
 this specification.

 The resource server MAY register a single resource for protection
 that, from its perspective, has multiple parts, or has dynamic
 elements such as the capacity for querying or filtering, or otherwise
 has internal complexity. The resource server alone is responsible
 for maintaining any required mappings between internal
 representations and the resource identifiers and scopes known to the
 authorization server.

 Note: The resource server is responsible for managing the process and
 timing of registering resources, maintaining the registration of
 resources, and deregistering resources at the authorization server.
 Motivations for updating a resource might include, for example, new
 scopes added to a new API version or resource owner actions at a
 resource server that result in new resource description text. See
 [UMA-Impl] for a discussion of initial resource registration timing
 options.

3.1. Resource Description

 A resource description is a JSON document that describes the
 characteristics of a resource sufficiently for an authorization
 server to protect it. A resource description has the following
 parameters:

 resource_scopes REQUIRED. An array of strings, serving as scope
 identifiers, indicating the available scopes for this resource.
 Any of the strings MAY be either a plain string or a URI.

 description OPTIONAL. A human-readable string describing the
 resource at length. The authorization server MAY use this
 description in any user interface it presents to a resource owner,
 for example, for resource protection monitoring or policy setting.
 The value of this parameter MAY be internationalized, as described
 in Section 2.2 of [RFC7591].

 icon_uri OPTIONAL. A URI for a graphic icon representing the
 resource. The authorization server MAY use the referenced icon in
 any user interface it presents to a resource owner, for example,
 for resource protection monitoring or policy setting.

 name OPTIONAL. A human-readable string naming the resource. The
 authorization server MAY use this name in any user interface it
 presents to a resource owner, for example, for resource protection

https://datatracker.ietf.org/doc/html/rfc7591#section-2.2

Maler, et al. Expires August 17, 2019 [Page 11]

Internet-Draft February 2019

 monitoring or policy setting. The value of this parameter MAY be
 internationalized, as described in Section 2.2 of [RFC7591].

 type OPTIONAL. A string identifying the semantics of the resource.
 For example, if the resource is an identity claim that leverages
 standardized claim semantics for "verified email address", the
 value of this parameter could be an identifying URI for this
 claim. The authorization server MAY use this information in
 processing information about the resource or displaying
 information about it in any user interface it presents to a
 resource owner.

 For example, this description characterizes a resource (a photo
 album) that can potentially be viewed or printed; the scope URI
 points to a scope description as defined in Section 3.1.1:

 {
 "resource_scopes":[
 "view",
 "http://photoz.example.com/dev/scopes/print"
],
 "description":"Collection of digital photographs",
 "icon_uri":"http://www.example.com/icons/flower.png",
 "name":"Photo Album",
 "type":"http://www.example.com/rsrcs/photoalbum"
 }

3.1.1. Scope Description

 A scope description is a JSON document that describes the
 characteristics of a scope sufficiently for an authorization server
 to protect the resource with this available scope.

 While a scope URI appearing in a resource description (see
Section 3.1) MAY resolve to a scope description document, and thus

 scope description documents are possible to standardize and reference
 publicly, the authorization server is not expected to resolve scope
 description details at resource registration time or at any other
 run-time requirement. The resource server and authorization server
 are presumed to have negotiated any required interpretation of scope
 handling out of band.

 A scope description has the following parameters:

 description OPTIONAL. A human-readable string describing the
 resource at length. The authorization server MAY use this
 description in any user interface it presents to a resource owner,
 for example, for resource protection monitoring or policy setting.

https://datatracker.ietf.org/doc/html/rfc7591#section-2.2

Maler, et al. Expires August 17, 2019 [Page 12]

Internet-Draft February 2019

 The value of this parameter MAY be internationalized, as described
 in Section 2.2 of [RFC7591].

 icon_uri OPTIONAL. A URI for a graphic icon representing the scope.
 The authorization server MAY use the referenced icon in any user
 interface it presents to a resource owner, for example, for
 resource protection monitoring or policy setting.

 name OPTIONAL. A human-readable string naming the scope. The
 authorization server MAY use this name in any user interface it
 presents to a resource owner, for example, for resource protection
 monitoring or policy setting. The value of this parameter MAY be
 internationalized, as described in Section 2.2 of [RFC7591].

 For example, this scope description characterizes a scope that
 involves printing (as opposed to, say, creating or editing in some
 fashion):

 {
 "description":"Print out and produce PDF files of photos",
 "icon_uri":"http://www.example.com/icons/printer",
 "name":"Print"
 }

3.2. Resource Registration API

 The authorization server MUST support the following five registration
 options and MUST require a valid PAT for access to them; any other
 operations are undefined by this specification. Here, _rreguri_
 stands for the resource registration endpoint and __id_ stands for
 the authorization server-assigned identifier for the web resource
 corresponding to the resource at the time it was created, included
 within the URL returned in the Location header. Each operation is
 defined in its own section below.

 o Create resource description: POST _rreguri_/

 o Read resource description: GET _rreguri_/__id_

 o Update resource description: PUT _rreguri_/__id_

 o Delete resource description: DELETE _rreguri_/__id_

 o List resource descriptions: GET _rreguri_/

 Within the JSON body of a successful response, the authorization
 server includes common parameters, possibly in addition to method-
 specific parameters, as follows:

https://datatracker.ietf.org/doc/html/rfc7591#section-2.2
https://datatracker.ietf.org/doc/html/rfc7591#section-2.2

Maler, et al. Expires August 17, 2019 [Page 13]

Internet-Draft February 2019

 _id REQUIRED (except for the Delete and List methods). A string
 value repeating the authorization server-defined identifier for
 the web resource corresponding to the resource. Its appearance in
 the body makes it readily available as an identifier for various
 protected resource management tasks.

 user_access_policy_uri OPTIONAL. A URI that allows the resource
 server to redirect an end-user resource owner to a specific user
 interface within the authorization server where the resource owner
 can immediately set or modify access policies subsequent to the
 resource registration action just completed. The authorization
 server is free to choose the targeted user interface, for example,
 in the case of a deletion action, enabling the resource server to
 direct the end-user to a policy-setting interface for an overall
 "folder" resource formerly "containing" the deleted resource (a
 relationship the authorization server is not aware of), to enable
 adjustment of related policies.

 If the request to the resource registration endpoint is incorrect,
 then the authorization server instead responds as follows (see

Section 6 for information about error messages):

 o If the referenced resource cannot be found, the authorization
 server MUST respond with an HTTP 404 (Not Found) status code and
 MAY respond with a "not_found" error code.

 o If the resource server request used an unsupported HTTP method,
 the authorization server MUST respond with the HTTP 405 (Method
 Not Allowed) status code and MAY respond with an
 "unsupported_method_type" error code.

 o If the request is missing a required parameter, includes an
 invalid parameter value, includes a parameter more than once, or
 is otherwise malformed, the authorization server MUST respond with
 the HTTP 400 (Bad Request) status code and MAY respond with an
 "invalid_request" error code.

3.2.1. Create Resource Description

 Adds a new resource description to the authorization server using the
 POST method. If the request is successful, the resource is thereby
 registered and the authorization server MUST respond with an HTTP 201
 status message that includes a "Location" header and an "_id"
 parameter.

Maler, et al. Expires August 17, 2019 [Page 14]

Internet-Draft February 2019

 Form of a create request, with a PAT in the header:

 POST /rreg/ HTTP/1.1 Content-Type: application/json
 Authorization: Bearer MHg3OUZEQkZBMjcx
 ...
 {
 "resource_scopes":[
 "read-public",
 "post-updates",
 "read-private",
 "http://www.example.com/scopes/all"
],
 "icon_uri":"http://www.example.com/icons/sharesocial.png",
 "name":"Tweedl Social Service",
 "type":"http://www.example.com/rsrcs/socialstream/140-compatible"
 }

 Form of a successful response, also containing an optional
 "user_access_policy_uri" parameter:

HTTP/1.1 201 Created
Content-Type: application/json
Location: /rreg/KX3A-39WE
...
{
 "_id":"KX3A-39WE",
 "user_access_policy_uri":"http://as.example.com/rs/222/resource/KX3A-39WE/
policy"
}

3.2.2. Read Resource Description

 Reads a previously registered resource description using the GET
 method. If the request is successful, the authorization server MUST
 respond with an HTTP 200 status message that includes a body
 containing the referenced resource description, along with an "_id"
 parameter.

 Form of a read request, with a PAT in the header:

 GET /rreg/KX3A-39WE HTTP/1.1
 Authorization: Bearer MHg3OUZEQkZBMjcx
 ...

Maler, et al. Expires August 17, 2019 [Page 15]

Internet-Draft February 2019

 Form of a successful response, containing all the parameters that
 were registered as part of the description:

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...
 {
 "_id":"KX3A-39WE",
 "resource_scopes":[
 "read-public",
 "post-updates",
 "read-private",
 "http://www.example.com/scopes/all"
],
 "icon_uri":"http://www.example.com/icons/sharesocial.png",
 "name":"Tweedl Social Service",
 "type":"http://www.example.com/rsrcs/socialstream/140-compatible"
 }

3.2.3. Update Resource Description

 Updates a previously registered resource description, by means of a
 complete replacement of the previous resource description, using the
 PUT method. If the request is successful, the authorization server
 MUST respond with an HTTP 200 status message that includes an "_id"
 parameter.

 Form of an update request adding a "description" parameter to a
 resource description that previously had none, with a PAT in the
 header:

 PUT /rreg/9UQU-DUWW HTTP/1.1
 Content-Type: application/json
 Authorization: Bearer 204c69636b6c69
 ...
 {
 "resource_scopes":[
 "http://photoz.example.com/dev/scopes/view",
 "public-read"
],
 "description":"Collection of digital photographs",
 "icon_uri":"http://www.example.com/icons/sky.png",
 "name":"Photo Album",
 "type":"http://www.example.com/rsrcs/photoalbum"
 }

Maler, et al. Expires August 17, 2019 [Page 16]

Internet-Draft February 2019

 Form of a successful response, not containing the optional
 "user_access_policy_uri" parameter:

 HTTP/1.1 200 OK
 ...
 {
 "_id":"9UQU-DUWW"
 }

3.2.4. Delete Resource Description

 Deletes a previously registered resource description using the DELETE
 method. If the request is successful, the resource is thereby
 deregistered and the authorization server MUST respond with an HTTP
 200 or 204 status message.

 Form of a delete request, with a PAT in the header:

 DELETE /rreg/9UQU-DUWW
 Authorization: Bearer 204c69636b6c69
 ...

 Form of a successful response:

 HTTP/1.1 204 No content
 ...

3.2.5. List Resource Descriptions

 Lists all previously registered resource identifiers for this
 resource owner using the GET method. The authorization server MUST
 return the list in the form of a JSON array of "_id" string values.

 The resource server can use this method as a first step in checking
 whether its understanding of protected resources is in full
 synchronization with the authorization server's understanding.

 Form of a list request, with a PAT in the header:

 GET /rreg/ HTTP/1.1
 Authorization: Bearer 204c69636b6c69
 ...

Maler, et al. Expires August 17, 2019 [Page 17]

Internet-Draft February 2019

 Form of a successful response:

 HTTP/1.1 200 OK
 ...
 [
 "KX3A-39WE",
 "9UQU-DUWW"
]

4. Permission Endpoint

 The permission endpoint defines a means for the resource server to
 request one or more permissions (resource identifiers and
 corresponding scopes) with the authorization server on the client's
 behalf, and to receive a permission ticket in return, in order to
 respond as indicated in Section 3.2 of [UMAGrant]. The resource
 server uses this endpoint on the following occasions:

 o After the client's initial resource request without an access
 token

 o After the client's resource request that was accompanied by an
 invalid RPT or a valid RPT that had insufficient permissions
 associated with it

 The use of the permission endpoint is illustrated in Figure 3, with a
 request and a success response shown.

Maler, et al. Expires August 17, 2019 [Page 18]

Internet-Draft February 2019

 authorization resource
 client server server
 | | |
 |Request resource (no or insufficient |
 |access token) | |
 |--------------------------------------->|
 | | |
 | |*PROTECTION API: |
 | |*Permission endpoint |
 | | |
 | |*Request permissions |
 | |(POST) |
 | |<--------------------|
 | |*201 Created with |
 | |permission ticket |
 | |-------------------->|
 | | |
 |401 response with permission ticket, |
 |authz server location |
 |<---------------------------------------|

 Figure 3: Permission Endpoint: Request and Success Response

 The PAT provided in the API request enables the authorization server
 to map the resource server's request to the appropriate resource
 owner. It is only possible to request permissions for access to the
 resources of a single resource owner, protected by a single
 authorization server, at a time.

 In its response, the authorization server returns a permission ticket
 for the resource server to give to the client that represents the
 same permissions that the resource server requested.

 The process of choosing what permissions to request from the
 authorization server may require interpretation and mapping of the
 client's resource request. The resource server SHOULD request a set
 of permissions with scopes that is reasonable for the client's
 resource request. The resource server MAY request multiple
 permissions, and any permission MAY have zero scopes associated with
 it. Requesting multiple permissions might be appropriate, for
 example, in cases where the resource server expects the requesting
 party to need access to several related resources if they need access
 to any one of the resources (see Section 3.3.4 of [UMAGrant] for an
 example). Requesting a permission with no scopes might be
 appropriate, for example, in cases where an access attempt involves
 an API call that is ambiguous without further context (role-based
 scopes such as "user" and "admin" could have this ambiguous quality,
 and an explicit client request for a particular scope at the token

Maler, et al. Expires August 17, 2019 [Page 19]

Internet-Draft February 2019

 endpoint later can clarify the desired access). The resource server
 SHOULD document its intended pattern of permission requests in order
 to assist the client in pre-registering for and requesting
 appropriate scopes at the authorization server. See [UMA-Impl] for a
 discussion of permission request patterns.

 Note: In order for the resource server to know which authorization
 server to approach for the permission ticket and on which resource
 owner's behalf (enabling a choice of permission endpoint and PAT), it
 needs to derive the necessary information using cues provided by the
 structure of the API where the resource request was made, rather than
 by an access token. Commonly, this information can be passed through
 the URI, headers, or body of the client's request. Alternatively,
 the entire interface could be dedicated to the use of a single
 resource owner and protected by a single authorization server.

4.1. Resource Server Request to Permission Endpoint

 The resource server uses the POST method at the permission endpoint.
 The body of the HTTP request message contains a JSON object for
 requesting a permission for single resource identifier, or an array
 of one or more objects for requesting permissions for a corresponding
 number of resource identifiers. The object format in both cases is
 derived from the resource description format specified in

Section 3.1; it has the following parameters:

 resource_id REQUIRED. The identifier for a resource to which the
 resource server is requesting a permission on behalf of the
 client. The identifier MUST correspond to a resource that was
 previously registered.

 resource_scopes REQUIRED. An array referencing zero or more
 identifiers of scopes to which the resource server is requesting
 access for this resource on behalf of the client. Each scope
 identifier MUST correspond to a scope that was previously
 registered by this resource server for the referenced resource.

Maler, et al. Expires August 17, 2019 [Page 20]

Internet-Draft February 2019

 Example of an HTTP request for a single permission at the
 authorization server's permission endpoint, with a PAT in the header:

 POST /perm HTTP/1.1
 Content-Type: application/json
 Host: as.example.com
 Authorization: Bearer 204c69636b6c69
 ...

 {
 "resource_id":"112210f47de98100",
 "resource_scopes":[
 "view",
 "http://photoz.example.com/dev/actions/print"
]
 }

Maler, et al. Expires August 17, 2019 [Page 21]

Internet-Draft February 2019

 Example of an HTTP request for multiple permissions at the
 authorization server's permission endpoint, with a PAT in the header:

 POST /perm HTTP/1.1
 Content-Type: application/json
 Host: as.example.com
 Authorization: Bearer 204c69636b6c69
 ...

 [
 {
 "resource_id":"7b727369647d",
 "resource_scopes":[
 "view",
 "crop",
 "lightbox"
]
 },
 {
 "resource_id":"7b72736964327d",
 "resource_scopes":[
 "view",
 "layout",
 "print"
]
 },
 {
 "resource_id":"7b72736964337d",
 "resource_scopes":[
 "http://www.example.com/scopes/all"
]
 }
]

4.2. Authorization Server Response to Resource Server on Permission
 Request Success

 If the authorization server is successful in creating a permission
 ticket in response to the resource server's request, it responds with
 an HTTP 201 (Created) status code and includes the "ticket" parameter
 in the JSON-formatted body. Regardless of whether the request
 contained one or multiple permissions, only a single permission
 ticket is returned.

Maler, et al. Expires August 17, 2019 [Page 22]

Internet-Draft February 2019

 For example:

 HTTP/1.1 201 Created
 Content-Type: application/json
 ...

 {
 "ticket":"016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

4.3. Authorization Server Response to Resource Server on Permission
 Request Failure

 If the resource server's permission registration request is
 authenticated properly but fails due to other reasons, the
 authorization server responds with an HTTP 400 (Bad Request) status
 code and includes one of the following error codes (see Section 6 for
 more information about error codes and responses):

 invalid_resource_id At least one of the provided resource
 identifiers was not found at the authorization server.

 invalid_scope At least one of the scopes included in the request was
 not registered previously by this resource server for the
 referenced resource.

5. Token Introspection Endpoint

 When the client makes a resource request accompanied by an RPT, the
 resource server needs to determine whether the RPT is active and, if
 so, its associated permissions. Depending on the nature of the RPT
 and operative caching parameters, the resource server MAY take any of
 the following actions as appropriate to determine the RPT's status:

 o Introspect the RPT at the authorization server using the OAuth
 token introspection endpoint (defined in [RFC7662] and this
 section) that is part of the protection API. The authorization
 server's response contains an extended version of the
 introspection response. If the authorization server supports this
 specification's version of the token introspection endpoint, it
 MUST declare the endpoint in its discovery document (see

Section 2) and support this extended version of the response.

 o Use a cached copy of the token introspection response if allowed
 (see Section 4 of [RFC7662]).

 o Validate the RPT locally if it is self-contained.

https://datatracker.ietf.org/doc/html/rfc7662
https://datatracker.ietf.org/doc/html/rfc7662#section-4

Maler, et al. Expires August 17, 2019 [Page 23]

Internet-Draft February 2019

 The use of the token introspection endpoint is illustrated in
 Figure 4, with a request and a success response shown.

 authorization resource
 client server server
 | | |
 |Resource request with RPT |
 |--->|
 | | |
 | |*PROTECTION API: |
 | |*Introspection endpoint|
 | | |
 | |*Request to introspect |
 | |token (POST) |
 | |<----------------------|
 | |*Response with token |
 | |introspection object |
 | |---------------------->|
 | | |
 |Protected resource |
 |<---|

 Figure 4: Token Introspection Endpoint: Request and Success Response

 The authorization server MAY support both UMA-extended and non-UMA
 introspection requests and responses.

5.1. Resource Server Request to Token Introspection Endpoint

 Note: In order for the resource server to know which authorization
 server, PAT (representing a resource owner), and endpoint to use in
 making the token introspection API call, it may need to interpret the
 client's resource request.

 Example of the resource server's request to the authorization server
 for introspection of an RPT, with a PAT in the header:

 POST /introspect HTTP/1.1
 Host: as.example.com
 Authorization: Bearer 204c69636b6c69
 ...
 token=sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv

 Because an RPT is an access token, if the resource server chooses to
 supply a token type hint, it would use a "token_type_hint" of
 "access_token".

Maler, et al. Expires August 17, 2019 [Page 24]

Internet-Draft February 2019

5.1.1. Authorization Server Response to Resource Server on Token
 Introspection Success

 The authorization server's response to the resource server MUST use
 [RFC7662], responding with a JSON object with the structure dictated
 by that specification, extended as follows.

 If the introspection object's "active" parameter has a Boolean value
 of "true", then the object MUST NOT contain a "scope" parameter, and
 MUST contain an extension parameter named "permissions" that contains
 an array of objects, each one (representing a single permission)
 containing these parameters:

 resource_id REQUIRED. A string that uniquely identifies the
 protected resource, access to which has been granted to this
 client on behalf of this requesting party. The identifier MUST
 correspond to a resource that was previously registered as
 protected.

 resource_scopes REQUIRED. An array referencing zero or more strings
 representing scopes to which access was granted for this resource.
 Each string MUST correspond to a scope that was registered by this
 resource server for the referenced resource.

 exp OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this permission will
 expire. If the token-level "exp" value pre-dates a permission-
 level "exp" value, the token-level value takes precedence.

 iat OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this permission was
 originally issued. If the token-level "iat" value post-dates a
 permission-level "iat" value, the token-level value takes
 precedence.

 nbf OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating the time before which this
 permission is not valid. If the token-level "nbf" value post-
 dates a permission-level "nbf" value, the token-level value takes
 precedence.

https://datatracker.ietf.org/doc/html/rfc7662

Maler, et al. Expires August 17, 2019 [Page 25]

Internet-Draft February 2019

 Example of a response containing the introspection object with the
 "permissions" parameter containing a single permission:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store
 ...

 {
 "active":true,
 "exp":1256953732,
 "iat":1256912345,
 "permissions":[
 {
 "resource_id":"112210f47de98100",
 "resource_scopes":[
 "view",
 "http://photoz.example.com/dev/actions/print"
],
 "exp":1256953732
 }
]
 }

6. Error Messages

 If a request is successfully authenticated, but is invalid for
 another reason, the authorization server produces an error response
 by supplying a JSON-encoded object with the following members in the
 body of the HTTP response:

 error REQUIRED except as noted. A single error code. Values for
 this parameter are defined throughout this specification.

 error_description OPTIONAL. Human-readable text providing
 additional information.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error.

Maler, et al. Expires August 17, 2019 [Page 26]

Internet-Draft February 2019

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
...

{
 "error": "invalid_resource_id",
 "error_description": "Permission request failed with bad resource ID.",
 "error_uri": "https://as.example.com/uma_errors/invalid_resource_id"
}

7. Security Considerations

 This specification inherits the security considerations of [UMAGrant]
 and has the following additional security considerations.

 In the context of federated authorization, more parties may be
 operating and using UMA software entities, and thus may need to
 establish agreements about the parties' rights and responsibilities
 on a legal or contractual level, as discussed in Section 5.8 of
 [UMAGrant].

 The protection API is secured by means of OAuth (through the use of
 the PAT). Therefore, it is susceptible to OAuth threats.

8. Privacy Considerations

 This specification inherits the privacy considerations of [UMAGrant]
 and has the following additional privacy considerations.

 As noted in Section 6.1 of [UMAGrant], the authorization server
 should apply authorization, security, and time-to-live strategies in
 a way that favors resource owner needs and action so that removal of
 authorization grants is achieved in a timely fashion. PATs are
 another construct to which it can apply these strategies.

 In the context of federated authorization, more parties may be
 operating and using UMA software entities, and thus may need to
 establish agreements about mutual rights, responsibilities, and
 common interpretations of UMA constructs for consistent and expected
 software behavior, as discussed in Section 6.4 of [UMAGrant].

 The authorization server comes to be in possession of resource
 details that may reveal information about the resource owner, which
 the authorization server's trust relationship with the resource
 server is assumed to accommodate. The more information about a
 resource that is registered, the more risk of privacy compromise
 there is through a less-trusted authorization server. For example,

Maler, et al. Expires August 17, 2019 [Page 27]

Internet-Draft February 2019

 if resource owner Alice introduces her electronic health record
 resource server to an authorization server in the cloud, the
 authorization server may come to learn a great deal of detail about
 Alice's health information just so that she can control access by
 others to that information.

9. IANA Considerations

 This document makes the following requests of IANA.

9.1. OAuth 2.0 Authorization Server Metadata Registry

 This specification registers OAuth 2.0 authorization server metadata
 defined in Section 2, as required by Section 7.1 of [OAuthMeta].

9.1.1. Registry Contents

 o Metadata name: "permission_endpoint"

 o Metadata description: endpoint metadata

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 2 in this document

 o Metadata name: "resource_registration_endpoint"

 o Metadata description: endpoint metadata

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 2 in this document

9.2. OAuth Token Introspection Response Registration

 This specification registers the name defined in Section 5.1.1, as
 required by Section 3.1 of [RFC7662].

9.2.1. Registry Contents

 o Name: "permissions"

 o Description: array of objects, each describing a scoped, time-
 limitable permission for a resource

https://datatracker.ietf.org/doc/html/rfc7662#section-3.1

Maler, et al. Expires August 17, 2019 [Page 28]

Internet-Draft February 2019

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - staff@kantarainitiative.org

 o Specification document: Section 5.1.1 in this document

10. Acknowledgments

 The following people made significant text contributions to the
 specification:

 o Paul C. Bryan, ForgeRock US, Inc. (former editor)

 o Domenico Catalano, Oracle (former author)

 o Mark Dobrinic, Cozmanova

 o George Fletcher, AOL

 o Thomas Hardjono, MIT (former editor)

 o Andrew Hindle, Hindle Consulting Limited

 o Lukasz Moren, Cloud Identity Ltd

 o James Phillpotts, ForgeRock

 o Christian Scholz, COMlounge GmbH (former editor)

 o Mike Schwartz, Gluu

 o Cigdem Sengul, Nominet UK

 o Jacek Szpot, Newcastle University

 Additional contributors to this specification include the Kantara UMA
 Work Group participants, a list of whom can be found at
 [UMAnitarians].

11. References

11.1. Normative References

 [BCP195] Sheffer, Y., "Recommendations for Secure Use of Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS)", May 2015, <https://tools.ietf.org/html/bcp195>.

https://tools.ietf.org/html/bcp195

Maler, et al. Expires August 17, 2019 [Page 29]

Internet-Draft February 2019

 [OAuthMeta]
 Jones, M., "OAuth 2.0 Authorization Server Metadata",
 November 2017, <https://tools.ietf.org/html/

draft-ietf-oauth-discovery-08>.

 [OIDCCore]
 Sakimura, N., "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <https://www.rfc-editor.org/info/rfc2616>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/info/rfc6750>.

 [RFC6819] Lodderstedt, T., Ed., McGloin, M., and P. Hunt, "OAuth 2.0
 Threat Model and Security Considerations", RFC 6819,
 DOI 10.17487/RFC6819, January 2013,
 <https://www.rfc-editor.org/info/rfc6819>.

 [RFC7009] Lodderstedt, T., Ed., Dronia, S., and M. Scurtescu, "OAuth
 2.0 Token Revocation", RFC 7009, DOI 10.17487/RFC7009,
 August 2013, <https://www.rfc-editor.org/info/rfc7009>.

https://tools.ietf.org/html/draft-ietf-oauth-discovery-08
https://tools.ietf.org/html/draft-ietf-oauth-discovery-08
http://openid.net/specs/openid-connect-core-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://www.rfc-editor.org/info/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://www.rfc-editor.org/info/rfc6819
https://datatracker.ietf.org/doc/html/rfc7009
https://www.rfc-editor.org/info/rfc7009

Maler, et al. Expires August 17, 2019 [Page 30]

Internet-Draft February 2019

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7591] Richer, J., Ed., Jones, M., Bradley, J., Machulak, M., and
 P. Hunt, "OAuth 2.0 Dynamic Client Registration Protocol",

RFC 7591, DOI 10.17487/RFC7591, July 2015,
 <https://www.rfc-editor.org/info/rfc7591>.

 [RFC7662] Richer, J., Ed., "OAuth 2.0 Token Introspection",
RFC 7662, DOI 10.17487/RFC7662, October 2015,

 <https://www.rfc-editor.org/info/rfc7662>.

 [UMAGrant]
 Maler, E., "User-Managed Access (UMA) Grant for OAuth 2.0
 Authorization", January 2019,
 <https://docs.kantarainitiative.org/uma/

rec-oauth-uma-grant-2.0.html>.

11.2. Informative References

 [UMA-Impl]
 Maler, E., "UMA Implementer's Guide", 2017,
 <https://kantarainitiative.org/confluence/display/uma/
 UMA+Implementer%27s+Guide>.

 [UMAnitarians]
 Maler, E., "UMA Participant Roster", 2017,
 <https://kantarainitiative.org/confluence/display/uma/
 Participant+Roster>.

Authors' Addresses

 Eve Maler (editor)
 ForgeRock

 Email: eve.maler@forgerock.com

 Maciej Machulak
 HSBC

 Email: maciej.p.machulak@hsbc.com

https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://datatracker.ietf.org/doc/html/rfc7662
https://www.rfc-editor.org/info/rfc7662
https://docs.kantarainitiative.org/uma/rec-oauth-uma-grant-2.0.html
https://docs.kantarainitiative.org/uma/rec-oauth-uma-grant-2.0.html
https://kantarainitiative.org/confluence/display/uma/
https://kantarainitiative.org/confluence/display/uma/

Maler, et al. Expires August 17, 2019 [Page 31]

Internet-Draft February 2019

 Justin Richer
 Bespoke Engineering

 Email: justin@bspk.io

 Thomas Hardjono
 MIT

 Email: hardjono@mit.edu

Maler, et al. Expires August 17, 2019 [Page 32]

