
Network Working Group J. Maloy
Internet-Draft Ericsson
Expires: April 27, 2005 S. Blake
 Modularnet
 M. Koning
 WindRiver
 J. Hadi Salim
 Znyx
 H. Khosravi
 Intel
 October 27, 2004

TIPC: Transparent Inter Process Communication Protocol, a Layer 2
TML for the ForCES protocol
draft-maloy-tipc-01.txt

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of section 3 of RFC 3667. By submitting this Internet-Draft, each
 author represents that any applicable patent or other IPR claims of
 which he or she is aware have been or will be disclosed, and any of
 which he or she become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 27, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004).

 Copyright (C) The Internet Society (2004). This document is subject

https://datatracker.ietf.org/doc/html/rfc3667#section-3
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Maloy, et al. Expires April 27, 2005 [Page 1]

Internet-Draft TIPC October 2004

 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights."

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Abstract

 This document describes TIPC, a protocol intended to be used as a TML
 (Transport Mapping Layer) for the ForCES protocol[ForCES] when that
 protocol is transported over L2 carriers such as Ethernet, RapidIO or
 PCI-Express. TIPC is specially designed for efficient communication
 within clusters of loosely coupled nodes, and may as such even be
 used outside the context of being a ForCES protocol carrier. It
 would even be an excellent candidate as a ForCES pre-association
 phase setup protocol.

 TIPC is a reliable transport protocol typically operating on top of
 L2 packet networks, but it should also work well on higher-level
 protocols such as DCCP, TCP, or SCTP.

 TIPC offers the following services to its users:
 o A functional addressing scheme providing full addressing
 transparency over the whole cluster.
 o A topology information and subscription service, providing
 up-to-date information about functional and physical topology.
 o Lightweight, highly reactive connections reporting errors or
 destination unreachability within a fraction of a second.
 o A reliable multicast service, based on functional addressing, but
 using the underlying network multicast service when possible.
 o Acknowledged, loss-free, error-free, non-duplicated transfer of
 user data, both in connectionless and connection-oriented mode.
 o Configurable congestion control both at bearer, link, and
 connection level.
 o Data fragmentation conforming to discovered carrier MTU size.
 o Bundling of multiple user messages into a single TIPC packet in
 situations where messages cannot be sent immediately.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/rfc2119

Maloy, et al. Expires April 27, 2005 [Page 2]

Internet-Draft TIPC October 2004

 o Transparent, link-level load sharing and redundancy, through
 support of heterogeneous multi-homing.
 o A slim, non-layered protocol header allowing efficient protocol
 implementations.

 Apart from common process-to-process communication, the design of
 TIPC even includes the possibibily to commmunicate process-to-kernel
 and kernel-to-kernel, still with full addressing and interface
 transparency.

Table of Contents

1. Introduction . 6
1.1 Motivation . 6
1.1.1 Existing Protocols 6
1.1.2 Assumptions . 7

1.2 Architectural View . 8
1.3 Functional View . 9
1.3.1 API Adapters . 10
1.3.2 Address Subscription 10
1.3.3 Address Distribution 10
1.3.4 Address Translation 10
1.3.5 Multicast . 10
1.3.6 Connection Supervision 11
1.3.7 Routing and Link Selection 11
1.3.8 Neighbour Detection 11
1.3.9 Link Establishment/Supervision 11
1.3.10 Link Failover 11
1.3.11 Fragmentation/Defragmentation 11
1.3.12 Bundling . 11
1.3.13 Congestion Control 12
1.3.14 Sequence and Retransmission Control 12
1.3.15 Bearer Layer . 12

1.4 Terminology . 12
1.4.1 ForCES Terminolgy 12
1.4.2 TIPC Specific Terminolgy 13

1.5 Abbreviations . 14
2. Mapping ForCES/PL to TIPC/TML 16
2.1 Fulfilment of TML Requirements 16
2.2 Address Mapping . 17

3. TIPC Features . 22
3.1 Network Topology . 22
3.1.1 Network . 22
3.1.2 Zone . 23
3.1.3 Cluster . 23
3.1.4 Node . 23
3.1.5 Secondary Node . 23

3.2 Addressing . 24

Maloy, et al. Expires April 27, 2005 [Page 3]

Internet-Draft TIPC October 2004

3.2.1 Location Transparency 24
3.2.2 Network Address 24
3.2.3 Port Identity . 24
3.2.4 Port Name . 24
3.2.5 Port Name Sequence 25
3.2.6 Multicast Addressing 26
3.2.7 Publishing Scope 27
3.2.8 Lookup Policies 27
3.2.9 Name Translation 28
3.2.10 Distributed Naming Table 28

3.3 Topology Services . 29
3.3.1 Inquiry . 29
3.3.2 Subscriptions . 30
3.3.3 Functional Topology 31
3.3.4 Physical Topology 31

3.4 Ports . 32
3.4.1 Port State Machine 32

3.5 Connections . 36
3.5.1 Connection Setup 36
3.5.2 Connection Shutdown 37
3.5.3 Connection Abortion 39
3.5.4 Connection Supervision 40
3.5.5 Flow Control . 42
3.5.6 Sequentiality Check 42

3.6 Neighbour Detection 43
3.6.1 Link Requests . 43
3.6.2 Inter-Cluster Link Setup 43
3.6.3 Multicast Link Setup 47

3.7 Links . 48
3.7.1 Link Activation 49
3.7.2 Link Continuity Check 51
3.7.3 Sequence Control and Retransmission 51
3.7.4 Message Bundling 52
3.7.5 Message Fragmentation 52
3.7.6 Link Congestion Control 53
3.7.7 Bearer Congestion Control 53
3.7.8 Link Load Sharing vs Active/Standby 54
3.7.9 Link Changeover 54

3.8 Routing . 56
3.8.1 Routing Algorithm 56
3.8.2 Routing Table . 57
3.8.3 Routing Table Updates 57

3.9 Multicast Transport 58
3.9.1 Conditional Cluster Broadcast 58
3.9.2 Conditional Tunneled Retransmission 59
3.9.3 Piggybacked Acknowledge 60
3.9.4 Coordinated Acknowledge Interval 61
3.9.5 Replicated Delivery 61

Maloy, et al. Expires April 27, 2005 [Page 4]

Internet-Draft TIPC October 2004

3.9.6 Congestion Control 61
3.10 Fault Handling . 61
3.10.1 Fault Avoidance 62
3.10.2 Fault Detection 63
3.10.3 Fault Recovery 63
3.10.4 Overload Protection 63

4. TIPC Packet Format . 65
4.1 TIPC Payload Message Header 65
4.1.1 Payload Message Header Format 65
4.1.2 Payload Message Header Field Descriptions 66
4.1.3 Payload Message Header Size 70

4.2 TIPC Internal Header 71
4.2.1 Internal Message Header Format 71
4.2.2 Internal Message Header Fields Description 72

4.3 Message Users . 76
4.3.1 Broadcast Protocol 76
4.3.2 Message Bundler Protocol 77
4.3.3 Link State Maintenance Protocol 77
4.3.4 Connection Manager 78
4.3.5 Routing Table Update Protocol 79
4.3.6 Link Changeover Protocol 80
4.3.7 Name Table Update Protocol 80
4.3.8 Message Fragmentation Protocol 82
4.3.9 Neighbour Detection Protocol 82

4.4 Media Adapter Protocols 88
4.4.1 Ethernet Adaptation 88

5. Management . 89
5.1 Command Types . 89
5.2 Command Message Formats 89
5.2.1 Command Messages 89
5.2.2 Command Response Messages 90

5.3 Commands . 91
5.3.1 Group 1: Query Commands 91
5.3.2 Group 2: Manipulating Commands 103
5.3.3 Group 3: Subscriptions 107

6. Security . 110
7. References . 110

 Authors' Addresses . 111
 Intellectual Property and Copyright Statements 113

Maloy, et al. Expires April 27, 2005 [Page 5]

Internet-Draft TIPC October 2004

1. Introduction

 This section explains the rationale behind the development of the
 Telecom Inter Process Communication (TIPC) protocol. It also gives a
 brief introduction to the services provided by this protocol, as well
 as the basic concepts needed to understand the further description of
 the protocol in this document.

1.1 Motivation

 There are no standard protocols available today that fully satisfy
 the special needs of application programs working within highly
 available, dynamic cluster environments. Clusters may grow or shrink
 by orders of magnitude, having member nodes crashing and restarting,
 having routers failing and replaced, having functionality moved
 around due to load balancing considerations, etc. All this must be
 possible to handle without significant disturbances of the service
 offered by the cluster. In order to minimize the effort by the
 application programmers to deal with such situations, and to maximize
 the chance that they are handled in a correct and optimal way, the
 cluster internal communication service should provide special support
 helping the applications to adapt to changes in the cluster. It
 should also, when possible, leverage the special conditions present
 within cluster environments to present a more efficient and more
 fault-tolerant communication service than more general protocols are
 capable of. This is the purpose of TIPC.

 Version 1 of TIPC has been widely deployed in customer networks.
 This document describes version 2 of TIPC. An open source
 implementation of version 2 is available at [TIPC]

1.1.1 Existing Protocols

 TCP [RFC793] has the advantage of being ubiquitous, stable, and
 wellknown by most programmers. Its most significant shortcomings in
 a real-time cluster environment are the following:
 o It lacks any notion of functional addressing and addressing
 transparency. Mechanisms exist (DNS, CORBA Naming Service) for
 transparent and dynamic lookup of the correct IP-adress of a
 destination, but those are in general too static and expensive to
 use.
 o TCP has non-optimal performance, especially for intra-node
 communication and for short messages in general. For intra-node
 communication there are other and more efficient mechanisms
 available, at least on Unix, but then the location of the
 destination process has to be assumed, and can not be changed. It
 is desirable to have a protocol working efficiently for both
 intra-node and inter-node messaging, without forcing the user to

https://datatracker.ietf.org/doc/html/rfc793

Maloy, et al. Expires April 27, 2005 [Page 6]

Internet-Draft TIPC October 2004

 distinguish between these cases in his code.
 o The rather heavy connection setup/shutdown scheme of TCP is a
 disadvantage in a dynamic environment. The minimum number of
 packets exchanged for even the shortest TCP transaction is nine
 (SYN, SYNACK etc.), while with TIPC this can be reduced to two, or
 even to one if connectionless mode is used.
 o The connection-oriented nature of TCP makes it impossible to
 support true multicast.

 SCTP [RFC2960] is message oriented, it provides some level of user
 connection supervision, message bundling, loss-free changeover, and a
 few more features that may make it more suitable than TCP as an
 intra-cluster protocol. Otherwise, it has all the drawbacks of TCP
 already listed above.

 Apart from these weaknesses, neither TCP nor SCTP provide any
 topology information/subscription service, something that has proven
 very useful both for applications and for management functionality
 operating within cluster environments.

 Both TCP and SCTP are general purpose protocols, in the sense that
 they can be used safely over the Internet as well as within a closed
 cluster. This virtual advantage is also their major weakness: they
 require funtionality and header space to deal with situations that
 will never happen, or only infrequently, within clusters.

1.1.2 Assumptions

 TIPC [TIPC] has been designed based on the following assumptions,
 empirically known to be valid within most clusters.
 o Most messages cross only one direct hop.
 o Transfer time for most messages is short.
 o Most messages are passed over intra-cluster connections.
 o Packet loss rate is normally low; retransmission is infrequent.
 o Available bandwidth and memory volume is normally high.
 o For all relevant bearers packets are check-summed by hardware.
 o The number of inter-communicating nodes is relatively static and
 limited at any moment in time.
 o Security is a less crucial issue in closed clusters than on the
 Internet.

 Because of the above one can use a simple, traffic-driven, fixed-size
 sliding window protocol located at the signalling link level, rather
 than a timer-driven transport level protocol. This in turn gives a
 lot of other advantages, such as earlier release of transmission
 buffers, earlier packet loss detection and retransmission, earlier
 detection of node unavailability, only to mention some. Of course,
 situations with long transfer delays, high loss rates, long messages,

https://datatracker.ietf.org/doc/html/rfc2960

Maloy, et al. Expires April 27, 2005 [Page 7]

Internet-Draft TIPC October 2004

 security issues, etc. must be dealt with as well, but rather from
 the viewpoint of being exceptions than as the general rule.

1.2 Architectural View

 TIPC should be seen as a layer between the TIPC user, the ForCES
 protocol, and a packet transport service such as Ethernet, ATM,
 DCCP, TCP, or SCTP. The latter are denoted by the generic term
 "bearer service" or just "bearer" throughout this document.

 TIPC provides reliable transfer of user messages between TIPC users,
 or more specifically between two TIPC ports, which are the endpoints
 of all TIPC communication. A TIPC user normally means a user
 process, but may also be a kernel-level function or a driver, for
 which a specific interface has been defined.

 Described by standard terminology TIPC spans the level of transport,
 network, and signalling link layers, although this does not inhibit
 it from using another transport level protocol as bearer, so that
 e.g. an SCTP association may serve as bearer for a TIPC signalling
 link.

 ------------- -------------
 | ForCES/PL | | ForCES/PL |
 | Layer | | Layer |
 |-------------| |-------------|
 | | | |
 | TIPC/TML |TIPC address TIPC address| TIPC/TML |
 | | | |
 |-------------| |-------------|
 | L2 Bearer |Bearer address \/ Bearer address| L2 Bearer |
 | Service | /\ | Service |
 -------------| |-------------
 Node A |<--------- Bearer Transport ------->| Node B

 Figure 1: Architectural view of TIPC

Maloy, et al. Expires April 27, 2005 [Page 8]

Internet-Draft TIPC October 2004

1.3 Functional View

 Functionally TIPC can be described as consisting of several layers
 performing different tasks, as shown in Figure 2. It must be
 emphasized that this layering reflects a functional model, not the
 way TIPC should be (or actually is) implemented.

 TIPC User

 --
 ------------- ----------- -------------
 | Socket | | Port | | Other API
 | Adapter | | Adapter | | Adapters..
 ------------- ----------- -------------
 ===

 | Address | Address |
 | Subscription | Resolution |
 |--------------+--
 | Address Table| Connection Supervision |
 | Distribution | Routing/Link Selection |
 ---+-
 | | Neighbour Detection | | Node
 | Multicast | Link Establish/Supervision | ---------->
 | | Link Failover | Internal
 ---+-
 | Fragmentation/Defragmentation | |
 | | |
 --- |
 | Bundling | |
 | Congestion Control | |
 -----------------------------------+----- |
 | Sequence/Retransmission | | |
 | Control | | |
 -------+--------------+----- | |
 ========|==============|============|===========|========
 | | | |
 -----V----- -----V---- ----V----- --V-------
 -| Ethernet | | DCCP | | SCTP | | Mirrored |
 | | | | | | | | Memory |
 | ---------+- ---------- ---------- ----------
 -----------+

 Figure 2: Functional view of TIPC

Maloy, et al. Expires April 27, 2005 [Page 9]

Internet-Draft TIPC October 2004

1.3.1 API Adapters

 TIPC makes no assumptions about which APIs should be used, except
 that they must allow access to the TIPC services. It is possible to
 provide all functionality via a standard socket interface, an
 asynchronous port API, and any other form of dedicated interface that
 can be motivated. In these layers there is also support for
 transport-level congestion and overload protection control.

1.3.2 Address Subscription

 The service "Topology Information and Subscription" provides the
 ability to interrogate and if necessary subscribe for the
 availability of a functional or physical address. This helps the
 application to synchronize its startup, and may even serve as a
 simple, distributed event channel if used with care.

1.3.3 Address Distribution

 Functional addresses must be equally available within the whole
 cluster node. In order for a message to reach its destination they
 must also at some stage be translated into a physical address. For
 performance and fault tolerance reasons it is not acceptable to keep
 the necessary translation tables in one node, but rather TIPC must
 ensure that they are distributed to all nodes in the cluster, and
 that they are kept consistent at any time. This is the task of the
 Address Distribution Service, also called Name Distribution Service.

1.3.4 Address Translation

 The translation from a functional to a physical address is performed
 on-the-fly during message sending by this functional layer. It goes
 without saying that this step must use an efficient algorithm, but in
 many cases it can even be omitted altogether. When it makes sense,
 the sender may choose to use a physical address instead, e.g. a
 server responding to a connection setup request, or when
 communication is connection-oriented.

1.3.5 Multicast

 This layer, supported by the underlying three layers, provides a
 reliable intra-cluster broadcast service, typically defined as a
 semi-static multicast group over the underlying bearer. It also
 provides the same features as an ordinary unicast link, such as
 message fragmentation, message bundling, and congestion control.

Maloy, et al. Expires April 27, 2005 [Page 10]

Internet-Draft TIPC October 2004

1.3.6 Connection Supervision

 There are several mechanisms to ensure immediate detection and report
 of connection failure.

1.3.7 Routing and Link Selection

 This is the step of finding the correct destination node, and, if
 applicable, the correct next-hop router node, plus selecting the
 right link to use for reaching that node. If the destination node
 turns out to be the own node, the rest of the stack is omitted, and
 the message is sent directly to the receiving port.

1.3.8 Neighbour Detection

 When a node is started it must make the rest of the cluster aware of
 its existence, and itself learn the topology of the cluster. By
 default this is done by use of broadcast, but there are other methods
 available.

1.3.9 Link Establishment/Supervision

 Once a neighbouring node has been detected on a bearer, a signalling
 link is established towards it. The functional state of that link
 has to be supervised continuously, and proper action taken if it
 fails.

1.3.10 Link Failover

 TIPC on a node will establish one link per-destination node and
 functional bearer instance, typically one per-configured ethernet
 interface. Normally these will run in parallel and share load
 equally, but special care has to be taken during the transition
 period when a link comes up or goes down, to ensure the guaranteed
 cardinality and sequentiality of the message delivery. This is done
 by this layer.

1.3.11 Fragmentation/Defragmentation

 When necessary TIPC fragments and reassembles messages that can not
 be contained within one MTU-size packet.

1.3.12 Bundling

 Whenever there is some kind of congestion situation, i.e. when a
 bearer or a link can not immediately send a packet as requested, TIPC
 starts to bundle messages into packets already waiting to be sent.
 When the congestion abates the waiting packets are sent immediately,

Maloy, et al. Expires April 27, 2005 [Page 11]

Internet-Draft TIPC October 2004

 and unbundled at the receiving node.

1.3.13 Congestion Control

 When a bearer instance becomes congested, e.g. it is unable to
 accept more outgoing packets, all links on that bearer are marked as
 congested, and no more messages are attempted to be sent over those
 links until the bearer opens up again for traffic. During this
 transition time messages are queued or bundled on the links, and then
 sent whenever the congestion has abated. A similar mechanism is used
 when the send window of a link becomes full, but affects only that
 particular link.

1.3.14 Sequence and Retransmission Control

 This layer ensures the cardinality and sequentiality of packets over
 a link.

1.3.15 Bearer Layer

 This layer adapts to some connectionless or connection-oriented
 transport service, providing the necessary information and services
 to enable the upper layers to perform their tasks.

1.4 Terminology

1.4.1 ForCES Terminolgy

 o ForCES Protocol: While there may be multiple protocols used within
 the overall ForCES architecture, the term "ForCES protocol" refers
 only to the protocol used at the Fp reference point in the ForCES
 Framework in RFC3746 [RFC3746]. This protocol does not apply to
 CE-to-CE communication, FE-to-FE communication, or to
 communication between FE and CE managers. Basically, the ForCES
 protocol works in a master-slave mode in which FEs are slaves and
 CEs are masters.
 o ForCES Protocol Layer (ForCES PL): A layer in ForCES protocol
 architecture that defines the ForCES protocol messages, the
 protocol state transfer scheme, as well as the ForCES protocol
 architecture itself (including requirements of ForCES TML (see
 below)). Specifications of ForCES PL are defined by this
 document.
 o ForCES Protocol Transport Mapping Layer (ForCES TML): A layer in
 ForCES protocol architecture that specifically addresses the
 protocol message transportation issues, such as how the protocol
 messages are mapped to different transport media (like TCP, IP,
 ATM, Ethernet, etc), and how to achieve and implement reliability,
 multicast, ordering, etc. This document defines an L2/Ethernet

https://datatracker.ietf.org/doc/html/rfc3746
https://datatracker.ietf.org/doc/html/rfc3746

Maloy, et al. Expires April 27, 2005 [Page 12]

Internet-Draft TIPC October 2004

 based ForCES TML.

1.4.2 TIPC Specific Terminolgy

 o Port: The endpoint of all user communication. On Unix it
 typically takes the form of a socket.
 o Zone: A "super-cluster" of clusters interconnected via TIPC.
 o Cluster: A part of a zone where all nodes are directly
 interconnected (fully meshed).
 o Node: A physical computer within a cluster, identified by a TIPC
 address.
 o System Node: A node having direct links to all other system nodes
 in the cluster, and a TIPC address defined within a certain range.
 When using the term 'node' in the remainder of this document we
 normally mean 'system node',unless the context makes a different
 interpretation obvious.
 o Secondary Node: A node identified by a TIPC address within a
 certain range, and potentially having limited physical
 connectivity to the rest of the cluster. Secondary nodes can
 communicate with all system nodes in the cluster, and vice versa,
 but the messages may have to pass via a system node acting as
 router. Secondary nodes can not communicate with each other.
 o Link: A signalling link connecting two nodes, performing tasks
 such as message transfer, sequence ordering, retransmission etc.
 A node pair may be interconnected by 1 or 2 parallel links, in
 load sharing or active/standby configuration.
 o Bearer: A generic term for an instance of a physical or logical
 transport media, such as Ethernet, ATM/AAL or DCCP.
 o Network Address: A TIPC internal node identifier. It is in
 reality a 32 bit integer, subdivided into three fields (8/12/12),
 representing zone, cluster and node number respectively. Normally
 depicted as <Z.C.N>.
 o Network Identity: A TIPC internal identifier, used to keep
 different TIPC networks separated from each other, e.g. on a LAN
 in a lab environment.
 o Location transparency, sometimes called addressing tranparency, is
 the ability to let processes communicate within a cluster without
 either of them knowing the physical location of their peer.
 o Port Name: (or just Name) A persistent functional address
 identifying a port within a zone. A port may move between nodes
 while retaining its name. For load sharing and redundancy
 purposes several ports may bind to the same name.
 o Port Identity: A volatile address identifying a unique physical
 port within a zone. Once a physical port is deleted its identity
 will not be reused for a very long time.
 o Connection: A logical channel for passing messages between two
 ports. Once a connection is established no address need be
 indicated when sending a message from any of the endpoints. A

Maloy, et al. Expires April 27, 2005 [Page 13]

Internet-Draft TIPC October 2004

 connection also implies automatic supervision of the endpoints'
 existence and state.
 o Message Bundling: The act of bundling several messages into one
 bearer level packet, typically an Ethernet frame. TIPC bundles
 messages e.g. during media congestion.
 o Message Fragmentation: Dividing a long message into several
 bearer-level packets, and reassembling the fragments at the
 receiving end.
 o Message Forwarding: Ability to pass a received message on to a new
 destination port while pretending that the original sender port is
 the original sender.
 o Link Failover: Moving all traffic from a failing link to the
 remaining link, while retaining original sequence order and
 cardinality.
 o Naming Table: A TIPC internal table which keeps track of the
 mapping between port names and corresponding port identities. It
 performs an on-the-fly translation from the one to the other
 during the message transfer phase.
 o Message: The unit of data delivered from one user to another, i.e.
 between ports.
 o Packet: The unit of data sent over a bearer. It may contain one
 or more complete TIPC messages, as well as fragments of a message.
 o Broadcast: The notion of sending a copy of the same message to all
 other nodes in the cluster. Note that what is considered a
 broadcast from the TIPC viewpoint typically is mapped onto a
 multicast at the bearer (Ethernet or DCCP) level.
 o Multicast: Sending a copy of the same message to muliple receivers
 by one user call. In TIPC multicasts may be transferred both by
 broadcast and unicast between nodes, dependent of the number of
 identified receivers and the capabilities of the bearer layer.
 o Unicast: Sending a message to one particular destination, i.e.
 over a TIPC link.
 o Domain: A TIPC network addess designating a part of a TIPC
 network. E.g., <Z.C.N> means the specific node with that address,
 <Z.C.0> any node within the specified cluster, and <Z.0.0> any
 node within the specified zone. <0.0.0> means any node, anywhere
 within the network, except when it is used as Lookup Domain.
 o Scope: A domain around a given node, as seen from that node. E.g.
 <own_zone.own_cluster.own_node> or <own_zone.0.0>.

1.5 Abbreviations

 o MAC - Message Authentication Code [RFC2104]
 o MTU - Maximum Transmission Unit
 o API - Application Programming Interface
 o RTT - Round Trip Time, the elapsed time from the moment a
 message is sent to a destination to the moment it arrives back to
 the sender, provided the message is immediately bounced back from

https://datatracker.ietf.org/doc/html/rfc2104

Maloy, et al. Expires April 27, 2005 [Page 14]

Internet-Draft TIPC October 2004

 the sender. Typically on the order of 100 usecs,
 process-to-process, between 2 Ghz CPUs via a 100 Mbps Ethernet
 switch.

Maloy, et al. Expires April 27, 2005 [Page 15]

Internet-Draft TIPC October 2004

2. Mapping ForCES/PL to TIPC/TML

2.1 Fulfilment of TML Requirements

 o Reliability: TIPC is a protocol guaranteeing sequential,
 loss-free, non-duplicated delivery of checksummed messages, as
 described in 3.7.3. Whenever needed, each individual socket can
 be set to be "unreliable", meaning that all messages sent from
 that socket has the "drop"-bit (see 4.1.2) set.
 o Security: For now, TIPC can only guarantee message and endpoint
 authenticity for closed networks, e.g. a trusted LAN or bus.
 Since no router can yet forward TIPC/Ethernet packets it is
 impossible to inject spoofed packets into such a network. How
 this should be handled when the nodes connected to the LAN or bus
 can not be trusted remains TBD. The same is valid for message
 encryption.
 o Congestion Control: TIPC provides three levels of congestion
 control, as described in in sections 3.5.5,3.7.6,3.7.7 and 3.9.6.
 The ForCES PL may receive indication of destination socket or node
 congestion when setting up a connection. For established
 connections, socket congestion is handled transparently by the
 TIPC connection flow control scheme, while node congestion will
 result in connection abortion. TIPC will also inform the PL layer
 about the reason for any connection abortion, such as node
 overload, node crash, or process crash. When a connection, is
 aborted, the indication will be given to the PL immediately. As
 connections require very few system resources, in particular
 regarding supervision timers, CE-FE connections can normally be
 established directly process to process, with no restraints on
 number of parallel connections. Connections dedicated to traffic
 data transfer should be set to "non-reliable" in the FE-CE
 direction, to make it possible to fence off DoS attacks, while the
 CE-FE direction, as well as both directions of control data
 connections, should be established as "reliable".
 o Uni/multi/broadcast: TIPC provides functional multicast, and
 broadcast as a special case of that, to the PL layer. This
 function takes advantage of any broadcast transport facility in
 the bearer, such as Ethernet, and will use replicated unicast if
 this feature is missing, as with TCP. Furtheremore, it is
 configurable when L2 broadcast should be used, so that multicasts
 identified to have only a few destination nodes, as well as ditto
 retransmissions, in reality may be sent as replicated unicast.
 o Timeliness: Messages are delivered without any delay whatsoever
 over L2 networks. With Ethernet this will in practice mean a
 delivery time, process-to-process, in the order of 100
 microseconds of a typical one-packet message. TIPC does not allow
 obsoleting messages.

Maloy, et al. Expires April 27, 2005 [Page 16]

Internet-Draft TIPC October 2004

 o HA considerations: L2 link failure detection and failover is
 handled transparently by TIPC, and does not affect the PL layer.
 If there is a complete communication failure between two nodes,
 the PL layer will be informed. Any non-delivered messages will be
 returned to the sending PL, along with the failure reason, and it
 is up to the PL to handle such a situation as intelligently as
 possible.
 o Encapsulations: The TIPC message formats are defined in section 4
 of this document. There is no particular encapsulation
 distinguishing the PL layer from other users.
 o TIPC provides four message importance priorities, instead of
 eight, as required in [ForCES]. However, the rationale for
 requiring as much as eigth levels seems weak; extensive experience
 from use of TIPC indicates that four levels is perfectly adequate.
 If it is decided that the ForCES PL must have eight levels, those
 will have to be mapped down 2-to-1 to the TIPC priorities.

2.2 Address Mapping

 [ForCES] decribes two address levels, the node level (CE/FE identity
 and multicast addresses), and the LFB level (type/instance tuple).
 These can easily be mapped down to the TIPC address concept of Port
 Name and Port Name Sequence. The following example illustrates such
 a mapping:

Maloy, et al. Expires April 27, 2005 [Page 17]

Internet-Draft TIPC October 2004

 ---------------- ------------------
 | CE 7 | | CE 8 |
 | | | | | tml_bind(type=RSVP,
 | ---------- | | --------- | | inst=77)
 | | | | | | | | |
 | | RSVP,66 | | | |RSVP,77 | | --v------TML API
 | | | | | | | | |
 | | | | | | | | | bind(type=RSVP,
 | ---------- | | --------- | | inst=77)
 | | | | |
 ---------------- ------------------ --v------TIPC API

 --^------TIPC API
 ---------------- ------------------ |
 | FE 17 | | FE 18 | | bind(type=Meter,
 | | | | | inst=44)
 | | | | |
 | ---------- | | --------- | --^------TML API
 | | | | | | | | |
 | | | | | | | | |
 | | Shaper,33| | | |Meter,44 | | |tml_bind(type=Meter,
 | | | | | | | | inst=44)
 | ---------- | | --------- |
 | | | |
 ---------------- ------------------

 Figure 3: ForCES/PL to TIPC/TML address mapping

 An LFB wanting to send a message to a block in a CE would use the
 following call:

Maloy, et al. Expires April 27, 2005 [Page 18]

Internet-Draft TIPC October 2004

 ---------------- ------------------
 | CE 7 | | CE 8 | | | | |
 | | | |
 | ---------- | | --------- |
 | | | | | | | |
 | | RSVP,66 | | | |RSVP,77 | |
 | | | | | | <-------
 | | | | | | | | |
 | ---------- | | --------- | |
 | | | | |
 ---------------- ------------------ |
 |
 --^------TIPC API
 ---------------- ------------------ |
 | FE 17 | | FE 18 | |sendto(type=RSVP,
 | | | | | inst=77,
 | | | | | node=8)
 | ---------- | | --------- | --^------TML API
 | | | | | | | | |
 | | | | | | | | |
 | | Shaper,33| | | |Meter,44 | | |tml_send(type=RSVP,
 | | | | | | | | inst=77,
 | ---------- | | --------- | CEID=8)
 | | | |
 ---------------- ------------------

 Figure 4: FE-CE messaging

 Note that unless we coordinate the instance numbers for a block
 across the whole cluster, the constructed addresses are not
 guaranteed unique. Such a coordination can be achieved either
 statically through configuration data, or dynamically through use of
 the TIPC topology subscription mechanism. But this is not a
 prerequisite for this model to work, since the the current version of
 ForCES/PL layer anyway assumes that the sender knows the identity of
 the destination node. However, the model becomes immensely more
 flexible if we can remove this assumption, and ensure that block
 addresses are cluster unique. The message sender in the example
 above would never need to indicate the CEID, and would never need to
 be updated in case the configuration changes, e.g. that RSVP number
 77 moves over to CE number 7.

 FE and CE Protocol Objects can be considered as just other LFB's and
 can connect to each other as in the next example.

Maloy, et al. Expires April 27, 2005 [Page 19]

Internet-Draft TIPC October 2004

 ---------------- ------------------
 | CE 7 | | CE 8 |
 | | | | | tml_bind(type=1,
 | ---------- | | --------- | | inst=1)
 | | | | | | | | |
 | | | | | |ProtoObj | | --v------TML API
 | | | | | | | | |
 | | | | | | | | | bind(type=1,
 | ---------- | | --------- | | inst=1)
 | | | | |
 ---------------- ------------------ --v------TIPC API

 --^------TIPC API
 ---------------- ------------------ |
 | FE 17 | | FE 18 | |connect(type=1,
 | | | | | inst=1,
 | | | | | node=8)
 | ---------- | | --------- | --^------TML API
 | | | | | | | | |
 | | | | | | | | |
 | | | | | |ProtoObj | | |tml_connect(type=1,
 | | | | | | | | inst=1,
 | ---------- | | --------- | CEID=8)
 | | | |
 ---------------- ------------------

 Figure 5: FE-CE Protocol Object connect

 Note that there is nothing stopping any LFB to establish its own
 connection to any block in a CE (or another FE). Given that TIPC
 connections don't need individual heartbeating this should not be a
 problem, but whether this is desirable or anticipated by the authors
 of [ForCES] remains unclear. Also note that FE/CE protocol objects
 don't need to start any heartbeating at all. If they want a node
 failure detection time lower than the TIPC default value, they only
 need to configure (dynamically) the corresponding TIPC links
 accordingly. Since TIPC does its heartbeating in driver mode,and
 also subscribes for low-level carrier failure detection, there is
 unlikely ForCES/PL can do this better.

Maloy, et al. Expires April 27, 2005 [Page 20]

Internet-Draft TIPC October 2004

 ---------------- ------------------
 | CE 7 | | CE 8 |
 | | | | | tml_mcast(type=MeterMC,
 | ---------- | | --------- | | mc_group=X)
 | | | | | | | | |
 | | | | | | RSPV | | --v------TML API
 | | | | | | | | |
 | | | | | | | | | mcast(type=MeterMC,
 | ---------- | | --------- | | lower=X,
 | | | | | upper=X)
 ---------------- ------------------ --v------TIPC API

 --^------TIPC API
 ---------------- ------------------ |
 | FE 17 | | FE 18 | |bind(type=MeterMC,
 | | | | | lower=X,
 | | | | | upper=X)
 | ---------- | | --------- | --^------TML API
 | | | | | | | | |
 | | | | | | | | |
 | |Meter,33 | | | |Meter,44 | | |tml_join(type=MeterMC,
 | | | | | | | | mc_group=X)
 | ---------- | | --------- |
 | | | |
 ---------------- ------------------

 Figure 6: CE-FE Multicast

 Multicast addresses are mapped to TIPC port name sequences according
 to the figure above. We have to assign a new type identity,"MeterMC"
 instead of "Meter" to avoid introducing a limitation: otherwise
 "ordinary" Meter instance numbers might collide with the value range
 of multicast addresses (see [ForCES]),and cause utter confusion. Of
 course, the binding of the multicast address can still be done to
 the same socket as the unicast address.

Maloy, et al. Expires April 27, 2005 [Page 21]

Internet-Draft TIPC October 2004

3. TIPC Features

3.1 Network Topology

 From a TIPC viewpoint the network is organized in a five-layer
 structure:

 -- ----------
Zone <1>		Zone <2>										
----------------------- ----------------------												
	Cluster <1.1>		Cluster <1.2>									
	-------		------- -------									
		Node				Node +--+ Node						
		<1.1.1>	-------			<1.2.1>		<1.2.2>				
		+---+										
	---+---	Node			--+---- -------							
			<1.1.3>									
	---+---				--+--							
		+---+				Seco.						
		Node	-------			<1.2.						
		<1.1.2>				3333>						

----------------------- ----------------------												
 --- ----------

 Figure 7: TIPC network topology

3.1.1 Network

 The top level is the TIPC network as such. This is the ensemble of
 all zones interconnected via TIPC, i.e. the domain where any node
 can reach any other node by using a TIPC network address. The zones
 within such a network must be directly interconnected all-to-all via
 TIPC links, since there is no zone-level routing, i.e. a message can
 not pass from one zone to another via an intermediate zone. Any
 number of links between two zones is permitted, and normally there
 will be more than one for redundancy reasons.

 It is possible to create distinct, isolated networks, even on the
 same LAN, reusing the same network addresses, by assigning each

Maloy, et al. Expires April 27, 2005 [Page 22]

Internet-Draft TIPC October 2004

 network a Network Identity. This identity is not an address, and
 only serves the purpose of isolating networks from each other.
 Networks with different identities can not communicate with each
 other via TIPC.

3.1.2 Zone

 The next level in the hierarchy is the zone. This is the largest
 scope of location transparency within a network, i.e. the domain
 where a programmer does not need to worry about network addresses.
 The maximum number of zones in a network is 255, but this may be
 implementation dependent, and should be configurable.

3.1.3 Cluster

 The third level is the cluster. Cluster nodes within a zone must be
 interconnected in a full mesh, but just as with zones, there is no
 need for fully meshed node links between clusters. The maximum
 number of clusters within a zone is 4095, but this should be made
 configurable in the actual implementation.

3.1.4 Node

 The fourth level is the individual system node, or just node. Nodes
 within a cluster must be interconnected all-to-all. There may be up
 to 2047 system nodes in a cluster.

3.1.5 Secondary Node

 The fifth level is the secondary node. Secondary nodes belong to a
 cluster, just like system nodes, and provide the same properties
 regarding location transparency and availability as system nodes.
 The difference is that secondary nodes don't need full physical
 connectivity to all other nodes in the cluster, -one link to one
 system node is sufficient, although there may be more for redundancy
 reasons.

 There may be up to 2047 secondary nodes in a cluster, the node part
 of their identities being within the range 2048-4095. In fact, from
 a TIPC viewpoint this special address is the only thing
 distinguishing a secondary node from a system node.

 TIPC does not allow secondary nodes to establish links directly to
 each other, since they are supposed to play a subordinate role in the
 system.

Maloy, et al. Expires April 27, 2005 [Page 23]

Internet-Draft TIPC October 2004

3.2 Addressing

3.2.1 Location Transparency

 TIPC provides two functional address types, Port Name and Port Name
 Sequence, to support location transparency, and two physical address
 types, Network Address and Port Identity, to be used when physical
 location knowledge is necessary for the user.

3.2.2 Network Address

 A physical entity within a network is identified internally by a TIPC
 Network Address. This address is a 32-bit integer, structured into
 three fields, zone (8 MSB), cluster, (12 bits), and node (12 LSB).
 The address is only filled in with as much information as is relevant
 for the entity concerned, e.g. a zone may be identified as
 0x03000000 (<3.0.0>), a cluster as 0x03001000 (<3.1.0>), and a node
 as 0x03001005 (<3.1.5>). Any of these formats is sufficient for the
 TIPC routing function to find a valid destination for a message.

3.2.3 Port Identity

 This address is produced internally by TIPC when a port is created,
 and is only valid as long as that physical instance of the port
 exists. It consists of two 32-bit integers. The first one is a
 random number with a period of 2^31-1, the second one is a fully
 qualified network address with the internal format as described
 earlier. A port identity may be used the same way as a port name,
 for connectionless communication or connection setup, as long as the
 user is aware of its limitations. The main advantage with using this
 address type over a port name is that it avoids the potentially
 expensive binding operation in the destination port, something which
 may be desirable for performance reasons.

3.2.4 Port Name

 A port name is a persistent address typically used for connectionless
 communication and for setting up connections. Binding a port name to
 a port roughly corresponds to binding a socket to a port number in
 TCP, except that the port name is unique and has validity for the
 whole publishing scope indicated in the bind operation, not only for
 a specific node. This means that no network address has to be given
 by the caller when setting up a connection, unless he explicitly
 wants to reach a certain node, cluster or zone.

 A port name consists of two 32-bits integers. The first integer is
 called the Name Type, and typically identifies a certain service type
 or functionality. The second integer is called the Name Instance,

Maloy, et al. Expires April 27, 2005 [Page 24]

Internet-Draft TIPC October 2004

 and is used as a key for accessing a certain instance of the
 requested service.

 The type/instance structure of a port name helps giving support for
 both service partitioning and service load sharing.

 When a port name is used as destination address for a message, it
 must be translated by TIPC to a port identity before it can reach it
 destination. This translation is performed on a node within the
 lookup scope indicated along with the port name.

3.2.5 Port Name Sequence

 To give further support for service partitioning TIPC even provides
 an address type called Port Name Sequence, or just Name Sequence.
 This is a three-integer structure defining a range of port names,
 i.e. a name type plus the lower limit of and the upper boundary of
 the range. By allowing a port to bind to a sequence, instead of just
 an individual port name, it is possible to partition the service's
 range of responsibility into sub-ranges, without having to create a
 vast number of ports to do so.

 There are very few limitations on how name sequences may be bound to
 ports. One may bind many different sequences, or many instances of
 the same sequence, to the same port, to different ports on the same
 node, or to different ports anywhere in the cluster or zone. The
 only restriction, in reality imposed by the implementation complexity
 it would involve, is that no partially overlapping sequences of the
 same name type may exist within the same publishing scope.

Maloy, et al. Expires April 27, 2005 [Page 25]

Internet-Draft TIPC October 2004

 | Partition B |
 | |
 O bind(type: 17 |
 ----------------- | lower:10 |
 | | | upper:19)|
 |send(type: 17 | ---------------
 | instance:7) O------+
 | | | ---------------
 | | | | Partition A |
 ----------------- | | |
 +-------->O bind(type: 17 |
 | lower:0 |
 | upper:9 |

 Figure 8: Functional addressing, using port name and port name
 sequence

 When a port name is used as a destination address it is never used
 alone, contrary to what is indicated in Figure 8. It has to be
 accompanied by a network address stating the scope and policy for the
 lookup of the port name. This will be described later.

3.2.6 Multicast Addressing

 The concept of functional addressing is also used to provide
 multicast functionality. If the sender of a message indicates a port
 name sequence instead of a port name, a replica of the message will
 be sent to all ports bound to a name sequence fully or partially
 overlapping with the sequence indicated.

Maloy, et al. Expires April 27, 2005 [Page 26]

Internet-Draft TIPC October 2004

 | Partition B |
 | |
 +-------->O bind(type: 17 |
 ----------------- | | lower:10 |
 | | | | upper:19)|
 |send(type: 17 | | ---------------
 | lower:7 O------+
 | upper 13) | | ---------------
 | | | | Partition A |
 ----------------- | | |
 +-------->O bind(type: 17 |
 | lower:0 |
 | upper:9 |

 Figure 9: Functional multicast, using port name sequence

 Only one replica of the message will be sent to each identified
 target port, even if it is bound to more than one overlapping name
 sequence.

 This function will whenever possible and considered advantageous make
 use of the reliable cluster broadcast service also supported by TIPC.

3.2.7 Publishing Scope

 The default visibility scope of a published (bound) port name is the
 local cluster. If the publication issuer wants to give it some other
 visibility he must indicate this explicitly when binding the port.
 The scopes available are:

 Value Meaning
 ----- -------
 1 Visibility within whole own zone
 2 Visibility within whole own cluster
 3 Visibility limited to own node

3.2.8 Lookup Policies

 When a port name is looked up in the TIPC internal naming table for
 translation to a port identity the following rules apply:

 If indicated lookup domain is <Z.C.N>, the lookup algorithm must
 choose a matching publication from that particular node. If nothing

Maloy, et al. Expires April 27, 2005 [Page 27]

Internet-Draft TIPC October 2004

 is found on the given node, it must give up and reject the request,
 even if other matching publications exist within the zone.

 If the lookup domain is <Z.C.0>, the algorithm must select
 round-robin among all matching publications within that cluster,
 treating node local publications no different than the others. If
 nothing is found within the given cluster, it must give up and reject
 the request, even if other matching publications exist within the
 zone.

 If the lookup domain is <Z.0.0>, the algorithm must select
 round-robin among all concerned publications within that zone,
 treating node or cluster local publications no different than the
 others. If nothing is found, it must give up and reject the request.

 A lookup domain of <0.0.0> means that the nearest found publication
 must be selected. First a lookup with scope <own zone.own
 cluster.own node> is attempted. If that fails, a lookup with the
 scope <own zone.own cluster.0> is tried, and finally, if that fails,
 a lookup with the scope <own zone.0.0>. If that fails the request
 must be rejected.

 Round-robin based lookup means that the algorithm must select equally
 among all the matching publications within the given scope. In
 practice this means stepping the root pointer to a circular list
 referring to those publications between each lookup.

3.2.9 Name Translation

 Recommended Algorithm.

3.2.10 Distributed Naming Table

 The TIPC internal naming table is used for translation from a port
 name to a corresponding port identity, or from a port name sequence
 to a corresponding set of port identities. In order to achieve
 acceptable translation times and fault tolerance, an instance of this
 table must exist on each node. Each instance of the table must be
 kept consistent with all other instances within the same zone, and
 there must be no unnecessary delays in the update the neighbouring
 table instances when a port name sequence is published or withdrawn.
 Inconsistencies are only tolerated for the short timespan it takes
 for update messages to reach the neigbouring nodes, or for the time
 it takes for a node to detect that a neighbouring node has
 disappeared.

 When a node establishes contact with a new node in the cluster or the
 zone, it must immediately send out the necessary number of

Maloy, et al. Expires April 27, 2005 [Page 28]

Internet-Draft TIPC October 2004

 NAME_DISTRIBUTOR/ PUBLICATION messages to that node, in order to let
 it update its local naming table instance.

 When a node looses contact with another node, it must immediately
 clean its naming table from all entries pertaining to that node.

 When a port name sequence is published on a node, TIPC must
 immediately send out a NAME_DISTRIBUTOR/PUBLICATION message to all
 nodes within the publishing scope, in order to have them update their
 tables.

 When a port name sequence is withdrawn on a node, TIPC must
 immediately send out a NAME_DISTRIBUTOR/WITHDRAWAL message to all
 nodes within the publishing scope, in order to have them remove the
 corresponding entry from their tables.

 Temporary table inconsistencies may occur, despite the above, and are
 handled as follows: If a successful lookup on one node leads to a
 non-existing port on another node, the lookup is repeated on that
 node. If this lookup succeeds, but again leads to a non-existing
 port, another lookup is done. This procedure can be repeated up to
 six times before giving up and rejecting the message.

3.3 Topology Services

 TIPC provides a mechanism for inquiring about or subscribing for the
 availability of port names or ranges of port names. The service is
 built on and uses the contents of the node local instance of the
 naming table.

3.3.1 Inquiry

Maloy, et al. Expires April 27, 2005 [Page 29]

Internet-Draft TIPC October 2004

 | Partition B |
 | |
 O bind(type: 17 |
 -------------------------- | lower:10 |
 | | | upper:19)|
 |is_published(type: 17 | ---------------
 | instance: 7, O<-----+
 | timeout: 0) | | ---------------
 | | | | Partition A |
 -------------------------- | | |
 +---------O bind(type: 17 |
 | lower:0 |
 | upper:9 |

 Figure 11: Inquiry about existence of a port name

 Inquiries are synchronous requests to TIPC about a port name. A
 timer value in msecs may be given along with the request, indicating
 that the call should not return until the port name has been
 published, or until the timer expires, whichever comes first,
 indicated in the return value of the call. A timeout of zero
 instructs the call to return immediately, a timeout of 0xffffffff
 indicates that the call should not return until the port name
 requested has been published.

3.3.2 Subscriptions

Maloy, et al. Expires April 27, 2005 [Page 30]

Internet-Draft TIPC October 2004

 | Partition B |
 <-17,10,13| |
 +---------O bind(type: 17 |
 ----------------------- | | lower:10 |
 | | | | upper:19)|
 |subscribe(type: 17 | | ---------------
 | lower: 7, O<-----+
 | upper: 13, | | ---------------
 | timeout:100) | | | Partition A |
 ----------------------- | | |
 +---------O bind(type: 17 |
 <-17,7,9 | lower:0 |
 | upper:9 |

 Figure 12: Subscription about existence of sequences within a range

 A subscription is a non-blocking request to TIPC, telling it to
 indicate when a name sequence within the requested range is published
 or withdrawn. Such events will be issued repeatedly for any changes
 pertaining to the range until the given timer expires. The timer
 values are interpreted the same way as for inquiries. Subscription
 for a particular port name is equivalent to indicating the same value
 in "lower" and "upper".

 Each event will indicate the overlapping part between the requested
 range and the actual published range, as it is also shown in the
 figure above.

3.3.3 Functional Topology

 The functional topology of the cluster can be continuously kept track
 of by subscribing for the relevant port names or sequences.

3.3.4 Physical Topology

Maloy, et al. Expires April 27, 2005 [Page 31]

Internet-Draft TIPC October 2004

 | Node <1.1.3> |
 | |
 +-----O bind(type: 0, |
 ------------------------------ | | lower:0x01001003,|
 | | | | upper:0x01001003)|
 |subscribe(type: 0, | | -----------------------
 | lower: 0, O<---+
 | upper: 0x01001000, | | -----------------------
 | timeout:0xffffffff) | | | Node <1.1.7> |
 ------------------------------ | | |
 +-----O bind(type: 0, |
 | lower:0x01001007,|
 | upper:0x01001007)|

 Figure 13: Subscription for physical topology of cluster <1.1>

 The physical cluster topology can be considered a special case of the
 functional topology, and can be kept track of in the same way.
 Hence, to subscribe for the availability/disappearance of a specific
 node, a group of nodes, or a remote cluster, the user specifies a
 dedicated port name sequence, representing this "function". In this
 particular case, TIPC will itself publish the corresponding port name
 as soon as it discovers or looses contact with a node. The special
 name type 0 (zero) is used for this purpose.

3.4 Ports

3.4.1 Port State Machine

Maloy, et al. Expires April 27, 2005 [Page 32]

Internet-Draft TIPC October 2004

 --------------- -----------------
 create| | connect | |
 ----->| |---------->| CONNECTED/ |
 delete| READY |<----------| CONFIRMED |
 <-----| | disconnect| |
 | |<--+ | |
 --A--------+--- | --+----A------A--
 | | | time| pro| probe|
 withdraw publish | out | be | reply|
 | | disconnect | | |
 --+--------V--- | --V----+------+--
 | | +-------| |
 | | | CONNECTED/ |
 | BOUND | | PROBING |
 | | | |
 | | | |
 --------------- -----------------

 Figure 14: Port FSM for non-error events

 The port state machine is relatively simple for normal, non-error
 events, as illustrated in Figure 14.

 A port has three main STATES, as described below:

 READY: The port is in its basic state, and is ready to receive any
 normal state event.
 BOUND: The port has been bound to (published with) one or more port
 name sequences.
 CONNECTED: The port has been connected to some other port in the
 network, i.e. it has stored the identity of that port, and a flag
 "connected" is set in the port.

 The CONNECTED state has two sub-states, reflecting its supervision of
 the connected peer:

 CONNECTED/CONFIRMED: The port has had confirmed that the other port
 exists, through reception a payload message or CONN_MANAGER
 message from the peer within the last timer interval.
 CONNECTED/PROBING: During the last timer expiration, it sent out a
 CONN_PROBE message to the peer, and now awaits the unconditional
 CONN_PROBE_REPLY message from the other end, or any data or
 CONN_PROBE message from the peer that can confirm the correct
 state of that port. See the detailed description of how this is
 handled later in this section.

 The following EVENTS may occur to a port:

Maloy, et al. Expires April 27, 2005 [Page 33]

Internet-Draft TIPC October 2004

 CREATE: Trivial
 PUBLISH: Bind a port name sequence to a port.
 WITHDRAW: Unbind the relation between a port name sequence
 and a port.
 CONNECT: Connect the port to another port.
 DISCONNECT: Disconnect the port from the port it is connected
 to.
 TIMEOUT: Check if a sent CONN_PROBE was reponded to. Order
 new timer.
 PROBE: Receive a CONN_PROBE from peer.
 PROBE_REPLY: Receive a CONN_PROBE_REPLY from peer.
 SEND_CONN: Send a data message of type CONN_MSG.
 SEND_CONNLESS: Send a data message of type NAMED_MSG or
 DIRECT_MSG.
 REC_CONN: Receive data message of type CONN_MSG.
 REC_DIRECT: Receive a DIRECT_MSG data message.
 REC_NAMED: Receive a NAMED_MSG data message.
 REC_CONN_ERR: Receive CONN_MSG data message with error code.
 REC_CLESS_ERR: Receive DIRECT_MSG or NAMED_MSG with error code.
 LOST_NODE: Receive indication that contact with peer node
 lost.
 DELETE: Not so trivial.

 A port may also take the following ACTIONS, depending on event:

 SEND_PRB: Send a CONN_PROBE to peer.
 SEND_REPLY: Send a CONN_PROBE_REPLY to peer.
 ABORT_REM: Send one DATA_NON_REJECTABLE/CONN_MSG/
 NO_REMOTE_PORT to peer.
 ABORT_SELF: Send one DATA_NON_REJECTABLE/CONN_MSG to self,
 with the appropriate error code, NO_REMOTE_NODE
 or NO_REMOTE_PORT.
 DISCONNECT: Disconnect.
 WITHDRAW: Withdraw all publications pertaining to this port.
 REJ_CALL: Reject user call with interface specific error
 code.
 REJ_MSG: Reject message with error code NO_REMOTE_PORT.
 DROP: Drop message silently.

 The state machine in Figure 14 only covers the normal events and
 state transitions in a port. The following table gives a more
 comprehensive picture. If there is no arrow "->" in a field it means
 that the port remains it its current state.

Maloy, et al. Expires April 27, 2005 [Page 34]

Internet-Draft TIPC October 2004

 Event: | READY | BOUND | CONNECTED
 | | | CONFIRMED | PROBING
 ---------------|-----------+----------+--------------+---------------
 CREATE: | ->! | - | - | -
 ---------------|-----------+----------+--------------+---------------
 PUBLISH: | ->BOUND | | REJ_CALL
 ---------------|-----------+----------+--------------+---------------
 WITHDRAW: | REJ_CALL | ->READY | REJ_CALL
 ---------------|-----------+----------+--------------+---------------
 CONNECT: |->CONN/CONF| REJ_CALL | REJ_CALL
 ---------------|-----------+----------+--------------+---------------
 DISCONNECT: | REJ_CALL | REJ_CALL | -> READY
 ---------------|-----------+----------+--------------+---------------
 TIMEOUT: | - | - | SEND_PRB -> | ABORT_SELF ->
 | | | PROBING | READY
 ---------------|-----------+----------+--------------+---------------
 PROBE: |SEND_REPLY | ABORT | SEND_REPLY -> CONFIRMED
 ---------------|-----------+----------+--------------+---------------
 PROBE_REPLY: | ABORT_REM | ABORT | | ->CONFIRMED
 ---------------|-----------+----------+--------------+---------------
 SEND_CONN: | REJ_CALL | REJ_CALL | |
 ---------------|-----------+----------+--------------+---------------
 SEND_CONNLESS: | | ->READY | REJ_CALL
 ---------------|-----------+----------+--------------+---------------
 REC_CONN: |->CONN/CONF|ABORT_REM | | ->CONFIRMED
 ---------------|-----------+----------+--------------+---------------
 REC_DIRECT: | | | REJ_MSG
 ---------------|-----------+----------+--------------+---------------
 REC_NAMED: | | | REJ_MSG
 ---------------|-----------+----------+--------------+---------------
 REC_CONN_ERR: | DROP | DROP | DISCONNECT -> READY
 ---------------|-----------+----------+--------------+---------------
 LOST_NODE: | - | - | ABORT_SELF -> READY
 ---------------|-----------+----------+--------------+---------------
 REC_CLESS_ERR: | | | DROP
 ---------------|-----------+----------+--------------+---------------
 DELETE: | ->0 | WITHDRAW | ABORT_REM
 ---------------|-----------+----------+--------------+---------------

 Figure 17: Complete port FSM

 The reason for having a background probing of connections is
 explained in Section 3.5. The recommended timer interval for this
 probing is 3600 s, making it probable that the timer will never have
 to expire.

Maloy, et al. Expires April 27, 2005 [Page 35]

Internet-Draft TIPC October 2004

3.5 Connections

 User Connections must be kept as lightweight as possible because of
 their potential huge number, and because it must be possible to
 establish and shut down thousands of connections per second on a
 node.

3.5.1 Connection Setup

 How a connection is established and terminated is not defined by the
 protocol, only how they are supervised, and if necessary, aborted.
 Instead, this is left to the end user to define, or to the actual
 implementation of the user API-adapter. The following figures show
 two examples of this.

 ------------------- -------------------
 | Client | | Server | |
 | | | |
 | (3)create(cport) | | (1)create(suport) |
 | (4)send(type:17, |------------->0 (2)bind(type: 17, |
 | inst: 7) 0<------+ |\ lower:0 |
 | (8)lconnect(sport)| | | \ upper:9) |
 | | | | / |
 | | | |/(5)create(sport) |
 | | +------0 (6)lconnect(cport)|
 | | | (7)send() |
 ------------------- -------------------

 Figure 18: Example of user defined establishment of a connection

 Figure 18 shows an example where the user himself defines how to set
 up the connection. In this case, the client starts with sending one
 payload- carrying NAMED_MSG message to the setup port (suport)(4).
 The setup server receives the message, and reads its contents and the
 client port (cport) identity. He then creates a new port (sport)(5),
 and connects it to the client port's identity(6). The lconnect()
 call is a purely node local operation in this case, and the
 connection is not fully established until the server has fulfilled
 the request and sent a response payload-carrying CONN_MSG message
 back to the client port(7). Upon reception of the response message
 the client reads the server port's identity and performs an
 lconnect() on it(8). This way, a connection has been established
 without sending a single protocol message.

Maloy, et al. Expires April 27, 2005 [Page 36]

Internet-Draft TIPC October 2004

 -------------------- -------------------
 | Client | | Server | |
 | | | (1)create(suport) |
 | (4)create(cport) | "SYN" | (2)bind(type: 17, |
 | (5)connect(type:17,|------------->0 lower:0 |
 | (9) inst: 7)0<------+ /| upper:9) |
 | | | / | (3)accept() |
 | | (7)| \ | (8) |
 | | | (6)\| |
 | | +------0 (9)recv() |
 | | "SYN" | |
 -------------------- -------------------

 Figure 19: TCP-style connection setup

 Figure 19 shows an example where the user API-adapter supports a
 TCP-style connection setup, using hidden protocol messages to fulfil
 the connection. The client starts with calling connect()(5),
 causing the API to send an empty NAMED_MSG message ("SYN" in TCP
 terminology) to the setup port. Upon reception, the API-adapter at
 the server side creates the server port, peforms a local
 lconnect()(6) on it towards the client port, and sends an empty
 CONN_MSG ("SYN") back to the client port (7). The accept() call in
 the server then returns, and the server can start waiting for
 messages (8). When the second SYN message arrives in the client,
 the API-adapter performs a node local lconnect() and lets the
 original connect() call return (9).

 Note the difference between this protocol and the real TCP connection
 setup protocol. In our case there is no need for SYN_ACK messages,
 because the transport media between the client and the server (the
 node-to-node link) is reliable.

 Also note from these examples that it is possible to retain full
 compatibility between these two very different ways of establishing a
 connection. Before the connection is established, a TCP-style client
 or server should interpret a payload message from a user-controlled
 counterpart as an implicit SYN, and perform an lconnect() before
 queueing the message for reading by the user. The other way around,
 a user-controlled client or server must perform an lconnect() when
 receiving the empty message from its TCP-style counterpart.

3.5.2 Connection Shutdown

Maloy, et al. Expires April 27, 2005 [Page 37]

Internet-Draft TIPC October 2004

 ------------------- -------------------
 | Client | | Server |
 | | | |
 | | | |
 | lclose() 0 0 lclose() |
 | | | |
 | | | |
 | | | |
 ------------------- -------------------

 Figure 20: Example of user defined shutdown of a connection

 Figure 20 shows the simplest possible user defined connection
 shutdown scheme. If it inherent in the user protocol when the
 connection should be closed, both parties will know the right moment
 to perform a "node local close" (lclose()) and no protocol messages
 need to be involved.

 -------------------- -------------------
 | Client | | Server |
 | | "FIN" | |
 | (1)close()0------------->0(2)close() |
 | | | |
 | | | |
 | | | |
 -------------------- -------------------

 Figure 21: TCP-style connection shutdown

 In Figure 21 a TCP-style connection close() is illustrated. This is
 simpler than the connection setup case, because the built-in
 connection abortion mechanism of TIPC can be used. When the client
 calls close() (1) TIPC must delete the client port. As will be
 described later, deleting a connected port has the effect that a
 DATA_NON_REJECTABLE/CONN_MSG ("FIN" in TCP terminology) with error
 code NO_REMOTE_PORT is sent to the other end. Reception of such a
 message means that TIPC at the receiving side must shut down the
 connection, and this must be done already before the server is
 notified. The server must then call close() (2), not to close the
 connection, but to delete the port. TIPC does not send any "FIN"
 this time, the server port is already disconnected, and the client
 port is anyway gone. If both endpoints call close() simultaneously,
 two "FIN" messages will cross each other, but at the reception they
 will have no effect, since there is no destination port, and they

Maloy, et al. Expires April 27, 2005 [Page 38]

Internet-Draft TIPC October 2004

 must be discarded by TIPC.

 Note even here the automatic compatibility with a user-defined peer
 and a TCP-style ditto: Any user, no matter the user API, must at any
 moment be ready to receive a "connection aborted" indication, and
 this is what in reality happens here.

3.5.3 Connection Abortion

 When a connected port receives an indication from the TIPC link layer
 that it has lost contact with its peer node, it must immediately
 disconnect itself and send an empty CONN_MSG/NO_REMOTE_NODE to its
 owner process.

 When a connected port is deleted without a preceding disconnect()
 call from the user it must immediately disconnect itself and send an
 empty CONN_MSG/NO_REMOTE_PORT to its peer port. This may happen when
 the owner process crashes, and the OS is reclaiming its resources.

 When a connected port receives a timeout call, and is still in
 CONNECTED/PROBING state since the previous timer expiration,it must
 immediately disconnect itself and send an empty
 CONN_MSG/NO_REMOTE_PORT to its owner process.

 When a connected port receives a rejected previously sent message, (a
 CONN_MSG with error code), it must immediately disconnect itself and
 deliver the message, with data contents, to its owner process.

 When a port participating in a multi-hop connection receives a
 CONN_MSG where the connection level sequence number does not fit, it
 must immediately disconnect itself, send an empty CONN_MSG/COMM_ERROR
 to its owner process, and another empty CONN_MSG/COMM_ERROR to its
 peer port.

 When a connected port receives a CONN_MSG from somebody else than its
 peer port, it must immediately send an empty CONN_MSG/NO_CONNECTION
 to the originating port.

 When TIPC in a node receives a CONN_MSG/TIPC_OK for which it finds no
 destination port, it must immediately send an empty
 CONN_MSG/NO_REMOTE_PORT back to the originating port.

 When a bound port receives a CONN_MSG from anybody,it must
 immediately send an empty CONN_MSG/NO_CONNECTION to the originating
 port.

Maloy, et al. Expires April 27, 2005 [Page 39]

Internet-Draft TIPC October 2004

3.5.4 Connection Supervision

 In almost all practical cases the mechanisms for resource cleanup
 after process failure, rejection of messages when no destination port
 is found, and supervision of peer nodes at the link level, is
 sufficient for immediate failure detection and abortion of
 connections.

 However, because of the non-specified connection setup procedure of
 TIPC, there exists cases when a connection may remain incomplete.
 This may happen if the client in a user-defined setup/shutdown scheme
 forgets to call lconnect() (see Figure 20), and then deletes itself,
 or if one of the parties fails to call lclose() (see Figure 21).
 These cases are considered very rare, and should normally have no
 serious consequenses for the availability of the system, so a slow
 background timer is judged sufficient to discover such situations.

 When a connection is established each port starts a timer, whose
 purpose is to check the status of the connection. It does this by
 regularly (typical configured interval is once an hour) sending a
 CONN_PROBE message to the peer port of the connection. The probe has
 two tasks; first, to inform that the sender is still alive and
 connected; second, to inquire about the state of the recipient.

 A CONN_PROBE or a CONN_PROBE_REPLY reply MUST be immediately
 responded to according to the following scheme:

Maloy, et al. Expires April 27, 2005 [Page 40]

Internet-Draft TIPC October 2004

	Received Message Type		
	-----------------+------------------		
	CONN_PROBE	CONN_PROBE_REPLY	
==============================	====================================		
	Multi-hop	DATA_NON_REJECTABLE+	
	seqno wrong	TIPC_COMM_ERROR	
	------------	-----------------+------------------	
	Connected Multi-hop		
	to sender seqno ok		
	port ------------		
	Single hop	CONN_PROBE_REPLY	No Response

	Not connected,		
Rece-	not bound,		
ving	------------------------	-----------------+------------------	
Port	Connected to		
State	other port	DATA_NON_REJECTABLE+	
	------------------------	TIPC_NOT_CONNECTED	
	Bound to		
	port name sequence		
	------------------------	------------------------------------	
	Recv. node available,	DATA_NON_REJECTABLE+	
	recv. port non-existent	TIPC_NO_REMOTE_PORT	
	------------------------	------------------------------------	
	Receiving node	DATA_NON_REJECTABLE+	
	unavailable	TIPC_NO_REMOTE_NODE	

 Figure 22: Response to probe/probe replies vs port state.

 If everything is well then the receiving port will answer with a
 probe reply message, and the probing port will go to rest for another
 interval. It is inherent in the protocol that one of the ports - the
 one connected last - normally will remain passive in this
 relationship. Each time its timer expires it will find that it has
 just received and replied to a probe, so it will never have any
 reason to explicitly send a probe itself.

 When an error is encountered, one or two empty CONN_MSG data are
 generated, one to indicate a connection abortion in the receiving
 port, if it exists, and one to do the same thing in the sending port.

 The state machine for a port during this message exchange is
 described in Section 3.5.

Maloy, et al. Expires April 27, 2005 [Page 41]

Internet-Draft TIPC October 2004

3.5.5 Flow Control

 The mechanism for end-to-end flow control at the connection level has
 as its primary purpose to stop a sending process from overrunning a
 slower receiving process. Other tasks, such as bearer, link,
 network, and node congestion control, are handled by other mechanisms
 in TIPC. Because of this, the algorithm can be kept very simple. It
 works as follows:
 1. The message sender (the API-adapter) keeps one counter, SENT_CNT,
 to count messsages he has sent, but which has not yet been
 acnkowledged. The counter is incremented for each sent message.
 2. The receiver counts the number of messages he delivers to the
 user, ignoring any messages pending in the process in-queue. For
 each N message, he sends back a CONN_MANAGER/ACK_MSG containing
 this number in its data part.
 3. When the sender receives the acknowledge message, he subtracts N
 from SENT_CNT, and stores the new value.
 4. When the sender wants to send a new message he must first check
 the value of SENT_CNT, and if this exceeds a certain limit, he
 must abstain from sending the message. A typical measure to take
 when this happens is to block the sending process until SENT_CNT
 is under the limit again, but this will be API-dependent.

 The recommended value for the send window N is at least 200 messages,
 and the limit for SENT should be at least 2*N.

3.5.6 Sequentiality Check

 Inter-cluster connection-based messages, and intra-cluster messages
 between cluster nodes and secondary nodes, may need to be routed via
 intermediate nodes if there is no direct link between the two. This
 implies a small, but not negligeable risk that messages may be lost
 or re-ordered. E.g. an intermediate node may crash, or it may have
 changed its routing table in the interval between the messages. A
 connection level sequence number is used to detect such problems, and
 this must be checked for each message received on the connection. If
 the sequence number does not fit in sequence, no attempts of
 re-sequencing should be done. The port discovering the sequence
 error must immediately abort the connection by sending one empty
 CONN_MSG/COMM_ERROR message to itself, and one to the peer port.

 The sequence number must not be checked on single-hop connections,
 where the link protocol guarantees that no such errors can occur.

 The first message sent on a connection has the sequence number 42.

Maloy, et al. Expires April 27, 2005 [Page 42]

Internet-Draft TIPC October 2004

3.6 Neighbour Detection

3.6.1 Link Requests

 At startup, or when otherwise told to, TIPC will send out Link
 Request messages to its neighbouring nodes, informing about its
 existence, and requesting to have a set of links set up from the
 destination domain towards itself. The structure of Link
 Configuration messages is described in Section 4.3.9.

 A node receiving a Link Request, first checks whether it belongs to
 the destination domain stated in the message, and if the Network
 Identity of the message is equal to its own. If that is not the
 case, it ignores the message.

 Otherwise, depending on the destination domain and the sender node
 address, message, the node goes through one of the following steps:
 o If the destination domain is exactly the own node, and if a link
 does not already exist, it creates a link to the sender node. A
 response is sent back to the sender node if the Response Expected
 field is set.
 o Otherwise, if the sender node belongs to the own cluster, and if a
 link does not already exist, it creates a link to the sender node.
 A response is sent back to the sender node if the Response
 Expected field is set.
 o Otherwise, if the destination domain comprises, but is larger than
 the own node, and the sender node belongs to a remote cluster, the
 node initiates the Inter Cluster Link Setup algorithm.

3.6.2 Inter-Cluster Link Setup

3.6.2.1 Link Entropy

 The inter-cluster link setup algorithm has the goal of setting up a
 specified number of links from each node in one cluster, to a
 correponding number of different nodes in another cluster. Dual
 links between a node pair are not permitted. The algorithm takes all
 measures necessary to ensure that exactly the requested number of
 links are created and maintained at any time; nothing less, nothing
 more. We call this the Link Entropy Check Algorithm.

 The algorithm also ensures that all created links are distributed
 smoothly over the two clusters. The following applies:
 o If two clusters are of equal size, each of the nodes in the two
 clusters will have exactly the number of links specified.
 o If two clusters are of different size, all nodes in the bigger
 cluster will have exactly the specified number of links. Some
 nodes in the smaller cluster will have more links than specified,

Maloy, et al. Expires April 27, 2005 [Page 43]

Internet-Draft TIPC October 2004

 to fulfil the requirement for the bigger one. These extra links
 will be smoothly distributed, so that no node in the smaller
 cluster will have more than one link more than any of the others.
 o If a node is added to the smaller cluster, some of the existing
 extra links will be moved to the new node, to keep the optimal
 distribution.
 o If a node is added to a bigger or equal-sized cluster, its new
 links will be established to nodes in the other clusters having
 the fewer links.
 o If a node disappears or is removed from a cluster, the connected
 nodes in the other re-establish links to some of the remaining
 nodes, in such a way that smooth distribution is maintained, and
 the nodes regains the specified number of links.
 o Whenever a new link is established beyond the specified link
 number for a node, it checks link entropy by sending a
 CHECK_LINK_COUNT message to all its peer nodes. If any of the
 receiving nodes finds it has more inter-cluster links than its
 specified number, it knows that the link to the message sender is
 redundant, and terminates it.

 The recommended specified number of inter-cluster links per-node is
 two.

3.6.2.2 Initiation of Setup

 The first inter cluster contact may be established in two ways:
 o A node is ordered through the management interface to send a Link
 Request to a specific node in the other cluster, hence creating a
 Pilot Link. This link request must have the Response Expected
 field set to non-zero.
 o Both clusters are within a bearer multicast/broadcast domain, e.g.
 the same LAN, and the neigbour detection broadcasts are configured
 to be accepted by foreign clusters, i.e. destination domain is
 <Z.0.0> or <0.0.0>. These link requests must have the Response
 Expected field set to non-zero. Possible redundant links created
 this way will be removed later through the link entropy check.

 Thereafter the following sequence of events follows:
 o When a first inter-cluster link comes up, all the other nodes in
 both clusters will immediately become aware of it. This is
 because of the distribution of ROUTE_ADDITION (see Section 3.8)
 messages from the establishing nodes.
 o Any node in a cluster becoming aware of the existence of a new
 cluster, immediately sends a GET_NODE_INFO message to the router
 node, in order to obtain the bearer level address (IP- or
 Ethernet) needed to reach the remote node.
 o When the bearer address is obtained, the nodes send a Link Request
 message to the identified remote node. This Link Request must be

Maloy, et al. Expires April 27, 2005 [Page 44]

Internet-Draft TIPC October 2004

 "open", i.e. both the node part of the destination domain field
 and the contents of the Response Expected field must be zero.
 When the romote node receive the request, it does not immediately
 establish a link, but follows a procedure described in the
 following section.
 o Until the first own inter-cluster link is established, each node
 repeatedly, but using the same exponential backoff algorithm as
 for broadcasted Link Requests (see description later), send out
 new Link Requests to the other cluster. Duplicates of such
 requests are detected and dropped, as will be described later.

 As can be seen from this description, and from the following
 sections, the scenario for setting up inter-cluster links is
 extremely chaotic in the beginning, with all nodes in both clusters
 simultaneously trying to set up links to the opposite cluster. The
 way Link Requests and link establishments are handled, still ensures
 that this phase will eventually settle down to a link pattern with
 the optimal number and distribution of links, and remain that way as
 long as the two clusters are in contact.

3.6.2.3 Handling of Inter Cluster Link Requests

 When a node receives a Link Request from a remote cluster, and the
 request contains a domain larger than the node itself, it initiates
 the following sequence of events.
 o The node creates a Link Probe message, whose task it is to roam
 around in the cluster to find the most suitable node to establish
 a link back to the original remote node. The structure of Link
 Probe Messages is described in Section 4.
 o If there is no previous contact with the remote cluster, i.e. the
 node's routing table shows that there are no other nodes having
 links to the sender's cluster, and the Response Expected field of
 the request is non-zero,the node creates a link, called the Pilot
 Link, and sends a response back to the originating node. While
 the link activation is ongoing, i.e. until the pilot link is up
 in WORKING_WORKING state, or is found to have failed, the link
 probe is parked at the receiving node, and all subsequent link
 requests from the originating cluster are ignored.
 o If there is previous contact, or when the pilot link comes up, the
 link probe is sent on a tour in the cluster, using the Sequence
 Tag to determine each next hop. At each node on the tour it
 counts the number of links back to the originating cluster, and
 stores that value if it is lower than the Lowest Link Count This
 Tour field in the probe. If at any node it discovers a working
 link back to the requesting node, it decrements the Requested
 Links field with one and continues to the next node in the
 sequence. If the Requested Links field reaches zero, or a parked
 probe from the same remote node is found, the link probe is

Maloy, et al. Expires April 27, 2005 [Page 45]

Internet-Draft TIPC October 2004

 dropped as a duplicate, and no more action is taken on behalf of
 the original link request.
 o After a tour, i.e. when the probe is back at the node receiving
 the original link request, the value of Lowest Link Count This
 Tour field is stored in the Lowest Link Count field, and the probe
 is sent out on a new tour, comprising the first node.
 o When the probe encounters a node having the same number of links
 to the remote cluster as Lowest Link Count, and where there is no
 previous link towards the requesting node, the probe is parked on
 that node, a link endpoint is created, and a "reverse" Link
 Request message is sent directly back to the requesting node. In
 this request, the destination domain field must be fully
 specified, and the Response Expected field set to zero. No link
 endpoint is created yet.
 o When the requesting node in the other cluster receives the reverse
 link request, there are four possible responses:
 1. It finds it already has enough (i.e. the requested number of)
 links to the responding cluster. It sends back a
 DROP_LINK_REQUEST message to the responding node, instructing
 it to delete its link endpoint and the parked link probe.
 2. It may find it already has a link, working or in progress, to
 the responding node. If this race condition is true, it
 returns a LINK_REQUEST_REJECTED message to that node. This
 forces the responding node to to pass the parked link probe to
 the next node in the cluster sequence.
 3. It may find that itself has a parked link probe, trying to
 establish a link to the responder. If this race condition is
 true, it must decide which of the mutual setup attempts should
 be aborted. Hence, if the numerical value of the own node
 address is lower than that of the responding node, it returns
 a LINK_REQUEST_REJECTED message to that node. This forces the
 reponding node to pass the parked link probe to the next node
 in the cluster sequence.
 4. None of the previous conditions are true. It returns a
 LINK_REQUEST_ACCEPTED message to the reponding node. That
 node creates its link endpoint, decrements the Requested Links
 counter of the parked link probe, and if it is still non-zero,
 it passes it on to the next node in the cluster.

 Note that the three new message types introduced here are sent as
 ordinary TIPC messages, using an ordinary TIPC port. This can be
 done because there is already at least a pilot link between the two
 clusters. The address used is the port name <1,msg_type>, using the
 responder node as lookup domain.

 When the probe has established all the requested links, or after a
 maximum of 10 complete cluster tours, it is dropped.

Maloy, et al. Expires April 27, 2005 [Page 46]

Internet-Draft TIPC October 2004

3.6.3 Multicast Link Setup

 When the bearer media makes it possible, TIPC uses a special
 auto-configuration protocol for neighbour detection and link
 creation. This is the case e.g. with Ethernet and DCCP, where
 multicast transmission of packets is possible. The protocol for this
 is fairly simple: Immediately after start, or when it detects that a
 new interface has become active, a node starts to repeatedly
 broadcast Link Request messages to other presumed members of the
 network.

 The Destination Domain field in these messages should be configurable
 when TIPC is started, but is typically set to
 <own_zone.own_cluster.0>.

 The broadcast interval has a start value of 125 msec, and is
 multiplied by a factor 4 at each transmission, until it reaches a
 configurable upper limit, default set to 32000 msec, at which point
 it stops increasing. The broadcasts continue at this rate as long as
 the node is up. A node receiving a Link Request, checks whether it
 belongs to the destination domain stated in the message, and if the
 Network Identity of the message is equal to its own. If that is the
 case, if a link does not already exist, and the Response Expected
 field is non-zero, it creates its end of the link. Thereafter, it
 answers with a unicast Link Request back to the requesting node.
 This will in its turn create the other end of the link, if there is
 not one already, and the next phase, the link activation phase,
 begins.

Maloy, et al. Expires April 27, 2005 [Page 47]

Internet-Draft TIPC October 2004

 | <1.1.3> |
 | |
 ucast(dest:<1.1.1>,orig:<1.1.3> | |
 <------------------------------- | |
 | |

 | <1.1.1> |
 | | bcast(orig:<1.1.1>,dest:<1.1.0>)
 | |-------------------------------->
 | |
 | |

 ucast(dest:<1.1.1>,orig:<1.1.2> | <1.1.2> |
 <------------------------------- | |
 | |
 | |
 | |

 Figure 23: Neighbour Detection

 There are two reasons for the continuous broadcasting decribed above.
 First, it should always be possible for two nodes to discover each
 other, even if the communication media between them is non-functional
 at the start moment. E.g. in a dual-switch system, one of the node
 cables may have been faulty or disconnected from the beginning, while
 the cluster is still fully connected and functional via the other
 switch. In such cases one should not be forced to restart one of the
 nodes to set up the links, and any more manual intervention than
 plugging in a working cable should be unnecessary. Second, it should
 be possible to replace (hot-swap) an interface card with one having a
 different MAC address, still without having to restart the node.
 When a node receives a Link Request its originating MAC address is
 always checked against the one previously stored for that
 destination, and if they differ the old one is replaced. This way, a
 replaced interface board will be detected and taken into traffic
 within 32 seconds of the replacement.

 The structure and semantics of Link Request messages is described in
Section 4.3.9.

3.7 Links

Maloy, et al. Expires April 27, 2005 [Page 48]

Internet-Draft TIPC October 2004

3.7.1 Link Activation

 Link activation and supervision is completely handled by the generic
 part of the protocol, in contrast to the partially media-dependent
 neighbour detection protocol.

 The following FSM describes how a link is activated and supervised.

 --------------- ---------------
 | |<--(CHECKPOINT == LAST_REC)--| |
 | | | |
 |Working-Unknown|----TRAFFIC/ACTIVATE_MSG---->|Working-Working|
 | | | |
 | |-------+ +-ACTIVATE_MSG>| |
 --------------- \ / ------------A--
 | \ / | |
 | NO TRAFFIC/ \/ RESET_MSG TRAFFIC/
 | NO PROBE /\ | ACTIVATE_MSG
 | REPLY / \ | |
 ---V----------- / \ --V------------
 | |-------+ +--RESET_MSG-->| |
 | | | |
 | Reset-Unknown | | Reset-Reset |
 | |----------RESET_MSG--------->| |
 | | | |
 -------------A- ---------------
 | |
 | BLOCK/ | UNBLOCK/
 | CHANGEOVER| CHANGEOVER END
 | ORIG_MSG |
 -V-------------
 | |
 | |
 | Blocked |
 | |
 | |

 Figure 24: Link finite state machine

 A link enpoint's state is defined by the own endpoint's state,
 combined with what is known about the other endpoint's state. The
 following states exist:

Maloy, et al. Expires April 27, 2005 [Page 49]

Internet-Draft TIPC October 2004

 Reset-Unknown

 Own link endpoint reset, i.e. queues are emptied and sequence
 numbers are set back to their initial values. The state of the
 peer endpoint is unknown. LINK_PROTOCOL/RESET_MSG messages are
 sent periodically at CONTINUITY_INTERVAL to inform peer about the
 own endpoint's state, and to force it to reset its own enpoint,if
 this has not already been done. If the peer endpoint is
 rebooting, or has reset for some other reason, it will sooner or
 later also reach the state Reset-Unknown, and start sending its
 own RESET_MSG messages periodically. At least one of the
 endpoints, and often both, will eventually receive a RESET_MSG and
 transfer to state Reset-Reset. If the peer is still active, i.e.
 in one of the states Working-Working or Working-Unknown, and has
 not yet detected the disturbance causing this endpoint to reset,
 it will sooner or later receive a RESET_MSG, and transfer directly
 to state Reset-Reset. If a LINK_PROTOCOL/ ACTIVATE_MSG message is
 received in this state, the link endpoint knows that the peer is
 already in state Reset-Reset, and can itself move directly on to
 state Working-Working. Any other messages are ignored in this
 state. CONTINUITY_INTERVAL is calculated as the smallest value of
 LINK_TOLERANCE/4 and 0.5 sec.
 Reset-Reset

 Own link endpoint reset, peer endpoint known to be reset, since
 the only way to reach this state is through receiving a RESET_MSG
 from peer. The link endpoint is periodically at
 CONTINUITY_INTERVAL sending ACTIVATE_MSG messages. This will will
 eventually cause peer to transfer to state Working-Working. The
 own endpoint will also transfer to state Working-Working as soon
 as any message which is not a RESET_MSG is received.
 Working-Working

 Own link endpoint working. Peer link endpoint known to be
 working, i.e. both can send and receive traffic messages. A
 periodic timer with the interval CONTINUITY_INTERVAL checks if
 anything has been received from the peer during the last interval.
 If not,state transfers to state Working-Unknown.
 Working-Unknown

 Own link endpoint working. Peer link endpoint in unknown state.
 LINK_PROTOCOL/STATE_MSG messages with the PROBE bit set are sent
 at an interval of CONTINUITY_INTERVAL/4 to force a response from
 peer. If a calculated number of probes
 (LINK_TOLERANCE/(CONTINUITY_INTERVAL/4) remain unresponded, state
 transfers to Reset-Unknown. Own link endpoint is reset, and the
 link is considered lost. If, instead, any kind of message, except
 LINK_PROTOCOL/RESET_MSG and LINK_PROTOCOL/ACTIVATE_MSG is

Maloy, et al. Expires April 27, 2005 [Page 50]

Internet-Draft TIPC October 2004

 received, state transfers back to Working-Working. Reception of a
 RESET_MSG in this situation brings the link to state Reset-Reset.
 ACTIVATE_MSG will never received in this state.
 Blocked

 The link endpoint is blocked from accepting any packets in either
 direction, except incoming, tunneled CHANGEOVER_PROTOCOL/ORIG_MSG.
 This state is entered upon the arrival of the first such message,
 and left when the last has been counted in and delivered. See
 description about the changeover procedure later in this section.
 The Blocked state may also be entered and left through the
 management commands BLOCK and UNBLOCK. This is also described
 later.

 A newly created link endpoint starts from the state Reset-Unknown.
 The recommended default value for LINK_TOLERANCE is 0.8 sec.

3.7.2 Link Continuity Check

 During normal traffic both link enpoints are in state
 Working-Working. At each expiration point, the background timer
 checkpoints the value of the Last Received Sequence Number. Before
 doing this, it compares the check- point from the previous expiration
 with the current value of Last Received Sequence Number, and if they
 differ, it takes the new checkpoint and goes back to sleep. If the
 two values don't differ, it means that nothing was received during
 the last interval, and the link endpoint must start probing, i.e.
 move to state Working-Unknown.

 Note here that even LINK_PROTOCOL messages are counted as received
 traffic, altough they don't contain valid sequence numbers. When a
 LINK_PROTOCOL message is received, the checkpoint value is
 moved,instead of Last Received Sequence Number, and hence the next
 comparison gives the desired result.

3.7.3 Sequence Control and Retransmission

 Each packet eligible to be sent on a link is assigned a Link Level
 Sequence Number, and appended to a send queue associated with the
 link endpoint. At the moment the packet is sent, its field Link
 Level Acknowledge Number is set to the value of Last Received
 Sequence Number.

 When a packet is received in a link endpoint, its send queue is
 scanned, and all packets with a sequence number lower than the
 arriving packet's acknowledge number (modulo 2^16-1) are released.

 If the packet's sequence number is equal to Last Received Sequence

Maloy, et al. Expires April 27, 2005 [Page 51]

Internet-Draft TIPC October 2004

 Number + 1 (mod 2^16-1), the counter is updated, and the packet is
 delivered upwards in the stack. A counter, Non Acknowledged Packets,
 is incremented for each message received, and if it reaches the value
 10, a LINK_PROTOCOL/STATE_MSG is sent back to the sender. For any
 message sent, except BCAST_PROTOCOL messages, the Non Acknowledged
 Packets counter is set to zero.

 Otherwise, if the sequence number is lower, the packet is considered
 a duplicate, and is silently discarded.

 Otherwise,if a gap is found in the sequence, the packet is sorted
 into the Deferred Incoming Packets Queue associated to the link
 endpoint, to be re-sequenced and delivered upwards when the missing
 packets arrive. If that queue is empty,the gap is calculated and
 immediately transferred in a LINK_PROTOCOL/STATE_MSG back to the
 sending node. That node must immediately retransmit the missing
 packets. Also, for each 8 subsequent received out-of-sequence
 packets, such a message must be sent.

3.7.4 Message Bundling

 Sometimes a packet can not be sent immediately over a bearer, due to
 network or recipient congestion (link level send window overflow), or
 due to bearer congestion. In such situations it is important to
 utilize the network and bearer as efficiently as possible, and not
 stop important users from sending messages before this is absolutely
 unavoidable. To achieve this, messages which can not be transmitted
 immediately are bundled into already waiting, packets whenever
 possible, i.e. when there are unsent packets in the send queue of a
 link. When the packet finally arrives at the receiving node it is
 split up to its individual messages again. Since the bundling layer
 is located below the fragmentation layer in the functional model of
 the stack, even message fragments may be bundled with other messages
 this way, but this can only happen to the last fragment of a message,
 the only one normally not filling an entire packet by itself.

 It must be emphasized that message transmissions never are delayed in
 order to obtain this effect. In contrast to TCP's Nagle Algorithm,
 the only goal of the TIPC bundling mechanism is to overcome
 congestion situations as quickly and efficiently as possible.

3.7.5 Message Fragmentation

 When a message is longer than the identified MTU of the link it will
 use, it is split up in fragments, each being sent in separate packets
 to the destination node. Each fragment is wrapped into a packet
 headed by an TIPC internal header (see Section 4.2). The User field
 of the header is set to MSG_FRAGMENTER, and each fragment is assigned

Maloy, et al. Expires April 27, 2005 [Page 52]

Internet-Draft TIPC October 2004

 a Fragment Number relative to the first fragment of the message.
 Each fragmented message is also assigned a Fragmented Message Number,
 to be present in all fragments. Fragmented Message Number must be a
 sequence number with the period of 2^16-1. At reception the
 fragments are reassembled so that the original message is recreated,
 and then delivered upwards to the destination port.

3.7.6 Link Congestion Control

 TIPC uses a common sliding window protocol to handle traffic flow at
 the signalling link level. When the send queue associated to each
 link endpoint reaches a configurable limit, the Send Window Limit,
 TIPC stop sending messages over that link. Packets may still be
 appended to or bundled into waiting packets in the queue, but only
 after having been subject to a filtering function, selecting or
 rejecting user calls according to the sent message's importance
 priority. DATA_LOW messages are not accepted at all in this
 situation. DATA_NORMAL messages are still accepted, up to a
 configurable limit set for that user. All other users also have
 their individually configurable limits, recommended to be assigned
 values in the following ascending order: DATA_LOW, DATA_NORMAL,
 DATA_HIGH, DATA_NONREJECTABLE, CONNECTION_MANAGER,BCAST_PROTOCOL,
 ROUTE_DISTRIBUTOR, NAME_DISTRIBUTOR, MSG_FRAGMENTER. MSG_BUNDLER
 messages are not filtered this way, since those are packets created
 at a later stage. Whether to accept a message due for fragmentation
 or not is decided on its original importance, set before the
 fragmentation is done. Once such a message has been accepted, its
 individal fragments must be handled as being more important than the
 original message.

 When the part of the queue containing sent packets again is under the
 Send Window Limit, the waiting packets must immediately be sent, but
 only until the Send Window Limit is reached again.

3.7.7 Bearer Congestion Control

 When the local bearer media becomes overloaded, e.g. when an
 Ethernet circuit runs out of send buffers, the Bearer Congestion
 Control function may be activated. This function keeps track of the
 current state of the bearer, and stops accepting any packet send
 calls until the bearer is ready for it again. During this interval
 TIPC users may still perform send calls, and packets will be
 accumulated in the affected links send queues according to the same
 rules as for Link Congestion Control, but all actual transmission is
 stopped.

 When the congestion has abated, the bearer opens up for traffic
 again, and the links having packets waiting to be sent are scheduled

Maloy, et al. Expires April 27, 2005 [Page 53]

Internet-Draft TIPC October 2004

 round-robin for sending their unsent packets. This level of
 congestion control is optional, and its activation should be
 configurable.

3.7.8 Link Load Sharing vs Active/Standby

 When a link is created it is assigned a Link Priority, used to
 determine its relation to a possible parallel link to the same node.
 There are two possible relations between parallel working links.
 Load Sharing

 Load Sharing is used when the links have the same priority
 value.Payload traffic is shared equally over the two links, in
 order to take full advantage of available bandwidth. The
 selection of which link to use must be done in a deterministic
 way, so that message sequentiality can be preserved for each
 individual sender port. To obtain this a Link Selector is used.
 This must be value correlated to the sender in such a way that all
 messages from that sender choose the same link, while guaranteeing
 a statistically equal possibility for both links to be selected
 for the overall traffic between the nodes. A simple example of a
 link selector with the right properties is the last two bits of
 the random number part of the originating port's identity, another
 is the same bits in Fragmented Message Number in message
 fragments.
 Active/Standby

 When the priority of one link has a higher numeral value than that
 of the other, all traffic will go through that link, denoted the
 Active Link. The other link is kept up and working with the help
 of the continuity timer and probe messages, and is called the
 Standby Link. The task of this link is to take over traffic in
 case the active link fails.

 Link Priority has a value within the range [1,31]. When a link is
 created it inherits a default priority from its corresponding bearer,
 and this should normally not need to be changed thereafter. However,
 Link Priority must be reconfigurable in run-time.

3.7.9 Link Changeover

 When the link configuration between two nodes changes, the moving of
 traffic from one link to another must be performed in such a way that
 message sequentiality and cardinality per sender is preserved. The
 following situations may occur:

Maloy, et al. Expires April 27, 2005 [Page 54]

Internet-Draft TIPC October 2004

 Active Link Failure

 Before opening the remaining link for messages with the failing
 link's selector, all packets in the failing link's send queue must
 wrapped into messages (tunneling messages) to be sent over the
 remaining link, irrespective of whether this is a load sharing
 active link or a standby link. These messages are headed by a
 TIPC Internal Header, the User field set to CHANGEOVER_PROTOCOL,
 Message Type set to ORIG_MSG. On the tunneling link the messages
 are subject to congestion control, fragmentation and bundling,
 like any other messages. Upon arrival in the arriving node, the
 tunneled packets are unwrapped, and moved over to the failing
 links receiving endpoint. This link endpoint must now be reset,
 if it has not already been done, and itself initiate tunneling of
 its own queued packets in the opposite direction. The unwrapped
 packets' original sequence numbers are compared to Last Received
 Sequence Number of the failed links receiving endpoint, and are
 delivered upwards or dropped according to their relation to this
 value. There is no need for the failing link to consider packet
 sequentiality or possible losses in this case, - the tunneling
 link must be considered a reliable media guaranteeing all the
 necessary properties. The header of the first ORIG_MSG sent in
 each direction must contain a valid number in the Message Count
 field, in order to let the receiver know how many packets to
 expect. During the whole changeover procedure both link endpoints
 must be blocked for any normal message reception, to avoid that
 the link is inadvertently activated again before the changeover is
 finished. When the expected number of packets has been received,
 the link endpoint is deblocked, and can go back to the normal
 activation procedure.
 Standby Link Failure

 This case is trivial, as there is no traffic to redirect.
 Second Link With Same Priority Comes Up

 When a link is active, and a second link with the same priority
 comes up, half of the traffic from the first link must be taken
 over by the new link. Before opening the new link for new user
 messages, the packets in the existing link's send queue with a
 link selector corresponding to the new link must be transmitted
 over that link. This is done by wrapping copies of these packets
 into messages (tunnel messages) to be sent over the new link. The
 tunnel messages are headed by a TIPC Internal Header, the User
 field set to CHANGEOVER_PROTOCOL, Message Type set to
 DUPLICATE_MSG. On the tunneling link the messages are subject to
 congestion control, fragmentation and bundling, just like any
 other messages. Upon arrival in the arriving node, the tunneled
 packets are unwrapped, and delivered to the original links

Maloy, et al. Expires April 27, 2005 [Page 55]

Internet-Draft TIPC October 2004

 receiving endpoint, just like any other packet arriving over that
 link's own bearer. If the original packet has already arrived
 over that bearer, the tunneled packet is dropped as a duplicate,
 otherwise the tunneled packet will be accepted, and the original
 packet dropped as a duplicate when it arrives.
 Second Link With Higher Priority Comes Up

 When a link is active, and a second link with a higher numerical
 priority comes up, all traffic from the first link must be taken
 over by the new link. The handling of this case is identical to
 the case when a link with same priority comes up. After the
 traffic takeover has finished, no more senders will select the old
 link, but this does not affect the takeover procedure.

3.8 Routing

 TIPC support routing of packets when necessary, both between
 clusters, between zones, and between system nodes and secondary
 nodes.

3.8.1 Routing Algorithm

 Available routes to a remote zone, cluster or secondary node are
 explored in the following order:

 First, look for any direct links to the destination node, and if
 there are any, select one using the normal link selection algorithm.

 Second, if no direct link is found, and if the message is an
 inter-cluster message, look for a direct link to any node within the
 remote zone/cluster, and send the message there. This selection must
 be performed in a deterministic way, to minimize the risk for
 disordered message arrivals. If the destination or sender of the
 message is a secondary node, this step of the lookup is omitted.

 Third, if there are no such direct links,the algorithm must look for
 a node within the own cluster, known to have a direct link to the
 destination node. Selection of this intermediate node must also be
 done in a deterministic way, e.g. using the Link Selector. If the
 destination or origin of the message is a secondary node, and if no
 router node is found, the message must be rejected with error code
 TIPC_NO_REMOTE_NODE.

 As last resort, if all previous attempts have failed, the algorithm
 will look for any cluster local node known to have a link to any node
 within the remote zone/cluster. If no such router node is found, the
 message must be rejected with error code TIPC_NO_REMOTE_NODE.

Maloy, et al. Expires April 27, 2005 [Page 56]

Internet-Draft TIPC October 2004

3.8.2 Routing Table

 Each node in a cluster must be kept up-to-date about all available
 routes to secondary nodes, external clusters, and external zones.
 This is done by letting each node broadcast any change in its direct
 connectivity to all the other nodes in the cluster, the same way the
 nameing table is kept updated. Because of the multiplicative effect,
 the number of potential routes between two big zones may be very
 large, and the routing table structure must reflect this. As an
 extreme scenario, take a zone with 1000 nodes, divided into five
 clusters with 200 nodes each, each node having two links to two
 different nodes in the foreign clusters, and dual links to all nodes
 within the local cluster. Each node would have to store knowledge
 about 999 external nodes, 800 of those representing nodes in the
 remote clusters. For each of these 800 nodes, information about 2
 routes must be stored, apart from the four direct inter-cluster
 links.

 To continue this example, we see that each node would have 199 x 2 +
 5 x 2 = 308 links to maintain. With a continuity timer for each link
 expiring e.g. every 400 msec, corresponding to a link tolerance of
 1.6 sec, there would be 600 expiring timers per second on each node.
 Again, assuming a a worst-case scenario with idle links, 1200 probe
 messages would have to be sent and received per second per node. To
 handle a kernel timer and send a probe message takes less than 5
 usecs of CPU-time on a single 2 Ghz CPU, and to receive and handle a
 probe at kernel level takes about the same time. Hence, the
 background load for maintaining all necessary links even within such
 a huge zone would not exceed 2.5%.

3.8.3 Routing Table Updates

 There are five different cases when a node's routing table must be
 updated:

 A link towards a zone/cluster external node comes up:
 o Broadcast a ROUTE_ADDITION message to all system nodes within the
 own cluster, informing them that the new destination can be
 reached via this node.

 A link towards a secondary node comes up:
 o Broadcast a ROUTE_ADDITION message to all system nodes within the
 own cluster, informing that the new destination can be reached via
 this node.
 o Send a LOCAL_ROUTING_TABLE message to the secondary node,informing
 about existence of all system nodes within cluster.

 A new cluster local system node becomes available:

Maloy, et al. Expires April 27, 2005 [Page 57]

Internet-Draft TIPC October 2004

 o Send a SEC_ROUTING_TABLE message to the new node, containing
 information about all cluster secondary nodes which can be reached
 via this node.
 o Send an EXT_ROUTING_TABLE message to the new node, containing
 information about all cluster external nodes which can be reached
 via this node.
 o Send a ROUTE_ADDITION message to all directly connected secondary
 nodes, informing about the existence of the new node.

 The direct contact with a zone/cluster external node or secondary
 node is lost:

 A cluster local system node becomes unavailable:
 o Remove all references to this node from the local routing tables.
 This is a completely node local operation.
 o Send ROUTE_REMOVAL messages to all directly connected secondary
 nodes, informing them about the loss of the node.

 The specific message structure used in these situations is described
 in Section 4.

3.9 Multicast Transport

 To effectively support the functional multicast service described in
 a previous section, a reliable cluster broadcast service is provided
 by TIPC.

 Although seen as a broadcast service from a TIPC viewpoint, at the
 bearer level this service is typically implemented as a multicast
 group comprising all nodes in the cluster.

 At the multicast/broadcast sending node a sequence of actions is
 followed:
 o When a functional multicast is requested, TIPC first looks up all
 matching destinations in its name translation table.
 o The destination addresses are filtered down to a list containing
 the network addresses of and the exact number of destination nodes
 in the indicated lookup domain.
 o If the own node is on the list, a replica is sent to the
 functional multicast receive function in the own node.
 o If the lookup domain indicated goes beyond the own cluster, a
 replica of the message is sent to the identified external zones or
 clusters. There the message is subject to a new multicast lookup
 and cluster broadcast, if necessary.

3.9.1 Conditional Cluster Broadcast

 If the lookup domain comprises the node's own cluster, and if the

Maloy, et al. Expires April 27, 2005 [Page 58]

Internet-Draft TIPC October 2004

 number of identified target nodes in the cluster is less than the
 configurable parameter Broadcast Limit(recommended default value: 8),
 or if no cluster broadcast is supported, a replica of the multicast
 message is sent via a link to each of these nodes. Since a link can
 be considered a reliable media, performing fragmentation and
 retransmission if necessary, we can trust that the replicas will
 reach their destinations, and no more action need to be taken.

 Otherwise, if the number of destination nodes exceeds Broadcast
 Limit, and a cluster broadcast service is available, the message is
 sent as one or more broadcast packets to all nodes in the cluster.
 If necessary the message is fragmented into packets to fit into the
 MTU of the media. Each packet is assigned a broadcast sequence
 number and added to a broadcast transmission/retransmission queue
 before being sent. If there is no congestion in the bearer, or the
 transmission queue has not exceeded the Broadcast Window Limit, the
 packet or packets are sent immediately. If there is any congestion,
 the packets are queued according to their importance, bundled into
 waiting buffers if possible. Broadcast Window Limit should be
 configurable, with a recommended default value of 48. All this is
 analogous to how the node-to-node link protocol works.

 If not already running, a background timer is started, to expire at a
 Broadcast Continuity Interval. Broadcast Continuity Interval is
 recommended to be 16 * RTT, or, since most OS:es don't support timers
 of that resolution, as fast as the OS can support. As long as there
 are non-acknowledged packets in the broadcast out-queue, the timer
 continues to run, but no more timers are started.

 At next expiration the timer checks the acknowledge status for each
 destination node, and releases all buffers which have been
 acknowledged by all nodes in the cluster. In order to keep the
 send-queue as short as possible at any time, this step is also
 performed at each attempted sent broadcast, at each received
 multicast, and at each received BCAST_PROTOCOL/STATE_MSG.

3.9.2 Conditional Tunneled Retransmission

 For the still unacknowledged packets sent before the previous timer
 expiration, and for packets older than 16 positions from the last
 sent packet in the send queue, the timer function calculates how to
 do the retransmission. If the number of missing nodes in the
 acknowledge list for a message is less than Broadcast Limit, it sends
 a replica of that packet via a link to each of the missing nodes.
 Because the packet must be recognized as a missing broadcast at the
 receiving node, it is tunneled over the link, i.e. wrapped into a
 packet of type BCAST_PROTOCOL/BCAST_MSG. Since a link can be trusted
 as a reliable media, the original packet is now discarded. This step

Maloy, et al. Expires April 27, 2005 [Page 59]

Internet-Draft TIPC October 2004

 is also performed at each received BCAST_PROTOCOL/STATE_MSG
 containing a non-zero sequence gap field.

 Otherwise, If the number of missing acknowledging nodes is larger
 than Broadcast Limit, the unacknowledged packets are re-broadcast
 again. Note that packets sent after the previous timout expiration
 are not retransmitted, because those may potentially have been sent
 immediately before the current timer expired.

 In order to keep all receiving nodes updated about sent broadcast
 packets, even during low traffic, each sent LINK_PROTOCOL/STATE_MSG
 contains the sequence number of the "next sent broadcast packet from
 this node". This gives the receiving nodes an opportunity of early
 detection of lost packets,and to send a BCAST_PROTOCOL/STATE_MSG
 demanding retransmission.

 When receiving a cluster broadcast, or a tunneled retransmission,the
 following is is done at the receiving node:
 o The Broadcast Sequence Number is checked against the Next Expected
 Broadcast Packet counter for the corresponding sender node, and if
 it fits, this counter is updated.
 o Otherwise, if the packet turns out to be a duplicate, it is
 silently discarded.
 o Otherwise, if a gap is found in the sequence, the packet is queued
 in a Deferred Incoming Multicast Packets Queue, to be resequenced
 and delivered upwards later. If the last 4 bits of the sequence
 number are equal to the last 4 bits of the node's Sequence Tag,
 AND if this queue was empty,the gap is calculated and immediately
 transferred in a BCAST_PROTOCOL/STATE_MSG back to the sending node
 This must immediately retransmit the missing packets. Also, for
 each 8 received out-of-sequence packet fulfilling the sequence
 criteria described above, such a message must be sent. All this
 is analogous to how the node-to-node link protocol works.

3.9.3 Piggybacked Acknowledge

 All packets, without exception, passed from one node to another,
 contain a valid value in the field Acknowledged Bcast Number. Since
 there is always some traffic going on between all nodes in the
 cluster (in the worst case only link supervision messages), the
 receiving node can trust that the Last Acknowledged Bcast counter it
 has for each node is kept well up-to-date. This value will under no
 circumstances be older than one CONTINUITY_INTERVAL, so it will
 inhibit a lot of unnecessary retransmissions of packets which in
 reality have already be received at the other end.

Maloy, et al. Expires April 27, 2005 [Page 60]

Internet-Draft TIPC October 2004

3.9.4 Coordinated Acknowledge Interval

 If the received packet fits in sequence as described above, AND if
 the last four bits of the sequence number of the packet received are
 equal to the last four bits of the own node's Sequence Tag, AND if
 the difference to the last sent piggybacked Acknowledged Bcast Number
 to that node is more than 8, a BCAST_PROTOCOL/STATE_MSG is generated
 and sent back to the receiving node, acknowledging the packet, and
 implicitly all previously received packets. This means that e.g.
 node <Z.C.1> will only explicitly acknowledge packet number 1, 17,
 33, and so on, node number <Z.C.2> will acknowledge packet number 2,
 18, 34, etc. This condition significantly reduces the number of
 explicit acknowledges needing to be sent, taking advantage of the
 normally ongoing traffic over each link.

 A node's Sequence Tag is the node's sequence number in relation to
 the network address of the other nodes in the cluster. E.g, if a
 cluster consists of the nodes <1.1.17>, <1.1.123> and <1.1.555>,
 those will assign themselves the sequence tags 1, 2, and 3,
 respectively. This way, we make the protocol behaviour independent
 of how node addresses are assigned in the cluster. The sequence tags
 must be recalculated locally on each node when the cluster topology
 changes.

3.9.5 Replicated Delivery

 When an in-sequence functional multicast is finally is delivered
 upwards in the stack, be it via cluster broadcast,replicated
 multicast, or tunneled broadcast retransmission, TIPC looks up in the
 naming table and finds all node local destination ports. The
 destination list created this way is stripped of all duplicates, so
 that only one message replica is sent to each identified destination
 port.

3.9.6 Congestion Control

 Messages sent over the "broadcast link" are subject to the same
 congestion control mechanisms as point-to-point links, with
 prioritized transmission queue appending, message bundling, and as
 last resort a return value to the sender indicating the congestion.
 Typically this return value is taken care of by the socket layer
 code, blocking the sending process until the congestion abates.
 Hence, the sending application should never notice the congestion at
 all.

3.10 Fault Handling

 Most functions for improving system fault tolerance are described

Maloy, et al. Expires April 27, 2005 [Page 61]

Internet-Draft TIPC October 2004

 elswhere, under the repective functions, but some aspects deserve
 being mentioned separately.

3.10.1 Fault Avoidance

 Strict source address check

 After the neighbour detection phase, a message arriving to a node
 must have a not only a valid Pevious Node address, but this must
 belong to one of the nodes known having a direct link to the
 destination. The node may in practice be aware of at most a few
 hundred such nodes, while a network address is 32 bits long. The
 risk of accepting a garbled message having a valid address within
 that range, a sequence number that fits into the reception window,
 and otherwise valid header fields, is extremely small, no doubt
 less than one to several billions.

 Sparse port address space

 As an extra measure, TIPC uses a 32-bit pseudo-random number as
 the first part of a port identity. This gives an extra protection
 against corrupted messages, or against obsolete messages arriving
 at a node after long delays. Such messages will not find any
 destination port, and be attempted returned to the sender port.
 If there is no valid sender port, the message should be quietly
 discarded.

 Name Table Keys

 When a naming table is updated with a new publication, each of
 those are qualified with a Key field, that is only known by the
 publishing port. This key must be presented and verified when the
 publication is withdrawn, in all instances of the naming table.
 If the key does not fit, the withdrawal is refused.

 Link Selectors

 Whenever a message/packet is sent or routed, the link used for the
 next-hop transport is always selected in a deterministic way,
 based on the sender port's random number. The risk of having
 packets arriving in disorder is hence non-existent for single-hop
 messages, and extremely low for multi-hop messages.

 Repeated Name Lookups

 If a lookup in the naming table has returned a port identity that
 later turns out to be false, TIPC performs up to 6 new lookups
 before giving up and rejecting the message.

Maloy, et al. Expires April 27, 2005 [Page 62]

Internet-Draft TIPC October 2004

 Routing Counter

 To eliminate the risk of having messages roaming around in the
 network a routing counter is present in the TIPC header. This
 counter is updated for each inter-node hop and for each naming
 table lookup the message is subject to. If this counter reaches
 the upper limit, seven, the message is rejected back to the sender
 port.

3.10.2 Fault Detection

 The mechanisms for fault detection have been described in previous
 sections, but some of them will be briefly repeated here:
 o Transport Level Sequence Number, to detect disordered multi-hop
 packets.
 o Connection Supervision and Abortion mechanism.
 o Link Supervision and Continuation control.

3.10.3 Fault Recovery

 When a failure has been detected, several mechanisms are used to
 eliminate the impact from the problem, or when that is impossible, to
 help the application to recover from it:
 Link Changeover

 When a link fails, its traffic is directed over to the redundant
 link, if any, in such a way that message sequentiality and
 cardinality is preserved. This feature is described in Section

3.7.9.
 Returning Messages to Sender

 When no destination is found for a message, the 1024 first bytes
 of it is returned to the sner port, along with an approriate error
 code. This helps the application to identify the exact instant of
 failure, and if possible, to find a new destination for the failed
 call. The complete list of error codes and their significance is
 described in Section 4.

3.10.4 Overload Protection

 To overcome situations where the congestion/flow control mechanisms
 described earlier in this section are inadequate or insufficient,
 TIPC must provide two additional overload protection services:
 Node Overload Protection

 TIPC must maintain a global counter on each node, keeping track of
 the total number of pending, unhandled payload messages on the
 node. When this counter reaches a critical value, which should be

Maloy, et al. Expires April 27, 2005 [Page 63]

Internet-Draft TIPC October 2004

 configurable, TIPC must selectively reject new incoming messages.
 Which messages to reject must be based on the following criteria:
 * Message importance. DATA_LOW messages should be rejected at a
 lower threshold than DATA_NORMAL messages, which should be
 rejected before DATA_HIGH messages. DATA_NONREJECTABLE should
 not be rejected at all.
 * Message type. Connectionless messages should be rejected
 earlier than connection oriented messages. Rejecting such
 messages normally means rejecting a service request form the
 beginning, causing less disturbances than interrupting a
 transaction already in progress, e.g. an ongoing phone call.
 Process Overload Protection

 TIPC must maintain a counter for each process, or if this is
 impossible, for each port, keeping track of the total number of
 pending, unhandled payload messages on that process or port. When
 this counter reaches a critical value, which should be
 configurable, TIPC must selectively reject new incoming messages.
 Which messages to reject should be based on the same criteria as
 for the node overload protection mechanism, but all thresholds
 must be set significantly lower. Empirically a ratio 2:1 between
 the node global thresholds and the port local thresholds has been
 working well.

Maloy, et al. Expires April 27, 2005 [Page 64]

Internet-Draft TIPC October 2004

4. TIPC Packet Format

 A TIPC packet is composed of a header and a user data part. Two
 different header formats are used, one for payload (user-to-user)
 messages, and one for TIPC internal protocol messages.

4.1 TIPC Payload Message Header

4.1.1 Payload Message Header Format

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0:|vers | user |hdr sz |n|d|rsv| message size |
 +-+
 w1:|mstyp| error |rer cnt|lsc|opt p| broadcast ack no |
 +-+
 w2:| link level ack no | broadcast/link level seq no |
 +-+
 w3:| previous node |
 +-+
 w4:| originating port |
 +-+
 w5:| destination port |
 +-+
 w6:| originating node |
 +-+
 w7:| destination node |
 +-+
 w8:| name type / transport sequence number |
 +-+
 w9:| name instance/multicast lower bound |
 +-+
 wA:| multicast upper bound |
 +-+
 / /
 \ options \
 / /
 +-+

 Figure 25: TIPC payload message header format

 Each 32-bit word in the header is transmitted as an integer coded in
 network byte order.

 The first four words of the header have an identical format in all

Maloy, et al. Expires April 27, 2005 [Page 65]

Internet-Draft TIPC October 2004

 messages, independently of whether they are internal or payload
 messages.

4.1.2 Payload Message Header Field Descriptions

 Version: 3 bits

 To enable future upgrades the protocol version must be present in
 the header.The current version of the protocol is 2.

 User: 4 bits

 This field not only indicates whether the message is a protocol
 message or a data (payload) message, but in the latter case even
 the importance priority of the user. The following values are
 used:

 ID Value User
 -------- ----------
 0 Low Priority Payload Data (DATA_LOW)
 1 Normal Priority Payload Data (DATA_NORMAL)
 2 High Priority Payload Data (DATA_HIGH)
 3 Non-Rejectable Payload Data (DATA_NON_REJECTABLE)

 Header Size: 4 bits

 Since header size both is variable and has been given a semantic
 meaning it must be present in the header. This feature also
 provides forward compatibility in case we need to extend the
 header format in the future. If options are present the header
 size will comprise the options size. The unit used is 32 bit
 words, implying that the maximum allowed header size is 60 bytes.

 Non-sequenced: 1 bit

 Indicates whether a packet belongs to the sequence of a link or
 not. Broadcast packets and neighbour detetction packet have this
 bit set. If the packet is a broadcast it must be subject to
 special treatment at the receiving node, with some of the fields
 having a different meaning than in the unicast case. This is
 described in section 3.

 Drop: 1 bit

 If this bit is set,the message should be dropped in case of
 congestion or overload,instead of being returned to the sender. A
 connection may have this bit set to 1 for messages going in one
 direction, and to 0 for those going in the opposite direction.

Maloy, et al. Expires April 27, 2005 [Page 66]

Internet-Draft TIPC October 2004

 Default value is 0.

 Reserved: 2 bits

 Unused in this protocol version, but must be set to zero in order
 to facilitate compatibility if used in the future.

 Message Size: 17 bits

 This field indicates the size of the complete message, end-to-end,
 inclusive header size. The maximum size of a data message is
 internally set to 66060 bytes, i.e. 66000 bytes of user data plus
 plus a maximal header, inluding options. The limit of 66000 was
 chosen to make it possible to tunnel maximum-size IP-messages
 through TIPC, but technically this can easily be extended, since
 there is an adjacent unused field of three bits.

 Message Type: 3 bits

 ID Value User
 -------- --------------------------
 0 Message sent on connection (CONN_MSG)
 1 Logical multicast message (MCAST_MSG)
 2 Message with port name destination (NAMED_MSG)
 address
 3 Message with port identity destination (DIRECT_MSG)
 address

 Error Code: 4 bits

 ID Value Meaning
 -------- ----------
 0 No error (TIPC_OK)
 1 Destination port name unknown (TIPC_ERR_NO_NAME)
 2 Destination port does not exist (TIPC_ERR_NO_PORT)
 3 Destination node unavailable (TIPC_ERR_NO_NODE)
 4 Destination node overloaded (TIPC_ERR_OVERLOAD)
 5 Connection Shutdown (No error) (TIPC_CONN_SHUTDOWN)

 Reroute Counter: 4 bits

 This counter has the purpose of stopping messages from roaming
 around in the system. This may, at least theoretically, happen in
 case of temporary naming table or routing table inconsistency.
 The counter is incremented each time a lookup is done in the
 naming table, and each time the message makes an inter-node hop.
 When the counter reaches a limit, (seven in the current
 implementation) the counter is reset and the message is rejected

Maloy, et al. Expires April 27, 2005 [Page 67]

Internet-Draft TIPC October 2004

 with the appropriate error code.

 Lookup Scope: 2 bits

 When a port name has been successfully translated to a port
 identity, the field "Destination Node" is filled with a complete
 node address. This also means that the scope of the original
 lookup domain is lost, since this is indicated by the value of
 this field before the lookup. Sometimes, e.g. because of
 temporary inonsistency ot the naming table during update, the
 destination port turns out to not exist, and one or more new
 lookups must be performed. In order to do this correctly, the
 original lookup scope must be preserved in the message, and that
 is done in this field. The following values apply:

 ID Value Meaning
 -------- ----------
 1 Zone Scope
 2 Cluster Scope
 3 Node Scope

 The lookup domain is recreated based on the complete destination
 node address and the lookup scope.

 Options Position: 3 bits

 The position of the first word of the options field, if any. If
 zero there are no options. Otherwise it will have values between
 1 (word 8/byte 32) and 7 (word 14/byte 56).

 Broadcast Acknowledge Number: 16 bits

 All messages, irrespective of user and type, carry a valid value
 in this field. It informs the recipient about the last
 in-sequence broadcast packet received from the recipient node in
 the sender node. This gives the recipient node a chance to
 release sent broadcast buffers, or to retransmit broadcast packets
 in case it discovers a lag-behind for this node.

 Link Level Acknowledge Number: 16 bits

 All messages, except broadcast messages and LINK_PROTOCOL messages
 of type RESET_MSG and ACTIVATE_MSG, carry a valid value in this
 field. It informs the recipient about the last in-sequence packet
 received on this link in the sender node. This gives the
 recipient node a chance to release sent buffers.

 Link Level Sequence Number: 16 bits

Maloy, et al. Expires April 27, 2005 [Page 68]

Internet-Draft TIPC October 2004

 All non-broadcast packets, except LINK_PROTOCOL, contain a
 sequence number valid for their particular link, in order to keep
 track of message flow, detect packet losses, duplicates or
 out-of-sequence packets. The first packet sent after a link reset
 has the sequence number 0.

 Broadcast Sequence Number: 16 bits

 All broadcast packets contain a sequence number valid for the
 sending node, in order to keep track of message flow, detect
 packet losses, duplicates or out-of-sequence packets. Since such
 packets are unrelated to any links, and are easily identified by
 the 'broadcast' bit, we can reuse the physical area of the 'Link
 Level Sequence Number' for this field.

 Previous Node: 32 bits

 The network address of the last node visited by the message. In
 the case of intra-cluster messages this is most often, but not
 always, identical to the node from which the message originates.

 Originating Port: 32 bits

 This field is specific for data messages, and contains the random
 number identifying the originating port locally on the originating
 node.

 Destination Port: 32 bits

 The random number identifying the destination port on the
 destination node. For NAMED_MSG and MCAST_MSG messages this
 field is set to zero until a lookup in the naming table has found
 a destination. As long as the value remains zero new lookups will
 be performed until a destination is found, or until 'Reroute
 Counter' reaches the upper limit.

 Originating Node: 32 bits

 The node from which the message originally was sent.

 Destination Node: 32 bits

 The final destination node for a message, when known. For port
 name addressed messages this field has a slightly different
 meaning before and after the final destination is determined. See

Section 3.2.8.

 Transport Level Sequence Number: 32 bits

Maloy, et al. Expires April 27, 2005 [Page 69]

Internet-Draft TIPC October 2004

 For port named messages a connection sequence number has no
 meaning, just as connection based messages never contain a port
 name. Because of this mutual exclusion we can use the same
 physical space for both these fields. The connection sequence
 number is only defined and checked for potentially routed
 messages, i.e. for messages passed between different clusters, or
 between secondary nodes and system nodes. The first message sent
 in each direction on such a connection has the sequence number 42.

 Port Name Type: 32 bits

 The type part of a destination port name or port name sequence.

 Port Name Instance: 32 bits

 The instance part of a destination port name.

 Port Name Sequence Lower: 32 bits

 The 'lower' boundary of a destination port name sequence. Uses
 the same physical field as 'Port Name Instance' described above.

 Port Name Sequence Upper: 32 bits

 The 'upper' boundary of a destination port name sequence.

4.1.3 Payload Message Header Size

 The header is organized so that it should be possible to omit certain
 parts of it, whenever any information is dispensable. The following
 header sizes are used:

 Cluster Internal Connection Based Non-Routed Messages:

 Such messages per definition do only one hop over an inherently
 reliable link, so all fields from word 6 and onwards are redundant
 or irrelevant. The message header can be limited to 24 bytes. By
 ensuring that no other messages have this particular header size,
 this can indeed be used as a test that we are dealing with that
 kind of message, and some code optimization can be done based on
 this knowledge.

 Direct Addressed Messages:

 These are connection-less messages containing a port identity as
 destination address, i.e. the fields 'destination port' and
 'destination node' are filled in and non-zero. All fields from
 word 7 and onwards are irrelevant, and the message size can be set

Maloy, et al. Expires April 27, 2005 [Page 70]

Internet-Draft TIPC October 2004

 to 32.

 Connection Based Potentially Routed Messages:

 Inter cluster connection based messages, and intra-cluster
 messages between cluster nodes and secondary nodes, may need to be
 routed via intermediate nodes if there is no direct link between
 the two. 'Originating node' may hence differ from 'previous
 node', so this field must be present. Since there is now a small,
 but not negligeable risk that messages may be lost or arrive in
 disorder (the intermediate node may crash), a transport level
 connection sequence number is needed for problem detection. A
 header size of 36 bytes is required.

 Port Name Addressed Messages:

 These are connection-less messages containing a port name as
 destination address, i.e. the fields 'name type' and 'name
 instance' have valid values, while 'destination port' is zero
 before the name table lookup, and non-zero after a sucessful
 lookup. 'Destination node' may be zero or have a valid value
 before lookup,but has a valid value after a sucessful lookup. The
 header size is set to 40.

 Multicast Messages:

 Multicast messages are similar to port name addressed messages,
 except that the destination address is a range (port name
 sequence) rather than a port name. An extra word, the 'upper'
 part of the port name sequence must be present, so the header size
 ends up at 44.

 Messages with Options:

 All message headers may exceptionally be appended with an
 'options' field, e.g. containing tracing information or a time
 stamp. In this case the total header length may take any
 four-byte aligned value up to the maximum, 60. There is one
 anomaly here, however. The non-routed 24-byter header can not
 take any option without invalidating the semantic meaning of the
 header size. Hence, such headers must be expanded to the full 36
 bytes before any options can be added.

4.2 TIPC Internal Header

4.2.1 Internal Message Header Format

Maloy, et al. Expires April 27, 2005 [Page 71]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0:|vers |msg usr|hdr sz |n|resrv| packet size |
 +-+
 w1:|m typ|bcstsqgap| sequence gap | broadcast ack no |
 +-+
 w2:| link level ack no | broadcast/link level seq no |
 +-+
 w3:| previous node |
 +-+
 w4:| next sent broadcast/fragm no | next sent pkt/ fragm msg no |
 +-+
 w5:| session no | res |r|berid|link prio|netpl|p|
 +-+
 w6:| originating node |
 +-+
 w7:| destination node |
 +-+
 w8:| transport sequence number |
 +-+
 w9:| msg count | link tolerance |
 +-+
 \ \
 / User Specific Data /
 \ \
 +-+

 Figure 30: TIPC Internal Message Header Format

 The internal header has one format and one size, 40 bytes. Some
 fields are only relevant to some users, but for simplicity in
 understanding and implementation a we present it as single header
 format.

4.2.2 Internal Message Header Fields Description

 The first four words are almost identical to the corresponding part
 of the data message header. The differences are described next.

 User: 4 bits

 For TIPC internal messages this field has a different set of
 values than for data messages. The following values are used:

Maloy, et al. Expires April 27, 2005 [Page 72]

Internet-Draft TIPC October 2004

 ID Value User
 -------- ----------
 5 Broadcast Maintenance Protocol (BCAST_PROTOCOL)
 6 Message Bundler Protocol (MSG_BUNDLER)
 7 Link State Maintenance Protocol (LINK_PROTOCOL)
 8 Connection Manager (CONN_MANAGER)
 9 Routing Table Update Protocol (ROUTE_DISTRIBUTOR)
 10 Link Changeover Protocol (CHANGEOVER_PROTOCOL)
 11 Name Table Update Protocol (NAME_DISTRIBUTOR)
 12 Message Fragmentation Protocol (MSG_FRAGMENTER)

 Packet Size: 17 bits. Used by: All users

 This is physically the same field as 'Message Size' in data
 messages, but now indicates the actual size of the packet it
 envelopes.

 Message Type: 4 bits. Used by: All users

 The values in this field is defined per user. See the section
 describing each separate user below.

 Broadcast Sequence Gap: 5 bits. Used by: LINK_PROTOCOL

 The field 'Error Code','Reroute Count', 'Lookup Scope' and
 'Options Position' fields have no relevance for
 LINK_PROTOCOL/STATE_MSG messages, so these 13 bits can be recycled
 in such messages. 'Broadcast Sequence Gap' informs the recipient
 about the size of a gap detected in the sender's received
 broadcast packet sequence, from 'Broadcast Acknowledge Number' and
 onwards. The receiver of this information must immediately
 retransmit the missing packets.

 Sequence Gap: 8 bits. Used by: LINK_PROTOCOL

 The field 'Error Code','Reroute Count', 'Lookup Scope' and
 'Options Position' fields have no relevance for
 LINK_PROTOCOL/STATE_MSG messages, so these 13 bits can be recycled
 in such messages. 'Sequence Gap' informs the recipient about the
 size of a gap detected in the sender's received packet sequence,
 from 'Link Level Acknowledge Number' and onwards. The receiver of
 this information must immediately retransmit the missing packets.

 Next Sent Broadcast: 16 bits.Used by: LINK_PROTOCOL

 In order to speed up detection of lost broadcasts packets all
 LINK_PROTOCOL/STATE_MSG messages contain this information from
 the sender node. If the receiver finds that this is not in

Maloy, et al. Expires April 27, 2005 [Page 73]

Internet-Draft TIPC October 2004

 accordance with what he has received, he immediately sends a
 BCAST_PROTOCOL/STATE_MSG back to the sender, with Sequence Gap set
 appropriately.

 Fragment Number: 16 bits.Used by: MSG_FRAGMENTER

 Occupying the same space as 'Next Sent Broadcast' this value
 indicates the number of a message fragment within a fragmented
 message, starting from 1.

 Next Sent Packet: 16 bits. Used by: LINK_PROTOCOL

 Link protocol messages bypass all other packets in order to
 maintain link integrity, and hence can not have sequence numbers
 valid for the ordinary packet stream. But all receivers are
 dependent of this information to detect packet losses, and cannot
 completely rely on the assumption that a sequenced packet will
 arrive within acceptable time. To guarantee a worst case packet
 loss detection time, even on low-traffic links,the equivalent
 information to a valid sequence number has to be conveyed by the
 link continuity check (STATE_MSG) messages, and that is the
 purpose of this field.

 Fragment Number: 16 bits.Used by: MSG_FRAGMENTER

 Occupying the same space as 'Next Sent Packet', this value
 identifies a a fragmented message on the particular link where it
 is sent.

 Session Number: 16 bits. Used by: LINK_PROTOCOL

 The risk of packets being reordered by the router is particularly
 elevated at the moment of first contact between nodes, so a check
 of sequentiality is needed even for LINK_PROTOCOL/RESET_MSG
 messages. The session number starts from a random value, and is
 incremented each time a link comes up. This way, redundant
 RESET_MSG messages, delayed by the router and arriving after the
 link has been brought to a working state,can be identified and
 ignored.

 Reserved: 3 bits

 Must be set to zero.

 Redundant Link: 1 bit

 When set, this bit informs the other endpoint that the sender
 thinks it has a second working link towards the destination. This

Maloy, et al. Expires April 27, 2005 [Page 74]

Internet-Draft TIPC October 2004

 information is needed by the recipient on order know whether he
 should initiate a changeover procedure or not in case of link
 failure. Under certain, extremely transient and rare,
 circumstances, it is not sufficient for an endpoint to know its
 own link view to perform a correct changeover.

 Bearer Identity: 3 bits

 When a bearer is registered with the link layer of TIPC in a node,
 it is assigned a unique ideitifying number in the range [0,7].
 This number will not necessarily be the same in different nodes,
 so a link endpoint to needs to know the other endpoint's assigned
 identity for the same bearer. This is needed during the link
 changeover procedure, in order to identify the destination bearer
 instance of a tunneled packet.

 Link Priority: 5 bits. Used by: LINK_PROTOCOL

 When there are more than one link between two nodes, one may want
 to use them in load sharing or active/standby mode. Equal
 priority between links means load sharing, different priorities
 means that the link with the higher numerical value will take all
 traffic. By offering a value range of 32 one can build in a
 default relation between different bearer types,(e.g. DCCP is
 given lower priority than Ethernet), and no manual configuration
 of these values should normally be needed.

 Network Plane: 3 bits. Used by: LINK_PROTOCOL

 When multiple parallel routers and multiple network interfaces are
 used it is useful, although not strictly needed by the protocol,
 to have a network pervasive identifier telling which interfaces
 are connected to which routers. This relieves system managers
 from the burden of manually keeping track of the actual physical
 connectivity. Typically, the identifier 0 would be presented to
 the operator as 'Network A', identity 1 as 'Network B' etc. This
 identity must be agreed upon in the whole network, and therefore
 this field is present and valid in the header of all LINK_PROTOCOL
 messages. The 'negotiation' consists of letting the node with the
 lowest numeral value of its network address, typically node
 <1.1.1>, decide the identities. All others must strictly update
 their identities to the value received from any lower node.

 Probe: 1 bit. Used by: LINK_PROTOCOL

 This one-bit field is used only by messages of type LINK_PROTOCOL/
 STATE_MSG. When set it instructs the receiving link endpoint to
 immediately respond with a STATE_MSG. The Probe bit MUST NOT be

Maloy, et al. Expires April 27, 2005 [Page 75]

Internet-Draft TIPC October 2004

 set in the responding message.

 Originating Node: 32 bits. Used by: NAME_DISTRIBUTOR

 The node from which the message originally was sent.

 Destination Node: 32 bits. Used by: NAME_DISTRIBUTOR

 The final destination node for a message.

 Transport Level Sequence Number: 32 bits. Used by: NAME_DISTRIBUTOR

 The sequence number of the NAME_DISTRIBUTOR message. Only used
 and valid when the message needs routing.

 Message Count: 16 bits. Used by: MSG_BUNDLER, CHANGEOVER_PROTOCOL

 This field is used for two different purposes. First, the message
 bundling function uses it to indicate how many packets are bundled
 in a bundle packet. Second, when a link goes down, the endpoint
 detecting the failure must send an ORIG_MSG to the other endpoint
 (tunneled through the remaing link) informing it about how many
 tunneled packets to expect. This gives the other endpoint a
 chance to know when the changeover is finished, so it can return
 to the normal link setup procedure.

 Link Tolerance: 16 bits. Used by: LINK_PROTOCOL

 Each link endpoint must have a limit for how long it can wait for
 packets from the other end before it declares the link failed.
 Initially this time may differ between the two endpoints, and must
 be negotiated. At link setup all RESET_MSG messages in both
 directions carry the sender's configured value in this field, and
 the highest numerical value will be the one chosen by both
 endpoints. In STATE_MSG messages this field is normally zero, but
 if the value is explicitly changed at one endpoint, e.g. by a
 configuration command, it will be carried by the next STATE_MSG
 and force the other endpoint to also change its value. Subsequent
 STATE_MSG messages return to the zero value. The unit of the
 value is [ms].

4.3 Message Users

4.3.1 Broadcast Protocol

 User: 5 (BCAST_PROTOCOL).

 Message Types:

Maloy, et al. Expires April 27, 2005 [Page 76]

Internet-Draft TIPC October 2004

 ID Value Meaning
 -------- ----------
 0 Tunneled, retransmitted broadcast packet (BCAST_MSG)

 A BCAST_MSG message wraps a packet that was originally sent as
 broadcast, but which has retransmitted. Depending on the number of
 missing acknowledges (see Section 3.9.4), the retransmission may be
 performed as a new broadcast, or as a limited sequence of BCAST_MSG
 unicasts to the nodes missing in the acknowledge list.

4.3.2 Message Bundler Protocol

 User: 6 (MSG_BUNDLER)

 Message Types: None

 A MSG_BUNDLER packet contains as many bundled packets as indicated in
 Message Count. All bundled messages start at a 4-byte aligned
 position in the packet. Each bundled packet is a complete packet,
 including header, but with the fields Broadcast Acknowledge Number,
 Link Level Sequence Number and Link Level Acknowledge Number left
 undefined. Any kind of packets, except LINK_PROTOCOL and MSG_BUNDLER
 packets, may be bundled.

4.3.3 Link State Maintenance Protocol

 User: 7 (LINK_PROTOCOL)

 ID Value Meaning
 -------- ----------
 0 Detailed state of a working link (STATE_MSG)
 endpoint
 1 Reset receiving endpoint, sender is (RESET_MSG)
 RESET_UNKNOWN
 2 Sender in RESET_RESET,ready to receive (ACTIVATE_MSG)
 traffic

 RESET_MSG messages must have a data part that must be a
 zero-terminated string. This string is the name of the bearer
 instance used by the sender node for this link. Examples of such
 names is "eth0","vmnet1" or "udp". Those messages must also contain
 valid values in the fields Session Number, Link Priority and Link
 Tolerance.

 ACTIVATE_MSG messages do not need to contain any valid fields except
 Message User and Message Type.

 STATE_MSG messages may leave bearer name and Session Number

Maloy, et al. Expires April 27, 2005 [Page 77]

Internet-Draft TIPC October 2004

 undefined, but Link Priority and Link Tolerance must be set to zero
 in the normal case. If any of these values are non-zero, it implies
 an order to the receiver to change its local value to the one in the
 message. This must be done when a management command has changed the
 corresponding value at one link endpoint, in order to enforce the
 same change at the other endpoint. Network Identity must be valid in
 all messages.

 Link protocol messages must always be sent immediately, disregarding
 any traffic messages queued in the link. Hence, they can not follow
 the ordinary packet sequence, and their sequence number must be
 ignored at the receiving endpoint. To facilitate this, these
 messages should be given a sequence number guaranteed not to fit in
 sequence. The recommended way to do this is to give such messages
 the next unassigned Link Level Sequence Number + 362768. This way,
 at the reception the test for the user LINK_PROTOCOL needs to be
 performed only once, after the sequentiality check has failed, and we
 never need to reverse the Next Received Link Level Sequence Number.

4.3.4 Connection Manager

 Although a TIPC internal user, Connection Manager is special, because
 it uses the 36-byte header format of CONN_MSG payload messages
 instead of the 40-byte internal format. This is because those
 messages must contain a destination port and a originating port.

 The following message types are valid for Connection Manager:

 User: 8 (CONN_MANAGER).

 Message Types:

 ID Value Meaning
 -------- ----------
 0 Probe to test existence of peer (CONN_PROBE)
 1 Reply to probe, confirming existence (CONN_PROBE_REPLY)
 2 Acknowledge N Messages (MSG_ACK)

 MSG_ACK messages are used for transport-level congestion control, and
 carry one network byte order 32-byte integer as data. This indicates
 the number of messages acknowledged, i.e. actually read by the port
 sending the acknowledge. This information makes it possible for the
 other port to keep track of the number of sent, but not yet received
 and handled messages, and to take action if this value surpasses a
 certain threshold.

 The details about why and when these messages are sent are described
 in Section 3.5.4.

Maloy, et al. Expires April 27, 2005 [Page 78]

Internet-Draft TIPC October 2004

4.3.5 Routing Table Update Protocol

 User: 9 (ROUTE_DISTRIBUTOR).

 Message Types:

 ID Value Meaning
 -------- ----------
 0 Sender's routes to cluster (EXT_ROUTING_TABLE)
 external nodes
 1 Sender's routes to cluster (LOCAL_ROUTING_TABLE)
 internal nodes
 2 Sender's routes to secondary (SEC_ROUTING_TABLE)
 nodes
 3 New route to a node (ROUTE_ADDITION)
 4 Lost contact with a node (ROUTE_REMOVAL)

 EXT_ROUTING_TABLE messages have the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / TIPC Internal Header /
 \ \
 +-+
 w10| Cluster Address |
 +-+
 \ |
 / bitmap +-+-+-+-+-+-+-+-+
 \ |
 +-+

 Figure 36: External Routing Table message format

 The first four bytes of the message payload is a TIPC Network Address
 in network byte order, indicating the remote cluster concerned by the
 table. The rest of the message is a bitmap, indicating to which
 nodes within that cluster the sending node has direct links. E.g.
 if node <1.1.7> has a direct link to the nodes <2.3.4> and <2.3.5>,
 Cluster Address will contain <2.3.0>, and bit 4 and 5 of the
 remaining data is set to a non-zero value. The message need not be
 longer than to contain the last non-zero bit in the map. Along with
 the Originating Node field this message contains all information
 needed for any node in the cluster to know how to reach the two

Maloy, et al. Expires April 27, 2005 [Page 79]

Internet-Draft TIPC October 2004

 nodes.

 LOCAL_ROUTING_TABLE and SEC_ROTING_TABLE messages have the same
 structure as EXT_ROUTING_TABLE, but Cluster Address may be left
 undefined, since the receiving nodes already know to which cluster
 they belong.

 ROUTE_ADDITION and ROUTE_REMOVAL messages have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / TIPC Internal Header /
 \ \
 +-+
 w10| Node Address |
 +-+

 Figure 37: Route Addition/Removal message format

 Here the only information needed is a Network Address indicating
 which node the route addition/loss concern, i.e. to which node the
 sender node has established/lost direct contact.

4.3.6 Link Changeover Protocol

 User: 10 (CHANGEOVER_PROTOCOL)

 ID Value Meaning
 -------- ----------
 0 Tunneled duplicate of packet (DUPLICATE_MSG)
 1 Tunneled original of packet (ORIGINAL_MSG)

 DUPLICATE_MSG messages contain no extra information in the header
 apart from the first thee words. The first ORIGINAL_MSG message sent
 out MUST contain a valid value in the Message Count field, in order
 to inform the recipient about how many such messages, inclusive the
 first one, to expect. If this field is zero in the first message, it
 means that there are no packets wrapped in that message, and none to
 expect.

4.3.7 Name Table Update Protocol

 User: 11 (NAME_DISTRIBUTOR)

Maloy, et al. Expires April 27, 2005 [Page 80]

Internet-Draft TIPC October 2004

 ID Value Meaning
 -------- ----------
 0 One or more port name publications (PUBLICATION)
 1 Withdraw port name publication (WITHDRAWAL)

 These messages have the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / TIPC Internal Header /
 \ \
 +-+
 w10| type |
 +-+
 w11| lower |
 +-+
 w12| upper |
 +-+
 w13| port reference |
 +-+
 w14| key |
 +-+
 \ \
 / More publications /
 \ \
 +-+

 Figure 40: Name Table Update message format

 PUBLICATION messages may contain one or more Publications. A
 Publication consists of the five-word field listed in the figure.
 Each field is stored in network byte order, and have the following
 meaning.
 o Type: The 'type' part of a published/withdrawn port name
 sequence.
 o Lower: The 'lower' part of a published/withdrawn port name
 sequence.
 o Upper: The 'upper' part of a published/withdrawn port name
 sequence.
 o Port Reference: The random number part of the publishing port's
 identity.
 o Key: A key created by the publishing port. Must be presented to
 the receiver in the corresponding WITHDRAW message.

Maloy, et al. Expires April 27, 2005 [Page 81]

Internet-Draft TIPC October 2004

 The number of publications in the message is calculated by the
 receiver based on the message length. The Node Identity part of each
 publication is the same as the messages Originating Node.

 WITHDRAWAL messages may only contain one publication item.

4.3.8 Message Fragmentation Protocol

 User: 12 (MSG_FRAGMENTER)

 ID Value Meaning
 -------- ----------
 0 First fragment of message (FIRST_FRAGMENT)
 1 Body fragment of message (FRAGMENT)
 2 Last fragment of message (LAST_FRAGMENT)

 All packets contain a dedicated identifier, Fragmented Message
 Number, to distinguish them from packets belonging to other messages
 from the same node. All packets also contain a sequence number
 within its respective message, the Fragment Number field, in order
 to, if necessary, reorder the packets when they arrive to the
 detination node. Both these sequence numbers must be incemented
 modulo 2^16-1.

4.3.9 Neighbour Detection Protocol

 User: 13 (LINK_CONFIGURATION) The protocol for neighbour detection
 uses a special message format, with the following generic structure:

Maloy, et al. Expires April 27, 2005 [Page 82]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0:|vers |msg usr|hdr sz |n|resrv| packet size |
 +-+
 w1:|m typ|0| requested links | broadcast ack no |
 +-+
 w2:| destination domain |
 +-+
 w3:| previous node |
 +-+
 w4:| network identity |
 +-+
 w5:| |
 +-+-+-+-+-+-+- +-+-+-+-+-+-+-+
 w6:| |
 +-+-+-+-+-+-+- bearer level originating address +-+-+-+-+-+-+-+
 w7:| |
 +-+-+-+-+-+-+- +-+-+-+-+-+-+-+
 w8:| |
 +-+-+-+-+-+-+- +-+-+-+-+-+-+-+
 w9:| |
 +-+
 \ \
 / vendor specific data (optional) /
 \ \
 +-+

 Figure 42: Link Configuration message format

 o Header Size: 40 bytes.
 o Non-sequenced: This bit is set to 1 for this user.
 o Packet Size: Header Size plus size of Optional Data.
 o Message Type: 0 if the message is a link request (e.g. a
 broadcast neighbour detection), 1 if it is a response to such a
 request.
 o Requested Links (12 bits): The number of links the sender node
 wants to establish to the destination domain, over the specific
 bearer used. For a link request to a specific node this number
 must be 1, as only one link is permitted per bearer and node pair.
 Recommended default value for this field is 2.
 o Originating Node: The network address of the originating node.
 o Destination Domain: The domain to which the link request is
 directed. <Z.C.N> means that the sender requests a link to that
 specific node, and nothing else. <Z.C.0> or <Z.0.0> means that
 the sender wants the specified number of links to that cluster or
 zone, but not necessarily to the first node where the message

Maloy, et al. Expires April 27, 2005 [Page 83]

Internet-Draft TIPC October 2004

 arrives. <0.0.0> means that the sender does not know anything
 about the receiver's identity, but wants links to anybody within
 the cluster receiving the message.
 o Network Identity: The sender node's network identity. Receivers
 having a network identity different from the one in the message
 must ignore the message.
 o Bearer Level Originating Address: A Bearer Address containing the
 Ethernet or IP(v4 or v6)-address+port number of the sender. Note
 that with IP-protocols this is only a hint, as the IP-address may
 have been replaced by NAT. In such cases, it is the reponsibility
 of the corresponding adaptation layer to extract the correct
 sender address from the incoming message.
 o Vendor Specific Data: The contents of this optional field is
 vendor specific.

 Link Probe Message

 The messages used for finding the optimal location for responding
 to a Link Request are called Link Probes:

Maloy, et al. Expires April 27, 2005 [Page 84]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0: | Magic Identifier (0x54495043) |
 +-+
 w1: | Requesting Node TIPC Address |
 +-+
 w3: | |
 | Requesting Node |
 | Bearer Level Address |
 | |
 | |
 +-+
 w8: | Network Plane |
 +-+
 w9: | Hop Count |
 +-+
 w10:| Requested Links |
 +-+
 w11:| Found Links |
 +-+
 w12:| Lowest Link Count |
 +-+
 w13:| Lowest Link Count This Tour |
 +-+
 w14:| Entry Node |
 +-+

 Figure 43: Link Probe message format

 * Requesting Node: The node in the remote cluster which
 originally sent out the request.
 * Requesting Node Bearer Level Address: The bearer address (e.g.
 IP or Ethernet address) of the node in the remote cluster which
 originally sent out the request.
 * Network Plane: The identifier of the network where the Link
 Request originally was received. E.g. 0 for Network A, 1 for
 Network B.
 * Hop Count: The number of node hops this probe has performed.
 If this number exceeds 10 * size of cluster, the probe must be
 discarded.
 * Requested Links: The number of links the requesting node wants
 to this cluster.
 * Found Links: The number of found, established links to the
 originating node so far. When this number equals 'Requested
 Links', the establishing procedure is finished,and the probe

Maloy, et al. Expires April 27, 2005 [Page 85]

Internet-Draft TIPC October 2004

 can be discarded.
 * Lowest Link Count: The lowest number of links to the requesting
 cluster found in the cluster during the previous tour. If, at
 the next tour, a node is found with this number of links, a
 link setup attempt is initiated. For each fulfilled tour, this
 field is updated with the contents of Lowest Link Count This
 Tour.
 * Lowest Link Count This Tour: The lowest number of links to the
 requesting cluster found in the cluster during the current
 tour. This is useful if the probe fulfils a tour without
 finding the Lowest Link Count number of links, which may happen
 when the number of links is changing very rapidly.
 * Entry Node: The node that received the original link request.
 This helps identifying when the probe has fulfilled a tour.
 Hop Count can not be trusted alone for this, since the number
 of nodes may change during the tour.
 Link Probe Messages are sent to port name <1,302> using the
 identified next hop node as lookup domain.

 Get Node Info Message

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0: | Magic Identifier (0x54495043) |
 +-+
 w1: | Remote Node TIPC Address |
 +-+

 Figure 44: Get Node Info message format

 Remote Node Address: The cluster remote node for which the
 information is requested.
 Get Node Info Messages are sent to port name <1,300> using the
 identified router node as lookup domain.

 Get Node Info Result Message

Maloy, et al. Expires April 27, 2005 [Page 86]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0: | Magic Identifier (0x54495043) |
 +-+
 w1: | Remote Node TIPC Address |
 +-+
 w2: | |
 | Remote Node |
 | Bearer Level Address |
 | |
 | |
 +-+
 w7: \ \
 / Bearer Name /
 \ \
 +-+

 Figure 45: Get Node Info Result message format

 * Remote Node TIPC Address: The cluster remote node for which the
 information is valid.
 * Remote Node Bearer Level Address: The bearer address (e.g. IP
 or Ethernet address) of the node in the remote cluster.
 * Bearer Name: The string identifying the bearer where the Bearer
 Level Address is valid, i.e. the bearer to be used for the
 Link Requests to be sent.
 Get Node Info Result Messages are sent to port name <1,301> using
 the node that sent the corresponding Get Node Info message as
 lookup domain.

 Link Request Accepted Message

 This message only has the four-byte Magic Identifier as data. It
 is sent to port name <1,304>, using the node that sent the
 corresponding Link Request message as lookup domain.

 Link Request Rejected Message

 This message only has the four-byte Magic Identifier as data. It
 is sent to port name <1,303>, using the node that sent the
 corresponding Link Request message as lookup domain.

 Drop Link Request Message

 This message only has the four-byte Magic Identifier as data. It
 is sent to port name <1,305>, using the node that sent the

Maloy, et al. Expires April 27, 2005 [Page 87]

Internet-Draft TIPC October 2004

 corresponding Link Request message as lookup domain.

 Check Link Count Message

 This message only has the four-byte Magic Identifier as data. It
 is sent to port name <1,306>, using the node node to check as
 lookup domain.

4.4 Media Adapter Protocols

 The protocol for adapting to various underlying media is described in
 the following sections. For the time being only one such mapping is
 publicly available, the one for Ethernet

4.4.1 Ethernet Adaptation

 Ethernet Number, formally assigned from IEEE: 0x88ca

 Ethernet Adaptation Protocol Header

 No header is added at this level.

Maloy, et al. Expires April 27, 2005 [Page 88]

Internet-Draft TIPC October 2004

5. Management

 The management interface towards TIPC is a message interface. A TIPC
 node is managed by sending a correctly formatted message to that
 node. using a port name destination address with Type set to 0, and
 Instance set to the network address of the target node.

5.1 Command Types

 There are three groups of management commands:
 o Group 1: Read-only commands, or other non-intrusive commands.
 E.g. commands reading statistics, table contents etc. or
 commands resetting statitics. These commands may be called from
 anywhere, by sending connectionless messages.
 o Group 2: Intrusive commands. Commands changing settings in TIPC
 must be handled very strictly. Before issuing such commands, a
 manager must establish an exclusive connection towards TIPC on the
 concerned node. Exclusive means than no more than one such link
 may exist at any time towards a node. Typically, a manager
 process will establish such a management link to all nodes in the
 cluster or zone at system start, and then hold on to that link as
 long as he is up.
 o Group 3: Remote Subscriptions. Port name sequence subcriptions
 can be ordered not only from local users via the ordinary API, but
 also remotely, by issuing a correctly formatted management message
 towards a specific node. This way, it is possible to e.g.
 subscribe for a certain port name in a remote zone, even if the
 subscriber is located outside the publishing scope of the
 requested name sequence. Since such remote subscriptions are
 potentially intrusive, there can only exist a limited number,
 which should be configurable, at any time. Just like with write
 commands, they require that a connection is set up towards the
 target node. One such connection is established per-subscription.

5.2 Command Message Formats

 All fields described as integers in the following sections are
 transferred in network byte order.

5.2.1 Command Messages

 The first 16 bytes of all command messages have the same structure:

Maloy, et al. Expires April 27, 2005 [Page 89]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0:| Magic (0x54495043) |
 +-+
 w1:| Command |
 +-+
 w2:| |
 + User Handle +
 w3:| |
 +-+

 Figure 46: Command Message header format

 Magic: 32 bit integer

 This is an identifier with the value 0x54495043 ('T','I','P','C'),
 meant to protect against accidental access by corrupted or wrongly
 addressed command messages.

 Command: 32 bit integer

 This is the command issued by this message.

 User Handle: 64 bits

 A handle at the user's disposal, for storing e.g. a pointer.

5.2.2 Command Response Messages

 The first 24 bytes of all command response messages have the same
 structure:

Maloy, et al. Expires April 27, 2005 [Page 90]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0:| Command |
 +-+
 w1:| |
 + User Handle +
 w2:| |
 +-+
 w3:| Return Value |
 +-+
 w4:| Remains |
 +-+
 w5:| Result lenght |
 +-+

 Figure 47: Command Response Message header format

 Command: 32 bit integer

 The original command issued in the corresponding command message.

 User Handle: 64 bits

 The original handle passed by the corresponding command message.

 Return Value: 32 bit integer

 If the command was successful, this field is 0, otherwise
 0xffffffff.

 Remains: 32 bit integer

 If the command resulted in more return data than can be stored in
 one message, this field indicates the number of bytes to be
 expected in subsequent messages.

 Result Length: 32 bit integer

 The length of the remainder of the message, i.e. the command
 specific result.

5.3 Commands

5.3.1 Group 1: Query Commands

 Get Port Statistics Group 1 command: 211

Maloy, et al. Expires April 27, 2005 [Page 91]

Internet-Draft TIPC October 2004

 Get statistics for a certain port.
 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w4 | Port Reference |
 +-+

 Figure 48: Get Port Statistics Query message format

 Port Reference contains the random number part of the identity of
 the port from which statistics is wanted.
 Result message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 \ |
 / Zero-terminated string +-+-+-+-+-+-+-+-+
 \ |
 +-+

 Figure 49: Get Port Statistics Query Result message format

 Reset Port Statistics Group 1 command: 212

 Command message:

Maloy, et al. Expires April 27, 2005 [Page 92]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w4 | Port Reference |
 +-+

 Figure 50: Reset Port Statistics Command message format

 Port Reference contains the random number part of the identity of
 the port for which the statistics should be reset.
 Result message:
 The result of this command is a Common Command Result Header,
 indicating success or failure.

 Get Nodes Group 1 command: 201

 Get information about all nodes within a given domain known by the
 target node.
 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w4 | Domain |
 +-+

 Figure 51: Get Nodes Query Command message format

 Domain is a Network Address in the form <0.0.0>, <Z.0.0> etc.
 Result message:

Maloy, et al. Expires April 27, 2005 [Page 93]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Up |
 +-+
 w7 | Node Address |
 +-+
 \ \
 / More Nodes /
 \ \
 +-+

 Figure 52: Get Nodes Query Result message format

 Result data is a sequence of structures, each consisting of two
 integers.
 * Up: Integer indicating whether the indicated node is reachable
 or not from the target node. Non-zero means it is reachable.
 * Node Address: The address of the known node.

 Get Links Group 1 command: 182

 Get information about all links from the target node to other
 nodes within the given domain.
 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w4 | Domain |
 +-+

 Figure 53: Get Links Query Command message format

 Domain is a Network Address in the form <0.0.0>, <Z.0.0> etc.
 Result message:

Maloy, et al. Expires April 27, 2005 [Page 94]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Up |
 +-+
 w7 | Node Address |
 +-+
 w8 \ \
 / Link Name /
 w24\ \
 +-+
 w25\ \
 / More Links /
 \ \
 +-+

 Figure 54: Get Links Query Result message format

 Result data is a sequence of structures, each consisting of three
 elements.
 * Up: Integer indicating whether the indicated link is working or
 not.
 * Node Address: The node at the other end of the link.
 * Link Name: A 72 byte field, contianing a zero-terminated
 string, uniquely identifying the link.

 Get Routes Group 1 command: 230

 Get all routes to a given domain known by the target node.
 Command message:

Maloy, et al. Expires April 27, 2005 [Page 95]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w4 | Domain |
 +-+

 Figure 55: Get Routes Query Command message format

 Domain is a Network Address in the form <0.0.0>, <Z.0.0> etc.
 Result message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Destination Node Address |
 +-+
 w7 | Router Node Address |
 +-+
 \ \
 / More Routes /
 \ \
 +-+

 Figure 56: Get Routes Query Result message format

 Result data is a sequence of structures, each consisting of two
 elements:
 * Node Address: The network address of the node to which the
 route leads.
 * Router Address: The network address of the cluster local node
 through which the indicated detination node can be reached.

 Get Links Statistics Group 1 command: 183

 Get statistics from the link indicated by Link Name.
 Command message:

Maloy, et al. Expires April 27, 2005 [Page 96]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w6 \ \
 / Zero-terminated Link Name /
 \ \
 +-+

 Figure 57: Get Links Statistics Query Command message format

 Link Name is a 72-byte field, containing the name of the requested
 link.
 Result message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 \ |
 / Zero-terminated string +-+-+-+-+-+-+-+-+
 \ |
 +-+

 Figure 58: Get Links Statistics Query Result message format

 Reset Links Statistics Group 1 command: 184

 Reset statistics for the link indicated by Link Name.
 Command message:
 Same as for Get Link Statistics.
 Result message:
 The result of this command is a Common Command Result Header,
 indicating success or failure.

 Get Peer Address Group 1 command: 193

 Get the bearer level address. e.g. ethernet or
 IP-address:portno, for the other endpoint of the indicated link.
 Command message:

Maloy, et al. Expires April 27, 2005 [Page 97]

Internet-Draft TIPC October 2004

 Same as for Get Link Statistics.
 Result message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Address Type |
 +-+
 w7 \ \
 / Bearer Level Address /
 \ \
 w11/ /
 +-+

 Figure 59: Get Peer Address Query Result message format

 The integer Address Type has the following defined values for now:

 Value Type
 ----- ----
 0 6-byte ethernet address
 1 Socket address IPv4.
 2 Socket address IPv6.

 An Ipv4 socket address has the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w7 | Undefined | Port Number |
 +-+
 w8 | IP Address |
 +-+

 Figure 61: Socket Address format for peer address

 Port Number and IP address are integers transferred in network
 byte order.
 An Ipv6 socket address has the following structure:

Maloy, et al. Expires April 27, 2005 [Page 98]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w7 | Undefined | Port Number |
 +-+
 w8 | |
 | IPv6 Address |
 | |
 w11| |
 +-+

 Figure 62: Socket Address format for peer address

 Port Number and IP address are integers transferred in network
 byte order.

 Get Name Table Group 1 command: 220

 Get selected contents of the target node's naming table:
 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w6 | Name Type |
 +-+
 w7 | Depth |
 +-+

 Figure 63: Get Name Table Query Command message format

 Name Type is an integer indicating which name table entry is to be
 investigated. If this field is zero, all types in the table will
 be investigated and returned.
 Depth is an integer indicating how much information is wanted
 about the requested entry or entries. It may have the following
 values:

 Value Description
 ----- -----------
 0 All information about the entry, i.e. all known publications.
 1 All known sequences for the requested name type.

Maloy, et al. Expires April 27, 2005 [Page 99]

Internet-Draft TIPC October 2004

 2 Only the Name Type of the entry.

 If both Name Type and Depth are 0 the whole table contents is
 returned. A depth value of 2 only makes sense with The Name Type
 value 0.
 Result message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 \ |
 / Zero-terminated string +-+-+-+-+-+-+-+-+
 \ |
 +-+

 Figure 65: Get Name Table Query Result message format

 Get Bearers Group 1 command: 190

 Get information about all bearer instances found on the target
 node.
 Command message:
 Only a common command message header, with no arguments.
 Result message:

Maloy, et al. Expires April 27, 2005 [Page 100]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 \ \
 / Bearer Name /
 \ \
 +-+
 w18\ \
 / More Bearer Names /
 \ \
 +-+

 Figure 66: Get Bearers Query Result message format

 Result data is a sequence of 48-byte sized structures, each
 consisting of a zero-terminated string, uniquely identifying each
 bearer.

 Get Media Group 1 command: 194

 Get information about all bearer types registered on the target
 node.
 Command message:
 Only a common command message header, with no arguments.
 Result message:

Maloy, et al. Expires April 27, 2005 [Page 101]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 \ \
 / Media Name /
 \ \
 +-+
 w18\ \
 / More Media Names /
 \ \
 +-+

 Figure 67: Get Media Query Result message format

 Result data is a sequence of 48-byte sized structures, each
 consisting of a zero-terminated string, uniquely identifying each
 bearer.

 Get Ports Group 1 command: 210

 Get reference (random number part of identity) of all existing
 ports on the node.
 Command message:
 Only a common command message header, with no arguments.
 Result message:

Maloy, et al. Expires April 27, 2005 [Page 102]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Port Reference |
 +-+
 \ \
 / More Port References /
 \ \
 +-+

 Figure 68: Get Ports Query Result message format

5.3.2 Group 2: Manipulating Commands

 Establish Management Connection Group 1 command: 111

 Command message:
 Only a common command message header, with no arguments.
 Result message:
 A common command result message header, indicating success or
 failure.

 Create Link Group 2 command: 180

 Establish a link to the indicated domain.
 Command message:

Maloy, et al. Expires April 27, 2005 [Page 103]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w6 | Domain |
 +-+
 w7 \ \
 / Bearer Level Address /
 \ \
 / /
 +-+
 w12\ \
 / Bearer Name /
 w22\ \
 +-+

 Figure 69: Create Link Command message format

 Domain is a network address in one of the formats <0.0.0>, <Z.C.0>
 etc. Bearer Level Address is the address to be used for the
 establishment. Bearer Name indicates the bearer instance through
 which the establishment should be attempted.
 Result message:
 A common command result message header, indicating success or
 failure.

 Remove Link Group 2 command: 181

 Remove the link indicated by Link Name.
 Command message:
 Same as for Get Link Statistics.
 Result message:
 A Common Command Result Header, indicating success or failure.

 Block Link Group 2 command: 185

 Set the link indicated by Link Name in BLOCKED state.
 Command message:
 Same as for Get Link Statistics.
 Result message:
 A Common Command Result Header, indicating success or failure.

 Unlock Link Group 2 command: 186

Maloy, et al. Expires April 27, 2005 [Page 104]

Internet-Draft TIPC October 2004

 Set the blocked link indicated by Link Name in RESET_UNKNOWN
 state.
 Command message:
 Same as for Get Link Statistics.
 Result message:
 A Common Command Result Header, indicating success or failure.

 Set Link Tolerance Group 2 command: 187

 Set the link tolerance of the link indicated by Link Name.
 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Value |
 +-+
 w7 \ \
 / Link Name /
 w24\ \
 +-+

 Figure 70: Set Link Tolerance Command message format

 Result message:
 A Common Command Result Header, indicating success or failure.

 Set Link Priority Group 2 command: 188

 Set the link priority of the link indicated by Link Name.
 Command message:
 Same as for Set Link Tolerance.
 Result message:
 A Common Command Result Header, indicating success or failure.

 Set Link Window Group 2 command: 189

 Set Send Window Limit for the link indicated by Link Name.
 Command message:
 Same as for Set Link Tolerance.
 Result message:
 A Common Command Result Header, indicating success or failure.

Maloy, et al. Expires April 27, 2005 [Page 105]

Internet-Draft TIPC October 2004

 Enable Bearer Group 2 command: 191

 Enable the bearer instance indicated by Bearer Name.
 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w6 | Bearer Priority |
 +-+
 w7 \ \
 / Bearer Name /
 w18\ \
 +-+

 Figure 71: Enable Bearer Command message format

 Bearer Priority is the default priority given to all links
 established over this bearer.
 Result message:
 A common command result message header, indicating success or
 failure.

 Disable Bearer Group 2 command: 192

 Disable the bearer instance indicated by Bearer Name.
 Command message:

Maloy, et al. Expires April 27, 2005 [Page 106]

Internet-Draft TIPC October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w6 \ \
 / Bearer Name /
 w17\ \
 +-+

 Figure 72: Disable Bearer Command message format

 Result message:
 A common command result message header, indicating success or
 failure.

5.3.3 Group 3: Subscriptions

 Subscribe For Port Name Sequence Group 3 command: 174

 Command message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Msg Header /
 \ \
 +-+
 w6 | Name Type |
 +-+
 w7 | Lower |
 +-+
 w8 | Upper |
 +-+
 w9 | Timeout |
 +-+

 Figure 73: Subscribe for Port Name Sequence Command message format

 All the four words in the command argument are integers. Their
 values and interpretation are the same as described in Section

3.2.5.

Maloy, et al. Expires April 27, 2005 [Page 107]

Internet-Draft TIPC October 2004

 Result messages:
 * A common command result message header, indicating success or
 failure. If successful, TIPC has established a connection
 towards the port which sent out the original command message.
 * For each change in the naming table pertaing to the subcribed
 name sequence, a message with the following structure will be
 received:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Event |
 +-+
 w7 | Found Lower |
 +-+
 w8 | Found Upper |
 +-+
 w9 | Name Type |
 +-+
 w10| Lower |
 +-+
 w11| Upper |
 +-+
 w12| Timeout |
 +-+

 Figure 74: Subscribe for Port Name Sequence Result message format

 Event may have the following values:

 Hex Value Description
 --------- -----------
 0x800 A sequence overlapping with the requested range was
 published.
 0x1000 No sequences overlapping with the requested range
 remain.
 0x2000 The subscription exceeded the limit set in Timeout.
 The connection was shut down.

Maloy, et al. Expires April 27, 2005 [Page 108]

Internet-Draft TIPC October 2004

 Found Lower and Found Upper indicate the overlapping part
 between the subscribed values and the actually published
 values. Name Type, Lower etc. are the same values as
 originally passed in the command message.

 Subscribe For Link Group 3 command: 67

 Subscribe for working state of the link indicated in Link Name
 Command message:
 Same as for Get Link Statistics
 Result messages:
 * A common command result message header, indicating success or
 failure. If successful, TIPC has established a connection
 towards the port which sent out the original command message.
 * For each change in status of the concerned link, a message with
 the following structure will be received:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 w0 \ \
 / Common Command Result Msg Header /
 \ \
 +-+
 w6 | Event |
 +-+
 w7 \ \
 / Link Name /
 w24\ \
 +-+

 Figure 76: Subscribe for Link Result message format

 Event may have the following values:

 Hex Value Description
 --------- -----------
 0x800 The link went up to WORKING_WORKING state.
 0x1000 The link went down to RESET_UNKNOWN state.
 0x2000 The subscription exceeded the limit set in Timeout.
 The connection was shut down.

 Link Name is the original link name, sent with the command
 message.

Maloy, et al. Expires April 27, 2005 [Page 109]

Internet-Draft TIPC October 2004

6. Security

 TIPC is a special-purpose transport protocol designed for operation
 within a secure, closed network interconnecting nodes within a
 cluster. TIPC does not possess any native security features, and
 hence rely on the properites of the selected bearer protocol, e.g.
 IP-Sec, when such features are needed

7 References

 [ForCES] Doria et al., A., "ForCES Protocol Specification",
 September 2004,
 <http://www.ietf.org/internet-drafts/draft-ietf-forces-pro

tocol-00.txt>.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3", RFC 2026, BCP 9, October 1996,
 <http://www.rfc-editor.org/rfc/rfc2026.txt>.

 [RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC:
 Keyed-Hashing for Message Authentication", RFC 2104,
 February 1997,
 <http://www.rfc-editor.org/rfc/rfc2104.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2406] Kent, S. and R. Atkinson, "IP Encapsulating Security
 Payload (ESP)", RFC 2406, November 1998,
 <http://www.rfc-editor.org/rfc/rfc2406.txt>.

 [RFC2408] Maughan, D., Schertler, M., Schneider, M. and J. Turner,
 "Internet Security Association and Key Management
 Protocol", RFC 2408, November 1998,
 <http://www.rfc-editor.org/rfc/rfc2408.txt>.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434, BCP 26,
 October 1998, <http://www.rfc-editor.org/rfc/rfc2434.txt>.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998,
 <http://www.rfc-editor.org/rfc/rfc2460.txt>.

 [RFC2581] Allman, M., Paxson, V. and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999,
 <http://www.rfc-editor.org/rfc/rfc2581.txt>.

http://www.ietf.org/internet-drafts/draft-ietf-forces-protocol-00.txt
http://www.ietf.org/internet-drafts/draft-ietf-forces-protocol-00.txt
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp9
http://www.rfc-editor.org/rfc/rfc2026.txt
https://datatracker.ietf.org/doc/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2406
http://www.rfc-editor.org/rfc/rfc2406.txt
https://datatracker.ietf.org/doc/html/rfc2408
http://www.rfc-editor.org/rfc/rfc2408.txt
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/bcp26
http://www.rfc-editor.org/rfc/rfc2434.txt
https://datatracker.ietf.org/doc/html/rfc2460
http://www.rfc-editor.org/rfc/rfc2460.txt
https://datatracker.ietf.org/doc/html/rfc2581
http://www.rfc-editor.org/rfc/rfc2581.txt

Maloy, et al. Expires April 27, 2005 [Page 110]

Internet-Draft TIPC October 2004

 [RFC2960] Stewart, R., Xie, Q., Morneault, K., Sharp, C.,
 Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M.,
 Zhang, L. and V. Paxson, "Stream Control Transmission
 Protocol", RFC 2960, October 2000,
 <http://www.rfc-editor.org/rfc/rfc2960.txt>.

 [RFC768] Postel, J., "User Datagram Protocol", RFC 768, STD 6,
 August 1980, <http://www.rfc-editor.org/rfc/rfc768.txt>.

 [RFC793] Postel, J., "Transmission Control Protocol", RFC 793, STD
 7, September 1981,
 <http://www.rfc-editor.org/rfc/rfc793.txt>.

 [TIPC] Maloy, J., "Telecom Inter Process Communication", January
 2003, <http://tipc.sourceforge.net>.

Authors' Addresses

 Jon Paul Maloy
 Ericsson
 Research Canada
 8400, boul. Decarie
 Ville Mont-Royal, Quebec H4P 2N2
 Canada

 Phone: +1 514 576-2150
 EMail: jon.maloy@ericsson.com

 Steven Blake
 Modularnet
 Raleigh, NC 27606
 USA

 Phone:
 EMail: steven.blake@modularnet.com

 Maarten Koning
 WindRiver
 15983 Loyalist Campway
 RR2
 Bloomfield, ON KOK 1G0
 Canada

 Phone: +1 613 399-5669
 EMail: maarten.koning@windriver.com

https://datatracker.ietf.org/doc/html/rfc2960
http://www.rfc-editor.org/rfc/rfc2960.txt
https://datatracker.ietf.org/doc/html/rfc768
http://www.rfc-editor.org/rfc/rfc768.txt
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/rfc/rfc793.txt
http://tipc.sourceforge.net

Maloy, et al. Expires April 27, 2005 [Page 111]

Internet-Draft TIPC October 2004

 Jamal Hadi Salim
 Znyx
 195 Staford Road West,
 Suite 104
 Nepean, ON K2H 9C1
 Canada

 Phone: +1 613 596-1138
 EMail: hadi@znyx.com

 Hormuzd M. Khosravi
 Intel
 2111 NE 25th Avenue,
 Hillsboro, OR 97124
 USA

 Phone: +1 503 264-0334
 EMail: hormuzd.m.khosravi@intel.com

Maloy, et al. Expires April 27, 2005 [Page 112]

Internet-Draft TIPC October 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Maloy, et al. Expires April 27, 2005 [Page 113]

