
Internet Draft Roberto Mameli
Expiration: August 2000 CoRiTeL
File: draft-mameli-issll-cops-api-00.txt

 The CCAPI (COPS Client Application Programming Interface)

 February 22, 2000

Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use Internet-Drafts
as reference material or to cite them other than as "work in
progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Distribution of this memo is unlimited.

 Copyright Notice

Copyright (C) The Internet Society (2000). All Rights Reserved.

 Abstract

This document focuses on the Admission Control functionality performed
by the Edge Router in the IntServ/DiffServ interworking scenario
described in [COPS-ISDS]. More precisely it describes the interaction
between the RSVP and the COPS protocols in the Edge Router and

https://datatracker.ietf.org/doc/html/draft-mameli-issll-cops-api-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Mameli Expires August 2000 1
 The CCAPI (COPS Client Application Programming Interface) Feb-00

introduces an API (Application Programming Interface) aimed at allowing
the intercommunication between them. Anyway, the API described here is
designed as a flexible interface, and should be able to support
communication between a generic application and the COPS Client Type
described in [COPS-ODRA].

 Table of Contents

Abstract..1
Table of Contents...2
Glossary..2
1. Introduction ..2
2. CCAPI generalities ..3
3. CCAPI Description ...5
4. Upcall mechanism ..8
5. Definition of CCAPI objects10
6. References ..11
7. Author Information and Acknowledgements12

Glossary

API Application Programming Interface
BB Bandwidth Broker
CCAPI COPS Client Application Programming Interface
COPS Common Open Policy Service
DSCP Differentiated Services Code Point
ER Edge Router
IPC Inter Process Communication
PDP Policy Decision Point.
PEP Policy Enforcement Point.
QoS Quality of Service
RSVP ReSerVation Protocol
SLS Service Level Specification

1. Introduction

One of the possible scenarios for end-to-end QoS provisioning relies on
a proper combination of both the Integrated Services (IntServ)

([INTSERV] and [RFC2210]) and the Differentiated Services (DiffServ)
([2BIT] and [DSARCH]) architectures. The description of such a model is
beyond the scope of this document; a detailed explanation can be found
in [INTDIF] and in [COPS-ISDS]. However it is worth observing that the
router placed at the boundary between the IntServ stub domain and the

Mameli Expires August 2000 2
 The CCAPI (COPS Client Application Programming Interface) Feb-00

DiffServ core, i.e. the Edge Router (ER), provides several interworking
functionality (described in details in the references above).

One of the most important functionality managed by the ER is related to
admission control. The original DiffServ architecture provides a sort of
implicit admission control, in the form of SLS negotiated between
neighboring domains. The introduction of end-to-end signaling by means
of the RSVP protocol allows explicit admission control on micro-flow
basis, as explained in details in [INTDIF].

Note, however, that the are at least two ways to perform Admission
Control in the Edge Router. In fact, it can be realized either in a
distributed way by means of information locally available, or in a
centralized way by querying an Admission Control Server. As stated in
[COPS-ISDS], the first approach is easier to implement, but it is
nevertheless characterized by inaccuracy, since each ER does not have an
overall knowledge of the network resource utilization. Moreover, in some
situations (failures, etc.), consistency among information stored in
different ERs could not be assured. For this reason [COPS-ISDS] focuses
on the second solution. However, in such a scenario the communication
between the ER and the centralized server must happen according to a
proper protocol. COPS represents a possible choice, since it is a simple
and extensible protocol; [COPS-ODRA] proposes an extension suited at the
purpose.

Besides the COPS extension, needed for the communication between the
centralized server and the Edge Router, another communication interface
should be defined. In fact, the Edge Router supports both the COPS-ODRA
PEP and the RSVP daemon. As explained in [COPS-ISDS], the entire
mechanism requires proper interaction between them; for example the
reception of a RSVP RESV message by the ingress ER should trigger an
admission control query towards the server (PDP/BB). This observation
leads to the definition of a new interface between the COPS-ODRA client
and the RSVP daemon within the Edge Router.

This document describes an API that can be used at the purpose. This
API, called CCAPI (COPS Client API), is based on a client library
statically linked with the RSVP daemon. The latter can trigger queries
to the PDP/BB server when needed and can receive responses from it
either synchronously or asynchronously, as explained in the following

https://datatracker.ietf.org/doc/html/rfc2210

paragraph. Note, however, that the CCAPI is designed in a flexible way,
in order to be usable with applications other than RSVP, that could need
to interact with the COPS-ODRA PEP for whatever reason. For this reason
in the remaining part of the document we will use the term _CCAPI
client_ to refer to such an application, thus avoiding to mention
explicitly RSVP, even if it obviously represents the natural choice.

2. CCAPI generalities

Mameli Expires August 2000 3
 The CCAPI (COPS Client Application Programming Interface) Feb-00

As stated above, the CCAPI is realized by means of a client library
statically linked with the CCAPI client. The procedures implemented in
the CCAPI library use a proper inter-process communication (IPC)
mechanism to interact with the COPS client, which in turn relies on the
COPS protocol to communicate with the server. The situation is depicted
in the following figure:

 +---+
 | Edge +----------+ +----------+ | +----------+
 | Device | CCAPI | |COPS-ODRA |_______________|COPS-ODRA |
 | | Client | | Client | | COPS | Server |
 | +----------+ +----------+ | +----------+
User Level				
=================		=============		===========
Kernel Level	---------------	IPC		
----------------- Mechanism				
 +---+

Note that there is no need to standardize the inter-process
communication mechanism, since it could vary due to several reasons,
such as Operating System characteristics. The CCAPI proposed here does
not assume anything about it, even if the actual implementation relies
on the Linux socket mechanism. The definition of the interface specifies
only the visible part of it, i.e. the set of routines made available to
the CCAPI client. They are listed and explained in the following.

The API can be used to manage events both in a synchronous and in an
asynchronous way. In the first case the CCAPI client triggers a query to
the PDP/BB and blocks indefinitely waiting for a response. This is the
easiest way to use the CCAPI, but it could lead to undesirable behavior

in the case of no response from the server. Let us consider as an
example the case of an admission control request from RSVP; if the
server does not respond for whatever reason, the daemon would wait
indefinitely. This is obviously undesirable, since normal processing of
other requests should not be blocked by a pending request (e.g. timeout
of installed PATH and RESV states would expire, and so on).

For this reason the CCAPI has been designed to manage events
asynchronously, by means of an _upcall_ or _callback_ mechanism. In this
way the CCAPI client triggers the request from the PEP to the PDP/BB
without waiting for response. When a response from the PDP/BB is
available, the PEP notifies the CCAPI client (e.g. the RSVP daemon)
that, in turn, manages it by calling a proper callback routine.

A synchronous error in a CCAPI library routine returns an appropriate
error code. Asynchronous errors are delivered to the application via the
CCAPI upcall routine. Text messages for synchronous and asynchronous
error codes can be found in the file cops_err.h.

Mameli Expires August 2000 4
 The CCAPI (COPS Client Application Programming Interface) Feb-00

3. CCAPI Description

This paragraph reports a brief description of the sequence of operations
needed by the CCAPI client and lists all the CCAPI calls along with
their explanation.

3.1. CCAPI Outline

The CCAPI client must include cops_api.h and cops_err.h and must be
linked with cops_api.c. It begins by opening the session to the COPS-
ODRA PEP via the cops_api_open_session() call; when it issues this call
it can optionally specify a pointer to an appropriate callback routine
(if any). The session associates the CCAPI Client with the PEP, meaning
that the latter cannot have more sessions opened at the same time. If
this is the need, several PEP processes should be instantiated together
on the same Edge Router, and each of them should have a single session
opened towards the CCAPI client.

After the cops_api_open_session() call, the CCAPI client can ask for
resource request, release and/or modify by means of the
bandwidth_request(), bandwidth_release() and bandwidth_modify() calls,
with proper parameters. In order to get a response the
cops_api_dispatch() call can be used. In the _blocking_ case, the
cops_api_dispatch() can be preceded by a select() system call, in order

to wait indefinitely for an event; when such an event occurs, the select
is unblocked and the cops_api_dispatch() can be used to obtain the
response. No callback routine is needed in this case. In contrast, in
the _non blocking_ case, a proper callback routine is specified in the
cops_api_open_session(). The cops_api_dispatch() is periodically called
inside the CCAPI client main loop, and it polls the PEP to see if a
response has arrived; if so, the callback routine is executed. The
latter receives also an optional argument that can be specified when
opening the session through the cops_api_open_session() call.

Whatever the mechanism we choose, _blocking_ or _non blocking_, at the
end of all the operations the session can be closed via the
cops_api_release_session() call. In the following a brief description of
all the CCAPI calls is reported.

3.2. CCAPI calls

3.2.1. cops_api_open_session()

The cops_api_open_session() call is used to open a session with the
COPS-ODRA PEP. It returns a cops_api_error (i.e. an unsigned int), which
could be any of the following values:

 COPS_API_OK - session opened without problems

Mameli Expires August 2000 5
 The CCAPI (COPS Client Application Programming Interface) Feb-00

 COPS_API_NOCOPS _ COPS-ODRA PEP is not running on the ER
 COPS_API_OPEN - session already opened

The definition of the function is the following:

 cops_api_error
 cops_api_open_session (cops_event_rtn event_rtn,
 void *event_rtn_arg)

The parameters are:

 event_rtn - is a pointer to the callback function specified
 by the CCAPI client. It could be NULL if the latter
 is not interested in managing asynchronous events
 by the upcall mechanism.
 event_rtn_arg - is a pointer to an optional parameter that is
 passed to the callback routine whenever it is
 called.

3.2.2. cops_api_getfd()

It may be used by the CCAPI client to retrieve a file descriptor; this,
in turn, could be used in a select() call immediately before the
dispatch(), so as to realize a blocking mechanism. The function is
specified as follows:

 int
 cops_api_getfd()

It doesn't require parameters and returns the file descriptor, or _1 if
the session has not been opened before.

3.2.3. cops_api_release_session()

The cops_api_release_session() is used to close the session with the
COPS-ODRA PEP. It returns a cops_api_error of the following types:

 COPS_API_OK - session closed without problems
 COPS_API_CLOSE - session already closed
 COPS_API_SYSERR _ system error

The function prototype is:

 cops_api_error
 cops_api_release_session ()

No parameters are requested.

3.2.4. bandwidth_request()

Mameli Expires August 2000 6
 The CCAPI (COPS Client Application Programming Interface) Feb-00

The bandwidth_request() library call is used by the CCAPI client in
order to instruct the PEP to query the PDP/BB for bandwidth request;
referring to RSVP as an example, this could happen whenever a new flow
is admitted at the ingress Edge Router. The function prototype is the
following:

 cops_api_error
 bandwidth_request (cops_req *request)

It takes in input a pointer to a cops_req structure, that contains
information about the request. The definition of the cops_req structure
is reported in paragraph 5. Note that it also contains a request
identifier, that is used in the _non-blocking_ case to associate
requests made by the CCAPI client to responses provided by the PEP. In
fact, in such a case, the CCAPI client can issue several requests to the
PEP, and a way to relate them to corresponding responses is obviously

needed. The library call can return one of the following values:

 COPS_API_OK - request successfully delivered to the PEP
 COPS_API_INVREQ _ invalid request; session not in place
 COPS_API_INVRID _ invalid request identifier (already in use)
 COPS_API_TOOMF - excessive number of pending requests
 COPS_API_SYSERR _ system error

3.2.5. bandwidth_release()

This is the complementary function to the previous one. The CCAPI client
uses it in order to instruct the PEP to communicate bandwidth release to
the PDP/BB. If the CCAPI client is represented by RSVP,
bandwidth_release() is called when a reservation is released, e.g. upon
the reception of a RESV TEAR message by the ingress Edge Router.

 cops_api_error
 bandwidth_release (cops_req *request)

The parameters and the return values of this function are the same of
the bandwidth_request().

3.2.6. bandwidth_modify()

The bandwidth_modify() call has been introduced with reference to the
situation where the CCAPI client is represented by RSVP. It can be used
to change dynamically a reservation without first releasing resources
and then allocating them again. In this way there are two advantages:
first of all the reservation is changed with a single message. Moreover,
in the case of rejection of the new request, the old one remains in
place. The function is defined as follows:

 cops_api_error
 bandwidth_modify (cops_req *request)

Mameli Expires August 2000 7
 The CCAPI (COPS Client Application Programming Interface) Feb-00

The parameter is a pointer to a cops_req structure; differently from the
case of bandwidth_request() and bandwidth_release() this request now
contains a pair of bandwidth values, instead of a single one. The return
values are the same of bandwidth_request().

3.2.7. cops_api_dispatch()

Applications use the cops_api_dispatch() library call to receive
notifications of COPS events, e.g. responses to their queries. The

function prototype is the following:

 cops_api_error
 cops_api_dispatch (cops_resp *response)

The cops_api_dispatch() polls the PEP for a response and retrieves it
for the CCAPI client. The parameter is a pointer to a cops_resp
structure; if not NULL, it is eventually filled with the response. If
the latter is not available the object referenced by this parameter is
left unchanged. Moreover the callback function specified in the
cops_api_open_session() (if any) is called. An explanation of the upcall
mechanism can be found in paragraph 4. Note however that the
cops_api_dispatch() is a non blocking call; if a response is not
available, it immediately returns control to the calling function.
Possible return values of cops_api_dispatch() are:

 COPS_API_OK - dispatch successfully executed
 COPS_API_NOCOPS - COPS-ODRA PEP is not running on the ER
 COPS_API_INVREQ _ invalid request; session not in place
 COPS_API_SYSERR _ system error

3.2.8. cops_api_version()

The cops_api_version() call returns the version number of the CCAPI in
the form major*100+minor. Current version is 1.00.

4. Upcall mechanism

An upcall is invoked by cops_api_dispatch(), which executes the
procedure specified by the event_rtn parameter of the
cops_api_open_session() call (if specified).

The upcall function has the following synopsis:

 int
 ccapi_callback (cops_resp *response,
 void *arg)

Mameli Expires August 2000 8
 The CCAPI (COPS Client Application Programming Interface) Feb-00

It receives from cops_api_dispatch() the response just arrived and the
user specified parameter (represented by the event_rtn_arg parameter in
the cops_api_open_session() call). Based on these parameters it executes
an application specified routine. There are basically two types of

events that can trigger an upcall:

 - DECISION EVENT: this event notifies the CCAPI client about a
 response from the PDP/BB, which could be either
 positive (i.e. request accepted) or negative
 (i.e. the request was rejected for some reason,
 e.g. bandwidth unavailability or unsupported
 service).
 - ERROR EVENT: it is used to signal error events directly
 recognized by the PEP, e.g. invalid request or
 excessive number or pending requests.

The type of event is contained in the response that is passed to the
ccapi_callback() (see paragraph 5). It also contains a code that
specifies the particular reason for that event. Possible codes for both
DECISION EVENTS and ERROR EVENTS are contained in tables 1 and 2 below:

 +-------------+---+
 | Code | Reason that triggered the event |
 +-------------+---+
 | COPS_OK | Request accepted |
 | COPS_NOBW | Unavailable resources |
 | COPS_NODSCP | Unsupported service |
 | COPS_NOIED | Invalid Ingress Edge Device Address |
 | COPS_NOEED | Invalid Egress Edge Device Address |
 +-------------+---+

 Table 1: Codes for DECISION EVENTS (PDP/BB responses)

 +-----------------+--+
 | Code | Reason that triggered the event |
 +-----------------+--+
 | COPS_API_OK | Operation successfully completed |
 | COPS_API_INVRID | Invalid Request Identifier |
 | COPS_API_INVREQ | Invalid Request or Session not in place |
 | COPS_API_NOCOPS | COPS Client (PEP) not running on the ER |
 | COPS_API_OPEN | Session already opened |
 | COPS_API_CLOSE | Session already closed |
 | COPS_API_TOOMF | Excessive number of requests |
 | COPS_API_SYSERR | System Error |
 +-----------------+--+

 Table 2: Codes for ERROR EVENTS

Mameli Expires August 2000 9
 The CCAPI (COPS Client Application Programming Interface) Feb-00

5. Definition of CCAPI objects

This appendix defines the main CCAPI objects, reported below along with
a brief explanation.

 - cops_req object

 typedef struct Cops_Req
 {
 unsigned int request_ID;
 unsigned int request_type;
 struct in_addr IED_addr,EED_addr;
 unsigned int dscp[2];
 unsigned int msr_interval[2];
 unsigned int token_size[2];
 } cops_req;

 This object is used by the CCAPI Client to specify information
 that the PEP will insert in the COPS REQ message when querying
 the PDP/BB. The fields have the following meaning:

 - request_ID: request identifier. Each pair request/response
 is characterized by a unique request
 identifier, which is used to correlate the
 response with the corresponding request. The
 same request_ID cannot be contemporarily used
 for issuing different requests, otherwise
 COPS_API_INVRID is returned.
 - request_type: type of request. The following list reports
 the possible values for this parameter. Each
 of these values must be used when the
 corresponding library routine on the right is
 called:

 BW_REQUEST _ bandwidth_request()
 BW_RELEASE _ bandwidth_release()
 BW_MODIFY _ bandwidth_modify()
 CCAPI_CLOSE _ cops_api_release_session()

 - IED_addr: IP address of the ingress Edge Device
 - EED_addr: IP address of the egress Edge Device
 - dscp[]: two-element vector. In the case of
 bandwidth_request() and bandwidth_release()
 calls, the first element contains the DSCP of
 the requested service, while the second is
 unspecified. In the case of bandwidth_modify()
 the two elements contains respectively the old
 and the new value for the DSCP.
 - token_size[], msr_interval[]: a pair of two element vectors.

 The corresponding bandwidth is given by the
 ratio:
 token_size[n]/msr_interval[n] n=0,1
 In the case of bandwidth_request() and

Mameli Expires August 2000 10
 The CCAPI (COPS Client Application Programming Interface) Feb-00

 bandwidth_release() only the first two
 elements are meaningful; they contains the
 bandwidth to be requested/released. In the
 case of bandwidth_modify() the values
 token_size[0]/msr_interval[0] and
 token_size[1]/msr_interval[1] contains
 respectively the old and the new value for the
 bandwidth.

 - cops_resp object

 typedef struct Cops_Resp {
 unsigned int request_ID;
 cops_event_type resp_type;
 cops_error resp_errcode;
 } cops_resp;

 This object contains the responses received by the CCAPI Client.
 The fields have the following meaning:

 - request_ID: is the same value contained in the request. It
 is returned by the PEP to the CCAPI Client in
 order to associate the response to the
 corresponding request.
 -resp_type: specifies the type of response. Two types are
 currently supported:

 DECISION_EVENT
 ERROR_EVENT

 The difference is explained in the previous
 paragraph.
 -resp_errcode: depending on resp_type, it gives detailed
 information about the event that triggered the
 response. Possible values are reported in table
 1 and table 2.

6. References

[INTSERV] R. Braden, D. Clark, S. Shenker, "Integrated Services in
 the Internet Architecture: an Overview", IETF RFC 1633,
 June 1994
[RFC2210] J. Wroclawski, "The Use of RSVP with Integrated Services",
 IETF RFC 2210, September 1997
[RFC2205] R. Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin,
 "Resource ReSerVation Protocol (RSVP) - Version 1
 Functional Specification ", IETF RFC 2205, September 1997

Mameli Expires August 2000 11
 The CCAPI (COPS Client Application Programming Interface) Feb-00

[2BIT] K. Nichols, V. Jacobson, L. Zhang "A Two-bit Differentiated
 Services Architecture for the Internet", IETF RFC 2638,
 July 1999
[DSARCH] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W.
 Weiss, "An Architecture for Differentiated Services", IETF

RFC 2475, December 1998
[INTDIF] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, M.
 Speer, R. Braden, J. Wrocklaski, E. Felstaine, "A
 Framework for Integrated Services Operation Over DiffServ
 Networks", IETF <draft-ietf-issll-diffserv-rsvp-03.txt>,
 September 1999, Work in Progress
[IWQOS99] O. Schelen, A. Nilsson, J. Norrgard, S. Pink, "Performance
 of QoS Agents for Provisioning Network Resources",
 Proceedings of IFIP Seventh Internation Workshop on QoS
 (IWQoS'99), London, UK, June 1999
[COPS] D. Durham, Ed., J. Boyle, R. Cohen, S. Herzog, R. Rajan, A.
 Sastry "The COPS (Common Open Policy Service) Protocol",
 IETF RFC 2748, January 2000
[COPS-ODRA] S. Salsano, "COPS Usage for Outsourcing Diffserv Resource
 Allocation", <draft-salsano-issll-cops-odra-00.txt>,
 February 2000, Work in Progress
[COPS-ISDS] S. Salsano, R. Mameli, "Integrated services over DiffServ
 network using COPS-ODRA", <draft-mameli-issll-is-ds-cops-

00.txt>, February 2000, Work in Progress

7. Author Information and Acknowledgements

The author would like to thank Stefano Salsano, Eleonora Manconi and
Luca Dell'Uomo for their support and their contribution in the prototype
implementation.

 Roberto Mameli
 CoRiTeL consortium

https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2638
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/draft-ietf-issll-diffserv-rsvp-03.txt
https://datatracker.ietf.org/doc/html/rfc2748
https://datatracker.ietf.org/doc/html/draft-salsano-issll-cops-odra-00.txt
https://datatracker.ietf.org/doc/html/draft-mameli-issll-is-ds-cops-00.txt
https://datatracker.ietf.org/doc/html/draft-mameli-issll-is-ds-cops-00.txt

 Via di Tor Vergata 135
 00133 _ Roma (Italy)

 Phone: +39 06 20410038
 EMail: mameli@coritel.it

Mameli Expires August 2000 12

