Network Working Group J. Manner TOC

Internet-Draft N. Varis

Intended status:

. TKK
Experimental

September 14,

Expires: March 18, 2010
2009

Generic UDP Tunnelling (GUT)
draft-manner-tsvwg-gut-00.txt

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on March 18, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

Deploying new transport protocols on the Internet is a well-known
problem, as NATs and firewall drop packets with new protocol types.
Tunnelling over UDP is one way to make IP packets hide the actual
payload and enable end-to-end delivery. This draft proposes a simple
UDP tunnelling encapsulation and end-host operation to enable new IP

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

payloads, e.g., new transport protocols, to be deployed on the
Internet.

Table of Contents

Terminology

Introduction

Basic operation

3.1. Sender operation

3.2. Receiver operation

3.3. Example with one NAT in between
Deployment Considerations
Encapsulation of other protocols
Security Considerations

IANA Considerations

Summary

References

9.1. Normative References

9.2. Informative References

§ Authors' Addresses

[

[e

1. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in BCP 14, RFC 2119
[RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” March 1997.).

2. Introduction TOC

New transport layer technology, such as SCTP [RFC4960] (Stewart, R.,
“Stream Control Transmission Protocol,” September 2007.) and DCCP
[RFC4340] (Kohler, E., Handley, M., and S. Floyd, “Datagram Congestion
Control Protocol (DCCP),” March 2006.), have well-known problems with
deployment on the Internet. Firewalls drop IP packets with unknown (too
new) transport protocol types, and NAT boxes do not know how to
translate these protocols.

Tunnelling over UDP has often been mentioned as a means to traverse
middleboxes. Mostly the solutions are ad-hoc and protocol-specific. In
order to make deployment of UDP tunnelling at least somewhat

consistent, this draft proposes a simple mechanism to realise the goal.
The benefit is that with a generic solution we avoid the need to define
tunneling specifications for each transport protocol.

IP-in-IP encapsulation is also one potential solution. However, if the
communicating hosts are behind NATs, they have private source addresses
within the inner IP headers, which will break any communication.
Moreover, if NATs and firewalls probe deeper into the packet, they will
encounter potentially an unknown transport protocol and drop the
packet.

The basic idea of GUT is to encapsulate the original transport protocol
and its payload (in general the whole IP payload) within a UDP packet
destined to the well-known port GUT_P. Between the outer UDP header and
the inner transport header, we have a magic number and original
protocol type. The purpose of the magic number is to enable the
recipient to distinguish between GUT traffic and sporadic packets sent
to the GUT_P port, e.g., due to port scanning, and to reconstruct the
original IP packet with the correct IP protocol type. The protocol does
not require back-and-forth signalling, it just encapsulates the
original transport protocol and its payload - to any middlebox on the
way this looks like a normal UDP flow to port GUT_P.

If the inner transport protocol has a handshake or any back-and-forth
messaging, these are run automatically within the UDP-tunnel created by
GUT: GUT is meant to be fully transparent to the inner transport
protocol. Note that GUT can also tunnel protocol types which do not
have any port informations, such as RSVP or ICMP. The GUT encapsulation
is agnostic to the IP protocol version being used (IPv4 or IPv6).

3. Basic operation TOC

The basic idea of the protocol is to encapsulate the transport protocol
header and possible payload within a UDP header and send the packet to
a well-known UDP port GUT_P. The receiver will get the UDP packets,
check the magic number, and if it matches the expected well-known
value, reconstruct the original IP packet, and forward it for further
processing within the 0S stack. Figure 1 (GUT encapsulation) shows the
encapsulation.

I l------ > | I
I I | |
| Payload data | ------ > | Payload data |
I I I I
| |- > | |
B + o e oo +
	- >	
Orig. transport		Orig. transport
(DbCCP, SCTP,...)		(pccp, SCTP,...)
	- >	
B + e e oo +		
		protocol #
[IP header [\	Magic number	
	\ R LR T +	
e T T + 0\ [|
\ [UDP header |

AN R L +

A I

\-> | IP header |

I I

o e e e +

Figure 1: GUT encapsulation

The magic number MAGIC_N is a 32-bit value allocated by IANA. After the
magic number we have 24-bits reserved for future use, and the original
encapsulated 8-bit protocol number. All in all, this header is thus 64
bits.

The 24-bit reserved field is currently unused, but we may need to use
some of it for fragmentation and/or for use with IP options, as
discussed below.

Figure 2: GUT header

Discussion:

*Basically, we could drop the GUT header and just encapsulate the
original IP payload into a UDP datagram. However, this results in
two challenges at the receiver: (1) we need to do pattern
matching or some data analysis to figure out what the original IP
payload (e.g. transport protocol) was, and (2) we end up building
IP packets from all the traffic arriving at the GUT_P UDP port.

3.1. Sender operation TOC

A GUT sender operates basically as any data sender. It receives data
(from transport protocol Y going to port X) and sends it out to the
GUT_P port over UDP. The source port MAY be chosen freely, although if
the encapsulated protocol had a notion of port numners, the sender MAY
choose the same source port. The IP header indicates a UDP transport,
the GUT header is the first bytes of the UDP payload and gives the
inner protocol number. The IP header length obviously gives the length
of the whole GUT packet including the encapsulated transport protocol
packet.

The current value of GUT_P is 4887 (rule of thumb 1-800-GUTP)
Discussion:

*Fragmentation issues. GUT adds 16 octets of headers (UDP+GUT)
which may cause fragmentation to happen. We could do
fragmentation at the IP layer or within GUT by using the bits in
the GUT header to indicate the offset. We have bits unused in the
GUT header and could use them to implement fragmentation within
GUT; the question is, is IP fragmentation a problem with firewall
and NAT traversal?

*IP options are a bit problematic. We could hide the IP options
within the GUT encapsulation, thus they would be forwarded
unoticed within the network, between the sender and receiver. The
could also copy or move them to the outer header and make them
visible in the network when the encapsulated packet is routed.
However, this may result in unwanted behavior. For example, if we
have a RAO option in the original IP packet, and we keep this
visible in the GUT-encapsulated datagram, any node on the path
that wants to check the IP payload after the RAO option will
encounter a UDP header and a GUT header, which the node most
probably will not recognize. The IP options to be left visible
between the two GUT nodes must be decided case-by-case.

3.2. Receiver operation TOC

Receiving GUT encapsulated traffic is done through normal transport
player receive mechanisms. GUT must be able to receive packets with two
distinct destination ports, GUT_P and the original source port. The
former is when the node receiving a packet is the flow destination,
i.e., it will receive packets to the GUT_P port as indicated above. The
latter case happens for a 2-way flow and the node is the flow source,
i.e., it will receive upstream packets to the initial source port it
chose when sending the very first packet of the flow.

When the host receives packets to port GUT_P, i.e., it is the
destination of the flow, it MUST store the source IP, encapsulated
protocol number and any port numbers. This state information is needed
to send back packets belonging to the same flow - it is not strictly
needed, e.g., if the flow is unidirectional, but since GUT may not know
this, storing the state is needed.

On receiving a packet to the GUT_P UDP port, the GUT process MUST first
check the magic number. If this matches, the host can continue
processing, otherwise, it MUST discard the packet silently.

After decapsulation of the 64-bit GUT header, the GUT processing
reconstructs the original IP packet by using the included protocol
number, and injects the resulting packet into the host stack for
further processing. The packet may now be subject to host firewall
rules. If there are no listening sockets for the encapsulated protocol
Y, the host packet processing takes care of this event. So essentially,
GUT operates as a transparent encapsulation (well, sort of, we still
receive packets for the GUT_P port which obviously is not
"transparent").

Since the encapsulated payload may have had a different IP header at
the source, and thus a different transport header checksum, on building
the new IP packet, the checksum field of the original header (if any)
must be recomputed. The IP header may differ (original vs. received),

for example, because the sender was behind a NAT, or the receiver was
behind NAT with port forwarding enabled.
Discussion:

*Fragmentation and reassembly. This will be determined once we fix
whether framentation would be an IP layer or GUT function.

*Handling IP options: TBD once the final solution is determined.

3.3. Example with one NAT in between TOC

The following figure describes how various protocol fields are mapped
on a two-way signaling session. The example shows a DCCP-transfer going
from A to B. The figure presents the content of IP packets as they are
sent out from a component on the path. Note that if the encapsulated
protocol does not have port numbers, the GUT processing is even
simpler.

[Source, IP A] [GUT@A] [NAT, ext IP C] [GUT@B] [Dest, IP B]

————————————— Source A to destination B -------------------
1. [IP: A->B, DCCP]

2. [DCCP: E->F]
3. [IP: A->B, UDP]
4. [UDP: X->GUT]
5. [GUT-hdr, DCCP]
6. [DCCP: E->F]
7. [IP: C->B, UDP]
8. [UDP: P->GUT]
[GUT-hdr, DCCP]
9. [IP: C->B, DCCP]
10. [DCCP: E->F]
————————————— Destination B to source A -------------------
11. [IP: B->C,DCCP]
12. [DCCP: F->E]
13. [IP: B->C, UDP]
14. [UDP: GUT->P]
15. [GUT-hdr, DCCP]
16. [DCCP: F->E]
17. [IP: B->A, UDP]
18. [UDP: GUT->X]
19. [IP: B->A, DCCP]
20. [DCCP: F->E]

Figure 3: GUT encapsulation example

A few details from the figure above:

*Line 4: the GUT process takes GUT_P as the destination port, and
chooses a source port, either randomly or a fixed port called "X"
in the figure.

*Line 8: the NAT may choose a new source port P, instead of X, and
rewrite the UDP header.

*Line 10: before sending the packet out, the GUT process takes
note of the source IP and port numbers, and the encapsulated
protocol.

*Line 11-12: the tunneled protocol has not seen the GUT
encapsulation, thus, it will use the encapsulated port numbers in
the reverse traffic.

*- Lines 13-16: the GUT process has earlier stored state about the
flow, knows now that the packet is for an existing stream, and
can direct the flow to the right destination port "P", instead of
sending it to GUT_P, as if the packet belonged to a new stream.

4. Deployment Considerations TOC

The basic goal of GUT is to look like generic UDP messaging to any
middlebox on the path. If the inner transport protocol has support for
congestion control, GUT encapsulated packets that are lost will trigger
the inner transport to react.

As GUT only encapsulates the original transport header, any ECN
[REC3168] (Ramakrishnan, K., Floyd, S., and D. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” September 2001.) marking
are kept. Specifically, if the inner transport protocol has support for
ECN, and the receiver wants to send congestion notifications to the
sender, this information is encoded into the inner transport header and
carried intact all the way back to the sender. The GUT end-points have
to note ECN and operate as follows:

1. Sender: If the outgoing transport protocol wants to indicate it
supports ECN, this information MUST be kept intact in GUT
processing.

2. Receiver: If the IP header has the ECN CE codepoint, this MUST
be propagated to the inner transport protocol stack. (If the
receiver wants to send ECN congestion notifications back to the
sender, it uses its own mechanism to do that, inside GUT.)

In general, GUT does not carry any ECN information by itself, it works
as a transparent layer between the inner transport protocol and the IP
layer. How the codepoint information is propagated by and through GUT
is an implementation issue.

As GUT-encapsulated traffic looks like an ordinary stream of UDP
packets, existing NAT traversal protocols and techniques work out of
the box. For example, a receiving GUT-daemon can, when needed, maintain
the GUT_P open at the NAT using any suitable NAT-traversal protocol.

GUT was originally designed to be used for host-to-host communication.
Yet, nothing actually prohibits to have a network node that takes the
IP packets coming from a host, and tunnels them through GUT. Similarly,
a network node on the receiving side of the connection can decapsulate
the packets before they actually hit the receiving end-host, so
essentially making a GUT-proxy service.

There is yet one issue to consider, namely when to encapsulate a
transport protocol in GUT, and when not. This can be done
automatically, e.g., when replies to a transport protocol Y's
connection initiation are not received. Using GUT can also be a
configuration parameter, say, e.g., the host always encapsulates DCCP
packets into GUT; this operation is fully transparent to the inner
transport protocol.

5. Encapsulation of other protocols TOC

GUT is originally designed to counter the problems of deploying
relatively new transport protocols on existing Internet. Yet, GUT can
also be used to encapsulate any other protocol, e.g., RSVP or HIP.
Note that some protocols may not involve port numbers, e.g., RSVP. In
such cases, GUT is free to choose a random port for the sender's port
number; the receiver's port is always GUT_P.

TBA: more discussion on other encapsulation?

6. Security Considerations TOC

Using GUT opens up a trivial DoS attack: the host can be bombarded with
UDP packets to GUT_P with a valid magic number. The host can diminish
this case by closing the GUT_P listening socket (and NAT binding) when
there are no listening sockets open that require GUT; GUT is only
active when an application is running, expecting to receive data.

The use of GUT must not bypass the host's internal firewall rules,
i.e., if a packet it received through GUT, after GUT processing, the
packet MUST be forward through the firewall rule chain as if it came
directly from the network. GUT must operate transparently to most of
the host software.

GUT itself does not employ any security functions for content
protection. Yet, one could use any one-way mechanism, or purely rely on
the security functions of the inner payload. If security measures are
used on GUT, it should be a one-way scheme, which does not rely on
back-and-forth signalling; we don't want to force two-way signaling
within GUT, this may or may not happen due to the inner protocol being
tunneled.

GUT enables hosts to payloads through firewalls that would otherwise we
dropped. Thus, it enables by-passing firewall rules, which the network
admin may not appreciate. However, it would be trivial to block also
GUT, by disabling traffic to port GUT_P. Obviously one could run GUT
over any UDP port, and thus force a strict firewall to look for the
magic number in the UDP payload. However, how to block GUT properly and
completely is out of scope of this specification.

7. IANA Considerations TOC

This document requests IANA to allocate two values:

1. A new UDP port number GUT_P as referred to in the document.

2. A 56-bit "magic number" to be used in filtering actual GUT packets.
TBA: a discussion on what the value of this magic number should be. We
probably should not just take any random value but choose it such that
there would be a very small probability that it is something often used
in a UDP-based transport protocol. Choosing a good value may involve
some statistical analysis of current UDP traffic.

8. Summary TOC

Essentially this draft proposes to define a generic mechanism for
tunneling any IP payload over a UDP tunnel. The concrete steps to be
specified are:

1. Allocate a well-known port number for end-hosts to send UDP-
encapsulated traffic to. This is important because the sender would
need to know what port a receiver has open for GUT traffic. Also,
firewall administrators may want to choose if they allow UDP tunneling
to happen.

2. Define the encapsulation and decapsulation procedure so that the
receiver knows how to rebuild the original IP packet.

3. Define the fragmentation and handling of IP options in a unified
way .

The benefits are:

1. Existing IP protocols, with or without port information, work
without changes. Yet, if they employ IP options, we need to
make this possible.

2. Deployment can be done on the end-host or a network proxy.

3. No changes are required for existing NAT and firewall devices.

9. References TOC

9.1. Normative References
TOC
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

9.2. Informative References
_TOC _

[RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, “The Addition
of Explicit Congestion Notification (ECN) to IP,”
RFC 3168, September 2001 (TXT).

[RFC4340] Kohler, E., Handley, M., and S. Floyd, “Datagram
Congestion Control Protocol (DCCP),” RFC 4340, March 2006
(TXT).

[RFC4960] Stewart, R., “Stream Control Transmission Protocol,”
RFC 4960, September 2007 (TXT).

Authors' Addresses
TOC

Jukka Manner
Helsinki University of Technology (TKK)
P.0. Box 3000
Espoo FIN-02015 TKK
Finland

Phone: +358 9 451 2481

Email: jukka.manner@tkk.fi

URI: http://www.netlab.tkk.fi/~jmanner/

Nuutti Varis
Helsinki University of Technology (TKK)
P.0. Box 3000
Espoo FIN-02015 TKK
Finland
Email: nvaris@cc.hut.fi

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
http://tools.ietf.org/html/rfc3168
http://tools.ietf.org/html/rfc3168
http://www.rfc-editor.org/rfc/rfc3168.txt
http://tools.ietf.org/html/rfc4340
http://tools.ietf.org/html/rfc4340
http://www.rfc-editor.org/rfc/rfc4340.txt
http://tools.ietf.org/html/rfc4960
http://www.rfc-editor.org/rfc/rfc4960.txt
mailto:jukka.manner@tkk.fi
http://www.netlab.tkk.fi/~jmanner/
mailto:nvaris@cc.hut.fi

	Generic UDP Tunnelling (GUT)draft-manner-tsvwg-gut-00.txt
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Terminology
	2. Introduction
	3. Basic operation
	3.1. Sender operation
	3.2. Receiver operation
	3.3. Example with one NAT in between
	4. Deployment Considerations
	5. Encapsulation of other protocols
	6. Security Considerations
	7. IANA Considerations
	8. Summary
	9. References
	9.1. Normative References
	9.2. Informative References
	Authors' Addresses

