
IP Over NBMA Working Group Eric Mannie
INTERNET-DRAFT Marc De Preter
Expires 21th of April 1997 (ULB-STC)
<draft-mannie-stc-ion-msp-00.txt>
 October 1996

Multicast Synchronization Protocol (MSP)

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working
documents of the Internet Engineering Task Force (IETF), its areas,
and its working groups. Note that other groups may also distribute
working documents as Internet- Drafts.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as ``work in progress.''

To learn the current status of any Internet-Draft, please check the
``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
Directories on ds.internic.net (US East Coast), nic.nordu.net
(Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (PacificRim).

Abstract

This document defines a Multicast Synchronization Protocol (MSP)
designed to avoid traditional problems related to the use of unicast
(pt-to-pt) synchronization protocols (such as those encountered with
OSPF, P-NNI, SCSP, epidemic protocols,...). These protocols imply the
establishment and maintenance of a topology of servers (tree, star,
line, mesh,...). It is not obvious to find neither the best topology
for a given synchronization protocol nor the best algorithm which
allows to create this topology. An attempt to study the influence of
the spatial distribution (topology) has been made, for instance, in
Epidemic algorithms by Xerox Parc, which showed interesting results.
Moreover, traditional synchronization protocols notably imply a
convergence time and traffic which is proportional to the size of the
topology. We believe that reducing the topology to a set of members of
a single multicast group could reduce both convergence time and
traffic. Note that in that case, no configuration algorithm is
required.

https://datatracker.ietf.org/doc/html/draft-mannie-stc-ion-msp-00.txt

Mannie, De Preter Page 1

INTERNET-DRAFT MSP Expires April 1997

1. Introduction

MSP allows to synchronize a replicated database between various
servers which are all members of the same server group (SG). It takes
advantage of multicast capabilities provided by a growing number of
underlying layers. It is suitable in environments supporting multicast
(group) addresses (such as ethernet and SMDS) or point-to-multipoint
connections (such as ATM). In this context all servers can directly
communicate with all servers in the same group, using the underlying
multicast capability. No particular topology (except the underlying
multicast topology itself) nor configuration algorithm (such as the
Spanning Tree,...) are required. No problem due to critical links and
topology partitions occurs. This protocol is very robust as an update
generated by a server is directly received by all other servers in the
same group. Finally, MSP is a generic protocol and is defined
independently of the particular database or cache to synchronize.

2. Overview

MSP is a generic protocol defined independently of the particular
database to synchronise. The MSP pdus may be either self transported
or part of other protocols and used as fields of these protocols. For
instance MSP can be supported on the top of an IP multicast service,
on the top of an Ethernet network, on the top of an ATM service or it
can be a part of Classical IP, MARS or NHRP. It can even be used to
synchronize different databases in parallel, in the same pdus.

Each server is the owner of a part of the database (e.g. bindings by
local clients) and has a unique server ID. It maintains a copy of the
complete database (replicated database), each entry is either locally
owned or learned from another server. An entry which belongs to a
particular server is tagged with a timestamp (event time) and the
server ID of its owner. This timestamp identifies an update of the
entry and is set each time the entry is updated. The timestamp is
unique in the context of the owner and is the concatenation of a
standard time and a sequence number.

All servers are directly connected by a multicast group or a mesh of
point-to-multipoint connections. Each entry update generated by a
server is sent with its timestamp and the server ID. This update is
directly received by all other servers and each local database is
updated accordingly. Updates are packed with their timestamps in
pdus, which are logically grouped into transactions. Transactions

allow to speed up the detection of the loss of a part of the pdus.

Pdus are not positively acknowledged (ACK) by receiving servers. If a
server detects some missing pdus, it sends a NACK in the multicast
group for the corresponding missing updates identified by their
timestamps. In order to avoid an implosion of concurrent NACKs and
reduce the total number of transmitted NACKs, a technique similar to
IGMP is used. A server waits for a delay randomly chosen between zero
and D milliseconds before sending a NACK. If, during this period,
another NACK is seen for the same timestamps, the NACK generation is

Mannie, De Preter Page 2

INTERNET-DRAFT MSP Expires April 1997

cancelled and the server waits for the retransmitted updates. This
scheme is based on the fact that if a pdu is lost in the context of a
multicast group, there are probably more than one server which have
not received the pdu. In addition, it should be noted that such pdus
are essentially small pdus and that the expected error rate of the
underlying layer should be very low (e.g. ATM).

Small hello pdus are generated periodically at each hello interval and
include the server id and its last attributed timestamp. Hello pdus
are needed to detect the loss of a set of complete transactions.

When a server or a connection (re)starts, either all the database has
been lost, or, only the most recent updates have not been
received. The corresponding server sends a SYNC pdu to the multicast
group, either indicating that all the database has to be
retransmitted, or, listing each server ID and its last received
timestamp. SYNC are not sent directly; the same scheme as the one used
for NACKs is used again; it allows a server to take advantage of the
resynchronization requested by another server. Receiving servers send
transactions for the missing information, and could use the same
scheme as the one used with NACKs and SYNCs. Each server only sends
its own updates and only if their timestamps are greater than the
requested one. If some timestamps are not available any longer, it
means that the corresponding information has been updated by a more
recent update and that only this last update has to be retransmitted
by the owner. Only more recent updates are retransmitted. Selective
SYNCs are resent if a part of the requested updates has not been
received, obsolete timestamps are advertised.

For the configuration point of view, only a single multicast address
or a list of server addresses has to be configured (e.g. obtained
through a "LEC" like configuration server [LANE]). No particular
topology has to be built, no configuration algorithm is needed, no
problem occurs if a server fails to rebuild the topology !

Finally, if we only consider a topology of servers connected by
point-to-point connections, MSP acts like a traditional
synchronization protocol as explained in the MSP unicast chapter.

 S1 S2 S3 S1 S2
 | | | \ /\
 | | | \/ \
 +-----------------+ S3 S4
 | | /
 | Multicast Group |---S4 /
 | | S5-----S6
 +-----------------+ /
 | | | /
 | | | S7
 S5 S6 S7

 Multicast topology vs. traditional topology

Mannie, De Preter Page 3

INTERNET-DRAFT MSP Expires April 1997

3. Server Group

MSP allows to synchronize a replicated database between various
servers which are all members of the same server group (SG). It
ensures that within a short duration, all servers in the SG will have
exactly the same copy of the database. The scope of a server group
could be restricted to servers which are all connected to the same LIS
[Classical], LAG [NHRP], cluster [MARS], ELAN [LANE] or IASG [MPOA].

Each server group (SG) is identified by a server group ID (SGID). This
allows to support multiple server groups at the same time in the same
domain. This SGID only needs to be unique in this domain and could,
for instance, consist of the multicast address used to identify the
servers.

Moreover, each server in a SG is uniquely identified by a server ID
(SID). This ID could be the internetwork layer address of the server
itself, e.g. its IP address. Each pdu transmitted by a server will be
tagged with its server group ID (SGID) and server ID (SID). Using a
complete internetwork layer address as SID allows to quickly identify
a server and to facilitate the management. Both the SGID and the SID
are represented on 32 bits.

4. Underlying Layer

MSP is designed to take advantage of multicast capabilities provided
by the underlying layer. This version mainly focuses on the use of
unidirectional point-to-multipoint connections and full multicast

service such as supported by an Ethernet network. MSP may be supported
over the IP layer itself or over any NBMA network such as an SMDS or
ATM (UNI3.0/3.1 or later) network.

It should be noted that, if no multicast capability at all is
supported by the underlying layer, MSP mainly acts like a traditional
point-to-point synchronization protocol (see specific chapter).

5. Topology

The topology is reduced to the scope of a single multicast group. No
particular algorithm nor protocol are required to establish and
maintain this topology. The address of the multicast group or the list
of all members may be directly obtained through a configuration server
as the LECS [LANE].

All servers are directly connected by a multicast group or a mesh of
point-to-multipoint connections. In the worst case, n
point-to-multipoint connections are needed when n servers have to be
synchronized. In a near future, when multipoint- to-multipoint
connections will be available, the need to support n connections will
be cancelled.

Mannie, De Preter Page 4

INTERNET-DRAFT MSP Expires April 1997

It is important to note that these point-to-multipoint connections are
only supported by servers (never by clients) and that these servers
could be efficiently implemented over internetworking units, such as
ATM switches. In addition, the behaviour of these servers is very
static as they do not appear and disappear continuously in a server
group. This considerably simplifies the management of the connections.

A multicast topology is very robust as every message is directly
received by all servers in the SG and as there is no single point of
failure or forwarding point at the server level. The complexity of
establishing the topology and dealing with dynamic topology
partitioning is left to the underlying layer, at the level of routers
or switches.

Resources required by servers for message generation are reduced since
a message is once sent and is never repeated from server to
server. Forwarding of messages is better achieved by transport
protocols than by synchronization protocols. It also results that the
time needed by an update to reach all servers is very reduced and not
directly proportional to the number of servers.

More resources are required to receive messages but this process may
be optimized by using appropriate filtering on incoming messages and
database lookup, e.g. using dedicated hardware such as CAM (contents
access memory). The same kind of problem is solved in Ethernet
networks. Filtering on an incoming UPDATE pdu received from a given
server is easily applied, by comparing the recorded last received
timestamp from that server with the smallest (first) or largest (last)
timestamp of that pdu. If the first timestamp in the pdu is greater
than the recorded timestamp, the complete pdu updates the local
database. If the last timestamp in the pdu is smaller than the
recorded timestamp, the complete pdu may be dropped (except if in
response to a NACK). Otherwise, all entries between the recorded
timestamp and the end of the UPDATE pdu update the local database.

6. Database and Timestamp

MSP is defined independently of the particular database (cache) to
synchronise. Database entries are transparently transported and are
defined by the particular protocols whose databases are
synchronized. The encoding of these entries will be defined in
specific appendixes of this document or in companion documents. The
database entries describe for instance bindings between IP addresses
and ATM addresses. Unlike other synchronization protocols, MSP does
not use summaries of database entries. MSP identifies events and
ensures that the most recent event for each entry has been received by
all servers.

Each server is the owner of the part of the database which is
generated by its own clients. It maintains a copy of the complete
database but is only responsible for the entries it owns and can only
transmit these entries. For instance, each entry in a database may be
either tagged as locally owned or learned from another server.

Mannie, De Preter Page 5

INTERNET-DRAFT MSP Expires April 1997

Each event (client action) in the database is identified by a
timestamp which is unique in the context of the server which generates
that event. This timestamp is the concatenation of a standard time
(e.g. GMT) and a real contiguous sequence number. This time may be
local to each server, a global time is not needed by this protocol,
i.e. clocks do not need to be synchronized. The sequence number is
incremented by one at each new event. It allows also to support more
than one event per tick of the standard time.

Each entry in the database is associated with a timestamp set by the
owner server at the moment when the client generates or updates the
entry. A server cannot change timestamps for entries it does not
own. Timestamps are used by servers to identify missing information in

their database.

If a server receives an entry which is already included in its
database, it must compare the two timestamps and keep the entry with
the most recent (greater) timestamp.

A timestamp X is greater (more recent) than a timestamp Y if the
standard time of X is greater than the standard time of Y or if they
are equal, the sequence number of X is greater than the sequence
number of Y.

When a server starts for the first time or looses its knowledge of its
current timestamp (after a crash for instance), it only has to
generate a new value for the standard time and restart the sequence
numbering at zero. The same scheme is applied when the sequence
number wraps out. The standard time is never modified when a timestamp
sequence number is incremented. It is only used to insure a unique
value during the lifetime of a server.

7. Transactions

Database entries are transmitted in variable length UPDATE pdus. The
size of an UPDATE pdu may be limited in order to fit in the particular
MTU supported by the underlying layer. UPDATE pdus related to events
close in time are logically grouped into transactions. A transaction
is delimited by a start flag in its first UPDATE pdu and by a stop
flag in its last UPDATE pdu. The shortest transaction contains a
single UPDATE pdu with both the start and stop flags set.

 +------------+-------------------+
 | Pdu header | Entry 1... |
 |(#seq,...) | ...Entry n |
 +------------+-------------------+

 UPDATE pdu

Mannie, De Preter Page 6

INTERNET-DRAFT MSP Expires April 1997

Transactions are generated in response to synchronization request
(SYNC received) or in response to a NACK or when a set of entries have
to be flooded. An empty transaction is sent to indicate that the
requested timestamps are not available any more (obsolete), following
a synchronization request or a NACK. Such a transaction is made of one
empty UPDATE pdu identifying the requested timestamps.

Transactions are not numbered but all UPDATE pdus are numbered
sequentially among all transactions generated by the same server. All
entries in a transaction and in its subsequent UPDATE pdus are sorted
by timestamp order. No sort algorithm is needed at all, only a sorted
list per server has to be maintained (trivial since timestamps are
generated in order). The numbering of UPDATE pdus is contiguous so
that a server can immediately detect missing pdus. UPDATE pdu sequence
numbers should not be confused with timestamp sequence numbers. PDU
sequence numbers are needed since timestamp sequence numbers are not
always contiguous (if a server [re-]starts or when entries are
obsoleted).

 +-----
 |
 | +------------+-------------------+
 | | Pdu header | Entry 1... | UPDATE
 | |(#seq,...) | ...Entry n | pdu
 | +------------+-------------------+
 | .
 | .
 | .
 | +------------+-------------------+
 | | Pdu header | Entry 1... | UPDATE
 | |(#seq,...) | ...Entry n | pdu
 | +------------+-------------------+
 +-----

 A transaction

Transactions are useful in order to detect faster the loss of the last
UPDATE pdus sent by a server. This loss may be detected either by a
timer waiting for the end of the current transaction, or when the
first UPDATE pdu of the next transaction is received or when the next
HELLO pdu is received from the server generating that
transaction. These HELLO pdus are generated regularly by each server
to indicate its last timestamp value.

A transaction starts either immediately when its first UPDATE pdu is
built or after a small random delay in order to avoid multicast
storms. During this delay, new updates may be generated by clients and
added in the transaction.

Mannie, De Preter Page 7

INTERNET-DRAFT MSP Expires April 1997

If a gap in the numbering of UPDATE pdus is detected, it means either
that a part of a transaction has been lost or that a complete
transaction or set of transactions have been lost. A NACK pdu is sent,
indicating the last received timestamp before the gap and the first
received timestamp just after the gap. The last received timestamp
before the gap was received in an UPDATE pdu in the same transaction
or in a previous transaction.

If after a timeout (NACK interval), the requested entries have not
been retransmitted (in a new transaction), a NACK pdu is retransmitted
for the same timestamps. After a maximum number of NACK
retransmission, the corresponding server is considered as not
available any more. All its updates are kept physically in the
database but the server memorizes the fact that the last valid
received timestamp was the last one received before the gap. When the
previously unreachable server will become available again, it will
sent an HELLO or a SYNC or a transaction and the current server will
discover that a set of timestamps are missing. A NACK pdu consist in a
list of server IDs with a list of timestamp intervals for each of
these IDs. In the simplest case, a NACK pdu is made of a single ID
with a single interval. A specific timestamp value is used to indicate
an open interval such as [x, [(i.e. from value x to the infinite).

If a server crashes and loses its current UPDATE pdu sequence number,
it restarts the numbering at zero. In that case no problem occurs as
it resynchronizes its database as described in the synchronization
chapter. In order to be able to detect a gap in UPDATE streams, a
server keeps the last pdu sequence number received from each
server. After having received a SYNC pdu, a server must transparently
set that number to the value contained in the next received UPDATE pdu
from the corresponding server, without checking for a gap.

MSP may be implemented over a service which does not prevent pdu
misordering. In that case, a server should wait for a small timer
before deciding that a pdu is lost, in order to have a chance to
re-order the pdus. When that timer expires, a gap is detected and a
NACK is sent.

8. Synchronization

The synchronization of information is required in two cases: when an
update has to be flooded and when a server has to build or rebuild its
database. The first case is detailed in the Update flooding
chapter. The last case is the synchronization process itself. It
occurs, for instance, when a server joins the SG for the first time
without having any idea of any existing binding or when a server joins
the SG already having a part of the bindings (e.g. when a broken
underlying connection is rebuilt).

A server having to synchronize with the rest of the group will first

build a list made of all server IDs included in its database (possibly
empty). For each entry in the list, it adds the corresponding highest
known timestamp. This list is inserted in a SYNC pdu, together with

Mannie, De Preter Page 8

INTERNET-DRAFT MSP Expires April 1997

the total number of elements, the synchronizing server ID and its own
highest timestamp. This pdu is multicasted to the group.

Each server receiving a SYNC pdu scans the list for its own ID. If it
finds its ID, it builds a transaction containing all entries locally
owned and whose timestamps are greater than the required one. If that
required timestamp is greater or equal to its own highest timestamp,
no entries have to be send and an empty transaction is build,
signalling that the synchronizing server is up to date. Finally, the
transaction is multicasted to the group.

If a server does not find its ID in the list included in a SYNC pdu,
it means either that it has joined the group while the synchronizing
server was unreachable or that it does not own any entry in the global
database. In the first case, it has to build and send a transaction
for all entries it owns. In the last case, it does not have to send
any transaction.

Finally, each server receiving a SYNC pdu checks the synchronizing
server timestamp. If the local timestamp associated with the
synchronizing server is lower than the received one, the server has
not received a part of the synchronizing server own database and sends
a NACK.

The SYNC pdu is a kind of summary of the database known by the
synchronizing server. Its length is bounded by the total number of
servers in the SG. If a SYNC pdu does not reach a subset of the
servers, the synchronizing server will not receive any transaction in
response from these servers and will retransmit, after a timeout, a
SYNC pdu for these servers only.

The multicasting of each transaction improves the robustness of the
protocol and allows also other servers to learn entries before
starting their own synchronization (if still needed after the silent
listening). Transactions in response to a SYNC may be multicasted on a
separate multicast address on which only servers which have to
synchronize are listening. This last solution reduces the traffic
which is globally multicasted and allows also each server to
independently decide if it wants or not to receive the synchronization
traffic.

If all servers or a large number of servers have lost their
connectivity at the same time, the multicast scheme is very

efficient. If the real multicasting is not supported and if the
transmission on point-to-multipoint connections is not desired, it is
possible to use an on-demand point-to-point connections.

9. Update Flooding

Each time a client modifies its entry in a server, a new update is
generated and has to be flooded to all servers in the SG. The owner
server associates a timestamp with the update and builds a transaction
to flood that update. This update is included in an UPDATE pdu. The

Mannie, De Preter Page 9

INTERNET-DRAFT MSP Expires April 1997

server may send a transaction for that single update or it may group a
number of updates together in one or more UPDATE pdus in the same
transaction. Transactions may be sent immediately or after a small
random delay (see chapter on multicast storm).

10. Hello Pdu

Small HELLO pdus are sent periodically at each hello interval. Each
pdu includes the server ID and the last used timestamp of the
sender. This timestamp allows to detect the loss of a part of the
updates sent by the server which has generated the HELLO pdu. In
particular, it allows to detect the loss of a complete transaction or
a set of complete transactions.

When a server receives a given number of HELLO pdus indicating that it
has missed a few updates (its timestamps from the sending servers are
out of date), it may decide to resynchronize its database and generate
a SYNC. Otherwise, it may send an NACK pdu for each of these servers.

11. Multicast Storm

In order to avoid a multicast storm of NACKs when some UPDATE pdus are
lost or a storm of SYNCs when many servers have to synchronize at the
same time or a storm of transaction, a technique similar to IGMP may
be used. Before sending a NACK, a SYNC or the beginning of a
transaction, a server may wait for a small random delay between 0 and
D milliseconds. During this delay, the server listens to MSP pdus,
receives all transactions and updates its database. This silent
listening may result in a decreasing traffic and cancel some local
operations as explained hereafter.

If a server wants to send a NACK and that during the random delay, a
NACK is seen for the same set or subset of timestamps, the server
waits for the responding transactions. If after, that delay all of its
requested timestamps have been received, the generation of the NACK is
cancelled. The previous explanations on NACK retransmission are also

applicable here.

If a server wants to send a SYNC and that during the random delay,
other compatible SYNCs have been seen, it waits for the corresponding
transactions and decides after if its SYNC is still needed.

If a server wants to send a transaction in response to a SYNC, it may
also wait for a random delay in order to limit the number of
simultaneous transactions transmitted and/or received, to decrease the
amount of resources needed.

12. Unicast MSP

MSP is a multicast or point-to-multipoint protocol but may be also
used in an unicast or point-to-point environment. In that case it acts
like a traditional synchronization protocol, except mainly that each
UPDATE pdu doesn't need to be acked one by one, and that after a

Mannie, De Preter Page 10

INTERNET-DRAFT MSP Expires April 1997

failure no complete database summary has to be exchanged in two ways
each time. In this last case, only two small SYNC pdus are exchanged
and each server acts as a proxy for the information owned by other
servers behind him. Random delays are not needed any more, since there
is only one sender for each direction.

Of course, as we are back in the point-to-point case, an algorithm is
again needed to establish and maintain the topology. Each server knows
automatically the servers for which it must act as a proxy by
listening the Hello pdus and learning the position of each server. A
proxy server generates or forwards Hello pdus for servers it
represents.

A server wishing to synchronize will send a SYNC pdu to each server it
is connected to. These servers will respond with their own updates and
those of the servers they represent. The SYNC scheme is the same as
the one used in the multicast case, except for the random delay
technique.

A server knows which servers it represents, by keeping a trace of the
connections where HELLO pdus are received from. It represents all the
servers that sends HELLO pdus on all its connections other than the
one where it has received the SYNC pdu.

When a transaction is received from a neighbour server, the receiving
server must directly repeat this update on all its connections, except
the one on which it was received.

A server must also respond to each received NACK destinated to itself

or to one of the servers for which it acts as a proxy. In addition, it
does not need to wait for a random delay when it generates a NACK.

13. Further Study (not in this version)

In order to reduce the number of pdu formats, a SYNC pdu could be
implemented as a NACK pdu. In that case, a flag is used to indicate
that the NACK is a synchronization. Only the last received timestamp
(open interval) is given for each known server. A server which does
not see its ID in that list must retransmit all its own entries.

Transactions could be suppressed if the HELLO pdu rate is high enough
to allow to quickly detect the loss of the last transmitted pdu from a
given server. In the current version, the reception of the last pdu of
a transaction allows to know that a bundle of pdus have been
transmitted and that no further pdu must be waited before the
beginning of a next transaction.

14. Security

When MSP is embedded in another protocol, security considerations are
mainly covered by this specific protocol. Detailed security analysis
of this protocol is for further study.

Mannie, De Preter Page 11

INTERNET-DRAFT MSP Expires April 1997

Conclusion

MSP is a generic multicast synchronization protocol which may also act
as traditional unicast protocol. It reduces the traffic by identifying
events in the database in place of using database summaries, and by
supporting negative acknowledgments (NACK) in place of systematic
ACKs. It is particularly suitable in environments with a low error
rate such as ATM. It reduces the convergence time and improves the
robustness by using a multicast topology where updates are directly
received by all servers. No single point of failure exists. No
configuration algorithm and protocol are needed, no specific problem
occurs if the topology partitions. It takes advantage of the fact that
the forwarding of information and the dynamic routing is better
achieved by well-known dedicated protocols such as interworking and
routing protocols which are implemented anyway to support the normal
data transfer service.

References

[MARS] "Support for Multicast over UNI 3.0/3.1 based ATM
Networks.", Armitage, draft-ietf-ipatm-ipmc-12.txt.

https://datatracker.ietf.org/doc/html/draft-ietf-ipatm-ipmc-12.txt

[NHRP] "NBMA Next Hop Resolution Protocol (NHRP)", Luciani,
Katz, Piscitello, Cole, draft-ietf-rolc-nhrp-09.txt.

[MPOA] "Baseline Text for MPOA, draft", C. Brown, ATM Forum
95-0824R6, February 1996.

[Classical] "Classical IP and ARP over ATM", Laubach, RFC
1577.

[SCSP] "Server Cache Synchronization Protocol (SCSP) -
NBMA", J. Luciani et al., draft-luciani-rolc-scsp-03.txt

[Epidemic] "Epidemic Algorithms for Replicated Database
Maintenance", Demers et al., Xerox PARC.

[LANE] LAN Emulation over ATM Version 1.0, ATM Forum af-
lane-0021.000, January 1995.

[LNNI] LAN Emulation over ATM Version 2 - LNNI specification
- Draft 3 ATM Forum 95-1082R3, April 1996.

[IGMP] "Host Extensions for IP Multicasting", S. Deering,
STD 5, rfc1112, Stanford University, February 1989.

[OSPF] "OSPF Version 2", Moy, RFC1583.

[PNNI] "PNNI Specification version 1", Dykeman, Goguen, ATM
Forum af-pnni-055.000, March 1996.

Mannie, De Preter Page 12

INTERNET-DRAFT MSP Expires April 1997

Acknowledgments

Thanks to all who have contributed but particular thanks to Andy Malis
from Nexen and Ramin Najmabadi Kia from ULB.

Author's Address

 Eric Mannie
 Brussels University (ULB)
 Service Telematique et Communication
 CP 230, bld du Triomphe
 1050 Brussels, Belgium
 phone: +32-2-650.57.17
 fax: +32-2-629.38.16
 email: mannie@helios.iihe.ac.be

https://datatracker.ietf.org/doc/html/draft-ietf-rolc-nhrp-09.txt
https://datatracker.ietf.org/doc/html/draft-luciani-rolc-scsp-03.txt
https://datatracker.ietf.org/doc/html/rfc1112
https://datatracker.ietf.org/doc/html/rfc1583

 Marc De Preter
 Brussels University (ULB)
 Service Telematique et Communication
 CP 230, bld du Triomphe
 1050 Brussels, Belgium
 phone: +32-2-650.57.17
 fax: +32-2-629.38.16
 email: depreter@helios.iihe.ac.be

Appendix 1 - PDU Format

For further study

Mannie, De Preter Page 13

