
ACE Working Group R. Sanchez
Internet-Draft R. Marin
Intended status: Experimental D. Garcia
Expires: April 11, 2015 University of Murcia
 October 8, 2014

EAP-based Authentication Service for CoAP
draft-marin-ace-wg-coap-eap-01

Abstract

 This document describes an authentication service that uses EAP
 transported by means of CoAP messages with two purposes:

 o Authenticate two CoAP endpoints.

 o Bootstrap key material to protect CoAP messages exchanged between
 them.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 11, 2015.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Sanchez, et al. Expires April 11, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoAP EAP October 2014

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. General Architecture . 3
3. General Flow Operation 3
3.1. EAP in CoAP with AUTH option 4
3.2. EAP in CoAP with DTLS 7

4. Key Derivation for protecting CoAP messages 9
4.1. Deriving COAP_AUTH_KEY 10
4.2. Deriving DTLS_PSK . 10

5. Generating AUTH option 11
6. Implementation . 12
7. Future Work: CoAP Relay 13
8. Use Case Scenario . 13
9. Acknowledgments . 15
10. Security Considerations 15
11. IANA Considerations . 15
12. References . 15
12.1. Normative References 15
12.2. Informative References 16

 Authors' Addresses . 17

1. Introduction

 The goal of this document is to describe an authentication service
 that uses the Extensible Authentication Protocol (EAP) [RFC3748].
 The authentication service is built on top of the Constrained
 Application Protocol (CoAP) [I-D.ietf-core-coap] and allows
 authenticating two CoAP endpoints by using EAP without the need of
 additional protocols to bootstrap a security association between
 them.

 In particular, the document describes how CoAP can be used as EAP
 lower-layer [RFC3748] to transport EAP between a CoAP server (EAP
 peer) and the CoAP client (EAP authenticator) using CoAP messages.
 The CoAP client may contact with a backend AAA infrastructure to
 complete the EAP negotiation as described in the EAP specification
 [RFC3748].

 The assumption is that the EAP method transported in CoAP MUST
 generate cryptographic material [RFC5247]. In this way, the CoAP
 messages can be protected. There are two approaches that we have
 considered in this document:

https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5247

Sanchez, et al. Expires April 11, 2015 [Page 2]

Internet-Draft CoAP EAP October 2014

 o To define a new AUTH option that includes an authentication tag
 generated with the cryptographic material exported during an EAP
 authentication. This new option is used to protect the integrity
 of the CoAP message that carries the AUTH option. (NOTE:
 Encryption will be considered in the future).

 o To establish a DTLS security association using the exported
 cryptographic material after a successful EAP authentication.
 [I-D.ohba-core-eap-based-bootstrapping]

 This document also provides some comments about implementation of a
 proof-of-concept of this preliminary idea

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. General Architecture

 The Figure 1 shows the architecture defined in this document.
 Basically a node acting as the EAP peer wants to be authenticated by
 using EAP. At the time of writing this document, we have considered
 a model where the EAP peer will act as CoAP server for this service
 and the EAP authenticator will act as CoAP client and may interact
 with a backend AAA infrastructure. Nevertheless, a model where the
 EAP peer act as CoAP client and the EAP authenticator as CoAP server
 will be also analyzed in the future.

 +------------+ +------------+ +--------------+
 | EAP peer/ | | EAP auth./ | | EAP server/ |
 | CoAP server|+------+| CoAP client|+-----+| AAA server |
 +------------+ CoAP +------------+ AAA +--------------+

 Figure 1: CoAP EAP Architecture

3. General Flow Operation

 The authentication service uses the CoAP protocol as transport layer
 for EAP. CoAP becomes an EAP lower-layer (in EAP terminology). In
 general, it is assumed that, since the EAP authenticator may need to
 implement an AAA client to interact with the AAA infrastructure, this
 endpoint will have more resources. We describe two different
 sequence flow. First, it is shown in Figure 2 where the AUTH option
 is used at the end of EAP authentication. Second diagram (see
 Figure 3) shows the flow when DTLS is used to protect CoAP messages

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Sanchez, et al. Expires April 11, 2015 [Page 3]

Internet-Draft CoAP EAP October 2014

 at the end of the EAP authentication. As an example, both diagrams
 show the usage of the EAP-PSK method [RFC4764] as authentication
 mechanism. (NOTE: any EAP method which is able to export
 cryptographic material should be valid).

3.1. EAP in CoAP with AUTH option

 If the EAP peer discovers the presence of the EAP authenticator and
 wants to start the authentication, it can send a Confirmable "GET
 /auth" request to the node (Step 0). If the EAP authenticator
 implements the authentication service will return a 2.05 in a
 Acknowledgment with a piggy-backed response (Step 0'). Immediately
 after that, the EAP authenticator will start the authentication
 service. It is worth noting that the EAP authenticator may decide to
 start the authentication without waiting for a "GET /auth" message.

 In any case, to perform the authentication service, the CoAP client
 (EAP authenticator) sends a Confirmable "POST /auth" request to the
 CoAP Server (Step 1). POST message indicates to the CoAP server the
 creation of a resource for the EAP-based authentication service. The
 CoAP server assigns a resource and answers with an Acknowledgment
 with the piggy-backed resource identifier (Uri-Path) (Step 2). It is
 assumed that the CoAP server will only have an ongoing authentication
 and will not process simultaneous EAP authentications in parallel to
 save resources. Moreover if after a period of time (TBD) no further
 message is received from the CoAP client, the CoAP server will free
 the created state. In this moment, the CoAP server has started a
 resource for the EAP authentication, whose resource identifier value
 will be used together with the Token option value to relate all the
 EAP conversation between both CoAP endpoints.

 From now on, the EAP authenticator and the EAP peer will exchange EAP
 packets transported in the CoAP message payload (Steps 3,4,5,6,7).
 The EAP authenticator will use PUT method to send EAP requests to the
 EAP peer. The EAP peer will use a Piggy-backed response in the
 Acknowledgement message to carry the EAP response. At the end of the
 message exchanges, if everything has gone well, the EAP authenticator
 is able to send an EAP Success message and both CoAP endpoints will
 share a Master Session Key (MSK) ([RFC5295])

 If the new defined AUTH option is used, an authentication tag is
 generated with a new key named COAP_AUTH_KEY, derived from the MSK.
 The Acknowledgment message from the CoAP server will also include an
 AUTH option so that the CoAP client can verify that the CoAP server
 obtained the MSK. This is shown in Steps 7 and 8. From that point
 any exchange (for example, Steps 9 and 10) between both CoAP
 endpoints are protected with the AUTH option. Finally, the CoAP
 client MAY send a Confirmable DELETE request to remove all the state

https://datatracker.ietf.org/doc/html/rfc4764
https://datatracker.ietf.org/doc/html/rfc5295

Sanchez, et al. Expires April 11, 2015 [Page 4]

Internet-Draft CoAP EAP October 2014

 related with the authentication service in the CoAP server (Steps 11
 and 12). The CoAP server may decide to remove the state after period
 of time in case not receiving a DELETE request. This may be easier
 if the EAP authenticator sends a session lifetime option (TBD) in the
 Step 7 (where the EAP Success is sent).

 On the contrary, if DTLS is used (see Figure 3), a DTLS_PSK is
 derived from the MSK. Moreover, exchanges between both CoAP
 endpoints are protected with DTLS from that point.

 EAP peer EAP Auth.
 (COAP server) (COAP client)
 ------------- -------------
 | |
 | CON [0x6af5] |
 0) | Token [0xFA5B45FF4723BB43] |
 | GET /auth |
 |-->|
 | |
 | |
 | ACK 2.05 [0x6af5] |
 | (Token 0xFA5B45FF4723BB43) |
 0') | Payload ["OK"]|
 |<--|
 | |
 | |
 | CON [0x73DE] |
 | (Token 0x78728FD4AC3190FF) |
 | POST /auth |
 1) |<--|
 | |
 | ACK [0x73DE] |
 | (Token 0x78728FD4AC3190FF) |
 | 2.01 Created |
 | Uri-Path [auth/5] |
 2) |-->|
 | |
 | CON [0x7654] |
 | (Token 0x78728FD4AC3190FF) |
 | Payload EAP-PSK MSG 1 |
 | PUT /auth/5 |
 3) |<--|
 | |
 | ACK [0x7654] |
 | (Token 0x78728FD4AC3190FF) |
 | 2.04 Changed |

Sanchez, et al. Expires April 11, 2015 [Page 5]

Internet-Draft CoAP EAP October 2014

 | Payload EAP-PSK MSG 2 |
 4) |-->|
 | |
 | CON [0x9869] |
 | (Token 0x78728FD4AC3190FF) |
 | Payload EAP-PSK MSG 3 |
 | PUT /auth/5 |
 5) |<--|
 | |
 | ACK [0x9869] |
 | (Token 0x78728FD4AC3190FF) |
 | 2.04 Changed |
 | Payload EAP-PSK MSG 4 |
 6) |-->|
 MSK | | MSK
 | | CON [0x7811] | |
 COAP_AUTH_KEY (Token 0x78728FD4AC3190FF) |COAP_AUTH_KEY
 | AUTH option |
 | Payload EAP Success | (*)
 | PUT /auth/5 |
 7) |<--|
 | |
 (*) | ACK [0x7811] |
 | (Token 0x78728FD4AC3190FF) |
 | AUTH option |
 | 2.04 Changed |
 8) |-->|

 | |
 | CON [0x7511] |
 | (Token 0x55566AF7464646BC) | (*)
 | AUTH option |
 | GET /temp |
 9) |<--|
 | |
 | ACK [0x7511] |
 (*) | (Token 0x55566AF7464646BC) |
 | AUTH option |
 | 2.05 Content |
 | "22.5C" |
 10) |-->|

 | |
 | CON [0x7600] |
 | (Token 0x678443AA678BC690) | (*)

Sanchez, et al. Expires April 11, 2015 [Page 6]

Internet-Draft CoAP EAP October 2014

 | AUTH option |
 | DELETE /auth/5 |
 11) |<--|
 | |
 | ACK [0x7500] |
 (*) | (Token 0x678443AA678BC690) |
 | AUTH option |
 | 2.02 Deleted |
 12) |-->|

 (*) Protected with AUTH option

 Figure 2: EAP over CoAP with AUTH option

3.2. EAP in CoAP with DTLS

 Other possibility at our disposal is to do a DTLS handshake after the
 MSKs generation and continue the communication between endpoints
 using CoAP through DTLS as we can see at Figure 3. The Steps 0-6 are
 the same as the case with AUTH option, however, before continuing
 with Steps 7 and 8, the EAP authenticator starts the DTLS handshake
 with the EAP peer (Step 7'). To establish a DTLS Security
 Association, a key named DTLS-PSK is derived from MSK (see Section 4
). In this case the CoAP client can start DTLS before sending the
 last message containing the EAP Success. Once DTLS is established,
 any posterior CoAP exchange is protected. Thus, new AUTH option is
 not needed. A successful DTLS negotiation confirms the possession of
 DTLS_PSK that, in turn, corroborates that both entities participated
 in the EAP authentication.

 EAP peer EAP Auth.
 (COAP server) (COAP client)
 ------------- -------------
 | |
 | CON [0x6af5] |
 0) | Token [0xFA5B45FF4723BB43] |
 | GET /auth |
 |-->|
 | |
 | |
 | ACK 2.05 [0x6af5] |
 | (Token 0xFA5B45FF4723BB43) |

Sanchez, et al. Expires April 11, 2015 [Page 7]

Internet-Draft CoAP EAP October 2014

 0') | Payload ["OK"]|
 |<--|
 | |
 | CON [0x73DE] |
 | (Token 0x78728FD4AC3190FF) |
 | POST /auth |
 1) |<--|
 | |
 | ACK [0x73DE] |
 | (Token 0x78728FD4AC3190FF) |
 | 2.01 Created |
 | Uri-Path [auth/5] |
 2) |-->|
 | |
 | CON [0x7654] |
 | (Token 0x78728FD4AC3190FF) |
 | Payload EAP-PSK MSG 1 |
 | PUT /auth/5 |
 3) |<--|
 | |
 | ACK [0x7654] |
 | (Token 0x78728FD4AC3190FF) |
 | 2.04 Changed |
 | Payload EAP-PSK MSG 2 |
 4) |-->|
 | |
 | CON [0x9869] |
 | (Token 0x78728FD4AC3190FF) |
 | Payload EAP-PSK MSG 3 |
 | PUT /auth/5 |
 5) |<--|
 | |
 | ACK [0x9869] |
 | (Token 0x78728FD4AC3190FF) |
 | 2.04 Changed |
 | Payload EAP-PSK MSG 4 |
 6) |-->|
 MSK | | MSK
 | | | |
 DTLS_PSK| | DTLS_PSK
 | |
 | DTLS HANDSHAKE |
 | (Initiated by EAP Auth.) |
 7') |<--------------------------------------->|
 | |
 | CON [0x7811] |
 | (Token 0x78728FD4AC3190FF) |
 | Payload EAP Success | (*)

Sanchez, et al. Expires April 11, 2015 [Page 8]

Internet-Draft CoAP EAP October 2014

 | PUT /auth/5 |
 7) |<--|
 | |
 | ACK [0x7811] |
 (*) | (Token 0x78728FD4AC3190FF) |
 | 2.04 Changed |
 8) |-->|

 | |
 | CON [0x7511] |
 | (Token 0xAA763D82F623B7FF) | (*)
 | GET /temp |
 9) |<--|
 | |
 | ACK [0x7511] |
 (*) | (Token 0xAA763D82F623B7FF) |
 | 2.05 Content |
 | "22.5C" |
 10) |-->|

 | |
 | CON [0x7600] |
 | (Token 0x678443AA678BC690) | (*)
 | DELETE /auth/5 |
 11) |<--|
 | |
 | ACK [0x7500] |
 (*) | (Token 0x678443AA678BC690) |
 | 2.02 Deleted |
 12) |-->|

 (*) Protected with DTLS

 Figure 3: EAP over CoAP with DTLS

4. Key Derivation for protecting CoAP messages

 As a result of a successful EAP authentication, both CoAP server and
 CoAP client share a Master Key Session (MSK). The assumption is that
 MSK is a fresh key so any derived key from the MSK will be also
 fresh. We have considered the derivation of either COAP_AUTH_KEY or
 DTLS_PSK.

Sanchez, et al. Expires April 11, 2015 [Page 9]

Internet-Draft CoAP EAP October 2014

4.1. Deriving COAP_AUTH_KEY

 A key COAP_AUTH_KEY is derived from the MSK to generate the
 authentication tag included in the AUTH option. COAP_AUTH_KEY is
 derived by using AES-CMAC-PRF-128 [RFC4615], which, in turn, uses
 AES-CMAC-128 [RFC4493]. In this case, rest of CoAP exchanges between
 both entities can be protected with integrity (NOTE: encryption will
 be considered in the future) with AUTH option without the need of
 using DTLS. Thus, all CoAP messages MUST include AUTH option from
 that point. (NOTE: We understand that this would not be the standard
 way of protecting CoAP but instead a new way of protecting CoAP
 messages).

 COAP_AUTH_KEY is a 16-byte length key which is computed in the
 following way:

 COAP_AUTH_KEY = AES-CMAC-PRF-128(MSK, "IETF COAP AUTH" || Token
 Option value, 64, length("IETF COAP AUTH" || Token Option value))

 where:

 o The AES-CMAC-PRF-128 is defined in [RFC4615]. This function uses
 AES-CMAC-128 as building block.

 o The MSK exported by the EAP method.

 o "IETF COAP AUTH" is the ASCII code representation of the non-NULL
 terminated string (excluding the double quotes around it). This
 value is concatenated with the value of the Token Option value.

 o 64 is the length of the MSK.

 o length("IETF COAP AUTH" || Token Option value) is the length of
 the label "IETF COAP AUTH" (14 bytes) plus the Token Option value.

4.2. Deriving DTLS_PSK

 In the second alternative, a DTLS_PSK is derived from the MSK between
 both CoAP endpoints. So far, DTLS_PSK will have also 16 byte length
 and it will derived as follows:

 DTLS_PSK = AES-CMAC-PRF-128(MSK, "IETF COAP DTLS" || Token Option
 value, 64, length("IETF COAP DTLS" || Token Option value)). This
 value is concatenated with the value of the Token Option value.

 where:

 o MSK is exported by the EAP method.

https://datatracker.ietf.org/doc/html/rfc4615
https://datatracker.ietf.org/doc/html/rfc4493
https://datatracker.ietf.org/doc/html/rfc4615

Sanchez, et al. Expires April 11, 2015 [Page 10]

Internet-Draft CoAP EAP October 2014

 o "IETF COAP DTLS" is the ASCII code representation of the non-NULL
 terminated string (excluding the double quotes around it).

 o 64 is the length of the MSK.

 o length("IETF COAP DTLS" || Token Option value) is the length of
 the label "IETF COAP DTLS" (14 bytes) plus the Token Option Value.

 As mentioned in [RFC4279], a PSK identity is needed. We are
 considering the usage of the Token Option value chosen during the EAP
 authentication as identity. In any case, this still needs further
 investigation.

5. Generating AUTH option

 A new AUTH option is defined in this document for authentication
 purposes. Following guidelines in [I-D.ietf-core-coap] this option
 is:

 1. Format opaque (sequence of bytes).

 2. Elective.

 3. Unsafe to Forward.

 4. No cacheable.

 The number of the option will be determined by this previous
 decisions.

 1. Elective (C = 0)

 2. Unsafe to Forward (0)

 3. NoCacheKey (111)

 The number of the AUTH option will fit this pattern: xxx11100

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | | NoCacheKey| U | C |
 +---+---+---+---+---+---+---+---+

 Figure 4: Auth Option Number Mask

 First available option number is 01011100 (92).

 The resultant AUTH option is:

https://datatracker.ietf.org/doc/html/rfc4279

Sanchez, et al. Expires April 11, 2015 [Page 11]

Internet-Draft CoAP EAP October 2014

 +-----+----+---+---+---+-----------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +-----+----+---+---+---+-----------+--------+--------+---------+
 | 92 | | | x | | AUTH | opaque | 128 | (none) |
 +-----+----+---+---+---+-----------+--------+--------+---------+

 Figure 5: AUTH Option

 C, U, N and R columns indicate the properties, Critical, UnSafe,
 NoCacheKey and Repeatable, respectively.

 To generate the value of the AUTH option, we use AES-CMAC-128 as
 authentication algorithm. Thus, the AUTH option content will have an
 authentication tag of 16 bytes.

 AUTH Option value = AES-CMAC-128(COAP_AUTH_KEY, MSG, MSG_LENGTH)

 where:

 o COAP_AUTH_KEY is the key derived in the CoAP Security Association
 process.

 o MSG is the CoAP message including AUTH option filled with zeros.

 o MSG_LENGTH. Length of the CoAP message.

 After applying AES-CMAC-128 function, the AUTH option value will be
 set in the AUTH option replacing the zeros.

6. Implementation

 At the time of writing this document, we have developed a proof-of-
 concept based on libcoap ([libCoAP]) in PC platform and started the
 development of a simulation with COOJA network simulator for Contiki
 ([Contiki]).

 So far, we have implemented an authentication tag by using AES-CMAC-
 128. However this authentication tag has been included in the
 payload of two final messages after sending the EAP Success. The
 implementation of the AUTH option will come soon. Moreover, we have
 used AES-CMAC-128 for COAP_AUTH_KEY. Since this function does not
 allow a key longer than 16 bytes, we have used the most significative
 16 bytes of the MSK as input key. Since AES-CMAC-PRF-128 eliminates
 this limitation, we will implement this version instead.

 We are using (for the PC version) libeap in wpa-supplicant and
 hostapd open source software ([hostapd]) to implement the EAP stack
 and, in particular, the EAP-PSK method.

Sanchez, et al. Expires April 11, 2015 [Page 12]

Internet-Draft CoAP EAP October 2014

7. Future Work: CoAP Relay

 Architecture explained in Figure 1 assumes that EAP peer can
 communicate with the EAP authenticator. In certain scenarios, EAP
 authenticator may not be reachable from the EAP peer if the EAP
 authenticator is placed several hops-away. In this scenario,
 described in Figure 6, we are considering the usage a new service
 that assists the authentication. This service acts as a relay of
 CoAP messages between the EAP peer and EAP authenticator. We have
 called the entity in charge of performing this service CoAP relay.
 The strategy is similar to the one described in PANA Relay
 ([RFC6345]) or DTLS Relay ([I-D.kumar-dice-dtls-relay]). Unlike CoAP
 proxy, the CoAP relay is not intended to keep any state (stateless
 behaviour) and the EAP peer is not assumed to be aware of the
 presence of the CoAP relay. In any case, this part needs further
 investigation since CoAP already provides the concept of CoAP proxy
 and, particular, CoAP-to-CoAP proxy that might be used instead.

 +------------+ +------------+ +--------------+
 | EAP peer/ | | | | EAP auth |
 | CoAP server|+------+| CoAP relay |+------+| CoaP client |
 +------------+ CoAP +------------+ CoAP +--------------+
 |
 AAA |
 |
 +--------------+
 | EAP server/ |
 | AAA server |
 +--------------+

 Figure 6: CoAP EAP Relay Architecture

 Once the EAP peer has been authenticated, CoAP relay service should
 not be needed anymore for this EAP peer.

 Development of this new service may modify the "Unsafe to Forward"
 flag of the AUTH option.

8. Use Case Scenario

 In the following, we explain a basic example about the usage of CoAP-
 EAP. There are 5 entities involved in the scenario:

 o 2 nodes (A and B), which are constrained devices.

https://datatracker.ietf.org/doc/html/rfc6345

Sanchez, et al. Expires April 11, 2015 [Page 13]

Internet-Draft CoAP EAP October 2014

 o 1 node D, which is considered a no so constrained device, such as
 a phone, or a tablet or even a laptop.

 o 1 controller (C). The controller manages a domain where nodes can
 be deployed. It can be considered a more powerful machine than
 the nodes, however it may have some constrained resources.

 o 1 AAA server (AAA). The AAA is an Authentication, Authorization
 and Accounting Server, which is not constrained.

 Any node wanting to join the domain managed by the controller, must
 perform and CoAP-EAP authentication with the controller C. This
 authentication, as depicted in Figure 6, may involve an external AAA
 server. This means that A and B, once deployed, will perform this
 CoAP-EAP once as a bootstrapping phase to establish a security
 association with the controller C. Moreover, any other entity (i.e.
 node D) , which wants to join and establish communications with nodes
 under the controller C's domain must also do the same.

 One use case is the following. The node A wants to communicate with
 node B (e.g. to active a light switch). The overall process is
 divided in three phases. Let's start with node A. In the first
 phase, the node A (EAP peer) does not yet belong to the controller
 C's domain. Then, it communicates with controller C (EAP
 authenticator) and authenticates with CoAP-EAP, which, in turn,
 communicates with the AAA server to complete the authentication
 process. If the authentication is successful, key material is
 distributed to the controller C and derived by node A. This key
 material allows node A to establish a security association with
 controller C. Some authorization information may be also provided in
 this step. If authentication and authorization are correct, node A
 is enrolled in the controller C's domain during a period of time. In
 particular, [RFC5247] recommends 8 hours, though the AAA server can
 establish this lifetime. In the same manner, B needs to perform the
 same process with CoAP-EAP to be part of the controller C's domain.

 In the second phase, when node A wants to talk with node B, it
 contacts the controller C for authorization to access node B and
 obtain all the required information to do that in a secure manner
 (e.g. keys, tokens, authorization information, etc.). It does not
 require the usage of CoAP-EAP. The details of this phase are out of
 scope of this document.

 In the third phase, the node A can access node B with the credentials
 and information obtained from the controller C in the second phase.
 This access can be repeated without contacting the controller, while
 the credentials given to A are still valid. The details of this
 phase are out of scope of this document.

https://datatracker.ietf.org/doc/html/rfc5247

Sanchez, et al. Expires April 11, 2015 [Page 14]

Internet-Draft CoAP EAP October 2014

 It is worth noting that first phase with CoAP-EAP is only required to
 join the controller C's domain. Once it is performed with success,
 the communications are local to the controller C's domain so there is
 no need to contact the external AAA server.

 Another use case is the following. Node D wants to communicate with
 node A (e.g. to obtain a temperature measurement). To do that, first
 of all, node D must join the controller C's domain. To do that it
 performs a CoAP-EAP authentication and authorization with the
 controller C (first phase). If everything ends with success, the
 node D can request access to node A to C (second phase). Then if
 node D is authorized can access to node A (third phase). So, in the
 end, node D also implements CoAP-EAP as any other constrained node.

9. Acknowledgments

 We would like to thank Pedro Moreno-Sanchez and Gabriel Lopez-Millan
 for the first review of this document. Also, we would like to thank
 Ivan Jimenez-Sanchez for the first proof-of-concept implementation of
 this idea.

 This work has been partly funded by European Commission through the
 FP7- SMARTIE-609062 EU Project.

10. Security Considerations

 TBD.

11. IANA Considerations

 This document has no actions for IANA.

12. References

12.1. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., and C. Bormann, "Constrained
 Application Protocol (CoAP)", draft-ietf-core-coap-18
 (work in progress), June 2013.

 [I-D.kumar-dice-dtls-relay]
 Kumar, S., Keoh, S., and O. Garcia-Morchon, "DTLS Relay
 for Constrained Environments", draft-kumar-dice-dtls-

relay-00 (work in progress), October 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-18
https://datatracker.ietf.org/doc/html/draft-kumar-dice-dtls-relay-00
https://datatracker.ietf.org/doc/html/draft-kumar-dice-dtls-relay-00

Sanchez, et al. Expires April 11, 2015 [Page 15]

Internet-Draft CoAP EAP October 2014

 [I-D.ohba-core-eap-based-bootstrapping]
 Das, S. and Y. Ohba, "Provisioning Credentials for CoAP
 Applications using EAP", draft-ohba-core-eap-based-

bootstrapping-01 (work in progress), March 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)", RFC

3748, June 2004.

 [RFC4279] Eronen, P. and H. Tschofenig, "Pre-Shared Key Ciphersuites
 for Transport Layer Security (TLS)", RFC 4279, December
 2005.

 [RFC4493] Song, JH., Poovendran, R., Lee, J., and T. Iwata, "The
 AES-CMAC Algorithm", RFC 4493, June 2006.

 [RFC4615] Song, J., Poovendran, R., Lee, J., and T. Iwata, "The
 Advanced Encryption Standard-Cipher-based Message
 Authentication Code-Pseudo-Random Function-128 (AES-CMAC-
 PRF-128) Algorithm for the Internet Key Exchange Protocol
 (IKE)", RFC 4615, August 2006.

 [RFC4764] Bersani, F. and H. Tschofenig, "The EAP-PSK Protocol: A
 Pre-Shared Key Extensible Authentication Protocol (EAP)
 Method", RFC 4764, January 2007.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",

RFC 5247, August 2008.

 [RFC5295] Salowey, J., Dondeti, L., Narayanan, V., and M. Nakhjiri,
 "Specification for the Derivation of Root Keys from an
 Extended Master Session Key (EMSK)", RFC 5295, August
 2008.

 [RFC6345] Duffy, P., Chakrabarti, S., Cragie, R., Ohba, Y., and A.
 Yegin, "Protocol for Carrying Authentication for Network
 Access (PANA) Relay Element", RFC 6345, August 2011.

12.2. Informative References

 [Contiki] "Contiki: The Open Source OS for the Internet of Things",
 March 2014.

https://datatracker.ietf.org/doc/html/draft-ohba-core-eap-based-bootstrapping-01
https://datatracker.ietf.org/doc/html/draft-ohba-core-eap-based-bootstrapping-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4279
https://datatracker.ietf.org/doc/html/rfc4493
https://datatracker.ietf.org/doc/html/rfc4615
https://datatracker.ietf.org/doc/html/rfc4764
https://datatracker.ietf.org/doc/html/rfc5247
https://datatracker.ietf.org/doc/html/rfc5295
https://datatracker.ietf.org/doc/html/rfc6345

Sanchez, et al. Expires April 11, 2015 [Page 16]

Internet-Draft CoAP EAP October 2014

 [hostapd] "hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA/WPA2/EAP/RADIUS
 Authenticator", March 2014.

 [libCoAP] "C-Implementation of CoAP", January 2013.

Authors' Addresses

 Raul Sanchez-Sanchez
 University of Murcia
 Campus de Espinardo S/N, Faculty of Computer Science
 Murcia 30100
 Spain

 Phone: +34 868 88 92 81
 Email: raul@um.es

 Rafa Marin-Lopez
 University of Murcia
 Campus de Espinardo S/N, Faculty of Computer Science
 Murcia 30100
 Spain

 Phone: +34 868 88 85 01
 Email: rafa@um.es

 Dan Garcia Carrillo
 University of Murcia
 Campus de Espinardo S/N, Faculty of Computer Science
 Murcia 30100
 Spain

 Phone: +34 868 88 87 71
 Email: dan.garcia@um.es

Sanchez, et al. Expires April 11, 2015 [Page 17]

