
Network Working Group V. Marinov
Internet-Draft J. Schoenwaelder
Intended status: Standards Track Jacobs University Bremen
Expires: August 27, 2007 February 23, 2007

Transport Layer Security (TLS) Transport Model for the Simple Network
Management Protocol (SNMP)

draft-marinov-isms-tlstm-00.txt

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 27, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This memo defines a Transport Model for the Simple Network Management
 Protocol which utilizes the Transport Layer Security (TLS) security
 protocol and the X.509 key management infrastructure.

Marinov & Schoenwaelder Expires August 27, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft TLS Transport Model for SNMP February 2007

Table of Contents

1. Introduction . 3
1.1. The Internet-Standard Management Framework 3
1.2. Conventions . 3
1.3. Modularity . 4
1.4. Motivation . 4
1.5. Constraints . 5

2. The TLS Protocol . 6
3. The X.509 Certificates Infrastructure 6
4. How TLSTM Fits into the Transport Subsystem 7
4.1. Security Capabilities of this Model 8
4.1.1. Threats . 8
4.1.2. Data Origin Authentication Issues 8
4.1.3. Authentication Protocol 9
4.1.4. Privacy Protocol 9

 4.1.5. Protection against Message Replay, Delay and
 Redirection . 9

4.2. Security Parameter Passing 10
4.3. Notifications and Proxy 10
4.4. Provisioning for the X.509 PKI framework 10

5. Passing Security Parameters 11
5.1. tmStateReference . 11
5.2. securityStateReference 13

6. Elements of Procedure . 14
6.1. Procedures for an Incoming Message 15
6.2. Procedures for an Outgoing Message 16
6.3. Establishing a Session 17
6.4. Session Resumption . 19
6.5. Closing a Session . 20

7. IANA Considerations . 21
8. Security Considerations 21
9. Acknowledgements . 22
10. References . 22
10.1. Normative References 22
10.2. Informative References 23

 Authors' Addresses . 23
 Intellectual Property and Copyright Statements 24

Marinov & Schoenwaelder Expires August 27, 2007 [Page 2]

Internet-Draft TLS Transport Model for SNMP February 2007

1. Introduction

 This memo describes a Transport Model for the Simple Network
 Management Protocol, using the Transport Layer Security protocol
 [RFC4346] within a transport subsystem [I-D.ietf-isms-tmsm]. The
 transport model specified in this memo is referred to as the
 Transport Layer Security Transport Model (TLSTM).

 This memo also defines a portion of the Management Information Base
 (MIB) for use with network management protocols in TCP/IP based
 internets. In particular it defines objects for monitoring and
 managing the TLS Transport Model for SNMP.

 It is important to understand the SNMP architecture and the
 terminology of the architecture to understand where the Transport
 Model described in this memo fits into the architecture and how it
 interacts with other subsystems within the architecture.

1.1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,

RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

1.2. Conventions

 The terms "manager" and "agent" are not used in this document,
 because in the RFC 3411 [RFC3411] architecture, all SNMP entities
 have the capability of acting as either manager or agent or both
 depending on the SNMP applications included in the engine. Where
 distinction is required, the application names of Command Generator,
 Command Responder, Notification Originator, Notification Receiver,
 and Proxy Forwarder are used. See "SNMP Applications" [RFC3413] for
 further information.

 Throughout this document, the terms "client" and "server" are used to
 refer to the two ends of the TLS transport connection. The client
 actively opens the TLS connection, and the server passively listens
 for the incoming TLS connection. Either SNMP entity may act as

https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413

Marinov & Schoenwaelder Expires August 27, 2007 [Page 3]

Internet-Draft TLS Transport Model for SNMP February 2007

 client or as server, as discussed further below.

 According to the terminology used in RFC3411 [RFC3411], a principal
 is the "who" on whose behalf services are provided or processing
 takes place. A principal can be, among other things, an individual
 acting in a particular role; a set of individuals, with each acting
 in a particular role; an application or a set of applications, or a
 combination of these within an administrative domain.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Modularity

 The reader is expected to have read and understood the description of
 the SNMP architecture, as defined in [RFC3411], and the Transport
 Subsystem architecture extension specified in "Transport Subsystem
 for the Simple Network Management Protocol" [I-D.ietf-isms-tmsm].

 This memo describes the Transport Layer Security Transport Model for
 SNMP, a specific SNMP transport model to be used within the SNMP
 transport subsystem to provide authentication, encryption, and
 integrity checking of SNMP messages.

 In keeping with the RFC 3411 design decisions to use self-contained
 documents, this memo includes the elements of procedure plus
 associated MIB objects which are needed for processing the Transport
 Layer Security Transport Model for SNMP. These MIB objects SHOULD
 NOT be referenced in other documents. This allows the Transport
 Layer Security Transport Model for SNMP to be designed and documented
 as independent and self- contained, having no direct impact on other
 modules, and allowing this module to be upgraded and supplemented as
 the need arises, and to move along the standards track on different
 time-lines from other modules.

 This modularity of specification is not meant to be interpreted as
 imposing any specific requirements on implementation.

1.4. Motivation

 Version 3 of the Simple Network Management Protocol (SNMPv3) added
 security to the protocol. The User Security Model (USM) [RFC3414]
 was designed to be independent of other existing security
 infrastructures, to ensure it could function when third party
 authentication services were not available, such as in a broken
 network. As a result, USM typically utilizes a separate user and key
 management infrastructure. Operators have reported that deploying

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3414

Marinov & Schoenwaelder Expires August 27, 2007 [Page 4]

Internet-Draft TLS Transport Model for SNMP February 2007

 another user and key management infrastructure in order to use SNMPv3
 is a reason for not deploying SNMPv3 at this point in time.

 This memo describes a transport model that will make use of the
 existing and commonly deployed X.509 key management infrastructure
 [RFC3280] to be used with the TLS security protocol [RFC4346]. This
 transport model is designed to meet the security and operational
 needs of network administrators, maximize usability in operational
 environments to achieve high deployment success and at the same time
 minimize implementation and deployment costs to minimize the time
 until deployment is possible.

 This work will address the requirement of a TLS server to
 authenticate to a TLS client and a TLS client to authenticate to a
 TLS server. The TLS Record protocol [RFC4346], which runs on top of
 a reliable transport protocol is used to provide secure communication
 between a TLS client and a TLS server and to encapsulate higher level
 protocols. The TLS Handshake protocol, which runs on top of the TLS
 Record protocol, is used for authentication. The authentication is
 established by using X.509 [RFC3280] certificates that are exchanged
 between the TLS client and the TLS server.

 The memo also specifies how X.509 certificates [RFC3280] are used in
 order to extract transport model specific security parameters, and
 how they are translated into transport model independent security
 parameters. Furthermode, a notion of a session is defined and
 specification how sessions are created, maintained, and possibly
 resumed is given.

 There are a number of challenges to be addressed to map TLS
 authentication method parameters into the SNMP architecture so that
 SNMP continues to work without any surprises. These are discussed in
 detail below.

1.5. Constraints

 The design of this SNMP Transport Model is influenced by the
 following constraints:
 1. When the requirements of effective management in times of network
 stress are inconsistent with those of security, the design of
 this model gives preference to effective management.
 2. In times of network stress, the transport protocol and its
 underlying security mechanisms SHOULD NOT depend upon the ready
 availability of other network services (e.g., Network Time
 Protocol (NTP) or AAA protocols).
 3. When the network is not under stress, the transport model and its
 underlying security mechanisms MAY depend upon the ready
 availability of other network services.

https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3280

Marinov & Schoenwaelder Expires August 27, 2007 [Page 5]

Internet-Draft TLS Transport Model for SNMP February 2007

 4. It may not be possible for the transport model to determine when
 the network is under stress.
 5. A transport model should require no changes to the SNMP
 architecture.
 6. A transport model should require no changes to the underlying
 protocol.

2. The TLS Protocol

 The TLS protocol [RFC4346] provides communications privacy over the
 Internet. The protocol allows client/server applications to
 communicate in a way that is designed to prevent eavesdropping,
 tampering, or message forgery. The primary goal of the TLS Protocol
 is to provide privacy and data integrity between two communicating
 applications. The protocol is composed of two layers: the TLS Record
 Protocol and the TLS Handshake Protocol.

 The TLS Record Protocol runs on top of some reliable transport
 protocol (e.g., TCP). It provides connection security that has two
 basic properties: data privacy and message integrity. The TLS Record
 Protocol is used for encapsulation of various higher level protocols.

 The TLS Handshake runs on top of the TLS Record Protocol. It allows
 the server and client to authenticate each other and to negotiate an
 encryption algorithm and cryptographic keys before the application
 protocol transmits or receives its first byte of data.

3. The X.509 Certificates Infrastructure

 Users of a public key shall be confident that the associated private
 key is owned by the correct remote subject (person or system) with
 which an encryption or digital signature mechanism will be used.
 This confidence is obtained through the use of public key
 certificates, which are data structures that bind public key values
 to subjects. The binding is asserted by having a trusted CA
 digitally sign each certificate. The CA may base this assertion upon
 technical means (a.k.a., proof of posession through a challenge-
 response protocol), presentation of the private key, or on an
 assertion by the subject. A certificate has a limited valid lifetime
 which is indicated in its signed contents. Because a certificate's
 signature and timeliness can be independently checked by a
 certificate-using client, certificates can be distributed via
 untrusted communications and server systems, and can be cached in
 unsecured storage in certificate-using systems.

 ITU-T X.509 (formerly CCITT X.509) or ISO/IEC/ITU 9594-8, which was

https://datatracker.ietf.org/doc/html/rfc4346

Marinov & Schoenwaelder Expires August 27, 2007 [Page 6]

Internet-Draft TLS Transport Model for SNMP February 2007

 first published in 1988 as part of the X.500 Directory
 recommendations, defines a standard certificate format [X.509] which
 is a certificate which binds a subject (principal) to a public key
 value. A X.509 certificate is a sequence of three required fields:
 1. tbsCertificate: The field contains the names of the subject and
 issuer, a public key associated with the subject, a validity
 period, and other associated information. This field may also
 contain extensions
 2. signatureAlgorithm: The signatureAlgorithm field contains the
 identifier for the cryptographic algorithm used by the
 certificate authority (CA) to sign this certificate.
 3. signatureValue: The signatureValue field contains a digital
 signature computed upon the ASN.1 DER encoded tbsCertificate
 field. The ASN.1 DER encoded tbsCertificate is used as the input
 to the signature function. This signature value is then ASN.1
 encoded as a BIT STRING and included in the Certificate's
 signature field. By generating this signature, a CA certifies
 the validity of the information in the tbsCertificate field. In
 particular, the CA certifies the binding between the public key
 material and the subject of the certificate.

 The basic X.509 authentication procedure is as follows: A system,
 which uses the X.509 key management infrastructure, is initialized
 with a number of root certificates which contain the public keys of a
 number of trusted CAs. When a system receives a X.509 certificate,
 signed by one of those CAs, that has to be verified, it first
 decrypts the signatureValue field by using the public key of the
 corresponding trusted CA. Then it compares the decrypted information
 with the tbsCertificate field. If they match then the subject in the
 tbsCertificate field is authenticated.

4. How TLSTM Fits into the Transport Subsystem

 A transport model plugs into the Transport Subsystem. The TLS
 Transport Model will establish an encrypted tunnel between itself and
 the TLS Transport Model of another SNMP engine. The sending
 transport model passes unencrypted messages from the dispatcher to
 the TLS to be encrypted and the receiving transport model accepts
 decrypted messages from TLS and passes them to the dispatcher.

 After an TLS Transport model tunnel is established, then SNMP
 messages can conceptually be sent through the tunnel from one SNMP
 message dispatcher to another SNMP message dispatcher. Multiple SNMP
 messages MAY be passed through the same tunnel.

 The TLS Transport Model of an SNMP engine will perform the
 translation between TLS-specific security parameters and SNMP-

Marinov & Schoenwaelder Expires August 27, 2007 [Page 7]

Internet-Draft TLS Transport Model for SNMP February 2007

 specific, model-independent parameters.

4.1. Security Capabilities of this Model

4.1.1. Threats

 The TLS Transport Model provides protection against the threats
 identified by the RFC 3411 architecture [RFC3411]:
 1. Information Modification - The TLS Record Layer [RFC4346]
 utilizes symmetric cryptography for data encryption. Message
 integrity check is provided by a keyed MAC which is computed
 before encryption by using secure hash functions (e.g.,SHA, MD5,
 etc.). Thus, TLS provides for verification that each received
 message has not been modified during its transmission through the
 network.
 2. Message Stream Modification - The TLS Record Layer computes MAC
 of each record which also includes the sequence numbers. Thus,
 missing, extra or repeated messages are detectable.
 3. Masquarade - The peer's identity can be authenticated using
 asymmetric, or public key, cryptography (e.g., RSA, DSS, etc.) by
 the TLS Handshake Protocol. For this purpose the X.509
 certificates [RFC3280] can be used which bind a principal to a
 public key value. TLS allows for verification of the identity of
 both client and server authentication.
 4. Disclosure - The negotiation of a shared secret performed by the
 TLS Handshake Protocol is secure: the negotiated secret is
 unavailable to eavesdroppers, and for any authenticated
 connection the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the connection. The
 negotiation is reliable: no attacker can modify the negotiation
 communication without being detected by the parties to the
 communication.

4.1.2. Data Origin Authentication Issues

 The RFC 3411 architecture recognizes three levels of security:
 1. without authentication and without privacy (noAuthNoPriv)
 2. with authentication but without privacy (authNoPriv)
 3. with authentication and with privacy (authPriv)

 The TLS protocol provides support for encryption and data integrity.
 While it is technically possible to support no authentication and no
 encryption in TLS it is NOT RECOMMENDED by [RFC4346].

 The TLS Transport Model determines from TLS the identity of the
 authenticated principal, and the type and address associated with an
 incoming message, and the TLS Transport Model provides this
 information to TLS for an outgoing message. The transport layer

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc4346

Marinov & Schoenwaelder Expires August 27, 2007 [Page 8]

Internet-Draft TLS Transport Model for SNMP February 2007

 algorithms used to provide authentication, data integrity and
 encryption SHOULD NOT be exposed to the TLS Transport Model layer.
 The SNMPv3 WG deliberately avoided this and settled for an assertion
 by the security model that the requirements of securityLevel were met
 The TLS Transport Model has no mechanisms by which it can test
 whether an underlying TLS connection provides auth or priv, so the
 TLS Transport Model trusts that the underlying TLS connection has
 been properly configured to support authPriv security
 characteristics.

 The TLS Transport Model does not know about the algorithms or options
 to open TLS sessions that match different securityLevels. For
 interoperability of the trust assumptions between SNMP engines, an
 TLS Transport Model-compliant implementation MUST use a TLS
 connection that provides authentication, data integrity and
 encryption that meets the highest level of SNMP security (authPriv).
 Outgoing messages requested by SNMP applications and specified with a
 lesser securityLevel (noAuthNoPriv or authNoPriv) are sent by the TLS
 Transport Model as authPriv securityLevel.

 The security protocols used in the TLS Handshake Protocol [RFC4346]
 are considered acceptably secure at the time of writing. However,
 the procedures allow for new authentication and privacy methods to be
 specified at a future time if the need arises.

4.1.3. Authentication Protocol

 The TLS Transport Model should support public key authentication via
 X.509 certificates. The user identity could be considered to be the
 Common Name field in the X.509 v3 certificate or any of the fields in
 the AlternativeName extension defined in [RFC3280]. The general
 algorithm described in [RFC3280] for X.509 certificate validation can
 be used.

4.1.4. Privacy Protocol

 TLS uses symmetric cryptography for data encryption (e.g., DES, RC4,
 etc.) The keys for this symmetric encryption are generated uniquely
 for each connection and are based on a secret negotiated by another
 protocol (such as the TLS Handshake Protocol). The Record Protocol
 can also be used without encryption.

4.1.5. Protection against Message Replay, Delay and Redirection

 The TLS Record Layer computes a MAC of each record which also
 includes the sequence numbers. Thus, missing, extra or repeated
 messages are detectable.

https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3280

Marinov & Schoenwaelder Expires August 27, 2007 [Page 9]

Internet-Draft TLS Transport Model for SNMP February 2007

4.2. Security Parameter Passing

 For incoming messages, TLS-specific security parameters are
 translated by the transport model into security parameters
 independent of the transport and security models. The transport
 model accepts messages from the TLS subsystem, and records the
 transport-related and TLS-security-related information, including the
 authenticated identity, in a cache referenced by tmStateReference,
 and passes the WholeMsg and the tmStateReference to the dispatcher
 using the recvMessage() ASI.

 For outgoing messages, the transport model takes input provided by
 the dispatcher in the sendMessage() ASI. The TLS Transport Model
 converts that information into suitable security parameters for TLS,
 establishes sessions as needed, and passes messages to the TLS
 subsystem for sending.

4.3. Notifications and Proxy

 TLS connections may be initiated by command generators or by
 notification originators. Command generators are frequently operated
 by a human, but notification originators are usually unmanned
 automated processes. As a result, it may be necessary to provision
 notification originators with X.509 certificates so that they can
 successfully authenticate to notification receivers by using TLS.

 The targets to whom notifications should be sent is typically
 determined and configured by a network administrator. The SNMP-
 TARGET-MIB module [RFC3413] contains objects for defining management
 targets, including transport domains and addresses and security
 parameters, for applications such as notifications and proxy.

 For the TLS Transport Model, transport domain and address are
 configured in the snmpTargetAddrTable, and the securityModel,
 securityName, and securityLevel parameters are configured in the
 snmpTargetParamsTable. The default approach is for an administrator
 to statically preconfigure this information to identify the targets
 authorized to receive notifications or perform proxy.

 These MIB modules may be configured using SNMP or other
 implementation-dependent mechanisms, such as CLI scripting or loading
 a configuration file.

4.4. Provisioning for the X.509 PKI framework

 Authentication using TLS will require that SNMP agents are
 provisioned with X.509 v3 certificates, which are signed by trusted
 certificate authorities. Furthermore, SNMP agents will have to be

https://datatracker.ietf.org/doc/html/rfc3413

Marinov & Schoenwaelder Expires August 27, 2007 [Page 10]

Internet-Draft TLS Transport Model for SNMP February 2007

 provisioned with root certificates which represent the list of
 trusted certificate authorities that an SNMP agent can use for
 certificate verification. SNMP agents must also be provisioned with
 X.509 certificate revocation server which will be used to verify that
 a certificate has not been revoked.

5. Passing Security Parameters

 For the TLS Transport Model, there are two levels of state that need
 to be maintained: the session state, and the message state.

5.1. tmStateReference

 For each connection, the TLS Transport Model stores information about
 the connection in the Local Configuration Datastore (LCD),
 supplemented with a cache to store model- and mechanism-specific
 parameters.

 Upon opening an TLS connection, the TLS Transport Model will store
 the transport parameters in the LCD.

 tmsLCDTransport = the OID identifying the TLS transport domain

 tmsLCDAddress = the address of the TLS transport endpoint

 tmsLCDSecurityLevel = "authPriv"

 tmsLCDSecurityName = the principal name authenticated by TLS. How
 this data is extracted from the TLS environment and how it is
 translated into a securityName is implementation-dependent. By
 default, the tmSecurityName is the subject that has been successfully
 authenticated by TLS from the Common Name field of the tbsCertificate
 field of the X.509 v3 certificate

 tmsLCDEngineID = if known, the value of the remote engine's
 snmpEngineID.

 tmsLCDSecurityModel = a security model. The TLS Transport Model is
 designed to work with multiple security models. The default is the
 Transport Security Model [I-D.ietf-isms-transport-security-model-02].

 How the TLS identity is extracted from the TLS layer, and how the TLS
 identity is mapped to a securityName for storage in the LCD is
 implementation-dependent. Additional information may be stored in a
 local datastore (such as a preconfigured mapping table) or in a
 cache. Transport dependent security parameters may be stored in a
 cache or in the LCD such as a TLS session identifier which should be

Marinov & Schoenwaelder Expires August 27, 2007 [Page 11]

Internet-Draft TLS Transport Model for SNMP February 2007

 extracted from the Client Hello and Server Hello messages during
 session establishment. TLS Security parameters that are used by the
 TLS Handshake protocol should also be stored in the LCD or in a
 cache. The TLS security parameters are defined in [RFC4346]:

 struct {
 ConnectionEnd entity;
 BulkCipherAlgorithm bulk_cipher_algorithm;
 CipherType cipher_type;
 uint8 key_size;
 uint8 key_material_length;
 MACAlgorithm mac_algorithm;
 uint8 hash_size;
 CompressionMethod compression_algorithm;
 opaque master_secret[48];
 opaque client_random[32];
 opaque server_random[32];
 } SecurityParameters;

 [discuss: Are those the right security parameters to cache for a
 session? These are provided by the TLS Handshake protocol to the TLS
 Record protocol so that the latter can generate keys and secrets as
 defined in RFC4346. However, can those parameters be extracted from
 the TLS layer? Are the above described parameters actually the
 negotiated parameters during the TLS Handshake on session
 establishment? According to RFC4346 parameters are negotiated by the
 TLS Handshake protocol on session establishment and after
 change_cipher_spec message is received those are communicated to the
 TLS Record Layer. However RFC4346 is not very specific what exactly
 is communicated from the TLS Handshake Layer to the TLS Record Layer
 as I assume that exactly the information that is communicated after
 after change_cipher_spec is what we need to cache. This security
 information will be used later so that application data is encrypted.

 As a matter of fact I discovered that the TLS Handshake protocol
 negotiates the following parameters:
 1. session id
 2. peer certificate
 3. compression method
 4. cipher suite
 5. master secret
 6. is resumable

 Those are specified at the beginning of section 7 in RFC4346 and I
 guess it might be better to use those as TLS specific parameters to
 cache as those are used to generate the above listed Security
 Parameters.]

https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4346#section-7

Marinov & Schoenwaelder Expires August 27, 2007 [Page 12]

Internet-Draft TLS Transport Model for SNMP February 2007

 The TLS Security Parameters and the TLS session identifier can be
 used for session resumption.

 The tmStateReference is used to pass references containing the
 appropriate TLS session information from the transport model for
 subsequent processing.

 The TLS Transport Model has the responsibility for explicitly
 releasing the complete tmStateReference and deleting the associated
 information from the LCD when the session is destroyed. However, the
 TLS Transport Model may not explicitly delete the information
 associated with a session when the session is closed because this
 information may be later used for session resumption.

 The tmStateReference should also contain a flag which denotes whether
 a session is active or not. When the session is established the flag
 should be set and when the session is closed the flag should be
 reset. Since the LCD may store session information even after a
 session is closed (for the purpose of session resumption) this flag
 will tell the TLS transport model whether the information in the LCD
 belongs to an active session (i.e if there is a message which belongs
 to that session the TLS transport model should invoke the send
 message primitive) or the information belongs to a closed session,
 which can be resumed (in which case the TLS transport has to call the
 resumeSession() primitive before sending the message).

5.2. securityStateReference

 For each message received, the TLS Transport Model caches message-
 specific TLS security information such that a Response message can be
 generated using the same security information, even if the Local
 Configuration Datastore is altered between the time of the incoming
 request and the outgoing response. The securityStateReference is
 used to preserve the data needed to generate a Response message with
 the same security information. This information includes the model-
 independent parameters (securityName, securityLevel, securityModel,
 transport address, transport domain, and engineID). The Message
 Processing Model has the responsibility for explicitly releasing the
 securityStateReference when such data is no longer needed. The
 securityStateReference cached data may be implicitly released via the
 generation of a response, or explicitly released by using the
 stateRelease primitive, as described in RFC 3411 section 4.5.1.

 The TLS standard does not require that an TLS session be maintained
 nor that it be closed when the keys associated with the host or
 client associated with the session are changed. Some TLS
 implementations might close an existing session if the keys
 associated with the session change. For the TLS Transport Model, if

https://datatracker.ietf.org/doc/html/rfc3411#section-4.5.1

Marinov & Schoenwaelder Expires August 27, 2007 [Page 13]

Internet-Draft TLS Transport Model for SNMP February 2007

 the session is closed between the time a Request is received and a
 Response message is being prepared, then the Response should be
 discarded.

6. Elements of Procedure

 Abstract service interfaces have been defined by RFC 3411 to describe
 the conceptual data flows between the various subsystems within an
 SNMP entity. The TLS Transport Model uses some of these conceptual
 data flows when communicating between subsystems. These RFC 3411-
 defined data flows are referred to here as public interfaces.

 To simplify the elements of procedure, the release of state
 information is not always explicitly specified. As a general rule,
 if state information is available when a message gets discarded, the
 message-state information should also be released. Due to the
 capability of TLS to restore sessions, session state may be cached
 after a session is closed. This information may be used to restore a
 session later on. A minimal set of session parameters to be stored
 in order to restore a session later on is:
 1. transportAddress
 2. transport domain
 3. securityName
 4. securityModel
 5. securityLevel
 6. EngineID

 The TLS specific parameters are:
 1. session ID
 2. compression method
 3. cipher suite
 4. peer certificate
 5. is resumable

 It makes sense to cache the session state after a session is closed
 only if the "is resumable" field is on. This is negotiated during
 the Client Hello and Server Hello messages during TLS session
 establishment.

 In the following Elements of Procedure, an error indication may
 return an OID and value for an incremented counter and a value for
 securityLevel, and values for contextEngineID and contextName for the
 counter, and the securityStateReference if the information is
 available at the point where the error is detected.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Marinov & Schoenwaelder Expires August 27, 2007 [Page 14]

Internet-Draft TLS Transport Model for SNMP February 2007

6.1. Procedures for an Incoming Message

 For an incoming message, the TLS Transport Model will put information
 from the TLS layer into a Local Configuration Datastore referenced by
 tmStateReference.

 1) The TLS Transport Model queries the associated TLS engine, in an
 implementation-dependent manner, to determine the transport and
 security parameters for the received message.

 transportDomain = snmpTLSDomain
 transportAddress = a TLS transport address
 tmsTransportModel = TLS Transport Model
 tmsSecurityLevel = "authPriv"
 tmsSecurityName = the name of the principal authenticated by
 TLS. How the name is extracted from the TLS environment and
 how it is translated into a securityName is
 implementation-dependent. The tmSecurityName which has to be
 authenticated should be extracted from the Common Name field
 of an X.509 v3 certificate or from an AlternativeName
 extension of an X.509 v3 certificate.

 2) If there is no entry in the LCD corresponding to the extracted
 (transportDomain, transportAddress, tmsTransportModel,
 tmsSecurityLevel, tmsSecurityName) then the TLS Transport Model
 creates an entry in the LCD and caches the TLS specific parameters
 for that session. A recommended set of TLS specific parameters to be
 cached is session ID, compression method, cipher suite, is resumable
 and peer certificate. The error conditions that might be encountered
 during the session establishment are specified in Section 6.3 where
 an exact procedure for session establishment is specified.

 3) At that point the TLS Transport model performs translation between
 the transport model dependent security name i.e tmSecurityName and
 the transport model independent securityName. This translation is
 implementation specific.

 The transport model then passes the message to the Dispatcher by
 using the following ASI of transport subsystem:

 statusInformation =
 receiveMessage(
 IN transportDomain -- domain for the received message
 IN transportAddress -- address for the received message
 IN wholeMessage -- the whole SNMP message from TLS
 IN wholeMessageLength -- the length of the SNMP message
 IN tmStateReference -- reference to transport state
)

Marinov & Schoenwaelder Expires August 27, 2007 [Page 15]

Internet-Draft TLS Transport Model for SNMP February 2007

6.2. Procedures for an Outgoing Message

 The Dispatcher passes the information to the Transport Model using
 the ASI defined in the transport subsystem:

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference
)

 The TLS Transport Model performs the following tasks:

 1) Determine the target 5-tuple index by extracting the
 transportDomain, transportAddress, securityName, securityLevel, and
 securityModel from the tmStateReference.

 2) Lookup the session in the Local Configuration Datastore using the
 target index.

 3) If there is a session in the LCD and it is denoted as active then
 go to step 9) to send the message. If there is a session but it is
 denoted as not active then go to step 4) to resume the session. If
 there is no session in the LCD then one has to be created, go to step
 6) to create a session.

 4) If there is a session and the flag indicating whether the session
 is active is not set, then the information about that session belongs
 to an already closed session which can possibly be resumed. In that
 case resumeSession() should be called with the session parameters
 that have been retrieved from the LCD in step 1).

 5) If resumeSession() is successful, go to step 9) to send the
 message. Otherwise, closeSession() should be called, all cached
 information that belongs to the session which has failed to be
 resumed should be cleared from the cache, and a fallback to
 openSession() in step 6) has to be performed.

 6) If a session does not exist in the LCD or resumeSession() failed
 then a call to openSession() has to be performed.

 7) If an error is returned from openSession(), then discard the
 message and return the error indication in the statusInformation.
 Increment an error counter. Message processing is terminated.

Marinov & Schoenwaelder Expires August 27, 2007 [Page 16]

Internet-Draft TLS Transport Model for SNMP February 2007

 8) If openSession() is successful, then store any implementation-
 specific information in the LCD for subsequent use.

 9) Pass the wholeMessage as application_data record to be
 encapsulated by the TLS Record Layer. Message processing is
 completed.

6.3. Establishing a Session

 The Secure Shell Transport Model provides the following primitive to
 describe the data passed between the Transport Model and the TLS
 service. It is an implementation decision how such data is passed.

 statusInformation =
 openSession(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN maxMessageSize -- of the sending SNMP entity
 OUT tmStateReference
)

 The following describes the procedure to follow to establish a
 session between a client and server to run SNMP over TLS. This
 process is followed by any SNMP engine establishing a session for
 subsequent use.

 This will be done automatically for an SNMP application that
 initiates a transaction, such as a Command Generator or a
 Notification Originator or a Proxy Forwarder.

 The need to establish a session is never triggered by an application
 sending a response message, such as a Command Responder or
 Notification Receiver, because securityStateReference will always
 have the information for an existing session, identifiable via
 tmStateReference.

 1) Using destTransportDomain and destTransportAddress, the client
 will initiate a TLS Handshake with the server. The client and the
 server will exchange Hello messages where the protocol version, the
 compression method, the cipher suite and the session ID will be
 negotiated. Random values will also be exchanged. As a new session
 is to be established the session ID sent by the client must be empty.

 2) The client must authenticate the server. The TLS server provides
 an X.509 v3 certificate and the client verifies it by following the

Marinov & Schoenwaelder Expires August 27, 2007 [Page 17]

Internet-Draft TLS Transport Model for SNMP February 2007

 procedure outlined in Section 3. If server authentication fails then
 an error indication is returned, and openSession() processing stops.

 3) The server may send a key exchange message if the information in
 the X.509 certificate is not sufficient to negotiate a pre-master
 secret for the TLS connection.

 4) The server will request from the client to authenticate by sending
 its X.509 v3 certificate after which it sends a ServerHelloDone TLS
 message.

 5) The client must authenticate to the server by sending its X.509 v3
 certificate. In case the client is pre-configured with multiple
 certificates to be used for different servers it must look up the
 authenticated server principal in the LCD. The authenticated server
 principal is extracted from the Common Name field of the X.509 v3
 server certificate or the AlternativeName extenstion to the X.509 v3
 server certificate. If client authentication fails then an error
 indication is returned, and openSession() processing stops.

 6) The client must send a client key exchange message which is used
 to set the premaster secret for the TLS connection.

 7) The client and the server must exchange ChangeCipherSpec messages.
 At this point both sides of the connection provide the security
 parameters negotiated by the TLS Handshake Protocol to the TLS Record
 Protocol. Immediately after this, the client and the server exchange
 Finished messages which are the first encrypted messages exchanged
 between the two sides. This denotes the end of the TLS Handshake
 Protocol and a TLS session is established.

 8) Any TLS specific information about the newly established session
 should be retained in a cache so that it can be added to the LCD
 later. A recommended set of parameters is
 1. destTransportDomain
 2. destTransportAddress
 3. session ID
 4. compression method
 5. cipher suite
 6. peer certificate
 7. is resumable

 9) Create an entry in a Local Configuration Datastore containing the
 provided transportDomain, transportAddress, securityName,
 securityLevel, and securityModel, and TLS-speciifc parameters that
 have been saved in a cache in step 8 and create a tmStateReference to
 reference the entry. Set the flag that denotes that a session is
 currently active.

Marinov & Schoenwaelder Expires August 27, 2007 [Page 18]

Internet-Draft TLS Transport Model for SNMP February 2007

 10) At this point an implementation MAY perform some type of engineID
 discovery to determine a mapping between the remote transport
 address, the TLS session, and a contextEngineID.

 [discuss: Who actually does the check that the resumed/created
 session satisfies the requested security level?]

 The contextEngineID of a remote engine needs to be "discovered" for
 use in request messages. USM, the mandatory-to-implement security
 model, can perform discovery of the snmpEngineIDs of adjacent engines
 using Reports (see [RFC3414] section 3.2 3b). Then the discovered
 snmpEngineID for the remote engine can be used as the contextEngineID
 in requests passed using the TLS Transport Model.

 [discuss: should we point to the engineID discovery document?]

6.4. Session Resumption

 The TLS Transport Model provides the following primitive to resume a
 previously established session.

 statusInformation =
 resumeSession(
 IN tmStateReference -- reference to a previous session
)

 The following describes the procedure to follow to resume a
 previously established session between a client and server to run
 SNMP over TLS. This process is followed by any SNMP engine resuming
 a session for subsequent use.

 A session can be resumed by any of the sides that have participated
 in the session beforehand as far as the original session has been
 negotiated as "is resumable" during the initial Hello message
 exchange. A session can be resumed by an SNMP application which
 wishes to initiate a transaction such as Command Generator,
 Notification Originator or Proxy Forwarder. Furthermore, a session
 can also be resumed by an engine which has participated as a Command
 Responder or a Notification Receiver in a previous session.

 [discuss: from RFC4346 I could not figure out if a session can be
 resumed by the server or at least it is not specified how this
 happens. Is it possible? If not then a Command Responder and
 Notification Receiver cannot resume a session.]

 1) The client looks up transport specific security parameters in the
 LCD by using the tmStateReference and extracts session ID,
 destTransportDomain, destTransportAddress, compression method, cipher

https://datatracker.ietf.org/doc/html/rfc3414#section-3.2
https://datatracker.ietf.org/doc/html/rfc4346

Marinov & Schoenwaelder Expires August 27, 2007 [Page 19]

Internet-Draft TLS Transport Model for SNMP February 2007

 suite, peer certificate and is resumable. If the "is resumable"
 option is not negotiated during the original session, resumeSession()
 is aborted and a fallback to openSession() is performed.

 [discuss: do we want to specify whether the client and the server try
 to re-check the peer certificates i.e whether they have expired or
 whether they have not been revoked before agreeing on session
 resumption. This is not specified in the TLS session resumption and
 is a bit too much I guess]

 2) The client uses destTransportDomain and destTransportAddress to
 initiate a TLS Handshake. In the Client Hello message the client
 provides the session ID, the cipher suite and the compression method
 which have been extracted from the LCD in step 1)

 3) The server looks up in its cache for the session ID sent by the
 client and verifies the compression algorithm and the cipher suite.
 If the session ID does not match, then the server generates a new
 session ID and a fallback to openSession() is performed i.e a full
 handshake takes place between the client and the server.

 4) If successful the server sends a ServerHello message which is
 followed by ChangeCipherSpec message exchange between the client and
 the server. During this phase the Handshake protocols of the client
 and the server load the cached security parameters into the TLS
 Record Layer. Thus it is important that ALL neccessary security
 parameters are cached if a session is to be resumed.

 5) The client and the server exchange Finished messages which denotes
 the end of the TLS Handshake and the resumption of the TLS session.
 The client and the server must set the flag which denotes whether a
 session, which is stored in the LCD, is active.

 [discuss: Who actually does the check that the resumed/created
 session satisfies the requested security level?]

 6) At this point an implementation MAY perform some type of engineID
 discovery to determine a mapping between the remote transport
 address, the TLS session, and a contextEngineID. The engineID may be
 retrieved from a cache if it has been stored during the original
 session

6.5. Closing a Session

 The TLS Transport Model provides the following primitive to close a
 session.

Marinov & Schoenwaelder Expires August 27, 2007 [Page 20]

Internet-Draft TLS Transport Model for SNMP February 2007

 statusInformation =
 closeSession(
 IN tmStateReference
)

 The following describes the procedure.

 1) Determine the target 5-tuple index by extracting the
 transportDomain, transportAddress, securityName, securityLevel, and
 securityModel from the tmStateReference.

 2) Lookup the session in the Local Configuration Datastore using the
 target index.

 3) If there is no session open associated with the target index, then
 closeSession processing is completed.

 4) Extract any implementation-specific parameters from the LCD.
 Among the extracted transport specific parameters should be the "is
 resumable" option which has been negotiated between the client and
 the server during the Hello Exchange messages in the original
 session. If the "is resumable" option is set, then the session
 parameters can be stored for later use if session resumption occurs.
 Reset the flag in the tmStateReference which indicates whether a
 session that is stored in the LCD is currently active.

 5) Have the TLS close the connection. A client and a server must
 make a proper use of closure alerts by following the specification in

section 7.2.1 from [RFC4346] during session teardown. The side which
 initiates the close must send a close_notify message. When the other
 side receives the close_notify message it must also respond with
 close_notify and discard any pending data after which the connection
 must be immediately closed. If a session is not closed by proper
 handling of closure alerts it cannot be resumed later on.

7. IANA Considerations

8. Security Considerations

 In order to allow SNMP traffic to be easily identified and filtered
 by firewalls and other network devices, servers associated with SNMP
 entities using the TLS Transport Model MUST default to providing
 access to the "SNMP" TLS subsystem if the TLS session is established
 using the IANA-assigned TCP port (TBD by IANA). Servers SHOULD be
 configurable to allow access to the SNMP TLS subsystem over other
 ports.

https://datatracker.ietf.org/doc/html/rfc4346

Marinov & Schoenwaelder Expires August 27, 2007 [Page 21]

Internet-Draft TLS Transport Model for SNMP February 2007

9. Acknowledgements

 This document closely follows the Secure Shell Transport Model for
 SNMP defined by David Harrington and Joseph Salowey in
 [I-D.ietf-isms-secshell]. Much the text was copied literally and
 then adapted to the specific needs of the TLS transport model.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, March 1997.

 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Structure of Management Information Version 2 (SMIv2)",

RFC 2578, STD 58, April 1999.

 [RFC2579] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Textual Conventions for SMIv2", RFC 2579, STD 58,
 April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", RFC 2580, STD 58,
 April 1999.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC3280] Housley, R., Ford, W., Polk, T., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [I-D.ietf-isms-tmsm]
 Harrington, D. and J. Schoenwaelder, "Transport Subsystem
 for the Simple Network Management Protocol (SNMP)",
 February 2006.

 [I-D.ietf-isms-transport-security-model-02]
 Harrington, D., "Transport Security Model for SNMP",
 January 2007.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3280

Marinov & Schoenwaelder Expires August 27, 2007 [Page 22]

Internet-Draft TLS Transport Model for SNMP February 2007

10.2. Informative References

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC3413] Levi, D., Meyer, P., and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62,

RFC 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [I-D.ietf-isms-secshell]
 Harrington, D. and J. Salowey, "Secure Shell Transport
 Model for SNMP", October 2006.

Authors' Addresses

 Vladislav Marinov
 Jacobs University Bremen
 Campus Ring 1
 28725 Bremen
 Germany

 Phone: +49 176 70046718
 Email: v.marinov@iu-bremen.de

 Juergen Schoenwaelder
 Jacobs University Bremen
 Campus Ring 1
 28725 Bremen
 Germany

 Phone: +49 421 200-3587
 Email: j.schoenwaelder@iu-bremen.de

https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3414

Marinov & Schoenwaelder Expires August 27, 2007 [Page 23]

Internet-Draft TLS Transport Model for SNMP February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Marinov & Schoenwaelder Expires August 27, 2007 [Page 24]

