
 X. Boyen
 L. Martin
 Internet Draft Voltage Security
 Expires: March 2008 September 2007

Identity-Based Cryptography Standard (IBCS) #1: Supersingular
Curve Implementations of the BF and BB1 Cryptosystems

 <draft-martin-ibcs-07.txt>

 Status of this Memo

 By submitting this Internet-Draft, each author represents
 that any applicable patent or other IPR claims of which he
 or she is aware have been or will be disclosed, and any of
 which he or she becomes aware will be disclosed, in
 accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet
 Engineering Task Force (IETF), its areas, and its working
 groups. Note that other groups may also distribute working
 documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by
 other documents at any time. It is inappropriate to use
 Internet-Drafts as reference material or to cite them other
 than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be
 accessed at

http://www.ietf.org/shadow.html

 Abstract

 This document describes the algorithms that implement Boneh-
 Franklin and Boneh-Boyen Identity-based Encryption. This
 document is in part based on IBCS #1 v2 of Voltage Security's
 Identity-based Cryptography Standards (IBCS) documents, from

Boyen & Martin Expires March 2008 [Page 1]

https://datatracker.ietf.org/doc/html/draft-martin-ibcs-07.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet Draft IBCS #1 September 2007

 which some irrelevant sections have been removed to create the
 content of this document.

Boyen & Martin Expires March 2008 [Page 2]

Internet Draft IBCS #1 September 2007

 Table of Contents

1. Introduction..5
1.1. Sending a Message that is Encrypted Using IBE........6

1.1.1. Sender Obtains Recipient's Public Parameters....7
1.1.2. Construct and Send IBE-encrypted Message........8

1.2. Receiving and Viewing an IBE-encrypted Message.......8
1.2.1. Recipient Obtains Public Parameters from PPS....9
1.2.2. Recipient Obtains IBE Private Key from PKG.....10
1.2.3. Recipient Decrypts IBE-encrypted Message.......10

2. Notation and definitions.................................11
2.1. Notation..11
2.2. Definitions...13

3. Basic elliptic curve algorithms..........................14
3.1. The group action in affine coordinates..............14

3.1.1. Implementation for type-1 curves...............14
3.2. Point multiplication................................16
3.3. Operations in Jacobian projective coordinates.......18

3.3.1. Implementation for type-1 curves...............18
3.4. Divisors on elliptic curves.........................20

3.4.1. Implementation in F_p^2 for type-1 curves......20
3.5. The Tate pairing....................................23

3.5.1. Tate pairing calculation.......................23
3.5.2. The Miller algorithm for type-1 curves.........23

4. Supporting algorithms....................................26
4.1. Integer range hashing...............................26

4.1.1. Hashing to an integer range....................26
4.2. Pseudo-random byte generation by hashing............27

4.2.1. Keyed pseudo-random bytes generator............27
4.3. Canonical encodings of extension field elements.....28

4.3.1. Encoding an extension element as a string......28
4.3.2. Type-1 curve implementation....................29

4.4. Hashing onto a subgroup of an elliptic curve........30
 4.4.1. Hashing a string onto a subgroup of an elliptic
 curve...30

4.4.2. Type-1 curve implementation....................30
4.5. Bilinear mapping....................................31

4.5.1. Regular or modified Tate pairing...............31
4.5.2. Type-1 curve implementation....................32

4.6. Ratio of bilinear pairings..........................33
4.6.1. Ratio of regular or modified Tate pairings.....33
4.6.2. Type-1 curve implementation....................34

5. The Boneh-Franklin BF cryptosystem.......................34
5.1. Setup...34

Boyen & Martin Expires March 2008 [Page 3]

Internet Draft IBCS #1 September 2007

5.1.1. Master secret and public parameter generation..34
5.1.2. Type-1 curve implementation....................35

5.2. Public key derivation...............................37
 5.2.1. Public key derivation from an identity and public
 parameters..37

5.3. Private key extraction..............................37
 5.3.1. Private key extraction from an identity, a set of
 public parameters and a master secret.................37

5.4. Encryption..38
 5.4.1. Encrypt a session key using an identity and
 public parameters.....................................38

5.5. Decryption..40
 5.5.1. Decrypt an encrypted session key using public
 parameters, a private key.............................40

6. The Boneh-Boyen BB1 cryptosystem.........................41
6.1. Setup...41

 6.1.1. Generate a master secret and public parameters.41
6.1.2. Type-1 curve implementation....................42

6.2. Public key derivation...............................43
 6.2.1. Derive a public key from an identity and public
 parameters..43

6.3. Private key extraction..............................44
 6.3.1. Extract a private key from an identity, public
 parameters and a master secret........................44

6.4. Encryption..45
 6.4.1. Encrypt a session key using an identity and
 public parameters.....................................45

6.5. Decryption..47
 6.5.1. Decrypt using public parameters and private key47

7. Test data..50
7.1. Algorithm 3.2.2 (PointMultiply).....................50
7.2. Algorithm 4.1.1 (HashToRange).......................50
7.3. Algorithm 4.5.1 (Pairing)...........................51
7.4. Algorithm 5.2.1 (BFderivePubl)......................51
7.5. Algorithm 5.3.1 (BFextractPriv).....................52
7.6. Algorithm 5.4.1 (BFencrypt).........................52
7.7. Algorithm 6.3.1 (BBextractPriv).....................53
7.8. Algorithm 6.4.1 (BBencrypt).........................54

8. ASN.1 module...55
9. Security considerations..................................60
10. IANA considerations.....................................63
11. Acknowledgments...63
12. References..64

12.1. Normative references...............................64
12.2. Informative references.............................64

 Authors' Addresses..65
 Intellectual Property Statement.............................65

Boyen & Martin Expires March 2008 [Page 4]

Internet Draft IBCS #1 September 2007

 Disclaimer of Validity......................................66
 Copyright Statement...66
 Acknowledgment..66

1. Introduction

 This document provides a set of specifications for
 implementing identity-based encryption (IBE) systems based on
 bilinear pairings. Two cryptosystems are described: the IBE
 system proposed by Boneh and Franklin (BF) [BF], and the IBE
 system proposed by Boneh and Boyen (BB1) [BB1]. Fully secure
 and practical implementations are described for each system,
 comprising the core IBE algorithms as well as ancillary hybrid
 components used to achieve security against active attacks.
 These specifications are restricted to a family of
 supersingular elliptic curves over finite fields of large
 prime characteristic, referred to as "type-1" curves (see

Section 2.1). Implementations based on other types of curves
 currently fall outside the scope of this document.

 IBE is a public-key technology, but one which varies from
 other public-key technologies is a slight yet significant way.
 In particular, IBE keys are calculated instead of being
 generated randomly, which leads to a different architecture
 for a system using IBE than for a system using other public-
 key technologies. An overview of these differences and how a
 system using IBE works are given in [IBEARCH].

 Identity-based encryption (IBE) is a public-key encryption
 technology that allows a public key to be calculated from an
 identity and the corresponding private key to be calculated
 from the public key. Calculation of both the public and
 private keys in an IBE-based system can occur as needed,
 resulting in just-in-time key material. This contrasts with
 other public-key systems [P1363], in which keys are generated
 randomly and distributed prior to secure communication
 commencing. The ability to calculate a recipient's public key,
 in particular, eliminates the need for the sender and receiver
 in an IBE-based messaging system to interact with each other,
 either directly or through a proxy such as a directory server,
 before sending secure messages.

 This document describes an IBE-based messaging system and how
 the components of the system work together. The components
 required for a complete IBE messaging system are the
 following:

Boyen & Martin Expires March 2008 [Page 5]

Internet Draft IBCS #1 September 2007

 o A Private-key Generator (PKG). The PKG contains the
 cryptographic material, known as a master secret, for
 generating an individual's IBE private key. A PKG
 accepts an IBE user's private key request and after
 successfully authenticating them in some way returns
 the IBE private key.

 o A Public Parameter Server (PPS). IBE System
 Parameters include publicly sharable cryptographic
 material, known as IBE public parameters, and policy
 information for the PKG. A PPS provides a well-known
 location for secure distribution of IBE public
 parameters and policy information for the IBE PKG.

 A logical architecture would be to have a PKG/PPS per a name
 space, such as a DNS zone. The organization that controls the
 DNS zone would also control the PKG/PPS and thus the
 determination of which PKG/PSS to use when creating public and
 private keys for the organization's members. In this case the
 PPS URI can be uniquely created by the form of the identity
 that it supports. This architecture would make it clear which
 set of public parameters to use and where to retrieve them for
 a given identity.

 IBE encrypted messages can use standard message formats, such
 as the Cryptographic Message Syntax [CMS]. How to use IBE with
 CMS is defined in [IBECMS].

 Note that IBE algorithms are used only for encryption, so if
 digital signatures are required they will need to be provided
 by an additional mechanism.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
 NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described
 in [KEYWORDS].

1.1. Sending a Message that is Encrypted Using IBE

 In order to send an encrypted message, an IBE user must
 perform the following steps:

 1. Obtain the recipient's public parameters

 The recipient's IBE public parameters allow the creation
 of unique public and private keys. A user of an IBE
 system is capable of calculating the public key of a

Boyen & Martin Expires March 2008 [Page 6]

Internet Draft IBCS #1 September 2007

 recipient after he obtains the public parameters for
 their IBE system. Once the public parameters are
 obtained, IBE-encrypted messages can be sent.

 2. Construct and Send IBE-encrypted Message

 All that is needed, in addition to the IBE public
 parameters, is the recipient's identity in order to
 generate their public key for use in encrypting messages
 to them. When this identity is the same as the identity
 that a message would be addressed to, then no more
 information is needed from a user to send someone a
 secure message then is needed to send them an unsecured
 message. This is one of the major benefits of an IBE-
 based secure messaging system. Examples of identities
 can be an individual, group, or role identifiers.

1.1.1. Sender Obtains Recipient's Public Parameters

 The sender of a message obtains the IBE public parameters that
 he needs for calculating the IBE public key of the recipient
 from a PPS that is hosted at a well-known URI. The IBE public
 parameters contain all of the information that the sender
 needs to create an IBE-encrypted message except for the
 identity of the recipient. [IBEARCH] describes the URI where a
 PPS is located, the format of IBE public parameters, and how
 to obtain them. The URI from which users obtain IBE public
 parameters MUST be authenticated in some way; PPS servers MUST
 support TLS 1.1 [TLS] to satisfy this requirement and MUST
 verify that the subject name in the server certificate matches
 the URI of the PPS. [IBEARCH] also describes the way in which
 identity formats are defined and a minimum interoperable
 format that all PPSs and PKGs MUST support. This step is shown
 below in Figure 1.

 IBE Public Parameter Request
 ----------------------------->
 Sender PPS
 <-----------------------------
 IBE Public Parameters

 Figure 1 Requesting IBE Public Parameters

Boyen & Martin Expires March 2008 [Page 7]

Internet Draft IBCS #1 September 2007

 The sender of an IBE-encrypted message selects the PPS and
 corresponding PKG based on his local security policy.
 Different PPSs may provide public parameters that specify
 different IBE algorithms or different key strengths, for
 example, or require the use of PKGs that require different
 levels of authentication before granting IBE private keys.

1.1.2. Construct and Send IBE-encrypted Message

 To IBE-encrypt a message, the sender chooses a content
 encryption key (CEK) and uses it to encrypt his message and
 then encrypts the CEK with the recipient's IBE public key (for
 example, as described in [CMS]). This operation is shown below
 in Figure 2. This document describes the algorithms needed to
 implement two forms of IBE. [IBECMS] describes how to use the
 Cryptographic Message Syntax (CMS) to encapsulate the
 encrypted message along with the IBE information that the
 recipient needs to decrypt the message.

 CEK ----> Sender ----> IBE-encrypted CEK

 ^
 |
 |

 Recipient's Identity
 and IBE Public Parameters

 Figure 2 Using an IBE Public-key Algorithm to Encrypt

1.2. Receiving and Viewing an IBE-encrypted Message

 In order to read an encrypted message, a recipient of an IBE-
 encrypted message parses the message (for example, as
 described in [IBECMS]). This gives him the URI he needs to
 obtain the IBE public parameters required to perform IBE
 calculations as well as the identity that was used to encrypt
 the message. Next the recipient must carry out the following
 steps:

 1. Obtain the recipient's public parameters

 An IBE system's public parameters allow it to uniquely
 create public and private keys. The recipient of an IBE-
 encrypted message can decrypt an IBE-encrypted message
 if he has both the IBE public parameters and the
 necessary IBE private key. The PPS can also provide the

Boyen & Martin Expires March 2008 [Page 8]

Internet Draft IBCS #1 September 2007

 URI of the PKG where the recipient of an IBE-encrypted
 message can obtain the IBE private keys.

 2. Obtain the IBE private key from the PKG

 To decrypt an IBE-encrypted message, in addition to the
 IBE public parameters the recipient needs to obtain the
 private key that corresponds to the public key that the
 sender used. The IBE private key is obtained after
 successfully authenticating to a private key generator
 (PKG), a trusted third party that calculates private
 keys for users. The recipient receives the IBE private
 key over an HTTPS connection. The URI of a PKG MUST be
 authenticated in some way; PKG servers MUST support TLS
 1.1 [TLS] to satisfy this requirement.

 3. Decrypt IBE-encrypted message

 The IBE private key decrypts the CEK, which is then used
 to decrypt encrypted message.

 The PKG may allow users other than the intended recipient to
 receive some IBE private keys. Giving a mail filtering
 appliance permission to obtain IBE private keys on behalf of
 users, for example, can allow the appliance to decrypt and
 scan encrypted messages for viruses or other malicious
 features.

1.2.1. Recipient Obtains Public Parameters from PPS

 Before he can perform any IBE calculations related to the
 message that he has received, the recipient of an IBE-
 encrypted message needs to obtain the IBE public parameters
 that were used in the encryption operation. This operation is
 shown below in Figure 3.

 IBE Public Parameter Request
 ----------------------------->
 Recipient PPS
 <-----------------------------
 IBE Public Parameters

 Figure 3 Requesting IBE Public Parameters

Boyen & Martin Expires March 2008 [Page 9]

Internet Draft IBCS #1 September 2007

1.2.2. Recipient Obtains IBE Private Key from PKG

 To obtain an IBE private key, the recipient of an IBE-
 encrypted message provides the IBE public key used to encrypt
 the message and their authentication credentials to a PKG and
 requests the private key that corresponds to the IBE public
 key. Section 4 of this document defines the protocol for
 communicating with a PKG as well as a minimum interoperable
 way to authenticate to a PKG that all IBE implementations MUST
 support. Because the security of IBE private keys is vital to
 the overall security of an IBE system, IBE private keys MUST
 be transported to recipients over a secure protocol. PKGs MUST
 support TLS 1.1 [TLS] for transport of IBE private keys. This
 operation is shown below in Figure 4.

 IBE Private Key Request
 ---------------------------->
 Recipient PKG
 <----------------------------
 IBE Private Key

 Figure 4 Obtaining an IBE Private Key

1.2.3. Recipient Decrypts IBE-encrypted Message

 After obtaining the necessary IBE private key, the recipient
 uses that IBE private key and the corresponding IBE public
 parameters to decrypt the CEK. This operation is shown below
 in Figure 5. He then uses the CEK to decrypt the encrypted
 message content (for example, as specified in [IBECMS]).

 IBE-encrypted CEK ----> Recipient ----> CEK

 ^
 |
 |

 IBE Private Key
 and IBE Public Parameters

 Figure 5 Using an IBE Public-key Algorithm to Decrypt

Boyen & Martin Expires March 2008 [Page 10]

Internet Draft IBCS #1 September 2007

2. Notation and definitions

2.1. Notation

 This section summarizes the notions and definitions regarding
 identity-based cryptosystems on elliptic curves. The reader is
 referred to [ECC] for the mathematical background and to [2,
 3] regarding all notions pertaining to identity-based
 encryption.

 F_p denotes finite field of prime characteristic p; F_p^2
 denote its extension field of degree 2.

 Let E/F_p: y^2 = x^3 + a * x + b be an elliptic curve over
 F_p. For an extension of degree 2, the curve E/F_p defines a
 group (E(F_p^2), +), which is the additive group of points of
 affine coordinates (x, y) in (F_p^2)^2 satisfying the curve
 equation over F_p^2, with null element, or point at infinity,
 denoted 0.

 Let q be a prime such that E(F_p) has a cyclic subgroup G1' of
 order q.

 Let G1'' be a cyclic subgroup of E(F_p^2) of order q, and G2
 be a cyclic subgroup of (F_p^2)* of order p.

 Under these conditions, a mathematical construction known as
 the Tate pairing provides an efficiently computable map e: G1'
 x G1'' -> G2 that is linear in both arguments and believed
 hard to invert [BF]. If an efficiently computable non-rational
 endomorphism phi: G1' -> G1'' is available for the selected
 elliptic curve on which the Tate pairing is computed, then we
 can construct a function e': G1' x G1'' -> G2, defined as
 e'(A, B) = e(A, phi(B)), called the modified Tate pairing. We
 generically call a pairing either the Tate pairing e or the
 modified Tate pairing e', depending on the chosen elliptic
 curve used in a particular implementation.

 The following additional notation is used throughout this
 document.

 p - A 512-bit to 7680-bit prime which is the order of the
 finite field F_p.

 F_p - The base finite field of order p over which the elliptic
 curve of interest E/F_p is defined.

Boyen & Martin Expires March 2008 [Page 11]

Internet Draft IBCS #1 September 2007

 #G - The size of the set G.

 F* - The multiplicative group of the non-zero elements in the
 field F; e.g., (F_p)* is the multiplicative group of the
 finite field F_p.

 E/F_p - The equation of an elliptic curve over the field F_p,
 which, when p is neither 2 nor 3, is of the form E/F_p: y^2 =
 x^3 + a * x + b, for specified a, b in F_p.

 0 - The null element of any additive group of points on an
 elliptic curve, also called the point at infinity.

 E(F_p) - The additive group of points of affine coordinates
 (x, y), with x, y in F_p, that satisfy the curve equation
 E/F_p, including the point at infinity 0.

 q - A 160-bit to 512-bit prime that is the order of the cyclic
 subgroup of interest in E(F_p).

 k - The embedding degree of the cyclic subgroup of order q in
 E(F_p). For type-1 curves this is always equal to 2.

 F_p^2 - The extension field of degree 2 of the field F_p.

 E(F_p^2) - The group of points of affine coordinates in F_p^2
 satisfying the curve equation E/F_p, including the point at
 infinity 0.

 Z_p - The additive group of integers modulo p.

 lg - The base 2 logarithm function, so that 2^lg(x) = x.

 The term "object identifier" will be abbreviated "OID."

 A Solinas prime is a prime of the form 2^a (+/-) 2^b (+/-) 1.

 The following conventions are assumed for curve operations.

 Point addition - If A and B are two points on a curve E, their
 sum is denoted A + B.

 Point multiplication - If A is a point on a curve, and n an
 integer, the result of adding A to itself a total of n times
 is denoted [n]A.

Boyen & Martin Expires March 2008 [Page 12]

Internet Draft IBCS #1 September 2007

 The following class of elliptic curves is exclusively
 considered for pairing operations in the present version of
 this document, which are referred to as "type-1" curves.

 Type-1 curves - The class of curves of type 1 is defined as
 the class of all elliptic curves of equation E/F_p: y^2 = x^3
 + 1 for all primes p congruent to 11 modulo 12. This class
 forms a subclass of the class of supersingular curves. These
 curves satisfy #E(F_p) = p + 1, and the p points (x, y) in
 E(F_p) \ {0} have the property that x = (y^2 - 1)^(1/3) (mod
 p). Type-1 curves always have an embedding degree k = 2.

 Groups of points on type-1 curves are plentiful and easy to
 construct by random selection of a prime p of the appropriate
 form. Therefore, rather than to standardize upon a small set
 of common values of p, it is henceforth assumed that all type-
 1 curves are freshly generated at random for the given
 cryptographic application (an example of such generation will
 be given in Algorithm 5.1.2 (BFsetup1) or Algorithm 6.1.2
 (BBsetup1)). Implementations based on different classes of
 curves are currently unsupported.

 We assume that the following concrete representations of
 mathematical objects are used.

 Base field elements - The p elements of the base field F_p are
 represented directly using the integers from 0 to p - 1.

 Extension field elements - The p^2 elements of the extension
 field F_p^2 are represented as ordered pairs of elements of
 F_p. An ordered pair (a_0, a_1) is interpreted as the complex
 number a_0 + a_1 * i, where i^2 = -1. This allows operations
 on elements of F_p^2 to be implemented as follows. Suppose
 that a = (a_0, a_1) and b = (b_0, b_1) are elements of F_p^2.
 Then a + b = ((a_0 + b_0)(mod p), (a_1 + b_1)(mod p)) and a *
 b = ((a_1 * b_1 - a_0 * b_0)(mod p), (a_1 * b_0 + a_0 *
 b_1)(mod p)).

 Elliptic curve points - Points in E(F_p^2) with the point P =
 (x, y) in F_p^2 x F_p^2 satisfying the curve equation E/F_p.
 Points not equal to 0 are internally represented using the
 affine coordinates (x, y), where x and y are elements of
 F_p^2.

2.2. Definitions

 The following terminology is used to describe an IBE system.

Boyen & Martin Expires March 2008 [Page 13]

Internet Draft IBCS #1 September 2007

 Public parameters - The public parameters are set of common
 system-wide parameters generated and published by the private
 key server (PKG).

 Master secret - The master secret is the master key generated
 and privately kept by the key server, and used to generate the
 private keys of the users.

 Identity - An identity an arbitrary string, usually a human-
 readable unambiguous designator of a system user, possibly
 augmented with a time stamp and other attributes.

 Public key - A public key is a string that is algorithmically
 derived from an identity. The derivation may be performed by
 anyone, autonomously.

 Private key - A private key is issued by the key server to
 correspond to a given identity (and the public key that
 derives from it), under the published set of public
 parameters.

 Plaintext - A plaintext is an unencrypted representation, or
 in the clear, of any block of data to be transmitted securely.
 For the present purposes, plaintexts are typically session
 keys, or sets of session keys, for further symmetric
 encryption and authentication purposes.

 Ciphertext - A ciphertext is an encrypted representation of
 any block of data, including a plaintext, to be transmitted
 securely.

3. Basic elliptic curve algorithms

 This section describes algorithms for performing all needed
 basic arithmetic operations on elliptic curves. The
 presentation is specialized to the type of curves under
 consideration for simplicity of implementation. General
 algorithms may be found in [ECC].

3.1. The group action in affine coordinates

3.1.1. Implementation for type-1 curves

 Algorithm 3.1.1 (PointDouble1): adds a point to itself on a
 type-1 elliptic curve.

 Input:

Boyen & Martin Expires March 2008 [Page 14]

Internet Draft IBCS #1 September 2007

 o A point A in E(F_p^2), with A = (x, y) or 0

 o An elliptic curve E/F_p: y^2 = x^3 + 1

 Output:

 o The point [2]A = A + A

 Method:

 1. If A = 0 or y = 0, then return 0

 2. Let lambda = (3 * x^2) / (2 * y)

 3. Let x' = lambda^2 - 2 * x

 4. Let y' = (x - x') * lambda - y

 5. Return (x', y')

 Algorithm 3.1.2 (PointAdd1): adds two points on a type-1
 elliptic curve.

 Input:

 o A point A in E(F_p^2), with A = (x_A, y_A) or 0

 o A point B in E(F_p^2), with B = (x_B, y_B) or 0

 o An elliptic curve E/F_p: y^2 = x^3 + 1

 Output:

 o The point A + B

 Method:

 1. If A = 0, return B

 2. If B = 0, return A

 3. If x_A = x_B:

 (a) If y_A = -y_B, return 0

 (b) Else return [2]A computed using Algorithm 3.1.1
 (PointDouble1)

Boyen & Martin Expires March 2008 [Page 15]

Internet Draft IBCS #1 September 2007

 4. Otherwise:

 (a) Let lambda = (y_B - y_A) / (x_B - x_A)

 (b) Let x' = lambda^2 - x_A - x_B

 (c) Let y' = (x_A - x') * lambda - y_A

 (d) Return (x', y')

3.2. Point multiplication

 Algorithm 3.2.1 (SignedWindowDecomposition): computes the
 signed m-ary window representation of a positive integer
 [ECC].

 Input:

 o An integer k > 0, where k has the binary representation k =
 {Sum(k_j * 2^j, for j = 0 to l} where each k_j is either 0
 or 1 and k_l = 0

 o An integer window bit-size r > 0

 Output:

 o An integer d and the unique d-element sequence {(b_i, e_i),
 for i = 0 to d - 1} such that k = {Sum(b_i * 2^(e_i), for i
 = 0 to d - 1}, each b_i = +/- 2^j for some 0 < j <= r - 1
 and each e_i is a non-negative integer

 Method:

 1. Let d = 0

 2. Let j = 0

 3. While j <= l, do:

 (a) If k_j = 0 then:

 i. Let j = j + 1

 (b) Else:

 i. Let t = min{l, j + r - 1}

Boyen & Martin Expires March 2008 [Page 16]

Internet Draft IBCS #1 September 2007

 ii. Let h_d = (k_t, k_(t - 1), ..., k_j) (base 2)

 iii. If h_d > 2^(r - 1) then:

 A. Let b_d = h_d - 2^r

 B. Increment the number (k_l, k_(l-1),...,k_j) (base
 2) by 1

 iv. Else:

 A. Let b_d = h_d

 v. Let e_d = j

 vi. Let d = d + 1

 vii. Let j = t + 1

 4. Return d and the sequence {(b_0, e_0), ..., (b_(d - 1),
 e_(d - 1))}

 Algorithm 3.2.2 (PointMultiply): scalar multiplication on an
 elliptic curve using the signed m-ary window method.

 Input:

 o A point A in E(F_p^2)

 o An integer l > 0

 o An elliptic curve E/F_p: y^2 = x^3 + a * x + b

 Output:

 o The point [l]A

 Method:

 1. (Window decomposition)

 (a) Let r > 0 be an integer (fixed) bit-wise window size,
 e.g., r = 5

 (b) Let l' = l where l = {Sum(l_j * 2^j), for j = 0 to
 len_l} is the binary expansion of l, where len_l =
 Ceiling(lg(l))

Boyen & Martin Expires March 2008 [Page 17]

Internet Draft IBCS #1 September 2007

 (c) Compute (d, {(b_i, e_i), for i = 0 to d - 1} =
 SignedWindowDecomposition(l, r), the signed 2^r-ary window
 representation of l using Algorithm 3.2.1
 (SignedWindowDecomposition)

 2. (Precomputation)

 (a) Let A_1 = A

 (b) Let A_2 = [2]A, using Algorithm 3.1.1 (PointDouble1)

 (c) For i = 1 to 2^(r - 2) - 1, do:

 i. Let A_(2 * i + 1) = A_(2 * i - 1) + A_2 using
 Algorithm 3.1.2 (PointAdd1)

 (d) Let Q = A_(b_(d - 1))

 3. Main loop

 (a) For i = d - 2 to 0 by -1, do:

 i. Let Q = [2^(e_(i + 1) - e_i)]Q, using repeated
 applications of Algorithm 3.1.1 (PointDouble1) e_(i + 1) - e_i
 times

 ii. If b_i > 0 then:

 A. Let Q = Q + A_(b_i) using Algorithm 3.1.2
 (PointAdd1)

 iii. Else:

 A. Let Q = Q - A_(-(b_i)) using Algorithm 3.1.2
 (PointAdd1)

 (b) Calculate Q = [2^(e_0)]Q using repeated applications of
 Algorithm 3.1.1 (PointDouble1) e_0 times

 4. Return Q.

3.3. Operations in Jacobian projective coordinates

3.3.1. Implementation for type-1 curves

 Algorithm 3.3.1 (ProjectivePointDouble1): adds a point to
 itself in Jacobian projective coordinates for type-1 curves.

Boyen & Martin Expires March 2008 [Page 18]

Internet Draft IBCS #1 September 2007

 Input:

 o A point (x, y, z) = A in E(F_p^2) in Jacobian projective
 coordinates

 o An elliptic curve E/F_p: y^2 = x^3 + 1

 Output:

 o The point [2]A in Jacobian projective coordinates

 Method:

 1. If z = 0 or y = 0, return (0, 1, 0) = 0, otherwise:

 2. Let lambda_1 = 3 * x^2

 3. Let z' = 2 * y * z

 4. Let lambda_2 = y^2

 5. Let lambda_3 = 4 * lambda_2 * x

 6. Let x' = lambda_1^2 - 2 * lambda_3

 7. Let lambda_4 = 8 * lambda_2^2

 8. Let y' = lambda_1 * (lambda_3 - x') - lambda_4

 9. Return (x', y', z')

 Algorithm 3.3.2 (ProjectivePointAccumulate1): adds a point in
 affine coordinates to an accumulator in Jacobian projective
 coordinates, for type-1 curves.

 Input:

 o A point (x_A, y_A, z_A) = A in E(F_p^2) in Jacobian
 projective coordinates

 o A point (x_B, y_B) = B in E(F_p^2) \ {0} in affine
 coordinates

 o An elliptic curve E/F_p: y^2 = x^3 + 1

 Output:

Boyen & Martin Expires March 2008 [Page 19]

Internet Draft IBCS #1 September 2007

 o The point A + B in Jacobian projective coordinates

 Method:

 1. If z_A = 0 return (x_B, y_B, 1) = B, otherwise:

 2. Let lambda_1 = z_A^2

 3. Let lambda_2 = lambda_1 * x_B

 4. Let lambda_3 = x_A - lambda_2

 5. If lambda_3 = 0 then return (0, 1, 0), otherwise:

 6. Let lambda_4 = lambda_3^2

 7. Let lambda_5 = lambda_1 * y_B * z_A

 8. Let lambda_6 = lambda_4 - lambda_5

 9. Let lambda_7 = x_A + lambda_2

 10. Let lambda_8 = y_A + lambda_5

 11. Let x' = lambda_6^2 - lambda_7 * lambda_4

 12. Let lambda_9 = lambda_7 * lambda_4 - 2 * x'

 13. Let y' = (lambda_9 * lambda_6 -

 lambda_8 * lambda_3 * lambda_4) / 2

 14. Let z' = lambda_3 * z_A

 15. Return (x', y', z')

3.4. Divisors on elliptic curves

3.4.1. Implementation in F_p^2 for type-1 curves

 Algorithm 3.4.1 (EvalVertical1): evaluates the divisor of a
 vertical line on a type-1 elliptic curve.

 Input:

 o A point B in E(F_p^2) with B != 0

Boyen & Martin Expires March 2008 [Page 20]

Internet Draft IBCS #1 September 2007

 o A point A in E(F_p)

 o A description of a type-1 elliptic curve E/F_p

 Output:

 o An element of F_p^2 that is the divisor of the vertical
 line going through A evaluated at B

 Method:

 1. Let r = x_B - x_A

 2. Return r

 Algorithm 3.4.2 (EvalTangent1): evaluates the divisor of a
 tangent on a type-1 elliptic curve.

 Input:

 o A point B in E(F_p^2) with B != 0

 o A point A in E(F_p)

 o A description of a type-1 elliptic curve E/F_p

 Output:

 o An element of F_p^2 that is the divisor of the line tangent
 to A evaluated at B

 Method:

 1. (Special cases)

 (a) If A = 0 return 1

 (b) If y_A = 0 return EvalVertical1(B, A) using Algorithm
 3.4.1 (EvalVertical1)

 2. (Line computation)

 (a) Let a = -3 * (x_A)^2

 (b) Let b = 2 * y_A

 (c) Let c = -b * y_A - a * x_A

Boyen & Martin Expires March 2008 [Page 21]

Internet Draft IBCS #1 September 2007

 3. (Evaluation at B)

 (a) Let r = a * x_B + b * y_B + c

 4. Return r

 Algorithm 3.4.3 (EvalLine1): evaluates the divisor of a line
 on a type-1 elliptic curve.

 Input:

 o A point B in E(F_p^2) with B != 0

 o Two points A', A'' in E(F_p)

 o A description of a type-1 elliptic curve E/F_p

 Output:

 o An element of F_p^2 that is the divisor of the line going
 through A' and A'' evaluated at B

 Method:

 1. (Special cases)

 (a) If A' = 0 return EvalVertical1(B, A'') using Algorithm
 3.4.1 (EvalVertical1)

 (b) If A'' = 0 return EvalVertical1(B, A') using Algorithm
 3.4.1 (EvalVertical1)

 (c) If A' = -A'' return EvalVertical1(B, A') using
 Algorithm 3.4.1 (EvalVertical1)

 (d) If A' = A'' return EvalTangent1(B, A') using Algorithm
 3.4.2 (EvalTangent1)

 2. (Line computation)

 (a) Let a = y_A' - y_A''

 (b) Let b = x_A'' - x_A'

 (c) Let c = -b * y_A' - a * x_A'

 3. (Evaluation at B)

Boyen & Martin Expires March 2008 [Page 22]

Internet Draft IBCS #1 September 2007

 (a) Let r = a * x_B + b * y_B + c

 4. Return r

3.5. The Tate pairing

3.5.1. Tate pairing calculation

 Algorithm 3.5.1 (Tate): computes the Tate pairing on an
 elliptic curve.

 Input:

 o A point A of order q in E(F_p)

 o A point B of order q in E(F_p^2)

 o A description of an elliptic curve E/F_p such that E(F_p)
 and E(F_p^2) have a subgroup of order q

 Output:

 o The value e(A, B) in F_p^2, computed using the Miller
 algorithm

 Method:

 1. For a type-1 curve E, execute Algorithm 3.5.2
 (TateMillerSolinas)

3.5.2. The Miller algorithm for type-1 curves

 Algorithm 3.5.2 (TateMillerSolinas): computes the Tate pairing
 on a type-1 elliptic curve.

 Input:

 o A point A of order q in E(F_p)

 o A point B of order q in E(F_p^2)

 o A description of a type-1 supersingular elliptic curve
 E/F_p such that E(F_p) and E(F_p^2) have a subgroup of
 Solinas prime order q where q = 2^a + s * 2^b + c, where c
 and s are limited to the values +/-1

 Output:

Boyen & Martin Expires March 2008 [Page 23]

Internet Draft IBCS #1 September 2007

 o The value e(A, B) in F_p^2, computed using the Miller
 algorithm

 Method:

 1. (Initialization)

 (a) Let v_num = 1 in F_p^2

 (b) Let v_den = 1 in F_p^2

 (c) Let V = (x_V , y_V , z_V) = (x_A, y_A, 1) in (F_p)^3,
 being the representation of (x_A, y_A) = A using Jacobian
 projective coordinates

 (d) Let t_num = 1 in F_p^2

 (e) Let t_den = 1 in F_p^2

 2. (Calculation of the (s * 2^b) contribution)

 (a) (Repeated doublings) For n = 0 to b - 1:

 i. Let t_num = t_num^2

 ii. Let t_den = t_den^2

 iii. Let t_num = t_num * EvalTangent1(B, (x_V / z_V^2,
 y_V / z_V^3)) using Algorithm 3.4.2 (EvalTangent1)

 iv. Let V = (x_V , y_V , z_V) = [2]V using Algorithm
 3.3.1 (ProjectivePointDouble1)

 v. Let t_den = t_den * EvalVertical1(B, (x_V / z_V^2,
 y_V / z_V^3)using Algorithm 3.4.1 (EvalVertical1)

 (b) (Normalization)

 i. Let V_b = (x_(V_b) , y_(V_b))

 = (x_V / z_V^2, s * y_V / z_V^3) in (F_p)^2,

 resulting in a point V_b in E(F_p)

 (c) (Accumulation) Selecting on s:

 i. If s = -1:

Boyen & Martin Expires March 2008 [Page 24]

Internet Draft IBCS #1 September 2007

 A. Let v_num = v_num * t_den

 B. Let v_den = v_den * t_num * EvalVertical1(B, (x_V
 / z_V^2, y_V / z_V^3))) using Algorithm 3.4.1 (EvalVertical1)

 ii. If s = 1:

 A. Let v_num = v_num * t_num

 B. Let v_den = v_den * t_den

 3. (Calculation of the 2^a contribution)

 (a) (Repeated doublings) For n = b to a - 1:

 i. Let t_num = t_num^2

 ii. Let t_den = t_den^2

 iii. Let t_num = t_num * EvalTangent1(B, (x_V / z_V^2,
 y_V / z_V^3))) using Algorithm 3.4.2 (EvalTangent1)

 iv. Let V = (x_V , y_V , z_V) = [2]V using Algorithm
 3.3.1 (ProjectivePointDouble1)

 v. Let t_den = t_den * EvalVertical1(B, (x_V / z_V^2,
 y_V / z_V^3))) using Algorithm 3.4.1 (EvalVertical1)

 (b) (Normalization)

 i. Let V_a = (x_(V_a) , y_(V_a)) =

 (x_V /z_V^2, s * x_V / z_V^3) in (F_p)^2,

 resulting in a point V_a in E(F_p)

 (c) (Accumulation)

 i. Let v_num = v_num * t_num

 ii. Let v_den = v_den * t_den

 4. (Correction for the (s * 2^b) and (c) contributions)

 (a) Let v_num = v_num * EvalLine1(B, V_a, V_b) using
 Algorithm 3.4.3 (EvalLine1)

Boyen & Martin Expires March 2008 [Page 25]

Internet Draft IBCS #1 September 2007

 (b) Let v_den = v_den * EvalVertical1(B, V_a + V_b) using
 Algorithm 3.4.1 (EvalVertical1)

 (c) If c = -1 then:

 i. Let v_den = v_den * EvalVertical1(B, A) using
 Algorithm 3.4.1 (EvalVertical1)

 5. (Correcting exponent)

 (a) Let eta = (p^2 - 1) / q

 6. (Final result)

 (a) Return (v_num / v_den)^eta

4. Supporting algorithms

 This section describes a number of supporting algorithms for
 encoding and hashing.

4.1. Integer range hashing

4.1.1. Hashing to an integer range

 HashToRange(s, n, hashfcn) takes a string s, an integer n and
 a cryptographic hash function hashfcn as input, and returns an
 integer in the range 0 to n - 1 by cryptographic hashing. The
 input n MUST be less than 2^(hashlen) where hashlen is the
 number of octets comprising the output of the hash function
 hashfcn. Based on Merkle's method for hashing [MERKLE], which
 is provably as secure as the underlying hash function hashfcn.

 Algorithm 4.1.1 (HashToRange): cryptographically hashes
 strings to integers in a range.

 Input:

 o A string s of length |s| octets

 o A positive integer n represented as Ceiling(lg(n) / 8)
 octets.

 o A cryptographic hash function hashfcn

 Output:

Boyen & Martin Expires March 2008 [Page 26]

Internet Draft IBCS #1 September 2007

 o A positive integer v in the range 0 to n - 1

 Method:

 1. Let hashlen be the number of octets comprising the output
 of hashfcn

 2. Let v_0 = 0

 3. Let h_0 = 0x00...00, a string of null octets with a length
 of hashlen

 4. For i = 1 to 2, do:

 (a) Let t_i = h_(i - 1) || s, which is the (|s| + hashlen)-
 octet string concatenation of the strings h_(i - 1) and s

 (b) Let h_i = hashfcn(t_i), which is a hashlen-octet string
 resulting from the hash algorithm hashfcn on the input t_i

 (c) Let a_i = Value(h_i) be the integer in the range 0 to
 256^hashlen - 1 denoted by the raw octet string h_i
 interpreted in the unsigned big endian convention

 (d) Let v_i = 256^hashlen * v_(i - 1) + a_i

 5. Let v = v_l (mod n)

4.2. Pseudo-random byte generation by hashing

4.2.1. Keyed pseudo-random bytes generator

 HashBytes(b, p, hashfcn) takes an integer b, a string p and a
 cryptographic hash function hashfcn as input, and returns a b-
 octet pseudo-random string r as output. The value of b MUST be
 less than or equal to the number of bytes in the output of
 hashfcn. Based on Merkle's method for hashing [MERKLE], which
 is provably as secure as the underlying hash function hashfcn.

 Algorithm 4.2.1 (HashBytes): keyed cryptographic pseudo-random
 bytes generator.

 Input:

 o An integer b

 o A string p

Boyen & Martin Expires March 2008 [Page 27]

Internet Draft IBCS #1 September 2007

 o A cryptographic hash function hashfcn

 Output:

 o A string r comprising b octets

 Method:

 1. Let hashlen be the number of octets comprising the output
 of hashfcn

 2. Let K = hashfcn(p)

 2. Let h_0 = 0x00...00, a string of null octets with a length
 of hashlen

 3. Let l = Ceiling(b / hashlen)

 4. For each i in 1 to l do:

 (a) Let h_i = hashfcn(h_(i - 1))

 (b) Let r_i = hashfcn(h_i || K), where h_i || K is the (2 *
 hashlen)-octet concatenation of h_i and K

 5. Let r = LeftmostOctets(b, r_1 || ... || r_l), i.e., r is
 formed as the concatenation of the r_i, truncated to the
 desired number of octets

4.3. Canonical encodings of extension field elements

4.3.1. Encoding an extension element as a string

 Canonical(p, k, o, v) takes an element v in F_p^k, and returns
 a canonical octet-string of fixed length representing v. The
 parameter o MUST be either 0 or 1, and specifies the ordering
 of the encoding.

 Algorithm 4.3.1 (Canonical): encodes elements of an extension
 field F_p^2 as strings.

 Input:

 o An element v in F_p^2

 o A description of F_p^2

Boyen & Martin Expires March 2008 [Page 28]

Internet Draft IBCS #1 September 2007

 o A ordering parameter o, either 0 or 1

 Output:

 o A fixed-length string s representing v

 Method:

 1. For a type-1 curve, execute Algorithm 4.3.2 (Canonical1)

4.3.2. Type-1 curve implementation

 Canonical1(p, o, v) takes an element v in F_p^2 and returns a
 canonical representation of v as a octet-string s of fixed
 size. The parameter o MUST be either 0 or 1, and specifies the
 ordering of the encoding.

 Algorithm 4.3.2 (Canonical1): canonically represents elements
 of an extension field F_p^2.

 Input:

 o An element v in F_p^2

 o A description of p, where p is congruent to 3 modulo 4

 o A ordering parameter o, either 0 or 1

 Output:

 o A string s of size 2 * Ceiling(lg(p) / 8) octets

 Method:

 1. Let l = Ceiling(lg(p) / 8), the number of octets needed to
 represent integers in Z_p

 2. Let v = a + b * i, where i^2 = -1.

 3. Let a_(256^l) be the big-endian zero-padded fixed-length
 octet-string representation of a in Z_p

 4. Let b_(256^l) be the big-endian zero-padded fixed-length
 octet-string representation of b in Z_p

 5. Depending on the choice of ordering o:

Boyen & Martin Expires March 2008 [Page 29]

Internet Draft IBCS #1 September 2007

 (a) If o = 0, then let s = a_(256^l) || b_(256^l), which is
 the concatenation of a_(256^l) followed by b_(256^l)

 (b) If o = 1, then let s = b_(256^l) || a_(256^l), which is
 the concatenation of b_(256^l) followed by a_(256^l)

 6. Return s

4.4. Hashing onto a subgroup of an elliptic curve

4.4.1. Hashing a string onto a subgroup of an elliptic curve

 HashToPoint(E, p, q, id, hashfcn) takes an identity string id
 and the description of a subgroup of prime order q in E(F_p)
 or E(F_p^2) and a cryptographic hash function hashfcn and
 returns a point Q_id of order q in E(F_p) or E(F_p^2).

 Algorithm 4.4.1 (HashToPoint): cryptographically hashes
 strings to points on elliptic curves.

 Input:

 o An elliptic curve E

 o A prime p

 o A prime q

 o A string id

 o A cryptographic hash function hashfcn

 Output:

 o A point Q_id = (x, y) of order q n E(F_p)

 Method:

 1. For a type-1 curve E, execute Algorithm 4.4.2
 (HashToPoint1)

4.4.2. Type-1 curve implementation

 HashToPoint1(p, q, id, hashfcn) takes an identity string id
 and the description of a subgroup of order q in E(F_p) where
 E: y^2 = x^3 + 1 with p congruent to 11 modulo 12, and returns
 a point Q_id of order q in E(F_p) that is calculated using the

Boyen & Martin Expires March 2008 [Page 30]

Internet Draft IBCS #1 September 2007

 cryptgraphic has function hashfcn. The parameters p, q and
 hashfcn MUST be part of a valid set of public parameters as
 defined in section 5.1.2 or section 6.1.2.

 Algorithm 4.4.2 (HashToPoint1). Cryptographically hashes
 strings to points on type-1 curves.

 Input:

 o A prime p

 o A prime q

 o A string id

 o A cryptographic hash function hashfcn

 Output:

 o A point Q_id of order q in E(F_p)

 Method:

 1. Let y = HashToRange(id, p, hashfcn), using Algorithm 4.1.1
 (HashToRange), an element of F_p

 2. Let x = (y^2 - 1)^((2 * p - 1) / 3) modulo p, an element of
 F_p

 3. Let Q' = (x, y), a non-zero point in E(F_p)

 4. Let Q = [(p + 1) / q]Q', a point of order q in E(F_p)

4.5. Bilinear mapping

4.5.1. Regular or modified Tate pairing

 Pairing(E, p, q, A, B) takes two points A and B, both of order
 q, and, in the type-1 case, returns the modified pairing e'(A,
 phi(B)) in F_p^2 where A and B are both in E(F_p).

 Algorithm 4.5.1 (Pairing): computes the regular or modified
 Tate pairing depending on the curve type.

 Input:

Boyen & Martin Expires March 2008 [Page 31]

Internet Draft IBCS #1 September 2007

 o A description of an elliptic curve E/F_p such that E(F_p)
 and E(F_p^2) have a subgroup of order q

 o Two points A and B of order q in E(F_p) or E(F_p^2)

 Output:

 o On supersingular curves, the value of e'(A, B) in F_p^2
 where A and B are both in E(F_p)

 Method:

 1. If E is a type-1 curve, execute Algorithm 4.5.2 (Pairing1)

4.5.2. Type-1 curve implementation

 Algorithm 4.5.2 (Pairing1): computes the modified Tate pairing
 on type-1 curves. The values of p and q MUST be part of a
 valid set of public parameters as defined in section 5.1.2 or

section 6.1.2.

 Input:

 o A curve E/F_p: y^2 = x^3 + 1 where p is congruent to 11
 modulo 12 and E(F_p) has a subgroup of order q

 o Two points A and B of order q in E(F_p)

 Output:

 o The value of e'(A, B) = e(A, phi(B)) in F_p^2

 Method:

 1. Compute B' = phi(B), as follows:

 (a) Let (x, y) in F_p x F_p be the coordinates of B in
 E(F_p)

 (b) Let zeta = (a_zeta , b_zeta), where a_zeta = (p - 1) /
 2 and b_zeta = 3^((p + 1) / 4) (mod p), an element of F_p^2

 (c) Let x' = x * zeta in F_p^2

 (d) Let B' = (x', y) in F_p^2 x F_p

Boyen & Martin Expires March 2008 [Page 32]

Internet Draft IBCS #1 September 2007

 2. Compute the Tate pairing e(A, B') = e(A, phi(B)) in F_p^2
 using the Miller method, as in Algorithm 3.5.1 (Tate)
 described in Section 3.5

4.6. Ratio of bilinear pairings

4.6.1. Ratio of regular or modified Tate pairings

 PairingRatio(E, p, q, A, B, C, D) takes four points as input,
 and computes the ratio of the two bilinear pairings,
 Pairing(E, p, q, A, B) / Pairing(E, p, q, C, D), or,
 equivalently, the product, Pairing(E, p, q, A, B) * Pairing(E,
 p, q, C, -D).

 On type-1 curves, all four points are of order q in E(F_p),
 and the result is an element of order q in the extension field
 F_p^2 .

 The motivation for this algorithm is that the ratio of two
 pairings can be calculated more efficiently than by computing
 each pairing separately and dividing one into the other, since
 certain calculations that would normally appear in each of the
 two pairings can be combined and carried out at once. Such
 calculations include the repeated doublings in steps 2(a)i,
 2(a)ii, 3(a)i, and 3(a)ii of Algorithm 3.5.2
 (TateMillerSolinas), as well as the final exponentiation in
 step 6(a) of Algorithm 3.5.2 (TateMillerSolinas).

 Algorithm 4.6.1 (PairingRatio): computes the ratio of two
 regular or modified Tate pairings depending on the curve type.

 Input:

 o A description of an elliptic curve E/F_p such that E(F_p)
 and E(F_p^2) have a subgroup of order q

 o Four points A, B, C, and D, of order q in E(F_p) or
 E(F_p^2)

 Output:

 o On supersingular curves, the value of e'(A, B) / e'(C, D)
 in F_p^2 where A, B, C, D are all in E(F_p)

 Method:

Boyen & Martin Expires March 2008 [Page 33]

Internet Draft IBCS #1 September 2007

 1. If E is a type-1 curve, execute Algorithm 4.6.2
 (PairingRatio1)

4.6.2. Type-1 curve implementation

 Algorithm 4.6.2 (PairingRatio1). Computes the ratio of two
 modified Tate pairings on type-1 curves. The values of p and q
 MUST be part of a valid set of public parameters as defined in

section 5.1.2 or section 6.1.2.

 Input:

 o A curve E/F_p: y^2 = x^3 + 1, where p is congruent to 11
 modulo 12 and E(F_p) has a subgroup of order q

 o Four points A, B, C, and D, of order q in E(F_p)

 Output:

 o The value of e'(A, B) / e'(C, D) = e(A, phi(B)) / e(C,
 phi(D)) = e(A, phi(B)) * e(-C, phi(D)), in F_p^2

 Method:

 1. The step-by-step description of the optimized algorithm is
 omitted in this normative specification

 The correct result can always be obtained, although more
 slowly, by computing the product of pairings Pairing1(E, p, q,
 A, B) * Pairing1(E, p, q, -C, D) by using two invocations of
 Algorithm 4.5.2 (Pairing1).

5. The Boneh-Franklin BF cryptosystem

 This chapter describes the algorithms constituting the Boneh-
 Franklin identity-based cryptosystem as described in [BF].

5.1. Setup

5.1.1. Master secret and public parameter generation

 Algorithm 5.1.1 (BFsetup): randomly selects a master secret
 and the associated public parameters.

 Input:

 o A integer version number

Boyen & Martin Expires March 2008 [Page 34]

Internet Draft IBCS #1 September 2007

 o A security parameter n (MUST take values either 1024, 2048,
 3072, 7680, 15360)

 Output:

 o A set of public parameters (version, E, p, q, P, P_pub,
 hashfcn)

 o A corresponding master secret s

 Method:

 1. Depending on the selected type t:

 (a) If version = 2, then execute Algorithm 5.1.2 (BFsetup1)

 2. The resulting master secret and public parameters are
 separately encoded as per the application protocol
 requirements

5.1.2. Type-1 curve implementation

 BFsetup1 takes a security parameter n as input. For type-1
 curves, the scale of n corresponds to the modulus bit-size
 believed [BF] of comparable security in the classical Diffie-
 Hellman or RSA public-key cryptosystems.

 Algorithm 5.1.2 (BFsetup1): establishes a master secret and
 public parameters for type-1 curves.

 Input:

 o A security parameter n which MUST be either 1024, 2048,
 3072, 7680 or 15360

 Output:

 o A set of common public parameters (version, p, q, P, Ppub,
 hashfcn)

 o A corresponding master secret s

 Method:

 1. Set the version to version = 2.

Boyen & Martin Expires March 2008 [Page 35]

Internet Draft IBCS #1 September 2007

 2. Determine the subordinate security parameters n_p and n_q
 as follows:

 (a) If n = 1024 then let n_p = 512, n_q = 160, hashfcn =
 1.3.14.3.2.26 (SHA-1 [SHA].

 (b) If n = 2048 then let n_p = 1024, n_q = 224, hashfcn =
 2.16.840.1.101.3.4.2.4 (SHA-224 [SHA]).

 (c) If n = 3072 then let n_p = 1536, n_q = 256, hashfcn =
 2.16.840.1.101.3.4.2.1 (SHA-256 [SHA]).

 (d) If n = 7680 then let n_p = 3840, n_q = 384, hashfcn =
 2.16.840.1.101.3.4.2.2 (SHA-384 [SHA]).

 (e) If n = 15360 then let n_p = 7680, n_q = 512, hashfcn =
 2.16.840.1.101.3.4.2.3 (SHA-512 [SHA]).

 3. Construct the elliptic curve and its subgroup of interest,
 as follows:

 (a) Select an arbitrary n_q-bit Solinas prime q

 (b) Select a random integer r such that p = 12 * r * q - 1
 is an n_p-bit prime

 4. Select a point P of order q in E(F_p), as follows:

 (a) Select a random point P' of coordinates (x', y') on the
 curve E/F_p: y^2 = x^3 + 1 (mod p)

 (b) Let P = [12 * r]P'

 (c) If P = 0, then start over in step 3a

 5. Determine the master secret and the public parameters as
 follows:

 (a) Select a random integer s in the range 2 to q - 1

 (b) Let P_pub = [s]P

 6. (version, E, p, q, P, P_pub) are the public parameters
 where E: y^2 = x^3 + 1 is represented by the OID
 2.16.840.1.114334.1.1.1.1.

 7. The integer s is the master secret

Boyen & Martin Expires March 2008 [Page 36]

Internet Draft IBCS #1 September 2007

5.2. Public key derivation

5.2.1. Public key derivation from an identity and public
 parameters

 BFderivePubl takes an identity string id and a set of public
 parameters, and returns a point Q_id. The public parameters
 used MUST be a valid set of public parameters as defined by

section 5.1.2.

 Algorithm 5.2.1 (BFderivePubl): derives the public key
 corresponding to an identity string.

 Input:

 o An identity string id

 o A set of public parameters (version, E, p, q, P, P_pub,
 hashfcn)

 Output:

 o A point Q_id of order q in E(F_p) or E(F_p^2)

 Method:

 1. Q_id = HashToPoint(E, p, q, id, hashfcn), using Algorithm
 4.4.1 (HashToPoint)

5.3. Private key extraction

5.3.1. Private key extraction from an identity, a set of public
 parameters and a master secret

 BFextractPriv takes an identity string id, and a set of public
 parameters and corresponding master secret, and returns a
 point S_id. The public parameters used MUST be a valid set of
 public parameters as defined by section 5.1.2.

 Algorithm 5.3.1 (BFextractPriv): extracts the private key
 corresponding to an identity string.

 Input:

 o An identity string id

Boyen & Martin Expires March 2008 [Page 37]

Internet Draft IBCS #1 September 2007

 o A set of public parameters (version, E, p, q, P, P_pub,
 hashfcn)

 Output:

 o A point S_id of order q in E(F_p).

 Method:

 1. Let Q_id = HashToPoint(E, p, q, id, hashfcn) using
 Algorithm 4.4.1 (HashToPoint)

 2. Let S_id = [s]Q_id

5.4. Encryption

5.4.1. Encrypt a session key using an identity and public
 parameters

 BFencrypt takes three inputs: a public parameter block, an
 identity id, and a plaintext m. The plaintext MUST be a random
 symmetric session key. The public parameters used MUST be a
 valid set of public parameters as defined by section 5.1.2.

 Algorithm 5.4.1 (BFencrypt): encrypts a random session key for
 an identity string.

 Input:

 o A plaintext string m of size |m| octets

 o A recipient identity string id

 o A set of public parameters (version, E, p, q, P, P_pub,
 hashfcn)

 Output:

 o A ciphertext tuple (U, V, W) in E(F_p) x {0, ... ,
 255}^hashlen x {0, ... , 255}^|m|

 Method:

 1. Let hashlen be the length of the output of the
 cryptographic hash function hashfcn from the public
 parameters.

Boyen & Martin Expires March 2008 [Page 38]

Internet Draft IBCS #1 September 2007

 2. Q_id = HashToPoint(E, p, q, id, hashfcn), using Algorithm
 4.4.1 (HashToPoint), which results in a point of order q in
 E(F_p).

 3. Select a random hashlen-bit vector rho, represented as
 (hashlen / 8)-octet string in big-endian convention

 4. Let t = hashfcn(m), a hashlen-octet string resulting from
 applying the hashfcn algorithm to the input m

 5. Let l = HashToRange(rho || t, q, hashfcn), an integer in
 the range 0 to q - 1 resulting from applying Algorithm 4.1.1
 (HashToRange) to the (2 * hashlen)-octet concatenation of rho
 and t

 6. Let U = [l]P, which is a point of order q in E(F_p)

 7. Let theta = Pairing(E, p, q, P_pub, Q_id), which is an
 element of the extension field F_p^2 obtained using the
 modified Tate pairing of Algorithm 4.5.1 (Pairing)

 8. Let theta' = theta^l, which is theta raised to the power of
 l in F_p^2

 9. Let z = Canonical(p, k, 0, theta'), using Algorithm 4.3.1
 (Canonical), the result of which is a canonical string
 representation of theta'

 10. Let w = hashfcn(z) using the hashfcn hashing algorithm,
 the result of which is a hashlen-octet string

 11. Let V = w XOR rho, which is the hashlen-octet long bit-
 wise XOR of w and rho

 12. Let W = HashBytes(|m|, rho, hashfcn) XOR m, which is the
 bit-wise XOR of m with the first |m| octets of the pseudo-
 random bytes produced by Algorithm 4.2.1 (HashBytes) with seed
 rho

 13. The ciphertext is the triple (U, V, W)

Boyen & Martin Expires March 2008 [Page 39]

Internet Draft IBCS #1 September 2007

5.5. Decryption

5.5.1. Decrypt an encrypted session key using public parameters,
 a private key

 BFdecrypt takes three inputs: a public parameter block, a
 private key block key, and a ciphertext parsed as (U', V',
 W'). The public parameters used MUST be a valid set of public
 parameters as defined by section 5.1.2.

 Algorithm 5.5.1 (BFdecrypt): decrypts an encrypted session key
 using a private key.

 Input:

 o A private key point S_id of order q in E(F_p)

 o A ciphertext triple (U, V, W) in E(F_p) x {0, ... ,
 255}^hashlen x {0, ... , 255}*

 o A set of public parameters (version, E, p, q, P, P_pub,
 hashfcn)

 Output:

 o A decrypted plaintext m, or an invalid ciphertext flag

 Method:

 1. Let hashlen be the length of the output of the hash
 function hashlen measured in octets

 2. Let theta = Pairing(E, p ,q, U, S_id) by applying the
 modified Tate pairing of Algorithm 4.5.1 (Pairing)

 3. Let z = Canonical(p, k, 0, theta) using Algorithm 4.3.1
 (Canonical), the result of which is a canonical string
 representation of theta

 4. Let w = hashfcn(z), using the hashfcn hashing algorithm,
 the result of which is a hashlen-octet string

 5. Let rho = w XOR V, the bit-wise XOR of w and V

 6. Let m = HashBytes(|W|, rho, hashfcn) XOR W, which is the
 bit-wise XOR of m with the first |W| octets of the pseudo-

Boyen & Martin Expires March 2008 [Page 40]

Internet Draft IBCS #1 September 2007

 random bytes produced by Algorithm 4.2.1 (HashBytes) with seed
 rho

 7. Let t = hashfcn(m) using the hashfcn algorithm

 8. Let l = HashToRange(rho || t, q, hashfcn) using Algorithm
 4.1.1 (HashToRange) on the (2 * hashlen)-octet concatenation
 of rho and t

 9. Verify that U = [l]P:

 (a) If this is the case, then the decrypted plaintext m is
 returned

 (b) Otherwise, the ciphertext is rejected and no plaintext
 is returned

6. The Boneh-Boyen BB1 cryptosystem

 This section describes the algorithms constituting the first
 of the two Boneh-Boyen identity-based cryptosystems proposed
 in [BB1]. The description follows the practical implementation
 given in [BB1].

6.1. Setup

6.1.1. Generate a master secret and public parameters

 Algorithm 6.1.1 (BBsetup). Randomly selects a set of master
 secrets and the associated public parameters.

 Input:

 o An integer version number

 o An integer security parameter n (MUST take values either
 1024, 2048, 3072, 7680, or 15360.

 Output:

 o A set of public parameters

 o A corresponding master secret

 Method:

 1. Depending on the version:

Boyen & Martin Expires March 2008 [Page 41]

Internet Draft IBCS #1 September 2007

 (a) If version = 2, then execute Algorithm 6.1.2 (BBsetup1)

6.1.2. Type-1 curve implementation

 BBsetup1 takes a security parameter n as input. For type-1
 curves, n corresponds to the modulus bit-size believed [BF] of
 comparable security in the classical Diffie-Hellman or RSA
 public-key cryptosystems. For this implementation n MUST be
 one of 1024, 2048, 3072, 7680 and 15360, which correspond to
 the equivalent bit security levels of 80, 112, 128, 192 and
 256 bits respectively.

 Algorithm 6.1.2 (BBsetup1): randomly establishes a master
 secret and public parameters for type-1 curves.

 Input:

 o A security parameter n, either 1024, 2048, 3072, 7680, or
 15360

 Output:

 o A set of public parameters (version, k, E, p, q, P, P_1,
 P_2, P_3, v, hashfcn)

 o A corresponding triple of master secrets (alpha, beta,
 gamma)

 Method:

 1. Determine the subordinate security parameters n_p and n_q
 as follows:

 (a) If n = 1024 then let n_p = 512, n_q = 160, hashfcn =
 1.3.14.3.2.26 (SHA-1 [SHA]

 (b) If n = 2048 then let n_p = 1024, n_q = 224, hashfcn =
 2.16.840.1.101.3.4.2.4 (SHA-224 [SHA])

 (c) If n = 3072 then let n_p = 1536, n_q = 256, hashfcn =
 2.16.840.1.101.3.4.2.1 (SHA-256 [SHA])

 (d) If n = 7680 then let n_p = 3840, n_q = 384, hashfcn =
 2.16.840.1.101.3.4.2.2 (SHA-384 [SHA])

 (e) If n = 15360 then let n_p = 7680, n_q = 512, hashfcn =
 2.16.840.1.101.3.4.2.3 (SHA-512 [SHA])

Boyen & Martin Expires March 2008 [Page 42]

Internet Draft IBCS #1 September 2007

 2. Construct the elliptic curve and its subgroup of interest
 as follows:

 (a) Select a random n_q-bit Solinas prime q

 (b) Select a random integer r such that p = 12 * r * q - 1
 is an n_p-bit prime

 3. Select a point P of order q in E(F_p), as follows:

 (a) Select a random point P' of coordinates (x', y') on the
 curve E/F_p: y^2 = x^3 + 1 (mod p)

 (b) Let P = [12 * r]P'

 (c) If P = 0, then start over in step 3a

 4. Determine the master secret and the public parameters as
 follows:

 (a) Select three random integers alpha, beta, gamma, each
 of them in the range 1 to q - 1

 (b) Let P_1 = [alpha]P

 (c) Let P_2 = [beta]P

 (d) Let P_3 = [gamma]P

 (e) Let v = Pairing(E, p, q, P_1, P_2), which is an element
 of the extension field F_p^2 obtained using the modified Tate
 pairing of Algorithm 3.5.1 (Pairing)

 5. (version, E, p, q, P, P_1, P_2, P_3, v, hashfcn) are the
 public parameters

 6. (alpha, beta, gamma) constitute the master secret

6.2. Public key derivation

6.2.1. Derive a public key from an identity and public parameters

 Takes an identity string id and a set of public parameters,
 and returns an integer h_id. The public parameters used MUST
 be a valid set of public parameters as defined by section

section 6.1.2.

Boyen & Martin Expires March 2008 [Page 43]

Internet Draft IBCS #1 September 2007

 Algorithm 6.2.1 (BBderivePubl): derives the public key
 corresponding to an identity string. The public parameters
 used MUST be a valid set of public parameters as defined by
 section section 6.1.2.

 Input:

 o An identity string id

 o A set of common public parameters (version, k, E, p, q, P,
 P_1, P_2, P_3, v, hashfcn)

 Output:

 o An integer h_id modulo q

 Method:

 1. Let h_id = HashToRange(id, q, hashfcn), using Algorithm
 4.1.1 (HashToRange)

6.3. Private key extraction

6.3.1. Extract a private key from an identity, public parameters
 and a master secret

 BBextractPriv takes an identity string id, and a set of public
 parameters and corresponding master secrets, and returns a
 private key consisting of two points D_0 and D_1. The public
 parameters used MUST be a valid set of public parameters as
 defined by section section 6.1.2.

 Algorithm 6.3.1 (BBextractPriv): extracts the private key
 corresponding to an identity string.

 Input:

 o An identity string id

 o A set of public parameters (version, k, E, p, q, P, P_1,
 P_2, P_3, v, hashfcn)

 Output:

 o A pair of points (D_0, D_1), each of which has order q in
 E(F_p)

Boyen & Martin Expires March 2008 [Page 44]

Internet Draft IBCS #1 September 2007

 Method:

 1. Select a random integer r in the range 1 to q - 1

 2. Calculate the point D_0 as follows:

 (a) Let hid = HashToRange(id, q, hashfcn), using Algorithm
 4.1.1 (HashToRange)

 (b) Let y = alpha * beta + r * (alpha * h_id + gamma) in
 F_q

 (c) Let D_0 = [y]P

 3. Calculate the point D_1 as follows:

 (a) Let D_1 = [r]P

 4. The pair of points (D_0, D_1) constitutes the private key
 for id

6.4. Encryption

6.4.1. Encrypt a session key using an identity and public
 parameters

 BBencrypt takes three inputs: a set of public parameters, an
 identity id, and a plaintext m. The plaintext MUST be a random
 session key. The public parameters used MUST be a valid set of
 public parameters as defined by section section 6.1.2.

 Algorithm 6.4.1 (BBencrypt): encrypts a session key for an
 identity string.

 Input:

 o A plaintext string m of size |m| octets

 o A recipient identity string id

 o A set of public parameters (version, k, E, p, q, P, P_1,
 P_2, P_3, v, hashfcn)

 Output:

 o A ciphertext tuple (u, C_0, C_1, y) in F_q x E(F_p) x
 E(F_p) x {0, ... , 255}^|m|

Boyen & Martin Expires March 2008 [Page 45]

Internet Draft IBCS #1 September 2007

 Method:

 1. Select a random integer s in the range 1 to q - 1

 2. Let w = v^s, which is v raised to the power of s in F_p^2,
 the result is an element of order q in F_p^2

 3. Calculate the point C_0 as follows:

 (a) Let C_0 = [s]P

 4. Calculate the point C_1 as follows:

 (a) Let _hid = HashToRange(id, q, hashfcn), using Algorithm
 4.1.1 (HashToRange)

 (b) Let y = s * h_id in F_q

 (c) Let C_1 = [y]P_1 + [s]P_3

 5. Obtain canonical string representations of certain
 elements:

 (a) Let psi = Canonical(p, k, 1, w) using Algorithm 4.3.1
 (Canonical), the result of which is a canonical octet-string
 representation of w

 (b) Let l = Ceiling(lg(p) / 8), the number of octets needed
 to represent integers in F_p, and represent each of these F_p
 elements as a big-endian zero-padded octet-string of fixed
 length l:

 (x_0)_(256^l) to represent the x coordinate of C_0

 (y_0)_(256^l) to represent the y coordinate of C_0

 (x_1)_(256^l) to represent the x coordinate of C_1

 (y_1)_(256^l) to represent the y coordinate of C_1

 6. Encrypt the message m into the string y as follows:

 (a) Compute an encryption key h_0 as a two-pass hash of w
 via its representation psi:

 i. Let zeta = hashfcn(psi), using the hashing algorithm
 hashfcn

Boyen & Martin Expires March 2008 [Page 46]

Internet Draft IBCS #1 September 2007

 ii. Let xi = hashfcn(zeta || psi), using the hashing
 algorithm hashfcn

 iii. Let h' = xi || zeta, the concatenation of the
 previous two hashfcn outputs

 (b) Let y = HashBytes(|m|, h', hashfcn) XOR m, which is the
 bit-wise XOR of m with the first |m| octets of the pseudo-
 random bytes produced by Algorithm 3.2.1 (HashBytes) with seed
 h'

 7. Create the integrity check tag u as follows:

 (a) Compute a one-time pad h'' as a dual-pass hash of the
 representation of (w, C_0, C_1, y):

 i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) ||
 (y_0)_(256^l) || (x_0)_(256^l) || y || psi be the
 concatenation of y and the five indicated strings in the
 specified order

 ii. Let eta = hashfcn(sigma), using the hashing
 algorithm hashfcn

 iii. Let mu = hashfcn(eta || sigma), using the hashfcn
 hashing algorithm

 iv. Let h'' = mu || eta, the concatenation of the
 previous two outputs of hashfcn

 (b) Build the tag u as the encryption of the integer s with
 the one-time pad h'':

 i. Let rho = HashToRange(h'', q, hashfcn) to get an
 integer in Z_q

 ii. Let u = s + rho (mod q)

 8. The complete ciphertext is given by the quadruple (u, C_0,
 C_1, y)

6.5. Decryption

6.5.1. Decrypt using public parameters and private key

 BBdecrypt takes three inputs: a set of public parameters
 (version, k, E, p, q, P, P_1, P_2, P_3, v, hashfcn), a private

Boyen & Martin Expires March 2008 [Page 47]

Internet Draft IBCS #1 September 2007

 key (D_0, D_1), and a ciphertext (u, C_0, C_1, y). It outputs
 a message m, or signals an error if the ciphertext is invalid
 for the given key. The public parameters used MUST be a valid
 set of public parameters as defined by section section 6.1.2.

 Algorithm 6.5.1 (BBdecrypt): decrypts a ciphertext using
 public parameters and a private key.

 Input:

 o A private key given as a pair of points (D_0, D_1) of order
 q in E(F_p)

 o A ciphertext quadruple (u, C_0, C_1, y) in Z_q x E(F_p) x
 E(F_p) x {0, ... , 255}*

 o A set of public parameters (version, k, E, p, q, P, P_1,
 P_2, P_3, v, hashfcn)

 Output:

 o A decrypted plaintext m, or an invalid ciphertext flag

 Method:

 1. Let w = PairingRatio(E, p, q, C_0, D_0, C_1, D_1), which
 computes the ratio of two Tate pairings (modified, for type-1
 curves) as specified in Algorithm 4.6.1 (PairingRatio)

 2. Obtain canonical string representations of certain
 elements:

 (a) Let psi = Canonical(p, k, 1, w), using Algorithm 4.3.1
 (Canonical); the result is a canonical octet-string
 representation of w

 (b) Let l = Ceiling(lg(p) / 8), the number of octets needed
 to represent integers in F_p, and represent each of these F_p
 elements as a big-endian zero-padded octet-string of fixed
 length l:

 (x_0)_(256^l) to represent the x coordinate of C_0

 (y_0)_(256^l) to represent the y coordinate of C_0

 (x_1)_(256^l) to represent the x coordinate of C_1

Boyen & Martin Expires March 2008 [Page 48]

Internet Draft IBCS #1 September 2007

 (y_1)_(256^l) to represent the y coordinate of C_1

 3. Decrypt the message m from the string y as follows:

 (a) Compute the decryption key h' as a dual-pass hash of w
 via its representation psi:

 i. Let zeta = hashfcn(psi), using the hashing algorithm
 hashfcn

 ii. Let xi = hashfcn(zeta || psi), using the hashing
 algorithm hashfcn

 iii. Let h' = xi || zeta, the concatenation of the
 previous two hashfcn outputs

 (b) Let m = HashBytes(|y|, h', hashfcn)_XOR y, which is the
 bit-wise XOR of y with the first |y| octets of the pseudo-
 random bytes produced by Algorithm 4.2.1 (HashBytes) with
 seed h'

 4. Obtain the integrity check tag u as follows:

 (a) Recover the one-time pad h'' as a dual-pass hash of the
 representation of (w, C_0, C_1, y):

 i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) ||
 (y_0)_(256^l) || (x_0)_(256^l) || y || psi be the
 concatenation of y and the five indicated strings in the
 specified order

 ii. Let eta = hashfcn(sigma) using the hashing algorithm
 hashfcn

 iii. Let mu = hashfcn(eta || sigma), using the hashing
 algorithm hashfcn

 iv. Let h'' = mu || eta, the concatenation of the
 previous two hashfcn outputs

 (b) Unblind the encryption randomization integer s from the
 tag u using h'':

 i. Let rho = HashToRange(h'', q, hashfcn) to get an
 integer in Z_q

 ii. Let s = u - rho (mod q)

Boyen & Martin Expires March 2008 [Page 49]

Internet Draft IBCS #1 September 2007

 5. Verify the ciphertext consistency according to the
 decrypted values:

 (a) Test whether the equality w = v^s holds

 (b) Test whether the equality C_0 = [s]P holds

 6. Adjudication and final output:

 (a) If either of the tests performed in step 5 fails, the
 ciphertext is rejected, and no decryption is output

 (b) Otherwise, i.e., when both tests performed in step 5
 succeed, the decrypted message is output

7. Test data

 The following data can be used to verify the correct operation
 of selected algorithms that are defined in this document.

7.1. Algorithm 3.2.2 (PointMultiply)

 Input:

 q = 0xfffffffffffffffffffffffffffbffff

 p = 0xbffffffffffffffffffffffffffcffff3

 E/F_p: y^2 = x^3 + 1

 A = (0x489a03c58dcf7fcfc97e99ffef0bb4634,
 0x510c6972d795ec0c2b081b81de767f808)

 l = 0xb8bbbc0089098f2769b32373ade8f0daf

 Output:

 [l]A = (0x073734b32a882cc97956b9f7e54a2d326,
 0x9c4b891aab199741a44a5b6b632b949f7)

7.2. Algorithm 4.1.1 (HashToRange)

 Input:

 s =
 54:68:69:73:20:41:53:43:49:49:20:73:74:72:69:6e:67:20:77:69:74

Boyen & Martin Expires March 2008 [Page 50]

Internet Draft IBCS #1 September 2007

 :68:6f:75:74:20:6e:75:6c:6c:2d:74:65:72:6d:69:6e:61:74:6f:72
 ("This ASCII string without null-terminator")

 n = 0xffffffffffffffffffffefffffffffffffffffff

 hashfcn = 1.3.14.3.2.16 (SHA-1)

 Output:

 v = 0x79317c1610c1fc018e9c53d89d59c108cd518608

7.3. Algorithm 4.5.1 (Pairing)

 q = 0xfffffffffffffffffffffffffffbffff

 p = 0xbffffffffffffffffffffffffffcffff3

 E/F_p: y^2 = x^3 + 1

 A = (0x489a03c58dcf7fcfc97e99ffef0bb4634,
 0x510c6972d795ec0c2b081b81de767f808)

 B = (0x40e98b9382e0b1fa6747dcb1655f54f75,
 0xb497a6a02e7611511d0db2ff133b32a3f)

 Output:

 e'(A, B) = (0x8b2cac13cbd422658f9e5757b85493818,
 0xbc6af59f54d0a5d83c8efd8f5214fad3c)

7.4. Algorithm 5.2.1 (BFderivePubl)

 Input:

 id = 6f:42:62 ("Bob")

 version = 2

 p = 0xa6a0ffd016103ffffffffff595f002fe9ef195f002fe9efb

 q = 0xffffffffffffffffffffffeffffffffffff

 P = (0x6924c354256acf5a0ff7f61be4f0495b54540a5bf6395b3d,
 0x024fd8e2eb7c09104bca116f41c035219955237c0eac19ab)

 P_pub = (0xa68412ae960d1392701066664d20b2f4a76d6ee715621108,
 0x9e7644e75c9a131d075752e143e3f0435ff231b6745a486f)

Boyen & Martin Expires March 2008 [Page 51]

Internet Draft IBCS #1 September 2007

 Output:

 Q_id = (0x22fa1207e0d19e1a4825009e0e88e35eb57ba79391498f59,
 0x982d29acf942127e0f01c881b5ec1b5fe23d05269f538836)

7.5. Algorithm 5.3.1 (BFextractPriv)

 Input:

 s = 0x749e52ddb807e0220054417e514742b05a0

 version = 2

 p = 0xa6a0ffd016103ffffffffff595f002fe9ef195f002fe9efb

 q = 0xffffffffffffffffffffffeffffffffffff

 P = (0x6924c354256acf5a0ff7f61be4f0495b54540a5bf6395b3d,
 0x024fd8e2eb7c09104bca116f41c035219955237c0eac19ab)

 P_pub = (0xa68412ae960d1392701066664d20b2f4a76d6ee715621108,
 0x9e7644e75c9a131d075752e143e3f0435ff231b6745a486f)

 Output:

 Q_id = (0x8212b74ea75c841a9d1accc914ca140f4032d191b5ce5501,
 0x950643d940aba68099bdcb40082532b6130c88d317958657)

7.6. Algorithm 5.4.1 (BFencrypt)

 (Note that the following values can also be used to test
 Algorithm 5.5.1 (BFdecrypt))

 Input:

 m = 48:69:20:74:68:65:72:65:21 ("Hi there!")

 id = 6f:42:62 ("Bob")

 version = 2

 p = 0xa6a0ffd016103ffffffffff595f002fe9ef195f002fe9efb

 q = 0xffffffffffffffffffffffeffffffffffff

 P = (0x6924c354256acf5a0ff7f61be4f0495b54540a5bf6395b3d,
 0x024fd8e2eb7c09104bca116f41c035219955237c0eac19ab)

Boyen & Martin Expires March 2008 [Page 52]

Internet Draft IBCS #1 September 2007

 P_pub = (0xa68412ae960d1392701066664d20b2f4a76d6ee715621108,
 0x9e7644e75c9a131d075752e143e3f0435ff231b6745a486f)

 Output:

 Using the random value rho =
 0xed5397ff77b567ba5ecb644d7671d6b6f2082968, we get the
 following output:

 U =
 (0x1b5f6c461497acdfcbb6d6613ad515430c8b3fa23b61c585e9a541b199e
 2a6cb,
 0x9bdfbed1ae664e51e3d4533359d733ac9a600b61048a7d899104e826a0ec
 4fa4)

 V =
 e0:1d:ad:81:32:6c:b1:73:af:c2:8d:72:2e:7a:32:1a:7b:29:8a:aa

 W = f9:04:ba:40:30:e9:ce:6e:ff

7.7. Algorithm 6.3.1 (BBextractPriv)

 Inputs:

 alpha = 0xa60c395285ded4d70202c8283d894bad4f0

 beta = 0x48bf012da19f170b13124e5301561f45053

 gamma = 0x226fba82bc38e2ce4e28e56472ccf94a499

 version = 2

 p = 0x91bbe2be1c8950750784befffffffffffff6e441d41e12fb

 q = 0xfffffffffbfffffffffffffffffffffffff

 P = (0x13cc538fe950411218d7f5c17ae58a15e58f0877b29f2fe1,
 0x8cf7bab1a748d323cc601fabd8b479f54a60be11e28e18cf)

 P_1 = (0x0f809a992ed2467a138d72bc1d8931c6ccdd781bedc74627,
 0x11c933027beaaf73aa9022db366374b1c68d6bf7d7a888c2)

 P_2 = (0x0f8ac99a55e575bf595308cfea13edb8ec673983919121b0,
 0x3febb7c6369f5d5f18ee3ea6ca0181448a4f3c4f3385019c)

 P_3 = (0x2c10b43991052e78fac44fdce639c45824f5a3a2550b2a45,
 0x6d7c12d8a0681426a5bbc369c9ef54624356e2f6036a064f)

Boyen & Martin Expires March 2008 [Page 53]

Internet Draft IBCS #1 September 2007

 v = (0x38f91032de6847a89fc3c83e663ed0c21c8f30ce65c0d7d3,
 0x44b9aa10849cc8d8987ef2421770a340056745da8b99fba2)

 id = 6f:42:62 ("Bob")

 Output:

 Using the random value r =
 0x695024c25812112187162c08aa5f65c7a2c, we get the following
 output:

 D_0 = (0x3264e13feeb7c506493888132964e79ad657a952334b9e53,
 0x3eeaefc14ba1277a1cd6fdea83c7c882fe6d85d957055c7b)

 D_1 = (0x8d7a72ad06909bb3bb29b67676d935018183a905e7e8cb18,
 0x2b346c6801c1db638f270af915a21054f16044ab67f6c40e)

7.8. Algorithm 6.4.1 (BBencrypt)

 (Note that the following values can also be used to test
 Algorithm 5.5.1 (BFdecrypt))

 Input:

 m = 48:69:20:74:68:65:72:65:21 ("Hi there!")

 id = 6f:42:62 ("Bob")

 version = 2

 E: y^2 = x^3 + 1

 p = 0x91bbe2be1c8950750784befffffffffffff6e441d41e12fb

 q = 0xfffffffffbfffffffffffffffffffffffff

 P = (0x13cc538fe950411218d7f5c17ae58a15e58f0877b29f2fe1,
 0x8cf7bab1a748d323cc601fabd8b479f54a60be11e28e18cf)

 P_1 = (0x0f809a992ed2467a138d72bc1d8931c6ccdd781bedc74627,
 0x11c933027beaaf73aa9022db366374b1c68d6bf7d7a888c2)

 P_2 = (0x0f8ac99a55e575bf595308cfea13edb8ec673983919121b0,
 0x3febb7c6369f5d5f18ee3ea6ca0181448a4f3c4f3385019c)

 P_3 = (0x2c10b43991052e78fac44fdce639c45824f5a3a2550b2a45,
 0x6d7c12d8a0681426a5bbc369c9ef54624356e2f6036a064f)

Boyen & Martin Expires March 2008 [Page 54]

Internet Draft IBCS #1 September 2007

 v = (0x38f91032de6847a89fc3c83e663ed0c21c8f30ce65c0d7d3,
 0x44b9aa10849cc8d8987ef2421770a340056745da8b99fba2)

 hashfcn = 1.3.14.3.2.26 (SHA-1)

 Output:

 Using the random value s =
 0x62759e95ce1af248040e220263fb41b965e, we get the following
 output:

 u = 0xad1ebfa82edf0bcb5111e9dc08ff0737c68

 C_0 = (0x79f8f35904579f1aaf51897b1e8f1d84e1c927b8994e81f9,
 0x1cf77bb2516606681aba2e2dc14764aa1b55a45836014c62)

 C_1 = (0x410cfeb0bccf1fa4afc607316c8b12fe464097b20250d684,
 0x8bb76e7195a7b1980531b0a5852ce710cab5d288b2404e90)

 y = 82:a6:42:b9:bb:e9:82:c4:57

8. ASN.1 module

 This section defines the ASN.1 module for the encodings
 discussed in this document.

Boyen & Martin Expires March 2008 [Page 55]

Internet Draft IBCS #1 September 2007

 IBCS { joint-iso-itu-t(2) country(16) us(840) organization(1)
 identicrypt(114334) ibcs(1) module(5) version(1) }

 DEFINITIONS IMPLICIT TAGS ::= BEGIN

 --
 -- Identity-based cryptography standards (IBCS):
 -- supersingular curve implementations of
 -- the BF and BB1 cryptosystems
 --
 -- This version only supports IBE using
 -- type-1 curves, i.e., the curve y^2 = x^3 + 1.
 --

 ibcs OBJECT IDENTIFIER ::= {
 joint-iso-itu-t(2) country(16) us(840) organization(1)
 identicrypt(114334) ibcs(1)
 }

 --
 -- IBCS1
 --
 -- IBCS1 defines the algorithms used to implement IBE
 --

 ibcs1 OBJECT IDENTIFIER ::= {
 ibcs ibcs1(1)
 }

 --
 -- An elliptic curve is specified by an OID.
 -- A type1curve is defined by the equation y^2 = x^3 + 1.
 --

 type1curve OBJECT IDENTIFIER ::= {
 ibcs1 curve-types(1) type1-curve(1)
 }

 --
 -- Supporting types
 --

 --
 -- Encoding of a point on an elliptic curve E/F_p
 -- An FpPoint can either represent an element of
 -- F_p^2 or an element of (F_p)^2.

Boyen & Martin Expires March 2008 [Page 56]

Internet Draft IBCS #1 September 2007

 FpPoint ::= SEQUENCE {
 x INTEGER,
 y INTEGER
 }

 --
 -- The following hash functions are supported:
 --
 -- SHA-1
 --
 -- id-sha1 OBJECT IDENTIFIER ::= {
 -- iso(1) identified-organization(3) oiw(14)
 -- secsig(3) algorithms(2) hashAlgorithmIdentifier(26)
 -- }
 --
 -- SHA-224
 --
 -- id-sha224 OBJECT IDENTIFIER ::= {
 -- joint-iso-itu-t(2)country(16) us(840)
 -- organization(1) gov(101)
 -- csor(3) nistAlgorithm(4) hashAlgs(2) sha224(4)
 -- }
 --
 -- SHA-256
 --
 -- id-sha256 OBJECT IDENTIFIER ::= {
 -- joint-iso-itu-t(2)country(16) us(840)
 -- organization(1) gov(101)
 -- csor(3) nistAlgorithm(4) hashAlgs(2) sha256(1)
 -- }
 --
 -- SHA-384
 --
 -- id-sha384 OBJECT IDENTIFIER ::= {
 -- joint-iso-itu-t(2)country(16) us(840)
 -- organization(1) gov(101)
 -- csor(3) nistAlgorithm(4) hashAlgs(2) sha384(2)
 -- }
 --
 -- SHA-512
 --
 -- id-sha512 OBJECT IDENTIFIER ::= {
 -- joint-iso-itu-t(2) country(16) us(840)
 -- organization(1) gov(101)
 -- csor(3) nistAlgorithm(4) hashAlgs(2) sha512(3)
 -- }
 --

Boyen & Martin Expires March 2008 [Page 57]

Internet Draft IBCS #1 September 2007

 --
 -- Algorithms
 --

 ibe-algorithms OBJECT IDENTIFIER ::= {
 ibcs1 ibe-algorithms(2)
 }

 --- Boneh-Franklin IBE

 bf OBJECT IDENTIFIER ::= { ibe-algorithms bf(1) }

 --
 -- Encoding of a BF public parameters block.
 -- The only version currently supported is version 2.
 -- The values p and q define a subgroup of E(F_p) of order q.
 --

 BFPublicParameters ::= SEQUENCE {
 version INTEGER { v2(2) },
 curve OBJECT IDENTIFIER,
 p INTEGER,
 q INTEGER,
 pointP FpPoint,
 pointPpub FpPoint,
 hashfcn OBJECT IDENTIFIER
 }

 --
 -- A BF private key is a point on an elliptic curve,
 -- which is an FpPoint.
 -- The only version supported is version 2.
 --

 BFPrivateKeyBlock ::= SEQUENCE {
 version INTEGER { v2(2) },
 privateKey FpPoint
 }

 --
 -- A BF master secret is an integer.
 -- The only version supported is version 2.
 --

Boyen & Martin Expires March 2008 [Page 58]

Internet Draft IBCS #1 September 2007

 BFMasterSecret ::= SEQUENCE {
 version INTEGER {v2(2) },
 masterSecret INTEGER
 }

 --
 -- BF ciphertext block
 -- The only version supported is version 2.
 --

 BFCiphertextBlock ::= SEQUENCE {
 version INTEGER { v2(2) },
 u FpPoint,
 v OCTET STRING,
 w OCTET STRING
 }

 --
 -- Boneh-Boyen (BB1) IBE
 --

 bb1 OBJECT IDENTIFIER ::= { ibe-algorithms bb1(2) }

 --
 -- Encoding of a BB1 public parameters block.
 -- The version is currently fixed to 2.
 --
 --

 BB1PublicParameters ::= SEQUENCE {
 version INTEGER { v2(2) },
 curve OBJECT IDENTIFIER,
 p INTEGER,
 q INTEGER,
 pointP FpPoint,
 pointP1 FpPoint,
 pointP2 FpPoint,
 pointP3 FpPoint,
 v FpPoint,
 hashfcn OBJECT IDENTIFIER
 }

 --
 -- BB1 master secret block
 -- The only version supported is version 2.
 --

Boyen & Martin Expires March 2008 [Page 59]

Internet Draft IBCS #1 September 2007

 BB1MasterSecret ::= SEQUENCE {
 version INTEGER { v2(2) },
 alpha INTEGER,
 beta INTEGER,
 gamma INTEGER
 }

 --
 -- BB1 private Key block
 -- The only version supported is version 2.
 --

 BB1PrivateKeyBlock ::= SEQUENCE {
 version INTEGER { v2(2) },
 pointD0 FpPoint,
 pointD1 FpPoint
 }

 --
 -- BB1 ciphertext block
 -- The only version supported is version 2.
 --

 BB1CiphertextBlock ::= SEQUENCE {
 version INTEGER {v2(2) },
 pointChi0 FpPoint,
 pointChi1 FpPoint,
 nu INTEGER,
 y OCTET STRING
 }

 END

9. Security considerations

 This document describes cryptographic algorithms, for which we
 assume that the security of the algorithm relies entirely on
 the secrecy of the relevant private key, so that an adversary
 will need to intercept encrypted messages and perform
 computationally-intensive cryptanalytic attacks against the
 ciphertext that he obtains in this way to recover either
 plaintext or a secret cryptographic key.

 We assume that users of the algorithms described in this
 document will require one of five levels of cryptographic
 strength: the equivalent of 80 bits, 112 bits, 128 bits, 192
 bits or 256 bits. The 80-bit level is suitable for legacy

Boyen & Martin Expires March 2008 [Page 60]

Internet Draft IBCS #1 September 2007

 applications and SHOULD NOT be used to protect information
 whose useful life extends past the year 2010. The 112-bit
 level is suitable for use in key transport of Triple-DES keys
 and should be adequate to protect information whose useful
 life extends up to the year 2030. The 128-bit levels and
 higher are suitable for use in the transport of AES keys of
 the corresponding length or less and are adequate to protect
 information whose useful life extends past the year 2030.

 Table 1 summarizes the security parameters for the BF and BB1
 algorithms that will attain these levels of security. In this
 table, |p| represents the number of bits in a prime number p
 and |q| represents the number of bits in a subprime q. This
 table assumes that a Type-1 supersingular curve is used.

 Bits of Security |p| |q|
 80 512 160
 112 1024 224
 128 1536 256
 192 3840 384
 256 7680 512

 Table 1: Sizes of BF and BB1 parameters required to attain
 standard levels of bit security [SP800-57].

 If an IBE key is used to transport a symmetric key that
 provides more bits of security than the bit strength of the
 IBE key, users should understand that the security of the
 system is then limited by the strength of the weaker IBE key.
 So if an IBE key that provides 112 bits of security is used to
 transport a 128-bit AES key, then the security provided is
 limited by the 112 bits of security of the IBE key.

Boyen & Martin Expires March 2008 [Page 61]

Internet Draft IBCS #1 September 2007

 Note that this document specifies the use of the NIST hashing
 algorithms [SHA] to hash identities to either a point on an
 elliptic curve or an integer. Recent attacks on SHA-1 [SHA]
 have discovered ways to find collisions with less work than
 the expected 2^80 hashes required based on the size of the
 output of the hash function alone. If an attacker can find a
 collision then they could use the colliding preimages to
 create two identities which have the same IBE private key. The
 practical use of such a SHA-1 [SHA] collision is extremely
 unlikely, however.

 Identities are typically not random strings, like the
 preimages of a hash collision would be. In particular, this is
 true if IBE is used as described in [IBECMS], in which
 components of an identity are defined to be an e-mail address,
 a validity period and a URI. In this case, the unpredictable
 results of a collision are extremely unlikely to fit the
 format of a valid identity, and thus are of no use to an
 attacker. Any protocol using IBE MUST define an identity in a
 way that makes collisions in a hash function essentially
 useless to an attacker. Because random strings are rarely used
 as identities, this requirement should not be unduly difficult
 to fulfill.

 The randomness of the random values that are required by the
 cryptographic algorithms is vital to the security provided by
 the algorithms. Any implementation of these algorithms MUST
 use a source of random values that provides an adequate level
 of security. Appropriate algorithms to generate such values
 include [FIPS186-2] and [X9.62]. This will ensure that the
 random values used to mask plaintext messages in sections 5.4
 and 6.4 are not reused with a significant probability.

 The strength of a system using the algorithms described in
 this document relies on the strength of the mechanism used to
 authenticate a user requesting a private key from a PKG, as
 described in step 2 of section 1.2 of this document. This is
 analogous to way in which the strength of a system using
 digital certificates [X.509] is limited by the strength of the
 authentication required of users before certificates are
 granted to them. In either case, a weak mechanism for
 authenticating users will result in a weak system that relies
 on the technology. A system that uses the algorithms described
 in this document MUST require users to authenticate in a way
 that is suitably strong, particularly if IBE private keys will
 be used for authentication.

Boyen & Martin Expires March 2008 [Page 62]

Internet Draft IBCS #1 September 2007

 Note that IBE systems have different properties than other
 asymmetric cryptographic schemes when it comes to key
 recovery. If a master secret is maintained on a secure PKG
 then the PKG and any administrator with the appropriate level
 of access will be able to create arbitrary private keys, so
 that controls around such administrators and logging of all
 actions performed by such administrators SHOULD be part of a
 functioning IBE system.

 On the other hand, it is also possible to create IBE private
 keys using a master secret and to then destroy the master
 secret, making any key recovery impossible. If this property
 is not desired, an administrator of an IBE system SHOULD
 require that the format of the identity used by the system
 contain a component that is short-lived. The format of
 identity that is defined in [IBECMS], for example, contains
 information about the time period of validity of the key that
 will be calculated from the identity. Such an identity can
 easily be changed to allow the rekeying of users if their IBE
 private key is somehow compromised.

10. IANA considerations

 No further action by the IANA is necessary for this document.

11. Acknowledgments

 This document is based on the IBCS #1 v2 document of Voltage
 Security, Inc. Any substantial use of material from this
 document should acknowledge Voltage Security, Inc. as the
 source of the information.

Boyen & Martin Expires March 2008 [Page 63]

Internet Draft IBCS #1 September 2007

12. References

12.1. Normative references

 [KEYWORDS] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [TLS] T. Dierks and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1," RFC 4346, April 2006.

12.2. Informative references

 [BB1] D. Boneh and X. Boyen, "Efficient selective-ID secure
 identity based encryption without random oracles," In Proc. of
 EUROCRYPT 04, LNCS 3027, pp. 223-238, 2004.

 [BF] D. Boneh and M. Franklin, "Identity-based encryption from
 the Weil pairing," in Proc. of CRYPTO 01, LNCS 2139, pp. 213-
 229, 2001.

 [CMS] R. Housley, "Cryptographic Message Syntax," RFC 3852,
 July 2004.

 [ECC] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in
 Cryptography, Cambridge University Press, 1999.

 [FIPS186-2] National Institute of Standards and Technology,
 "Digital Signature Standard," Federal Information Processing
 Standard 186-2, August 2002.

 [IBEARCH] G. Appenzeller, L. Martin, and M. Schertler,
 "Identity-based Encryption Architecture," draft-ietf-smime-

ibearch-05.txt, April 2007.

 [IBECMS] L. Martin and M. Schertler, "Using the Boneh-
 Franklin and Boneh-Boyen identity-based encryption algorithms
 with the Cryptographic Message Syntax (CMS)" draft-ietf-

smime-bfibecms-06.txt, June 2007.

 [MERKLE] R. Merkle, "A fast software one-way hash function,"
 Journal of Cryptology, Vol. 3 (1990), pp. 43-58.

 [P1363] IEEE P1363-2000, "Standard Specifications for Public
 Key Cryptography," 2001.

Boyen & Martin Expires March 2008 [Page 64]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3852
https://datatracker.ietf.org/doc/html/draft-ietf-smime-ibearch-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-ibearch-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-bfibecms-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-smime-bfibecms-06.txt

Internet Draft IBCS #1 September 2007

 [SP800-57] E. Barker, W. Barker, W. Burr, W. Polk and M. Smid,
 "Recommendation for Key Management - Part 1: General
 (Revised)," NIST Special Publication 800-57, March 2007.

 [SHA] National Institute for Standards and Technology, "Secure
 Hash Standard," Federal Information Processing Standards
 Publication 180-2, August 2002, with Change Notice 1, February
 2004.

 [X9.62] American National Standards Institute, "Public Key
 Cryptography for the Financial Services Industry: The Elliptic
 Curve Digital Signature Algorithm (ECDSA)," American National
 Standard for Financial Services X9.62-2005, November 2005.

 [X.509] ITU-T Recommendation X.509 (2000) | ISO/IEC 9594-
 8:2001, Information Technology - Open Systems Interconnection
 - The Directory: Public-key and Attribute Certificate
 Frameworks.

 Authors' Addresses

 Xavier Boyen
 Voltage Security
 1070 Arastradero Rd Suite 100
 Palo Alto, CA 94304

 Email: xavier@voltage.com

 Luther Martin
 Voltage Security
 1070 Arastradero Rd Suite 100
 Palo Alto, CA 94304

 Email: martin@voltage.com

 Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of
 any Intellectual Property Rights or other rights that might be
 claimed to pertain to the implementation or use of the
 technology described in this document or the extent to which
 any license under such rights might or might not be available;
 nor does it represent that it has made any independent effort
 to identify any such rights. Information on the procedures

Boyen & Martin Expires March 2008 [Page 65]

Internet Draft IBCS #1 September 2007

 with respect to rights in RFC documents can be found in BCP 78
 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of
 an attempt made to obtain a general license or permission for
 the use of such proprietary rights by implementers or users of
 this specification can be obtained from the IETF on-line IPR
 repository at http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its
 attention any copyrights, patents or patent applications, or
 other proprietary rights that may cover technology that may be
 required to implement this standard. Please address the
 information to the IETF at ietf-ipr@ietf.org.

 Disclaimer of Validity

 This document and the information contained herein are
 provided on an "AS IS" basis and THE CONTRIBUTOR, THE
 ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY),
 THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
 IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE
 USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR
 ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
 PARTICULAR PURPOSE.

 Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and
 restrictions contained in BCP 78, and except as set forth
 therein, the authors retain all their rights.

 Acknowledgment

 Funding for the RFC Editor function is currently provided by
 the Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

 Boyen & Martin Expires March 2008 [Page 66]

