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     Abstract

        This document describes the algorithms that implement Boneh-
        Franklin and Boneh-Boyen Identity-based Encryption. This
        document is in part based on IBCS #1 v2 of Voltage Security's
        Identity-based Cryptography Standards (IBCS) documents, from

Boyen & Martin            Expires March 2008             [Page 1]

https://datatracker.ietf.org/doc/html/draft-martin-ibcs-07.txt
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html


Internet Draft                 IBCS #1            September 2007

        which some irrelevant sections have been removed to create the
        content of this document.

Boyen & Martin            Expires March 2008             [Page 2]



Internet Draft                 IBCS #1            September 2007

     Table of Contents

1. Introduction..............................................5
1.1. Sending a Message that is Encrypted Using IBE........6

1.1.1. Sender Obtains Recipient's Public Parameters....7
1.1.2. Construct and Send IBE-encrypted Message........8

1.2. Receiving and Viewing an IBE-encrypted Message.......8
1.2.1. Recipient Obtains Public Parameters from PPS....9
1.2.2. Recipient Obtains IBE Private Key from PKG.....10
1.2.3. Recipient Decrypts IBE-encrypted Message.......10

2. Notation and definitions.................................11
2.1. Notation............................................11
2.2. Definitions.........................................13

3. Basic elliptic curve algorithms..........................14
3.1. The group action in affine coordinates..............14

3.1.1. Implementation for type-1 curves...............14
3.2. Point multiplication................................16
3.3. Operations in Jacobian projective coordinates.......18

3.3.1. Implementation for type-1 curves...............18
3.4. Divisors on elliptic curves.........................20

3.4.1. Implementation in F_p^2 for type-1 curves......20
3.5. The Tate pairing....................................23

3.5.1. Tate pairing calculation.......................23
3.5.2. The Miller algorithm for type-1 curves.........23

4. Supporting algorithms....................................26
4.1. Integer range hashing...............................26

4.1.1. Hashing to an integer range....................26
4.2. Pseudo-random byte generation by hashing............27

4.2.1. Keyed pseudo-random bytes generator............27
4.3. Canonical encodings of extension field elements.....28

4.3.1. Encoding an extension element as a string......28
4.3.2. Type-1 curve implementation....................29

4.4. Hashing onto a subgroup of an elliptic curve........30
              4.4.1. Hashing a string onto a subgroup of an elliptic
              curve.................................................30

4.4.2. Type-1 curve implementation....................30
4.5. Bilinear mapping....................................31

4.5.1. Regular or modified Tate pairing...............31
4.5.2. Type-1 curve implementation....................32

4.6. Ratio of bilinear pairings..........................33
4.6.1. Ratio of regular or modified Tate pairings.....33
4.6.2. Type-1 curve implementation....................34

5. The Boneh-Franklin BF cryptosystem.......................34
5.1. Setup...............................................34



Boyen & Martin            Expires March 2008             [Page 3]



Internet Draft                 IBCS #1            September 2007

5.1.1. Master secret and public parameter generation..34
5.1.2. Type-1 curve implementation....................35

5.2. Public key derivation...............................37
              5.2.1. Public key derivation from an identity and public
              parameters............................................37

5.3. Private key extraction..............................37
              5.3.1. Private key extraction from an identity, a set of
              public parameters and a master secret.................37

5.4. Encryption..........................................38
              5.4.1. Encrypt a session key using an identity and
              public parameters.....................................38

5.5. Decryption..........................................40
              5.5.1. Decrypt an encrypted session key using public
              parameters, a private key.............................40

6. The Boneh-Boyen BB1 cryptosystem.........................41
6.1. Setup...............................................41

              6.1.1. Generate a master secret and public parameters.41
6.1.2. Type-1 curve implementation....................42

6.2. Public key derivation...............................43
              6.2.1. Derive a public key from an identity and public
              parameters............................................43

6.3. Private key extraction..............................44
              6.3.1. Extract a private key from an identity, public
              parameters and a master secret........................44

6.4. Encryption..........................................45
              6.4.1. Encrypt a session key using an identity and
              public parameters.....................................45

6.5. Decryption..........................................47
              6.5.1. Decrypt using public parameters and private key47

7. Test data................................................50
7.1. Algorithm 3.2.2 (PointMultiply).....................50
7.2. Algorithm 4.1.1 (HashToRange).......................50
7.3. Algorithm 4.5.1 (Pairing)...........................51
7.4. Algorithm 5.2.1 (BFderivePubl)......................51
7.5. Algorithm 5.3.1 (BFextractPriv).....................52
7.6. Algorithm 5.4.1 (BFencrypt).........................52
7.7. Algorithm 6.3.1 (BBextractPriv).....................53
7.8. Algorithm 6.4.1 (BBencrypt).........................54

8. ASN.1 module.............................................55
9. Security considerations..................................60
10. IANA considerations.....................................63
11. Acknowledgments.........................................63
12. References..............................................64

12.1. Normative references...............................64
12.2. Informative references.............................64

        Authors' Addresses..........................................65
        Intellectual Property Statement.............................65



Boyen & Martin            Expires March 2008             [Page 4]



Internet Draft                 IBCS #1            September 2007

        Disclaimer of Validity......................................66
        Copyright Statement.........................................66
        Acknowledgment..............................................66

1. Introduction

        This document provides a set of specifications for
        implementing identity-based encryption (IBE) systems based on
        bilinear pairings. Two cryptosystems are described: the IBE
        system proposed by Boneh and Franklin (BF) [BF], and the IBE
        system proposed by Boneh and Boyen (BB1) [BB1]. Fully secure
        and practical implementations are described for each system,
        comprising the core IBE algorithms as well as ancillary hybrid
        components used to achieve security against active attacks.
        These specifications are restricted to a family of
        supersingular elliptic curves over finite fields of large
        prime characteristic, referred to as "type-1" curves (see

Section 2.1). Implementations based on other types of curves
        currently fall outside the scope of this document.

        IBE is a public-key technology, but one which varies from
        other public-key technologies is a slight yet significant way.
        In particular, IBE keys are calculated instead of being
        generated randomly, which leads to a different architecture
        for a system using IBE than for a system using other public-
        key technologies. An overview of these differences and how a
        system using IBE works are given in [IBEARCH].

        Identity-based encryption (IBE) is a public-key encryption
        technology that allows a public key to be calculated from an
        identity and the corresponding private key to be calculated
        from the public key. Calculation of both the public and
        private keys in an IBE-based system can occur as needed,
        resulting in just-in-time key material. This contrasts with
        other public-key systems [P1363], in which keys are generated
        randomly and distributed prior to secure communication
        commencing. The ability to calculate a recipient's public key,
        in particular, eliminates the need for the sender and receiver
        in an IBE-based messaging system to interact with each other,
        either directly or through a proxy such as a directory server,
        before sending secure messages.

        This document describes an IBE-based messaging system and how
        the components of the system work together. The components
        required for a complete IBE messaging system are the
        following:
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              o  A Private-key Generator (PKG). The PKG contains the
                 cryptographic material, known as a master secret, for
                 generating an individual's IBE private key. A PKG
                 accepts an IBE user's private key request and after
                 successfully authenticating them in some way returns
                 the IBE private key.

              o  A Public Parameter Server (PPS). IBE System
                 Parameters include publicly sharable cryptographic
                 material, known as IBE public parameters, and policy
                 information for the PKG. A PPS provides a well-known
                 location for secure distribution of IBE public
                 parameters and policy information for the IBE PKG.

        A logical architecture would be to have a PKG/PPS per a name
        space, such as a DNS zone. The organization that controls the
        DNS zone would also control the PKG/PPS and thus the
        determination of which PKG/PSS to use when creating public and
        private keys for the organization's members. In this case the
        PPS URI can be uniquely created by the form of the identity
        that it supports. This architecture would make it clear which
        set of public parameters to use and where to retrieve them for
        a given identity.

        IBE encrypted messages can use standard message formats, such
        as the Cryptographic Message Syntax [CMS]. How to use IBE with
        CMS is defined in [IBECMS].

        Note that IBE algorithms are used only for encryption, so if
        digital signatures are required they will need to be provided
        by an additional mechanism.

        The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
        NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
        "OPTIONAL" in this document are to be interpreted as described
        in [KEYWORDS].

1.1. Sending a Message that is Encrypted Using IBE

        In order to send an encrypted message, an IBE user must
        perform the following steps:

           1. Obtain the recipient's public parameters

              The recipient's IBE public parameters allow the creation
              of unique public and private keys. A user of an IBE
              system is capable of calculating the public key of a
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              recipient after he obtains the public parameters for
              their IBE system. Once the public parameters are
              obtained, IBE-encrypted messages can be sent.

           2. Construct and Send IBE-encrypted Message

              All that is needed, in addition to the IBE public
              parameters, is the recipient's identity in order to
              generate their public key for use in encrypting messages
              to them. When this identity is the same as the identity
              that a message would be addressed to, then no more
              information is needed from a user to send someone a
              secure message then is needed to send them an unsecured
              message. This is one of the major benefits of an IBE-
              based secure messaging system. Examples of identities
              can be an individual, group, or role identifiers.

1.1.1. Sender Obtains Recipient's Public Parameters

        The sender of a message obtains the IBE public parameters that
        he needs for calculating the IBE public key of the recipient
        from a PPS that is hosted at a well-known URI. The IBE public
        parameters contain all of the information that the sender
        needs to create an IBE-encrypted message except for the
        identity of the recipient. [IBEARCH] describes the URI where a
        PPS is located, the format of IBE public parameters, and how
        to obtain them. The URI from which users obtain IBE public
        parameters MUST be authenticated in some way; PPS servers MUST
        support TLS 1.1 [TLS] to satisfy this requirement and MUST
        verify that the subject name in the server certificate matches
        the URI of the PPS. [IBEARCH] also describes the way in which
        identity formats are defined and a minimum interoperable
        format that all PPSs and PKGs MUST support. This step is shown
        below in Figure 1.

                     IBE Public Parameter Request
                    ----------------------------->
             Sender                                PPS
                    <-----------------------------
                         IBE Public Parameters

                  Figure 1 Requesting IBE Public Parameters
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        The sender of an IBE-encrypted message selects the PPS and
        corresponding PKG based on his local security policy.
        Different PPSs may provide public parameters that specify
        different IBE algorithms or different key strengths, for
        example, or require the use of PKGs that require different
        levels of authentication before granting IBE private keys.

1.1.2. Construct and Send IBE-encrypted Message

        To IBE-encrypt a message, the sender chooses a content
        encryption key (CEK) and uses it to encrypt his message and
        then encrypts the CEK with the recipient's IBE public key (for
        example, as described in [CMS]). This operation is shown below
        in Figure 2. This document describes the algorithms needed to
        implement two forms of IBE. [IBECMS] describes how to use the
        Cryptographic Message Syntax (CMS) to encapsulate the
        encrypted message along with the IBE information that the
        recipient needs to decrypt the message.

                      CEK ----> Sender ----> IBE-encrypted CEK

                                  ^
                                  |
                                  |

                         Recipient's Identity
                       and IBE Public Parameters

            Figure 2 Using an IBE Public-key Algorithm to Encrypt

1.2. Receiving and Viewing an IBE-encrypted Message

        In order to read an encrypted message, a recipient of an IBE-
        encrypted message parses the message (for example, as
        described in [IBECMS]). This gives him the URI he needs to
        obtain the IBE public parameters required to perform IBE
        calculations as well as the identity that was used to encrypt
        the message. Next the recipient must carry out the following
        steps:

           1. Obtain the recipient's public parameters

              An IBE system's public parameters allow it to uniquely
              create public and private keys. The recipient of an IBE-
              encrypted message can decrypt an IBE-encrypted message
              if he has both the IBE public parameters and the
              necessary IBE private key. The PPS can also provide the
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              URI of the PKG where the recipient of an IBE-encrypted
              message can obtain the IBE private keys.

           2. Obtain the IBE private key from the PKG

              To decrypt an IBE-encrypted message, in addition to the
              IBE public parameters the recipient needs to obtain the
              private key that corresponds to the public key that the
              sender used. The IBE private key is obtained after
              successfully authenticating to a private key generator
              (PKG), a trusted third party that calculates private
              keys for users. The recipient receives the IBE private
              key over an HTTPS connection. The URI of a PKG MUST be
              authenticated in some way; PKG servers MUST support TLS
              1.1 [TLS] to satisfy this requirement.

           3. Decrypt IBE-encrypted message

              The IBE private key decrypts the CEK, which is then used
              to decrypt encrypted message.

        The PKG may allow users other than the intended recipient to
        receive some IBE private keys. Giving a mail filtering
        appliance permission to obtain IBE private keys on behalf of
        users, for example, can allow the appliance to decrypt and
        scan encrypted messages for viruses or other malicious
        features.

1.2.1. Recipient Obtains Public Parameters from PPS

        Before he can perform any IBE calculations related to the
        message that he has received, the recipient of an IBE-
        encrypted message needs to obtain the IBE public parameters
        that were used in the encryption operation. This operation is
        shown below in Figure 3.

                        IBE Public Parameter Request
                       ----------------------------->
             Recipient                                PPS
                       <-----------------------------
                            IBE Public Parameters

                  Figure 3 Requesting IBE Public Parameters
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1.2.2. Recipient Obtains IBE Private Key from PKG

        To obtain an IBE private key, the recipient of an IBE-
        encrypted message provides the IBE public key used to encrypt
        the message and their authentication credentials to a PKG and
        requests the private key that corresponds to the IBE public
        key. Section 4 of this document defines the protocol for
        communicating with a PKG as well as a minimum interoperable
        way to authenticate to a PKG that all IBE implementations MUST
        support. Because the security of IBE private keys is vital to
        the overall security of an IBE system, IBE private keys MUST
        be transported to recipients over a secure protocol. PKGs MUST
        support TLS 1.1 [TLS] for transport of IBE private keys. This
        operation is shown below in Figure 4.

                          IBE Private Key Request
                       ---------------------------->
             Recipient                                PKG
                       <----------------------------
                              IBE Private Key

                    Figure 4 Obtaining an IBE Private Key

1.2.3. Recipient Decrypts IBE-encrypted Message

        After obtaining the necessary IBE private key, the recipient
        uses that IBE private key and the corresponding IBE public
        parameters to decrypt the CEK. This operation is shown below
        in Figure 5. He then uses the CEK to decrypt the encrypted
        message content (for example, as specified in [IBECMS]).

        IBE-encrypted CEK ----> Recipient ----> CEK

                                    ^
                                    |
                                    |

                            IBE Private Key
                        and IBE Public Parameters

            Figure 5 Using an IBE Public-key Algorithm to Decrypt



Boyen & Martin            Expires March 2008            [Page 10]



Internet Draft                 IBCS #1            September 2007

2. Notation and definitions

2.1. Notation

        This section summarizes the notions and definitions regarding
        identity-based cryptosystems on elliptic curves. The reader is
        referred to [ECC] for the mathematical background and to [2,
        3] regarding all notions pertaining to identity-based
        encryption.

        F_p denotes finite field of prime characteristic p; F_p^2
        denote its extension field of degree 2.

        Let E/F_p: y^2 = x^3 + a * x + b be an elliptic curve over
        F_p. For an extension of degree 2, the curve E/F_p defines a
        group (E(F_p^2), +), which is the additive group of points of
        affine coordinates (x, y) in (F_p^2)^2 satisfying the curve
        equation over F_p^2, with null element, or point at infinity,
        denoted 0.

        Let q be a prime such that E(F_p) has a cyclic subgroup G1' of
        order q.

        Let G1'' be a cyclic subgroup of E(F_p^2) of order q, and G2
        be a cyclic subgroup of (F_p^2)* of order p.

        Under these conditions, a mathematical construction known as
        the Tate pairing provides an efficiently computable map e: G1'
        x G1'' -> G2 that is linear in both arguments and believed
        hard to invert [BF]. If an efficiently computable non-rational
        endomorphism phi: G1' -> G1'' is available for the selected
        elliptic curve on which the Tate pairing is computed, then we
        can construct a function e': G1' x G1'' -> G2, defined as
        e'(A, B) = e(A, phi(B)), called the modified Tate pairing. We
        generically call a pairing either the Tate pairing e or the
        modified Tate pairing e', depending on the chosen elliptic
        curve used in a particular implementation.

        The following additional notation is used throughout this
        document.

        p - A 512-bit to 7680-bit prime which is the order of the
        finite field F_p.

        F_p - The base finite field of order p over which the elliptic
        curve of interest E/F_p is defined.
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        #G - The size of the set G.

        F* - The multiplicative group of the non-zero elements in the
        field F; e.g., (F_p)* is the multiplicative group of the
        finite field F_p.

        E/F_p - The equation of an elliptic curve over the field F_p,
        which, when p is neither 2 nor 3, is of the form E/F_p: y^2 =
        x^3 + a * x + b, for specified a, b in F_p.

        0 - The null element of any additive group of points on an
        elliptic curve, also called the point at infinity.

        E(F_p) - The additive group of points of affine coordinates
        (x, y), with x, y in F_p, that satisfy the curve equation
        E/F_p, including the point at infinity 0.

        q - A 160-bit to 512-bit prime that is the order of the cyclic
        subgroup of interest in E(F_p).

        k - The embedding degree of the cyclic subgroup of order q in
        E(F_p). For type-1 curves this is always equal to 2.

        F_p^2 - The extension field of degree 2 of the field F_p.

        E(F_p^2) - The group of points of affine coordinates in F_p^2
        satisfying the curve equation E/F_p, including the point at
        infinity 0.

        Z_p - The additive group of integers modulo p.

        lg - The base 2 logarithm function, so that 2^lg(x) = x.

        The term "object identifier" will be abbreviated "OID."

        A Solinas prime is a prime of the form 2^a (+/-) 2^b (+/-) 1.

        The following conventions are assumed for curve operations.

        Point addition - If A and B are two points on a curve E, their
        sum is denoted A + B.

        Point multiplication - If A is a point on a curve, and n an
        integer, the result of adding A to itself a total of n times
        is denoted [n]A.
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        The following class of elliptic curves is exclusively
        considered for pairing operations in the present version of
        this document, which are referred to as "type-1" curves.

        Type-1 curves - The class of curves of type 1 is defined as
        the class of all elliptic curves of equation E/F_p: y^2 = x^3
        + 1 for all primes p congruent to 11 modulo 12. This class
        forms a subclass of the class of supersingular curves. These
        curves satisfy #E(F_p) = p + 1, and the p points (x, y) in
        E(F_p) \ {0} have the property that x = (y^2 - 1)^(1/3) (mod
        p). Type-1 curves always have an embedding degree k = 2.

        Groups of points on type-1 curves are plentiful and easy to
        construct by random selection of a prime p of the appropriate
        form. Therefore, rather than to standardize upon a small set
        of common values of p, it is henceforth assumed that all type-
        1 curves are freshly generated at random for the given
        cryptographic application (an example of such generation will
        be given in Algorithm 5.1.2 (BFsetup1) or Algorithm 6.1.2
        (BBsetup1)). Implementations based on different classes of
        curves are currently unsupported.

        We assume that the following concrete representations of
        mathematical objects are used.

        Base field elements - The p elements of the base field F_p are
        represented directly using the integers from 0 to p - 1.

        Extension field elements - The p^2 elements of the extension
        field F_p^2 are represented as ordered pairs of elements of
        F_p. An ordered pair (a_0, a_1) is interpreted as the complex
        number a_0 + a_1 * i, where i^2 = -1. This allows operations
        on elements of F_p^2 to be implemented as follows. Suppose
        that a = (a_0, a_1) and b = (b_0, b_1) are elements of F_p^2.
        Then a + b = ((a_0 + b_0)(mod p), (a_1 + b_1)(mod p)) and a *
        b = ((a_1 * b_1 - a_0 * b_0)(mod p), (a_1 * b_0 + a_0 *
        b_1)(mod p)).

        Elliptic curve points - Points in E(F_p^2) with the point P =
        (x, y) in F_p^2 x F_p^2 satisfying the curve equation E/F_p.
        Points not equal to 0 are internally represented using the
        affine coordinates (x, y), where x and y are elements of
        F_p^2.

2.2. Definitions

        The following terminology is used to describe an IBE system.
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        Public parameters - The public parameters are set of common
        system-wide parameters generated and published by the private
        key server (PKG).

        Master secret - The master secret is the master key generated
        and privately kept by the key server, and used to generate the
        private keys of the users.

        Identity - An identity an arbitrary string, usually a human-
        readable unambiguous designator of a system user, possibly
        augmented with a time stamp and other attributes.

        Public key - A public key is a string that is algorithmically
        derived from an identity. The derivation may be performed by
        anyone, autonomously.

        Private key - A private key is issued by the key server to
        correspond to a given identity (and the public key that
        derives from it), under the published set of public
        parameters.

        Plaintext - A plaintext is an unencrypted representation, or
        in the clear, of any block of data to be transmitted securely.
        For the present purposes, plaintexts are typically session
        keys, or sets of session keys, for further symmetric
        encryption and authentication purposes.

        Ciphertext - A ciphertext is an encrypted representation of
        any block of data, including a plaintext, to be transmitted
        securely.

3. Basic elliptic curve algorithms

        This section describes algorithms for performing all needed
        basic arithmetic operations on elliptic curves. The
        presentation is specialized to the type of curves under
        consideration for simplicity of implementation. General
        algorithms may be found in [ECC].

3.1.  The group action in affine coordinates

3.1.1. Implementation for type-1 curves

        Algorithm 3.1.1 (PointDouble1): adds a point to itself on a
        type-1 elliptic curve.

        Input:
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        o  A point A in E(F_p^2), with A = (x, y) or 0

        o  An elliptic curve E/F_p: y^2 = x^3 + 1

        Output:

        o  The point [2]A = A + A

        Method:

        1. If A = 0 or y = 0, then return 0

        2. Let lambda = (3 * x^2) / (2 * y)

        3. Let x' = lambda^2 - 2 * x

        4. Let y' = (x - x') * lambda - y

        5. Return (x', y')

        Algorithm 3.1.2 (PointAdd1): adds two points on a type-1
        elliptic curve.

        Input:

        o  A point A in E(F_p^2), with A = (x_A, y_A) or 0

        o  A point B in E(F_p^2), with B = (x_B, y_B) or 0

        o  An elliptic curve E/F_p: y^2 = x^3 + 1

        Output:

        o  The point A + B

        Method:

        1. If A = 0, return B

        2. If B = 0, return A

        3. If x_A = x_B:

           (a) If y_A = -y_B, return 0

           (b) Else return [2]A computed using Algorithm 3.1.1
        (PointDouble1)
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        4. Otherwise:

           (a) Let lambda = (y_B - y_A) / (x_B - x_A)

           (b) Let x' = lambda^2 - x_A - x_B

           (c) Let y' = (x_A - x') * lambda - y_A

           (d) Return (x', y')

3.2. Point multiplication

        Algorithm 3.2.1 (SignedWindowDecomposition): computes the
        signed m-ary window representation of a positive integer
        [ECC].

        Input:

        o  An integer k > 0, where k has the binary representation k =
           {Sum(k_j * 2^j, for j = 0 to l} where each k_j is either 0
           or 1 and k_l = 0

        o  An integer window bit-size r > 0

        Output:

        o  An integer d and the unique d-element sequence {(b_i, e_i),
           for i = 0 to d - 1} such that k = {Sum(b_i * 2^(e_i), for i
           = 0 to d - 1}, each b_i = +/- 2^j for some 0 < j <= r - 1
           and each e_i is a non-negative integer

        Method:

        1. Let d = 0

        2. Let j = 0

        3. While j <= l, do:

           (a) If k_j = 0 then:

              i. Let j = j + 1

           (b) Else:

              i. Let t = min{l, j + r - 1}
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              ii. Let h_d = (k_t, k_(t - 1), ..., k_j) (base 2)

              iii. If h_d > 2^(r - 1) then:

                 A. Let b_d = h_d - 2^r

                 B. Increment the number (k_l, k_(l-1),...,k_j) (base
        2) by 1

              iv. Else:

                 A. Let b_d = h_d

              v. Let e_d = j

              vi. Let d = d + 1

              vii. Let j = t + 1

        4. Return d and the sequence {(b_0, e_0), ..., (b_(d - 1),
        e_(d - 1))}

        Algorithm 3.2.2 (PointMultiply): scalar multiplication on an
        elliptic curve using the signed m-ary window method.

        Input:

        o  A point A in E(F_p^2)

        o  An integer l > 0

        o  An elliptic curve E/F_p: y^2 = x^3 + a * x + b

        Output:

        o  The point [l]A

        Method:

        1. (Window decomposition)

           (a) Let r > 0 be an integer (fixed) bit-wise window size,
        e.g., r = 5

           (b) Let l' = l where l = {Sum(l_j * 2^j), for j = 0 to
        len_l} is the binary expansion of l, where len_l =
        Ceiling(lg(l))
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           (c) Compute (d, {(b_i, e_i), for i = 0 to d - 1} =
        SignedWindowDecomposition(l, r), the signed 2^r-ary window
        representation of l using Algorithm 3.2.1
        (SignedWindowDecomposition)

        2. (Precomputation)

           (a) Let A_1 = A

           (b) Let A_2 = [2]A, using Algorithm 3.1.1 (PointDouble1)

           (c) For i = 1 to 2^(r - 2) - 1, do:

              i. Let A_(2 * i + 1) = A_(2 * i - 1) + A_2 using
        Algorithm 3.1.2 (PointAdd1)

           (d) Let Q = A_(b_(d - 1))

        3. Main loop

           (a) For i = d - 2 to 0 by -1, do:

              i. Let Q = [2^(e_(i + 1) - e_i)]Q, using repeated
        applications of Algorithm 3.1.1 (PointDouble1) e_(i + 1) - e_i
        times

              ii. If b_i > 0 then:

                 A. Let Q = Q + A_(b_i) using Algorithm 3.1.2
        (PointAdd1)

              iii. Else:

                 A. Let Q = Q - A_(-(b_i)) using Algorithm 3.1.2
        (PointAdd1)

           (b) Calculate Q = [2^(e_0)]Q using repeated applications of
        Algorithm 3.1.1 (PointDouble1) e_0 times

        4. Return Q.

3.3. Operations in Jacobian projective coordinates

3.3.1. Implementation for type-1 curves

        Algorithm 3.3.1 (ProjectivePointDouble1): adds a point to
        itself in Jacobian projective coordinates for type-1 curves.
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        Input:

        o  A point (x, y, z) = A in E(F_p^2) in Jacobian projective
           coordinates

        o  An elliptic curve E/F_p: y^2 = x^3 + 1

        Output:

        o  The point [2]A in Jacobian projective coordinates

        Method:

        1. If z = 0 or y = 0, return (0, 1, 0) = 0, otherwise:

        2. Let lambda_1 = 3 * x^2

        3. Let z' = 2 * y * z

        4. Let lambda_2 = y^2

        5. Let lambda_3 = 4 * lambda_2 * x

        6. Let x' = lambda_1^2 - 2 * lambda_3

        7. Let lambda_4 = 8 * lambda_2^2

        8. Let y' = lambda_1 * (lambda_3 - x') - lambda_4

        9. Return (x', y', z')

        Algorithm 3.3.2 (ProjectivePointAccumulate1): adds a point in
        affine coordinates to an accumulator in Jacobian projective
        coordinates, for type-1 curves.

        Input:

        o  A point (x_A, y_A, z_A) = A in E(F_p^2) in Jacobian
           projective coordinates

        o  A point (x_B, y_B) = B in E(F_p^2) \ {0} in affine
           coordinates

        o  An elliptic curve E/F_p: y^2 = x^3 + 1

        Output:
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        o  The point A + B in Jacobian projective coordinates

        Method:

        1. If z_A = 0 return (x_B, y_B, 1) = B, otherwise:

        2. Let lambda_1 = z_A^2

        3. Let lambda_2 = lambda_1 * x_B

        4. Let lambda_3 = x_A - lambda_2

        5. If lambda_3 = 0 then return (0, 1, 0), otherwise:

        6. Let lambda_4 = lambda_3^2

        7. Let lambda_5 = lambda_1 * y_B * z_A

        8. Let lambda_6 = lambda_4 - lambda_5

        9. Let lambda_7 = x_A + lambda_2

        10. Let lambda_8 = y_A + lambda_5

        11. Let x' = lambda_6^2 - lambda_7 * lambda_4

        12. Let lambda_9 = lambda_7 * lambda_4 - 2 * x'

        13. Let y' = (lambda_9 * lambda_6 -

           lambda_8 * lambda_3 * lambda_4) / 2

        14. Let z' = lambda_3 * z_A

        15. Return (x', y', z')

3.4. Divisors on elliptic curves

3.4.1. Implementation in F_p^2 for type-1 curves

        Algorithm 3.4.1 (EvalVertical1): evaluates the divisor of a
        vertical line on a type-1 elliptic curve.

        Input:

        o  A point B in E(F_p^2) with B != 0
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        o  A point A in E(F_p)

        o  A description of a type-1 elliptic curve E/F_p

        Output:

        o  An element of F_p^2 that is the divisor of the vertical
           line going through A evaluated at B

        Method:

        1. Let r = x_B - x_A

        2. Return r

        Algorithm 3.4.2 (EvalTangent1): evaluates the divisor of a
        tangent on a type-1 elliptic curve.

        Input:

        o  A point B in E(F_p^2) with B != 0

        o  A point A in E(F_p)

        o  A description of a type-1 elliptic curve E/F_p

        Output:

        o  An element of F_p^2 that is the divisor of the line tangent
           to A evaluated at B

        Method:

        1. (Special cases)

           (a) If A = 0 return 1

           (b) If y_A = 0 return EvalVertical1(B, A) using Algorithm
        3.4.1 (EvalVertical1)

        2. (Line computation)

           (a) Let a = -3 * (x_A)^2

           (b) Let b = 2 * y_A

           (c) Let c = -b * y_A - a * x_A
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        3. (Evaluation at B)

        (a) Let r = a * x_B + b * y_B + c

        4. Return r

        Algorithm 3.4.3 (EvalLine1): evaluates the divisor of a line
        on a type-1 elliptic curve.

        Input:

        o  A point B in E(F_p^2) with B != 0

        o  Two points A', A'' in E(F_p)

        o  A description of a type-1 elliptic curve E/F_p

        Output:

        o  An element of F_p^2 that is the divisor of the line going
           through A' and A'' evaluated at B

        Method:

        1. (Special cases)

           (a) If A' = 0 return EvalVertical1(B, A'') using Algorithm
        3.4.1 (EvalVertical1)

           (b) If A'' = 0 return EvalVertical1(B, A') using Algorithm
        3.4.1 (EvalVertical1)

           (c) If A' = -A'' return EvalVertical1(B, A') using
        Algorithm 3.4.1 (EvalVertical1)

           (d) If A' = A'' return EvalTangent1(B, A') using Algorithm
        3.4.2 (EvalTangent1)

        2. (Line computation)

           (a) Let a = y_A' - y_A''

           (b) Let b = x_A'' - x_A'

           (c) Let c = -b * y_A' - a * x_A'

        3. (Evaluation at B)
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           (a) Let r = a * x_B + b * y_B + c

        4. Return r

3.5. The Tate pairing

3.5.1. Tate pairing calculation

        Algorithm 3.5.1 (Tate): computes the Tate pairing on an
        elliptic curve.

        Input:

        o  A point A of order q in E(F_p)

        o  A point B of order q in E(F_p^2)

        o  A description of an elliptic curve E/F_p such that E(F_p)
           and E(F_p^2) have a subgroup of order q

        Output:

        o  The value e(A, B) in F_p^2, computed using the Miller
           algorithm

        Method:

        1. For a type-1 curve E, execute Algorithm 3.5.2
        (TateMillerSolinas)

3.5.2. The Miller algorithm for type-1 curves

        Algorithm 3.5.2 (TateMillerSolinas): computes the Tate pairing
        on a type-1 elliptic curve.

        Input:

        o  A point A of order q in E(F_p)

        o  A point B of order q in E(F_p^2)

        o  A description of a type-1 supersingular elliptic curve
           E/F_p such that E(F_p) and E(F_p^2) have a subgroup of
           Solinas prime order q where q = 2^a + s * 2^b + c, where c
           and s are limited to the values +/-1

        Output:
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        o  The value e(A, B) in F_p^2, computed using the Miller
           algorithm

        Method:

        1. (Initialization)

           (a) Let v_num = 1 in F_p^2

           (b) Let v_den = 1 in F_p^2

           (c) Let V = (x_V , y_V , z_V ) = (x_A, y_A, 1) in (F_p)^3,
        being the representation of (x_A, y_A) = A using Jacobian
        projective coordinates

           (d) Let t_num = 1 in F_p^2

           (e) Let t_den = 1 in F_p^2

        2. (Calculation of the (s * 2^b) contribution)

           (a) (Repeated doublings) For n = 0 to b - 1:

              i. Let t_num = t_num^2

              ii. Let t_den = t_den^2

              iii. Let t_num = t_num * EvalTangent1(B, (x_V / z_V^2,
        y_V / z_V^3)) using Algorithm 3.4.2 (EvalTangent1)

              iv. Let V = (x_V , y_V , z_V ) = [2]V  using Algorithm
        3.3.1 (ProjectivePointDouble1)

              v. Let t_den = t_den * EvalVertical1(B, (x_V / z_V^2,
        y_V / z_V^3)using Algorithm 3.4.1 (EvalVertical1)

           (b) (Normalization)

              i. Let V_b = (x_(V_b) , y_(V_b))

                 = (x_V / z_V^2, s * y_V / z_V^3) in (F_p)^2,

                 resulting in a point V_b in E(F_p)

           (c) (Accumulation) Selecting on s:

              i. If s = -1:
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                 A. Let v_num = v_num * t_den

                 B. Let v_den = v_den * t_num * EvalVertical1(B, (x_V
        / z_V^2, y_V / z_V^3))) using Algorithm 3.4.1 (EvalVertical1)

              ii. If s = 1:

                 A. Let v_num = v_num * t_num

                 B. Let v_den = v_den * t_den

        3. (Calculation of the 2^a contribution)

           (a) (Repeated doublings) For n = b to a - 1:

              i. Let t_num = t_num^2

              ii. Let t_den = t_den^2

              iii. Let t_num = t_num * EvalTangent1(B, (x_V / z_V^2,
        y_V / z_V^3))) using Algorithm 3.4.2 (EvalTangent1)

              iv. Let V = (x_V , y_V , z_V) = [2]V  using Algorithm
        3.3.1 (ProjectivePointDouble1)

              v. Let t_den = t_den * EvalVertical1(B, (x_V / z_V^2,
        y_V / z_V^3))) using Algorithm 3.4.1 (EvalVertical1)

           (b) (Normalization)

              i. Let V_a = (x_(V_a) , y_(V_a)) =

                 (x_V /z_V^2, s * x_V / z_V^3) in (F_p)^2,

                 resulting in a point V_a in E(F_p)

           (c) (Accumulation)

              i. Let v_num = v_num * t_num

              ii. Let v_den = v_den * t_den

        4. (Correction for the (s * 2^b) and (c) contributions)

           (a) Let v_num = v_num * EvalLine1(B, V_a, V_b) using
        Algorithm 3.4.3 (EvalLine1)
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           (b) Let v_den = v_den * EvalVertical1(B, V_a + V_b) using
        Algorithm 3.4.1 (EvalVertical1)

           (c) If c = -1 then:

              i. Let v_den = v_den * EvalVertical1(B, A) using
        Algorithm 3.4.1 (EvalVertical1)

        5. (Correcting exponent)

           (a) Let eta = (p^2 - 1) / q

        6. (Final result)

           (a) Return (v_num / v_den)^eta

4. Supporting algorithms

        This section describes a number of supporting algorithms for
        encoding and hashing.

4.1. Integer range hashing

4.1.1. Hashing to an integer range

        HashToRange(s, n, hashfcn) takes a string s, an integer n and
        a cryptographic hash function hashfcn as input, and returns an
        integer in the range 0 to n - 1 by cryptographic hashing. The
        input n MUST be less than 2^(hashlen) where hashlen is the
        number of octets comprising the output of the hash function
        hashfcn. Based on Merkle's method for hashing [MERKLE], which
        is provably as secure as the underlying hash function hashfcn.

        Algorithm 4.1.1 (HashToRange): cryptographically hashes
        strings to integers in a range.

        Input:

        o  A string s of length |s| octets

        o  A positive integer n represented as Ceiling(lg(n) / 8)
           octets.

        o  A cryptographic hash function hashfcn

        Output:
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        o  A positive integer v in the range 0 to n - 1

        Method:

        1. Let hashlen be the number of octets comprising the output
        of hashfcn

        2. Let v_0 = 0

        3. Let h_0 = 0x00...00, a string of null octets with a length
        of hashlen

        4. For i = 1 to 2, do:

           (a) Let t_i = h_(i - 1) || s, which is the (|s| + hashlen)-
        octet string concatenation of the strings h_(i - 1) and s

           (b) Let h_i = hashfcn(t_i), which is a hashlen-octet string
        resulting from the hash algorithm hashfcn on the input t_i

           (c) Let a_i = Value(h_i) be the integer in the range 0 to
        256^hashlen - 1 denoted by the raw octet string h_i
        interpreted in the unsigned big endian convention

           (d) Let v_i = 256^hashlen * v_(i - 1) + a_i

        5. Let v = v_l (mod n)

4.2. Pseudo-random byte generation by hashing

4.2.1. Keyed pseudo-random bytes generator

        HashBytes(b, p, hashfcn) takes an integer b, a string p and a
        cryptographic hash function hashfcn as input, and returns a b-
        octet pseudo-random string r as output. The value of b MUST be
        less than or equal to the number of bytes in the output of
        hashfcn. Based on Merkle's method for hashing [MERKLE], which
        is provably as secure as the underlying hash function hashfcn.

        Algorithm 4.2.1 (HashBytes): keyed cryptographic pseudo-random
        bytes generator.

        Input:

        o  An integer b

        o  A string p
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        o  A cryptographic hash function hashfcn

        Output:

        o  A string r comprising b octets

        Method:

        1. Let hashlen be the number of octets comprising the output
        of hashfcn

        2. Let K = hashfcn(p)

        2. Let h_0 = 0x00...00, a string of null octets with a length
        of hashlen

        3. Let l = Ceiling(b / hashlen)

        4. For each i in 1 to l do:

           (a) Let h_i = hashfcn(h_(i - 1))

           (b) Let r_i = hashfcn(h_i || K), where h_i || K is the (2 *
        hashlen)-octet concatenation of h_i and K

        5. Let r = LeftmostOctets(b, r_1 || ... || r_l), i.e., r is
        formed as the concatenation of the r_i, truncated to the
        desired number of octets

4.3. Canonical encodings of extension field elements

4.3.1. Encoding an extension element as a string

        Canonical(p, k, o, v) takes an element v in F_p^k, and returns
        a canonical octet-string of fixed length representing v. The
        parameter o MUST be either 0 or 1, and specifies the ordering
        of the encoding.

        Algorithm 4.3.1 (Canonical): encodes elements of an extension
        field F_p^2 as strings.

        Input:

        o  An element v in F_p^2

        o  A description of F_p^2
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        o  A ordering parameter o, either 0 or 1

        Output:

        o  A fixed-length string s representing v

        Method:

        1. For a type-1 curve, execute Algorithm 4.3.2 (Canonical1)

4.3.2. Type-1 curve implementation

        Canonical1(p, o, v) takes an element v in F_p^2 and returns a
        canonical representation of v as a octet-string s of fixed
        size. The parameter o MUST be either 0 or 1, and specifies the
        ordering of the encoding.

        Algorithm 4.3.2 (Canonical1): canonically represents elements
        of an extension field F_p^2.

        Input:

        o  An element v in F_p^2

        o  A description of p, where p is congruent to 3 modulo 4

        o  A ordering parameter o, either 0 or 1

        Output:

        o  A string s of size 2 * Ceiling(lg(p) / 8) octets

        Method:

        1. Let l = Ceiling(lg(p) / 8), the number of octets needed to
        represent integers in Z_p

        2. Let v = a + b * i, where i^2 = -1.

        3. Let a_(256^l) be the big-endian zero-padded fixed-length
        octet-string representation of a in Z_p

        4. Let b_(256^l) be the big-endian zero-padded fixed-length
        octet-string representation of b in Z_p

        5. Depending on the choice of ordering o:
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           (a) If o = 0, then let s = a_(256^l) || b_(256^l), which is
        the concatenation of a_(256^l) followed by b_(256^l)

           (b) If o = 1, then let s = b_(256^l) || a_(256^l), which is
        the concatenation of b_(256^l) followed by a_(256^l)

        6. Return s

4.4. Hashing onto a subgroup of an elliptic curve

4.4.1. Hashing a string onto a subgroup of an elliptic curve

        HashToPoint(E, p, q, id, hashfcn) takes an identity string id
        and the description of a subgroup of prime order q in E(F_p)
        or E(F_p^2) and a cryptographic hash function hashfcn and
        returns a point Q_id of order q in E(F_p) or E(F_p^2).

        Algorithm 4.4.1 (HashToPoint): cryptographically hashes
        strings to points on elliptic curves.

        Input:

        o  An elliptic curve E

        o  A prime p

        o  A prime q

        o  A string id

        o  A cryptographic hash function hashfcn

        Output:

        o  A point Q_id = (x, y) of order q n E(F_p)

        Method:

        1. For a type-1 curve E, execute Algorithm 4.4.2
        (HashToPoint1)

4.4.2. Type-1 curve implementation

        HashToPoint1(p, q, id, hashfcn) takes an identity string id
        and the description of a subgroup of order q in E(F_p) where
        E: y^2 = x^3 + 1 with p congruent to 11 modulo 12, and returns
        a point Q_id of order q in E(F_p) that is calculated using the
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        cryptgraphic has function hashfcn. The parameters p, q and
        hashfcn MUST be part of a valid set of public parameters as
        defined in section 5.1.2 or section 6.1.2.

        Algorithm 4.4.2 (HashToPoint1). Cryptographically hashes
        strings to points on type-1 curves.

        Input:

        o  A prime p

        o  A prime q

        o  A string id

        o  A cryptographic hash function hashfcn

        Output:

        o  A point Q_id of order q in E(F_p)

        Method:

        1. Let y = HashToRange(id, p, hashfcn), using Algorithm 4.1.1
        (HashToRange), an element of F_p

        2. Let x = (y^2 - 1)^((2 * p - 1) / 3) modulo p, an element of
        F_p

        3. Let Q' = (x, y), a non-zero point in E(F_p)

        4. Let Q = [(p + 1) / q ]Q', a point of order q in E(F_p)

4.5. Bilinear mapping

4.5.1. Regular or modified Tate pairing

        Pairing(E, p, q, A, B) takes two points A and B, both of order
        q, and, in the type-1 case, returns the modified pairing e'(A,
        phi(B)) in F_p^2 where A and B are both in E(F_p).

        Algorithm 4.5.1 (Pairing): computes the regular or modified
        Tate pairing depending on the curve type.

        Input:
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        o  A description of an elliptic curve E/F_p such that E(F_p)
           and E(F_p^2) have a subgroup of order q

        o  Two points A and B of order q in E(F_p) or E(F_p^2)

        Output:

        o  On supersingular curves, the value of e'(A, B) in F_p^2
           where A and B are both in E(F_p)

        Method:

        1. If E is a type-1 curve, execute Algorithm 4.5.2 (Pairing1)

4.5.2. Type-1 curve implementation

        Algorithm 4.5.2 (Pairing1): computes the modified Tate pairing
        on type-1 curves. The values of p and q MUST be part of a
        valid set of public parameters as defined in section 5.1.2 or

section 6.1.2.

        Input:

        o  A curve E/F_p: y^2 = x^3 + 1 where p is congruent to 11
           modulo 12 and E(F_p) has a subgroup of order q

        o  Two points A and B of order q in E(F_p)

        Output:

        o  The value of e'(A, B) = e(A, phi(B)) in F_p^2

        Method:

        1. Compute B' = phi(B), as follows:

           (a) Let (x, y) in F_p x F_p be the coordinates of B in
        E(F_p)

           (b) Let zeta = (a_zeta , b_zeta), where a_zeta = (p - 1) /
        2 and b_zeta = 3^((p + 1) / 4) (mod p), an element of F_p^2

           (c) Let x' =  x * zeta in F_p^2

           (d) Let B' = (x', y) in F_p^2 x F_p
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        2. Compute the Tate pairing e(A, B') = e(A, phi(B)) in F_p^2
        using the Miller method, as in Algorithm 3.5.1 (Tate)
        described in Section 3.5

4.6. Ratio of bilinear pairings

4.6.1. Ratio of regular or modified Tate pairings

        PairingRatio(E, p, q, A, B, C, D) takes four points as input,
        and computes the ratio of the two bilinear pairings,
        Pairing(E, p, q, A, B) / Pairing(E, p, q, C, D), or,
        equivalently, the product, Pairing(E, p, q, A, B) * Pairing(E,
        p, q, C, -D).

        On type-1 curves, all four points are of order q in E(F_p),
        and the result is an element of order q in the extension field
        F_p^2 .

        The motivation for this algorithm is that the ratio of two
        pairings can be calculated more efficiently than by computing
        each pairing separately and dividing one into the other, since
        certain calculations that would normally appear in each of the
        two pairings can be combined and carried out at once. Such
        calculations include the repeated doublings in steps 2(a)i,
        2(a)ii, 3(a)i, and 3(a)ii of Algorithm 3.5.2
        (TateMillerSolinas), as well as the final exponentiation in
        step 6(a) of Algorithm 3.5.2 (TateMillerSolinas).

        Algorithm 4.6.1 (PairingRatio): computes the ratio of two
        regular or modified Tate pairings depending on the curve type.

        Input:

        o  A description of an elliptic curve E/F_p such that E(F_p)
           and E(F_p^2) have a subgroup of order q

        o  Four points A, B, C, and D, of order q in E(F_p) or
           E(F_p^2)

        Output:

        o  On supersingular curves, the value of e'(A, B) / e'(C, D)
           in F_p^2 where A, B, C, D are all in E(F_p)

        Method:
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        1. If E is a type-1 curve, execute Algorithm 4.6.2
        (PairingRatio1)

4.6.2. Type-1 curve implementation

        Algorithm 4.6.2 (PairingRatio1). Computes the ratio of two
        modified Tate pairings on type-1 curves. The values of p and q
        MUST be part of a valid set of public parameters as defined in

section 5.1.2 or section 6.1.2.

        Input:

        o  A curve E/F_p: y^2 = x^3 + 1, where p is congruent to 11
           modulo 12 and E(F_p) has a subgroup of order q

        o  Four points A, B, C, and D, of order q in E(F_p)

        Output:

        o  The value of e'(A, B) / e'(C, D) = e(A, phi(B)) / e(C,
           phi(D)) = e(A, phi(B)) * e(-C, phi(D)), in F_p^2

        Method:

        1. The step-by-step description of the optimized algorithm is
        omitted in this normative specification

        The correct result can always be obtained, although more
        slowly, by computing the product of pairings Pairing1(E, p, q,
        A, B) * Pairing1(E, p, q, -C, D) by using two invocations of
        Algorithm 4.5.2 (Pairing1).

5. The Boneh-Franklin BF cryptosystem

        This chapter describes the algorithms constituting the Boneh-
        Franklin identity-based cryptosystem as described in [BF].

5.1. Setup

5.1.1. Master secret and public parameter generation

        Algorithm 5.1.1 (BFsetup): randomly selects a master secret
        and the associated public parameters.

        Input:

        o  A integer version number
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        o  A security parameter n (MUST take values either 1024, 2048,
           3072, 7680, 15360)

        Output:

        o  A set of public parameters (version, E, p, q, P, P_pub,
           hashfcn)

        o  A corresponding master secret s

        Method:

        1. Depending on the selected type t:

           (a) If version = 2, then execute Algorithm 5.1.2 (BFsetup1)

        2. The resulting master secret and public parameters are
        separately encoded as per the application protocol
        requirements

5.1.2. Type-1 curve implementation

        BFsetup1 takes a security parameter n as input. For type-1
        curves, the scale of n corresponds to the modulus bit-size
        believed [BF] of comparable security in the classical Diffie-
        Hellman or RSA public-key cryptosystems.

        Algorithm 5.1.2 (BFsetup1): establishes a master secret and
        public parameters for type-1 curves.

        Input:

        o  A security parameter n which MUST be either 1024, 2048,
           3072, 7680 or 15360

        Output:

        o  A set of common public parameters (version, p, q, P, Ppub,
           hashfcn)

        o  A corresponding master secret s

        Method:

        1. Set the version to version = 2.
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        2. Determine the subordinate security parameters n_p and n_q
        as follows:

           (a) If n = 1024 then let n_p = 512, n_q = 160, hashfcn =
        1.3.14.3.2.26 (SHA-1 [SHA].

           (b) If n = 2048 then let n_p = 1024, n_q = 224, hashfcn =
        2.16.840.1.101.3.4.2.4 (SHA-224 [SHA]).

           (c) If n = 3072 then let n_p = 1536, n_q = 256, hashfcn =
        2.16.840.1.101.3.4.2.1 (SHA-256 [SHA]).

           (d) If n = 7680 then let n_p = 3840, n_q = 384, hashfcn =
        2.16.840.1.101.3.4.2.2 (SHA-384 [SHA]).

           (e) If n = 15360 then let n_p = 7680, n_q = 512, hashfcn =
        2.16.840.1.101.3.4.2.3 (SHA-512 [SHA]).

        3. Construct the elliptic curve and its subgroup of interest,
        as follows:

           (a) Select an arbitrary n_q-bit Solinas prime q

           (b) Select a random integer r such that p = 12 * r * q - 1
        is an n_p-bit prime

        4. Select a point P of order q in E(F_p), as follows:

           (a) Select a random point P' of coordinates (x', y') on the
        curve E/F_p: y^2 = x^3 + 1 (mod p)

           (b) Let P = [12 * r]P'

           (c) If P = 0, then start over in step 3a

        5. Determine the master secret and the public parameters as
        follows:

           (a) Select a random integer s in the range 2 to q - 1

           (b) Let P_pub = [s]P

        6. (version, E, p, q, P, P_pub) are the public parameters
        where E: y^2 = x^3 + 1 is represented by the OID
        2.16.840.1.114334.1.1.1.1.

        7. The integer s is the master secret
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5.2. Public key derivation

5.2.1. Public key derivation from an identity and public
   parameters

        BFderivePubl takes an identity string id and a set of public
        parameters, and returns a point Q_id. The public parameters
        used MUST be a valid set of public parameters as defined by

section 5.1.2.

        Algorithm 5.2.1 (BFderivePubl): derives the public key
        corresponding to an identity string.

        Input:

        o  An identity string id

        o  A set of public parameters (version, E, p, q, P, P_pub,
           hashfcn)

        Output:

        o  A point Q_id of order q in E(F_p) or E(F_p^2)

        Method:

        1. Q_id = HashToPoint(E, p, q, id, hashfcn), using Algorithm
        4.4.1 (HashToPoint)

5.3. Private key extraction

5.3.1. Private key extraction from an identity, a set of public
   parameters and a master secret

        BFextractPriv takes an identity string id, and a set of public
        parameters and corresponding master secret, and returns a
        point S_id. The public parameters used MUST be a valid set of
        public parameters as defined by section 5.1.2.

        Algorithm 5.3.1 (BFextractPriv): extracts the private key
        corresponding to an identity string.

        Input:

        o  An identity string id

Boyen & Martin            Expires March 2008            [Page 37]



Internet Draft                 IBCS #1            September 2007

        o  A set of public parameters (version, E, p, q, P, P_pub,
           hashfcn)

        Output:

        o  A point S_id of order q in E(F_p).

        Method:

        1. Let Q_id = HashToPoint(E, p, q, id, hashfcn) using
        Algorithm 4.4.1 (HashToPoint)

        2. Let S_id = [s]Q_id

5.4. Encryption

5.4.1. Encrypt a session key using an identity and public
   parameters

        BFencrypt takes three inputs: a public parameter block, an
        identity id, and a plaintext m. The plaintext MUST be a random
        symmetric session key. The public parameters used MUST be a
        valid set of public parameters as defined by section 5.1.2.

        Algorithm 5.4.1 (BFencrypt): encrypts a random session key for
        an identity string.

        Input:

        o  A plaintext string m of size |m| octets

        o  A recipient identity string id

        o  A set of public parameters (version, E, p, q, P, P_pub,
           hashfcn)

        Output:

        o  A ciphertext tuple (U, V, W) in E(F_p) x {0, ... ,
           255}^hashlen x {0, ... , 255}^|m|

        Method:

        1. Let hashlen be the length of the output of the
        cryptographic hash function hashfcn from the public
        parameters.
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        2. Q_id = HashToPoint(E, p, q, id, hashfcn), using Algorithm
        4.4.1 (HashToPoint), which results in a point of order q in
        E(F_p).

        3. Select a random hashlen-bit vector rho, represented as
        (hashlen / 8)-octet string in big-endian convention

        4. Let t = hashfcn(m), a hashlen-octet string resulting from
        applying the hashfcn algorithm to the input m

        5. Let l = HashToRange(rho || t, q, hashfcn), an integer in
        the range 0 to q - 1 resulting from applying Algorithm 4.1.1
        (HashToRange) to the (2 * hashlen)-octet concatenation of rho
        and t

        6. Let U = [l]P, which is a point of order q in E(F_p)

        7. Let theta = Pairing(E, p, q, P_pub, Q_id), which is an
        element of the extension field F_p^2 obtained using the
        modified Tate pairing of Algorithm 4.5.1 (Pairing)

        8. Let theta' = theta^l, which is theta raised to the power of
        l in F_p^2

        9. Let z = Canonical(p, k, 0, theta'), using Algorithm 4.3.1
        (Canonical), the result of which is a canonical string
        representation of theta'

        10. Let w = hashfcn(z) using the hashfcn hashing algorithm,
        the result of which is a hashlen-octet string

        11. Let V = w XOR rho, which is the hashlen-octet long bit-
        wise XOR of w and rho

        12. Let W = HashBytes(|m|, rho, hashfcn) XOR m, which is the
        bit-wise XOR of m with the first |m| octets of the pseudo-
        random bytes produced by Algorithm 4.2.1 (HashBytes) with seed
        rho

        13. The ciphertext is the triple (U, V, W)
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5.5. Decryption

5.5.1. Decrypt an encrypted session key using public parameters,
   a private key

        BFdecrypt takes three inputs: a public parameter block, a
        private key block key, and a ciphertext parsed as (U', V',
        W'). The public parameters used MUST be a valid set of public
        parameters as defined by section 5.1.2.

        Algorithm 5.5.1 (BFdecrypt): decrypts an encrypted session key
        using a private key.

        Input:

        o  A private key point S_id of order q in E(F_p)

        o  A ciphertext triple (U, V, W) in E(F_p) x {0, ... ,
           255}^hashlen x {0, ... , 255}*

        o  A set of public parameters (version, E, p, q, P, P_pub,
           hashfcn)

        Output:

        o  A decrypted plaintext m, or an invalid ciphertext flag

        Method:

        1. Let hashlen be the length of the output of the hash
        function hashlen measured in octets

        2. Let theta = Pairing(E, p ,q, U, S_id) by applying the
        modified Tate pairing of Algorithm 4.5.1 (Pairing)

        3. Let z = Canonical(p, k, 0, theta) using Algorithm 4.3.1
        (Canonical), the result of which is a canonical string
        representation of theta

        4. Let w = hashfcn(z), using the hashfcn hashing algorithm,
        the result of which is a hashlen-octet string

        5. Let rho = w XOR V, the bit-wise XOR of w and V

        6. Let m = HashBytes(|W|, rho, hashfcn) XOR W, which is the
        bit-wise XOR of m with the first |W| octets of the pseudo-
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        random bytes produced by Algorithm 4.2.1 (HashBytes) with seed
        rho

        7. Let t = hashfcn(m) using the hashfcn algorithm

        8. Let l = HashToRange(rho || t, q, hashfcn) using Algorithm
        4.1.1 (HashToRange) on the (2 * hashlen)-octet concatenation
        of rho and t

        9. Verify that U = [l]P:

           (a) If this is the case, then the decrypted plaintext m is
        returned

           (b) Otherwise, the ciphertext is rejected and no plaintext
        is returned

6. The Boneh-Boyen BB1 cryptosystem

        This section describes the algorithms constituting the first
        of the two Boneh-Boyen identity-based cryptosystems proposed
        in [BB1]. The description follows the practical implementation
        given in [BB1].

6.1. Setup

6.1.1. Generate a master secret and public parameters

        Algorithm 6.1.1 (BBsetup). Randomly selects a set of master
        secrets and the associated public parameters.

        Input:

        o  An integer version number

        o  An integer security parameter n (MUST take values either
           1024, 2048, 3072, 7680, or 15360.

        Output:

        o  A set of public parameters

        o  A corresponding master secret

        Method:

        1. Depending on the version:
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        (a) If version = 2, then execute Algorithm 6.1.2 (BBsetup1)

6.1.2. Type-1 curve implementation

        BBsetup1 takes a security parameter n as input. For type-1
        curves, n corresponds to the modulus bit-size believed [BF] of
        comparable security in the classical Diffie-Hellman or RSA
        public-key cryptosystems. For this implementation n MUST be
        one of 1024, 2048, 3072, 7680 and 15360, which correspond to
        the equivalent bit security levels of 80, 112, 128, 192 and
        256 bits respectively.

        Algorithm 6.1.2 (BBsetup1): randomly establishes a master
        secret and public parameters for type-1 curves.

        Input:

        o  A security parameter n, either 1024, 2048, 3072, 7680, or
           15360

        Output:

        o  A set of public parameters (version, k, E, p, q, P, P_1,
           P_2, P_3, v, hashfcn)

        o  A corresponding triple of master secrets (alpha, beta,
           gamma)

        Method:

        1. Determine the subordinate security parameters n_p and n_q
        as follows:

           (a) If n = 1024 then let n_p = 512, n_q = 160, hashfcn =
        1.3.14.3.2.26 (SHA-1 [SHA]

           (b) If n = 2048 then let n_p = 1024, n_q = 224, hashfcn =
        2.16.840.1.101.3.4.2.4 (SHA-224 [SHA])

           (c) If n = 3072 then let n_p = 1536, n_q = 256, hashfcn =
        2.16.840.1.101.3.4.2.1 (SHA-256 [SHA])

           (d) If n = 7680 then let n_p = 3840, n_q = 384, hashfcn =
        2.16.840.1.101.3.4.2.2 (SHA-384 [SHA])

           (e) If n = 15360 then let n_p = 7680, n_q = 512, hashfcn =
        2.16.840.1.101.3.4.2.3 (SHA-512 [SHA])
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        2. Construct the elliptic curve and its subgroup of interest
        as follows:

           (a) Select a random n_q-bit Solinas prime q

           (b) Select a random integer r such that p = 12 * r * q - 1
        is an n_p-bit prime

        3. Select a point P of order q in E(F_p), as follows:

           (a) Select a random point P' of coordinates (x', y') on the
        curve E/F_p: y^2 = x^3 + 1 (mod p)

           (b) Let P = [12 * r]P'

           (c) If P = 0, then start over in step 3a

        4. Determine the master secret and the public parameters as
        follows:

           (a) Select three random integers alpha, beta, gamma, each
        of them in the range 1 to q - 1

           (b) Let P_1 = [alpha]P

           (c) Let P_2 = [beta]P

           (d) Let P_3 = [gamma]P

           (e) Let v = Pairing(E, p, q, P_1, P_2), which is an element
        of the extension field F_p^2 obtained using the modified Tate
        pairing of Algorithm 3.5.1 (Pairing)

        5. (version, E, p, q, P, P_1, P_2, P_3, v, hashfcn) are the
        public parameters

        6. (alpha, beta, gamma) constitute the master secret

6.2. Public key derivation

6.2.1. Derive a public key from an identity and public parameters

        Takes an identity string id and a set of public parameters,
        and returns an integer h_id. The public parameters used MUST
        be a valid set of public parameters as defined by section

section 6.1.2.
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        Algorithm 6.2.1 (BBderivePubl): derives the public key
        corresponding to an identity string. The public parameters
        used MUST be a valid set of public parameters as defined by
        section section 6.1.2.

        Input:

        o  An identity string id

        o  A set of common public parameters (version, k, E, p, q, P,
           P_1, P_2, P_3, v, hashfcn)

        Output:

        o  An integer h_id modulo q

        Method:

        1. Let h_id = HashToRange(id, q, hashfcn), using Algorithm
        4.1.1 (HashToRange)

6.3. Private key extraction

6.3.1. Extract a private key from an identity, public parameters
   and a master secret

        BBextractPriv takes an identity string id, and a set of public
        parameters and corresponding master secrets, and returns a
        private key consisting of two points D_0 and D_1. The public
        parameters used MUST be a valid set of public parameters as
        defined by section section 6.1.2.

        Algorithm 6.3.1 (BBextractPriv): extracts the private key
        corresponding to an identity string.

        Input:

        o  An identity string id

        o  A set of public parameters (version, k, E, p, q, P, P_1,
           P_2, P_3, v, hashfcn)

        Output:

        o  A pair of points (D_0, D_1), each of which has order q in
           E(F_p)
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        Method:

        1. Select a random integer r in the range 1 to q - 1

        2. Calculate the point D_0 as follows:

           (a) Let hid = HashToRange(id, q, hashfcn), using Algorithm
        4.1.1 (HashToRange)

           (b) Let y = alpha * beta + r * (alpha * h_id + gamma) in
        F_q

           (c) Let D_0 = [y]P

        3. Calculate the point D_1 as follows:

           (a) Let D_1 = [r]P

        4. The pair of points (D_0, D_1) constitutes the private key
        for id

6.4. Encryption

6.4.1. Encrypt a session key using an identity and public
   parameters

        BBencrypt takes three inputs: a set of public parameters, an
        identity id, and a plaintext m. The plaintext MUST be a random
        session key. The public parameters used MUST be a valid set of
        public parameters as defined by section section 6.1.2.

        Algorithm 6.4.1 (BBencrypt): encrypts a session key for an
        identity string.

        Input:

        o  A plaintext string m of size |m| octets

        o  A recipient identity string id

        o  A set of public parameters (version, k, E, p, q, P, P_1,
           P_2, P_3, v, hashfcn)

        Output:

        o  A ciphertext tuple (u, C_0, C_1, y) in F_q x E(F_p) x
           E(F_p) x {0, ... , 255}^|m|
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        Method:

        1. Select a random integer s in the range 1 to q - 1

        2. Let w = v^s, which is v raised to the power of s in F_p^2,
        the result is an element of order q in F_p^2

        3. Calculate the point C_0 as follows:

           (a) Let C_0 = [s]P

        4. Calculate the point C_1 as follows:

           (a) Let _hid = HashToRange(id, q, hashfcn), using Algorithm
        4.1.1 (HashToRange)

        (b) Let y = s * h_id in F_q

        (c) Let C_1 = [y]P_1 + [s]P_3

        5. Obtain canonical string representations of certain
        elements:

           (a) Let psi = Canonical(p, k, 1, w) using Algorithm 4.3.1
        (Canonical), the result of which is a canonical octet-string
        representation of w

           (b) Let l = Ceiling(lg(p) / 8), the number of octets needed
        to represent integers in F_p, and represent each of these F_p
        elements as a big-endian zero-padded octet-string of fixed
        length l:

           (x_0)_(256^l) to represent the x coordinate of C_0

           (y_0)_(256^l) to represent the y coordinate of C_0

           (x_1)_(256^l) to represent the x coordinate of C_1

           (y_1)_(256^l) to represent the y coordinate of C_1

        6. Encrypt the message m into the string y as follows:

           (a) Compute an encryption key h_0 as a two-pass hash of w
        via its representation psi:

              i. Let zeta = hashfcn(psi), using the hashing algorithm
        hashfcn
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              ii. Let xi = hashfcn(zeta || psi), using the hashing
        algorithm hashfcn

              iii. Let h' = xi || zeta, the concatenation of the
        previous two hashfcn outputs

           (b) Let y = HashBytes(|m|, h', hashfcn) XOR m, which is the
        bit-wise XOR of m with the first |m| octets of the pseudo-
        random bytes produced by Algorithm 3.2.1 (HashBytes) with seed
        h'

        7. Create the integrity check tag u as follows:

           (a) Compute a one-time pad h'' as a dual-pass hash of the
        representation of (w, C_0, C_1, y):

              i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) ||
        (y_0)_(256^l) || (x_0)_(256^l) || y || psi be the
        concatenation of y and the five indicated strings in the
        specified order

              ii. Let eta = hashfcn(sigma), using the hashing
        algorithm hashfcn

              iii. Let mu = hashfcn(eta || sigma), using the hashfcn
        hashing algorithm

              iv. Let h'' = mu || eta, the concatenation of the
        previous two outputs of hashfcn

           (b) Build the tag u as the encryption of the integer s with
        the one-time pad h'':

              i. Let rho = HashToRange(h'', q, hashfcn) to get an
        integer in Z_q

              ii. Let u = s + rho (mod q)

        8. The complete ciphertext is given by the quadruple (u, C_0,
        C_1, y)

6.5. Decryption

6.5.1. Decrypt using public parameters and private key

        BBdecrypt takes three inputs: a set of public parameters
        (version, k, E, p, q, P, P_1, P_2, P_3, v, hashfcn), a private
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        key (D_0, D_1), and a ciphertext (u, C_0, C_1, y). It outputs
        a message m, or signals an error if the ciphertext is invalid
        for the given key. The public parameters used MUST be a valid
        set of public parameters as defined by section section 6.1.2.

        Algorithm 6.5.1 (BBdecrypt): decrypts a ciphertext using
        public parameters and a private key.

        Input:

        o  A private key given as a pair of points (D_0, D_1) of order
           q in E(F_p)

        o  A ciphertext quadruple (u, C_0, C_1, y) in Z_q x E(F_p) x
           E(F_p) x {0, ... , 255}*

        o  A set of public parameters (version, k, E, p, q, P, P_1,
           P_2, P_3, v, hashfcn)

        Output:

        o  A decrypted plaintext m, or an invalid ciphertext flag

        Method:

        1. Let w = PairingRatio(E, p, q, C_0, D_0, C_1, D_1), which
        computes the ratio of two Tate pairings (modified, for type-1
        curves) as specified in Algorithm 4.6.1 (PairingRatio)

        2. Obtain canonical string representations of certain
        elements:

           (a) Let psi = Canonical(p, k, 1, w), using Algorithm 4.3.1
        (Canonical); the result is a canonical octet-string
        representation of w

           (b) Let l = Ceiling(lg(p) / 8), the number of octets needed
        to represent integers in F_p, and represent each of these F_p
        elements as a big-endian zero-padded octet-string of fixed
        length l:

           (x_0)_(256^l) to represent the x coordinate of C_0

           (y_0)_(256^l) to represent the y coordinate of C_0

           (x_1)_(256^l) to represent the x coordinate of C_1
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           (y_1)_(256^l) to represent the y coordinate of C_1

        3. Decrypt the message m from the string y as follows:

           (a) Compute the decryption key h' as a dual-pass hash of w
        via its representation psi:

              i. Let zeta = hashfcn(psi), using the hashing algorithm
        hashfcn

              ii. Let xi = hashfcn(zeta || psi), using the hashing
        algorithm hashfcn

              iii. Let h' = xi || zeta, the concatenation of the
        previous two hashfcn outputs

           (b) Let m = HashBytes(|y|, h', hashfcn)_XOR y, which is the
        bit-wise XOR of y with the first |y| octets of the pseudo-
        random bytes produced by Algorithm 4.2.1 (HashBytes) with
        seed h'

        4. Obtain the integrity check tag u as follows:

           (a) Recover the one-time pad h'' as a dual-pass hash of the
        representation of (w, C_0, C_1, y):

              i. Let sigma = (y_1)_(256^l) || (x_1)_(256^l) ||
        (y_0)_(256^l) || (x_0)_(256^l) || y || psi be the
        concatenation of y and the five indicated strings in the
        specified order

              ii. Let eta = hashfcn(sigma) using the hashing algorithm
        hashfcn

              iii. Let mu = hashfcn(eta || sigma), using the hashing
        algorithm hashfcn

              iv. Let h'' = mu || eta, the concatenation of the
        previous two hashfcn outputs

           (b) Unblind the encryption randomization integer s from the
        tag u using h'':

              i. Let rho = HashToRange(h'', q, hashfcn) to get an
        integer in Z_q

              ii. Let s = u - rho (mod q)
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        5. Verify the ciphertext consistency according to the
        decrypted values:

           (a) Test whether the equality w = v^s holds

           (b) Test whether the equality C_0 = [s]P holds

        6. Adjudication and final output:

           (a) If either of the tests performed in step 5 fails, the
        ciphertext is rejected, and no decryption is output

           (b) Otherwise, i.e., when both tests performed in step 5
        succeed, the decrypted message is output

7. Test data

        The following data can be used to verify the correct operation
        of selected algorithms that are defined in this document.

7.1. Algorithm 3.2.2 (PointMultiply)

        Input:

        q = 0xfffffffffffffffffffffffffffbffff

        p = 0xbffffffffffffffffffffffffffcffff3

        E/F_p: y^2 = x^3 + 1

        A = (0x489a03c58dcf7fcfc97e99ffef0bb4634,
        0x510c6972d795ec0c2b081b81de767f808)

        l = 0xb8bbbc0089098f2769b32373ade8f0daf

        Output:

        [l]A = (0x073734b32a882cc97956b9f7e54a2d326,
        0x9c4b891aab199741a44a5b6b632b949f7)

7.2. Algorithm 4.1.1 (HashToRange)

        Input:

        s =
        54:68:69:73:20:41:53:43:49:49:20:73:74:72:69:6e:67:20:77:69:74
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        :68:6f:75:74:20:6e:75:6c:6c:2d:74:65:72:6d:69:6e:61:74:6f:72
        ("This ASCII string without null-terminator")

        n = 0xffffffffffffffffffffefffffffffffffffffff

        hashfcn = 1.3.14.3.2.16 (SHA-1)

        Output:

        v = 0x79317c1610c1fc018e9c53d89d59c108cd518608

7.3. Algorithm 4.5.1 (Pairing)

        q = 0xfffffffffffffffffffffffffffbffff

        p = 0xbffffffffffffffffffffffffffcffff3

        E/F_p: y^2 = x^3 + 1

        A = (0x489a03c58dcf7fcfc97e99ffef0bb4634,
        0x510c6972d795ec0c2b081b81de767f808)

        B = (0x40e98b9382e0b1fa6747dcb1655f54f75,
        0xb497a6a02e7611511d0db2ff133b32a3f)

        Output:

        e'(A, B) = (0x8b2cac13cbd422658f9e5757b85493818,
        0xbc6af59f54d0a5d83c8efd8f5214fad3c)

7.4. Algorithm 5.2.1 (BFderivePubl)

        Input:

        id = 6f:42:62 ("Bob")

        version = 2

        p = 0xa6a0ffd016103ffffffffff595f002fe9ef195f002fe9efb

        q = 0xffffffffffffffffffffffeffffffffffff

        P = (0x6924c354256acf5a0ff7f61be4f0495b54540a5bf6395b3d,
        0x024fd8e2eb7c09104bca116f41c035219955237c0eac19ab)

        P_pub = (0xa68412ae960d1392701066664d20b2f4a76d6ee715621108,
        0x9e7644e75c9a131d075752e143e3f0435ff231b6745a486f)
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        Output:

        Q_id = (0x22fa1207e0d19e1a4825009e0e88e35eb57ba79391498f59,
        0x982d29acf942127e0f01c881b5ec1b5fe23d05269f538836)

7.5. Algorithm 5.3.1 (BFextractPriv)

        Input:

        s = 0x749e52ddb807e0220054417e514742b05a0

        version = 2

        p = 0xa6a0ffd016103ffffffffff595f002fe9ef195f002fe9efb

        q = 0xffffffffffffffffffffffeffffffffffff

        P = (0x6924c354256acf5a0ff7f61be4f0495b54540a5bf6395b3d,
        0x024fd8e2eb7c09104bca116f41c035219955237c0eac19ab)

        P_pub = (0xa68412ae960d1392701066664d20b2f4a76d6ee715621108,
        0x9e7644e75c9a131d075752e143e3f0435ff231b6745a486f)

        Output:

        Q_id = (0x8212b74ea75c841a9d1accc914ca140f4032d191b5ce5501,
        0x950643d940aba68099bdcb40082532b6130c88d317958657)

7.6. Algorithm 5.4.1 (BFencrypt)

        (Note that the following values can also be used to test
        Algorithm 5.5.1 (BFdecrypt))

        Input:

        m = 48:69:20:74:68:65:72:65:21 ("Hi there!")

        id = 6f:42:62 ("Bob")

        version = 2

        p = 0xa6a0ffd016103ffffffffff595f002fe9ef195f002fe9efb

        q = 0xffffffffffffffffffffffeffffffffffff

        P = (0x6924c354256acf5a0ff7f61be4f0495b54540a5bf6395b3d,
        0x024fd8e2eb7c09104bca116f41c035219955237c0eac19ab)
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        P_pub = (0xa68412ae960d1392701066664d20b2f4a76d6ee715621108,
        0x9e7644e75c9a131d075752e143e3f0435ff231b6745a486f)

        Output:

        Using the random value rho =
        0xed5397ff77b567ba5ecb644d7671d6b6f2082968, we get the
        following output:

        U =
        (0x1b5f6c461497acdfcbb6d6613ad515430c8b3fa23b61c585e9a541b199e
        2a6cb,
        0x9bdfbed1ae664e51e3d4533359d733ac9a600b61048a7d899104e826a0ec
        4fa4)

        V =
        e0:1d:ad:81:32:6c:b1:73:af:c2:8d:72:2e:7a:32:1a:7b:29:8a:aa

        W = f9:04:ba:40:30:e9:ce:6e:ff

7.7. Algorithm 6.3.1 (BBextractPriv)

        Inputs:

        alpha = 0xa60c395285ded4d70202c8283d894bad4f0

        beta = 0x48bf012da19f170b13124e5301561f45053

        gamma = 0x226fba82bc38e2ce4e28e56472ccf94a499

        version = 2

        p = 0x91bbe2be1c8950750784befffffffffffff6e441d41e12fb

        q = 0xfffffffffbfffffffffffffffffffffffff

        P = (0x13cc538fe950411218d7f5c17ae58a15e58f0877b29f2fe1,
        0x8cf7bab1a748d323cc601fabd8b479f54a60be11e28e18cf)

        P_1 = (0x0f809a992ed2467a138d72bc1d8931c6ccdd781bedc74627,
        0x11c933027beaaf73aa9022db366374b1c68d6bf7d7a888c2)

        P_2 = (0x0f8ac99a55e575bf595308cfea13edb8ec673983919121b0,
        0x3febb7c6369f5d5f18ee3ea6ca0181448a4f3c4f3385019c)

        P_3 = (0x2c10b43991052e78fac44fdce639c45824f5a3a2550b2a45,
        0x6d7c12d8a0681426a5bbc369c9ef54624356e2f6036a064f)
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        v = (0x38f91032de6847a89fc3c83e663ed0c21c8f30ce65c0d7d3,
        0x44b9aa10849cc8d8987ef2421770a340056745da8b99fba2)

        id = 6f:42:62 ("Bob")

        Output:

        Using the random value r =
        0x695024c25812112187162c08aa5f65c7a2c, we get the following
        output:

        D_0 = (0x3264e13feeb7c506493888132964e79ad657a952334b9e53,
        0x3eeaefc14ba1277a1cd6fdea83c7c882fe6d85d957055c7b)

        D_1 = (0x8d7a72ad06909bb3bb29b67676d935018183a905e7e8cb18,
        0x2b346c6801c1db638f270af915a21054f16044ab67f6c40e)

7.8. Algorithm 6.4.1 (BBencrypt)

        (Note that the following values can also be used to test
        Algorithm 5.5.1 (BFdecrypt))

        Input:

        m = 48:69:20:74:68:65:72:65:21 ("Hi there!")

        id = 6f:42:62 ("Bob")

        version = 2

        E: y^2 = x^3 + 1

        p = 0x91bbe2be1c8950750784befffffffffffff6e441d41e12fb

        q = 0xfffffffffbfffffffffffffffffffffffff

        P = (0x13cc538fe950411218d7f5c17ae58a15e58f0877b29f2fe1,
        0x8cf7bab1a748d323cc601fabd8b479f54a60be11e28e18cf)

        P_1 = (0x0f809a992ed2467a138d72bc1d8931c6ccdd781bedc74627,
        0x11c933027beaaf73aa9022db366374b1c68d6bf7d7a888c2)

        P_2 = (0x0f8ac99a55e575bf595308cfea13edb8ec673983919121b0,
        0x3febb7c6369f5d5f18ee3ea6ca0181448a4f3c4f3385019c)

        P_3 = (0x2c10b43991052e78fac44fdce639c45824f5a3a2550b2a45,
        0x6d7c12d8a0681426a5bbc369c9ef54624356e2f6036a064f)
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        v = (0x38f91032de6847a89fc3c83e663ed0c21c8f30ce65c0d7d3,
        0x44b9aa10849cc8d8987ef2421770a340056745da8b99fba2)

        hashfcn = 1.3.14.3.2.26 (SHA-1)

        Output:

        Using the random value s =
        0x62759e95ce1af248040e220263fb41b965e, we get the following
        output:

        u = 0xad1ebfa82edf0bcb5111e9dc08ff0737c68

        C_0 = (0x79f8f35904579f1aaf51897b1e8f1d84e1c927b8994e81f9,
        0x1cf77bb2516606681aba2e2dc14764aa1b55a45836014c62)

        C_1 = (0x410cfeb0bccf1fa4afc607316c8b12fe464097b20250d684,
        0x8bb76e7195a7b1980531b0a5852ce710cab5d288b2404e90)

        y = 82:a6:42:b9:bb:e9:82:c4:57

8. ASN.1 module

        This section defines the ASN.1 module for the encodings
        discussed in this document.
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        IBCS { joint-iso-itu-t(2) country(16) us(840) organization(1)
           identicrypt(114334) ibcs(1) module(5) version(1) }

        DEFINITIONS IMPLICIT TAGS ::= BEGIN

        --
        -- Identity-based cryptography standards (IBCS):
        -- supersingular curve implementations of
        -- the BF and BB1 cryptosystems
        --
        -- This version only supports IBE using
        -- type-1 curves, i.e., the curve y^2 = x^3 + 1.
        --

        ibcs OBJECT IDENTIFIER ::= {
           joint-iso-itu-t(2) country(16) us(840) organization(1)
              identicrypt(114334) ibcs(1)
        }

        --
        -- IBCS1
        --
        -- IBCS1 defines the algorithms used to implement IBE
        --

        ibcs1 OBJECT IDENTIFIER ::= {
           ibcs ibcs1(1)
        }

        --
        -- An elliptic curve is specified by an OID.
        -- A type1curve is defined by the equation y^2 = x^3 + 1.
        --

        type1curve OBJECT IDENTIFIER ::= {
           ibcs1 curve-types(1) type1-curve(1)
        }

        --
        -- Supporting types
        --

        --
        -- Encoding of a point on an elliptic curve E/F_p
        -- An FpPoint can either represent an element of
        -- F_p^2 or an element of (F_p)^2.
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        FpPoint ::= SEQUENCE {
           x  INTEGER,
           y  INTEGER
        }

        --
        -- The following hash functions are supported:
        --
        -- SHA-1
        --
        -- id-sha1  OBJECT IDENTIFIER  ::= {
        --   iso(1) identified-organization(3) oiw(14)
        --   secsig(3) algorithms(2) hashAlgorithmIdentifier(26)
        -- }
        --
        -- SHA-224
        --
        -- id-sha224  OBJECT IDENTIFIER  ::= {
        --   joint-iso-itu-t(2)country(16) us(840)
        --   organization(1) gov(101)
        --   csor(3) nistAlgorithm(4) hashAlgs(2) sha224(4)
        -- }
        --
        -- SHA-256
        --
        -- id-sha256  OBJECT IDENTIFIER  ::= {
        --   joint-iso-itu-t(2)country(16) us(840)
        --   organization(1) gov(101)
        --   csor(3) nistAlgorithm(4) hashAlgs(2) sha256(1)
        -- }
        --
        -- SHA-384
        --
        -- id-sha384  OBJECT IDENTIFIER  ::= {
        --   joint-iso-itu-t(2)country(16) us(840)
        --   organization(1) gov(101)
        --   csor(3) nistAlgorithm(4) hashAlgs(2) sha384(2)
        -- }
        --
        -- SHA-512
        --
        -- id-sha512  OBJECT IDENTIFIER  ::= {
        --   joint-iso-itu-t(2) country(16) us(840)
        --   organization(1) gov(101)
        --   csor(3) nistAlgorithm(4) hashAlgs(2) sha512(3)
        -- }
        --
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        --
        -- Algorithms
        --

        ibe-algorithms OBJECT IDENTIFIER ::= {
           ibcs1 ibe-algorithms(2)
        }

        ---
        --- Boneh-Franklin IBE
        ---

        bf OBJECT IDENTIFIER ::= { ibe-algorithms bf(1) }

        --
        -- Encoding of a BF public parameters block.
        -- The only version currently supported is version 2.
        -- The values p and q define a subgroup of E(F_p) of order q.
        --

        BFPublicParameters ::= SEQUENCE {
           version     INTEGER { v2(2) },
           curve       OBJECT IDENTIFIER,
           p           INTEGER,
           q           INTEGER,
           pointP      FpPoint,
           pointPpub   FpPoint,
           hashfcn     OBJECT IDENTIFIER
        }

        --
        -- A BF private key is a point on an elliptic curve,
        -- which is an FpPoint.
        -- The only version supported is version 2.
        --

        BFPrivateKeyBlock ::= SEQUENCE {
           version     INTEGER { v2(2) },
           privateKey  FpPoint
        }

        --
        -- A BF master secret is an integer.
        -- The only version supported is version 2.
        --
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        BFMasterSecret ::= SEQUENCE {
           version        INTEGER {v2(2) },
           masterSecret   INTEGER
        }

        --
        -- BF ciphertext block
        -- The only version supported is version 2.
        --

        BFCiphertextBlock ::= SEQUENCE {
           version  INTEGER { v2(2) },
           u        FpPoint,
           v        OCTET STRING,
           w        OCTET STRING
        }

        --
        -- Boneh-Boyen (BB1) IBE
        --

        bb1 OBJECT IDENTIFIER ::= { ibe-algorithms bb1(2) }

        --
        -- Encoding of a BB1 public parameters block.
        -- The version is currently fixed to 2.
        --
        --

        BB1PublicParameters ::= SEQUENCE {
           version     INTEGER { v2(2) },
           curve       OBJECT IDENTIFIER,
           p           INTEGER,
           q           INTEGER,
           pointP      FpPoint,
           pointP1     FpPoint,
           pointP2     FpPoint,
           pointP3     FpPoint,
           v           FpPoint,
           hashfcn     OBJECT IDENTIFIER
        }

        --
        -- BB1 master secret block
        -- The only version supported is version 2.
        --
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        BB1MasterSecret ::= SEQUENCE {
           version  INTEGER { v2(2) },
           alpha    INTEGER,
           beta     INTEGER,
           gamma    INTEGER
        }

        --
        -- BB1 private Key block
        -- The only version supported is version 2.
        --

        BB1PrivateKeyBlock ::= SEQUENCE {
           version  INTEGER { v2(2) },
           pointD0  FpPoint,
           pointD1  FpPoint
        }

        --
        -- BB1 ciphertext block
        -- The only version supported is version 2.
        --

        BB1CiphertextBlock ::= SEQUENCE {
           version     INTEGER {v2(2) },
           pointChi0   FpPoint,
           pointChi1   FpPoint,
           nu          INTEGER,
           y           OCTET STRING
        }

        END

9. Security considerations

        This document describes cryptographic algorithms, for which we
        assume that the security of the algorithm relies entirely on
        the secrecy of the relevant private key, so that an adversary
        will need to intercept encrypted messages and perform
        computationally-intensive cryptanalytic attacks against the
        ciphertext that he obtains in this way to recover either
        plaintext or a secret cryptographic key.

        We assume that users of the algorithms described in this
        document will require one of five levels of cryptographic
        strength: the equivalent of 80 bits, 112 bits, 128 bits, 192
        bits or 256 bits. The 80-bit level is suitable for legacy
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        applications and SHOULD NOT be used to protect information
        whose useful life extends past the year 2010. The 112-bit
        level is suitable for use in key transport of Triple-DES keys
        and should be adequate to protect information whose useful
        life extends up to the year 2030. The 128-bit levels and
        higher are suitable for use in the transport of AES keys of
        the corresponding length or less and are adequate to protect
        information whose useful life extends past the year 2030.

        Table 1 summarizes the security parameters for the BF and BB1
        algorithms that will attain these levels of security. In this
        table, |p| represents the number of bits in a prime number p
        and |q| represents the number of bits in a subprime q. This
        table assumes that a Type-1 supersingular curve is used.

        Bits of Security   |p|    |q|
        80                 512    160
        112                1024   224
        128                1536   256
        192                3840   384
        256                7680   512

        Table 1: Sizes of BF and BB1 parameters required to attain
        standard levels of bit security [SP800-57].

        If an IBE key is used to transport a symmetric key that
        provides more bits of security than the bit strength of the
        IBE key, users should understand that the security of the
        system is then limited by the strength of the weaker IBE key.
        So if an IBE key that provides 112 bits of security is used to
        transport a 128-bit AES key, then the security provided is
        limited by the 112 bits of security of the IBE key.
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        Note that this document specifies the use of the NIST hashing
        algorithms [SHA] to hash identities to either a point on an
        elliptic curve or an integer. Recent attacks on SHA-1 [SHA]
        have discovered ways to find collisions with less work than
        the expected 2^80 hashes required based on the size of the
        output of the hash function alone. If an attacker can find a
        collision then they could use the colliding preimages to
        create two identities which have the same IBE private key. The
        practical use of such a SHA-1 [SHA] collision is extremely
        unlikely, however.

        Identities are typically not random strings, like the
        preimages of a hash collision would be. In particular, this is
        true if IBE is used as described in [IBECMS], in which
        components of an identity are defined to be an e-mail address,
        a validity period and a URI. In this case, the unpredictable
        results of a collision are extremely unlikely to fit the
        format of a valid identity, and thus are of no use to an
        attacker. Any protocol using IBE MUST define an identity in a
        way that makes collisions in a hash function essentially
        useless to an attacker. Because random strings are rarely used
        as identities, this requirement should not be unduly difficult
        to fulfill.

        The randomness of the random values that are required by the
        cryptographic algorithms is vital to the security provided by
        the algorithms. Any implementation of these algorithms MUST
        use a source of random values that provides an adequate level
        of security. Appropriate algorithms to generate such values
        include [FIPS186-2] and [X9.62]. This will ensure that the
        random values used to mask plaintext messages in sections 5.4
        and 6.4 are not reused with a significant probability.

        The strength of a system using the algorithms described in
        this document relies on the strength of the mechanism used to
        authenticate a user requesting a private key from a PKG, as
        described in step 2 of section 1.2 of this document. This is
        analogous to way in which the strength of a system using
        digital certificates [X.509] is limited by the strength of the
        authentication required of users before certificates are
        granted to them. In either case, a weak mechanism for
        authenticating users will result in a weak system that relies
        on the technology. A system that uses the algorithms described
        in this document MUST require users to authenticate in a way
        that is suitably strong, particularly if IBE private keys will
        be used for authentication.
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        Note that IBE systems have different properties than other
        asymmetric cryptographic schemes when it comes to key
        recovery. If a master secret is maintained on a secure PKG
        then the PKG and any administrator with the appropriate level
        of access will be able to create arbitrary private keys, so
        that controls around such administrators and logging of all
        actions performed by such administrators SHOULD be part of a
        functioning IBE system.

        On the other hand, it is also possible to create IBE private
        keys using a master secret and to then destroy the master
        secret, making any key recovery impossible. If this property
        is not desired, an administrator of an IBE system SHOULD
        require that the format of the identity used by the system
        contain a component that is short-lived. The format of
        identity that is defined in [IBECMS], for example, contains
        information about the time period of validity of the key that
        will be calculated from the identity. Such an identity can
        easily be changed to allow the rekeying of users if their IBE
        private key is somehow compromised.

10. IANA considerations

        No further action by the IANA is necessary for this document.
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