
Workgroup: QUIC

Internet-Draft:

draft-marx-qlog-event-definitions-quic-h3-02

Published: 2 November 2020

Intended Status: Standards Track

Expires: 6 May 2021

Authors: R. Marx

Hasselt University

QUIC and HTTP/3 event definitions for qlog

Abstract

This document describes concrete qlog event definitions and their

metadata for QUIC and HTTP/3-related events. These events can then

be embedded in the higher level schema defined in [QLOG-MAIN].

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Overview

2.1. Importance

2.2. Custom fields

3. Events not belonging to a single connection

4. QUIC and HTTP/3 fields

4.1. Raw packet and frame information

5. QUIC event definitions

5.1. connectivity

5.1.1. server_listening

5.1.2. connection_started

5.1.3. connection_closed

5.1.4. connection_id_updated

5.1.5. spin_bit_updated

5.1.6. connection_retried

5.1.7. connection_state_updated

5.1.8. MIGRATION-related events

5.2. security

5.2.1. key_updated

5.2.2. key_retired

5.3. transport

5.3.1. version_information

5.3.2. alpn_information

5.3.3. parameters_set

5.3.4. parameters_restored

5.3.5. packet_sent

5.3.6. packet_received

5.3.7. packet_dropped

5.3.8. packet_buffered

5.3.9. packets_acked

5.3.10. datagrams_sent

5.3.11. datagrams_received

5.3.12. datagram_dropped

5.3.13. stream_state_updated

5.3.14. frames_processed

5.3.15. data_moved

5.4. recovery

5.4.1. parameters_set

5.4.2. metrics_updated

5.4.3. congestion_state_updated

5.4.4. loss_timer_updated

5.4.5. packet_lost

5.4.6. marked_for_retransmit

6. HTTP/3 event definitions

6.1. http

6.1.1. parameters_set

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.1.2. parameters_restored

6.1.3. stream_type_set

6.1.4. frame_created

6.1.5. frame_parsed

6.1.6. push_resolved

6.2. qpack

6.2.1. state_updated

6.2.2. stream_state_updated

6.2.3. dynamic_table_updated

6.2.4. headers_encoded

6.2.5. headers_decoded

6.2.6. instruction_created

6.2.7. instruction_parsed

7. Generic events and Simulation indicators

7.1. generic

7.1.1. error

7.1.2. warning

7.1.3. info

7.1.4. debug

7.1.5. verbose

7.2. simulation

7.2.1. scenario

7.2.2. marker

8. Security Considerations

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Appendix A. QUIC data field definitions

A.1. IPAddress

A.2. PacketType

A.3. PacketNumberSpace

A.4. PacketHeader

A.5. Token

A.6. KeyType

A.7. QUIC Frames

A.7.1. PaddingFrame

A.7.2. PingFrame

A.7.3. AckFrame

A.7.4. ResetStreamFrame

A.7.5. StopSendingFrame

A.7.6. CryptoFrame

A.7.7. NewTokenFrame

A.7.8. StreamFrame

A.7.9. MaxDataFrame

A.7.10. MaxStreamDataFrame

A.7.11. MaxStreamsFrame

A.7.12. DataBlockedFrame

A.7.13. StreamDataBlockedFrame

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

A.7.14. StreamsBlockedFrame

A.7.15. NewConnectionIDFrame

A.7.16. RetireConnectionIDFrame

A.7.17. PathChallengeFrame

A.7.18. PathResponseFrame

A.7.19. ConnectionCloseFrame

A.7.20. HandshakeDoneFrame

A.7.21. UnknownFrame

A.7.22. TransportError

A.7.23. CryptoError

Appendix B. HTTP/3 data field definitions

B.1. HTTP/3 Frames

B.1.1. DataFrame

B.1.2. HeadersFrame

B.1.3. CancelPushFrame

B.1.4. SettingsFrame

B.1.5. PushPromiseFrame

B.1.6. GoAwayFrame

B.1.7. MaxPushIDFrame

B.1.8. DuplicatePushFrame

B.1.9. ReservedFrame

B.1.10. UnknownFrame

B.2. ApplicationError

Appendix C. QPACK DATA type definitions

C.1. QPACK Instructions

C.1.1. SetDynamicTableCapacityInstruction

C.1.2. InsertWithNameReferenceInstruction

C.1.3. InsertWithoutNameReferenceInstruction

C.1.4. DuplicateInstruction

C.1.5. HeaderAcknowledgementInstruction

C.1.6. StreamCancellationInstruction

C.1.7. InsertCountIncrementInstruction

C.2. QPACK Header compression

C.2.1. IndexedHeaderField

C.2.2. LiteralHeaderFieldWithName

C.2.3. LiteralHeaderFieldWithoutName

C.2.4. QPackHeaderBlockPrefix

Appendix D. Change Log

D.1. Since draft-01:

D.2. Since draft-00:

Appendix E. Design Variations

Appendix F. Acknowledgements

Author's Address

1. Introduction

This document describes the values of the qlog name ("category" +

"event") and "data" fields and their semantics for the QUIC and

HTTP/3 protocols. This document is based on draft-29 of the QUIC and

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

HTTP/3 I-Ds QUIC-TRANSPORT [QUIC-HTTP] and draft-16 of the QPACK I-D

[QUIC-QPACK].

Feedback and discussion welcome at https://github.com/quiclog/

internet-drafts. Readers are advised to refer to the "editor's

draft" at that URL for an up-to-date version of this document.

Concrete examples of integrations of this schema in various

programming languages can be found at https://github.com/quiclog/

qlog/.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

The examples and data definitions in ths document are expressed in a

custom data definition language, inspired by JSON and TypeScript,

and described in [QLOG-MAIN].

2. Overview

This document describes the values of the qlog "name" ("category" +

"event") and "data" fields and their semantics for the QUIC and

HTTP/3 protocols.

This document assumes the usage of the encompassing main qlog schema

defined in [QLOG-MAIN]. Each subsection below defines a separate

category (for example connectivity, transport, http) and each

subsubsection is an event type (for example packet_received).

For each event type, its importance and data definition is laid out,

often accompanied by possible values for the optional "trigger"

field. For the definition and semantics of "trigger", see the main

schema document.

Most of the complex datastructures, enums and re-usable definitions

are grouped together on the bottom of this document for clarity.

2.1. Importance

Many of the events defined in this document map directly to concepts

seen in the QUIC and HTTP/3 documents, while others act as

aggregating events that combine data from several possible protocol

behaviours or code paths into one. This is done to reduce the amount

of unique event definitions, as reflecting each possible protocol

event as a separate qlog entity would cause an explosion of event

types. Similarly, we prevent logging duplicate packet data as much

as possible. As such, especially packet header value updates are

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/quiclog/internet-drafts
https://github.com/quiclog/internet-drafts
https://github.com/quiclog/qlog/
https://github.com/quiclog/qlog/

split out into separate events (for example spin_bit_updated,

connection_id_updated), as they are expected to change sparingly.

Consequently, many events that can be directly inferred from data on

the wire (for example flow control limit changes) if the

implementation is bug-free, are currently not explicitly defined as

stand-alone events. Exceptions can be made for common events that

benefit from being easily identifiable or individually logged (for

example the packets_acked event). This can in turn give rise to

separate events logging similar data, where it is not always clear

which event should be logged (for example the separate

connection_started event, whereas the more general

connection_state_updated event also allows indicating that a

connection was started).

To aid in this decision making, each event has an "importance

indicator" with one of three values, in decreasing order of

importance and exptected usage:

Core

Base

Extra

The "Core" events are the events that SHOULD be present in all qlog

files. These are mostly tied to basic packet and frame parsing and

creation, as well as listing basic internal metrics. Tool

implementers SHOULD expect and add support for these events, though

SHOULD NOT expect all Core events to be present in each qlog trace.

The "Base" events add additional debugging options and CAN be

present in qlog files. Most of these can be implicitly inferred from

data in Core events (if those contain all their properties), but for

many it is better to log the events explicitly as well, making it

clearer how the implementation behaves. These events are for example

tied to passing data around in buffers, to how internal state

machines change and help show when decisions are actually made based

on received data. Tool implementers SHOULD at least add support for

showing the contents of these events, if they do not handle them

explicitly.

The "Extra" events are considered mostly useful for low-level

debugging of the implementation, rather than the protocol. They

allow more fine-grained tracking of internal behaviour. As such,

they CAN be present in qlog files and tool implementers CAN add

support for these, but they are not required to.

Note that in some cases, implementers might not want to log for

example frame-level details in the "Core" events due to performance

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

or privacy considerations. In this case, they SHOULD use (a subset

of) relevant "Base" events instead to ensure usability of the qlog

output. As an example, implementations that do not log

"packet_received" events and thus also not which (if any) ACK frames

the packet contain, SHOULD log packets_acked events instead.

Finally, for event types who's data (partially) overlap with other

event types' definitions, where necessary this document includes

guidance on which to use in specific situations.

2.2. Custom fields

Note that implementers are free to define new category and event

types, as well as values for the "trigger" property within the

"data" field, or other member fields of the "data" field, as they

see fit. They SHOULD NOT however expect non-specialized tools to

recognize or visualize this custom data. However, tools SHOULD make

an effort to visualize even unknown data if possible in the specific

tool's context.

3. Events not belonging to a single connection

For several types of events, it is sometimes impossible to tie them

to a specific conceptual QUIC connection (e.g., a packet_dropped

event triggered because the packet has an unknown connection_id in

the header). Since qlog events in a trace are typically associated

with a single connection, it is unclear how to log these events.

Ideally, implementers SHOULD create a separate, individual

"endpoint-level" trace file (or group_id value), not associated with

a specific connection (for example a "server.qlog" or group_id =

"client"), and log all events that do not belong to a single

connection to this grouping trace. However, this is not always

practical, depending on the implementation. Because the semantics of

most of these events are well-defined in the protocols and because

they are difficult to mis-interpret as belonging to a connection,

implementers MAY choose to log events not belonging to a particular

connection in any other trace, even those strongly associated with a

single connection.

Note that this can make it difficult to match logs from different

vantage points with each other. For example, from the client side,

it is easy to log connections with version negotiation or retry in

the same trace, while on the server they would most likely be logged

in separate traces. Servers can take extra efforts (and keep

additional state) to keep these events combined in a single trace

however (for example by also matching connections on their four-

tuple instead of just the connection ID).

¶

¶

¶

¶

¶

¶

Note:

Note:

4. QUIC and HTTP/3 fields

This document re-uses all the fields defined in the main qlog schema

(e.g., name, category, type, data, group_id, protocol_type, the

time-related fields, etc.).

The value of the "protocol_type" qlog field MUST be "QUIC_HTTP3".

When the qlog "group_id" field is used, it is recommended to use

QUIC's Original Destination Connection ID (ODCID, the CID chosen by

the client when first contacting the server), as this is the only

value that does not change over the course of the connection and can

be used to link more advanced QUIC packets (e.g., Retry, Version

Negotiation) to a given connection. Similarly, the ODCID should be

used as the qlog filename or file identifier, potentially suffixed

by the vantagepoint type (For example, abcd1234_server.qlog would

contain the server-side trace of the connection with ODCID

abcd1234).

4.1. Raw packet and frame information

While qlog is a more high-level logging format, it also allows the

inclusion of most raw wire image information, such as byte lengths

and even raw byte values. This can be useful when for example

investigating or tuning packetization behaviour or determining

encoding/framing overheads. However, these fields are not always

necessary and can take up considerable space if logged for each

packet or frame. As such, they are grouped in a separate optional

field called "raw" of type RawInfo (where applicable).

QUIC packets always include an AEAD authentication tag at the

end. As this tag is always the same size for a given connection

(it depends on the used TLS cipher), we do not have a separate

"aead_tag_length" field here. Instead, this field is reflected in

"transport:parameters_set" and can be logged only once.

There is intentionally no explicit header_length field in

RawInfo. QUIC and HTTP/3 use many Variable-Length Integer Encoded

(VLIE) values in their packet and frame headers, which are of a

dynamic length. Note too that because of this, we cannot

deterministally reconstruct the header encoding/length from qlog

data, as implementations might not necessarily employ the most

efficient VLIE scheme for all values. As such, it is typically

¶

¶

¶

¶

class RawInfo {

 length?:uint64; // full packet/frame length, including header and AEAD authentication tag lengths (where applicable)

 payload_length?:uint64; // length of the packet/frame payload, excluding AEAD tag. For many control frames, this will have a value of zero

 data?:bytes; // full packet/frame contents, including header and AEAD authentication tag (where applicable)

}

¶

¶

Note:

Note:

easier to log just the total packet/frame length and the payload

length. The header length can be calculated by tools as:

For QUIC packets: header_length = length - payload_length -

aead_tag_length

For QUIC and HTTP/3 frames: header_length = length -

payload_length

For UDP datagrams: header_length = length - payload_length

In some cases, the length fields are also explicitly

reflected inside of frame/packet headers. For example, the QUIC

STREAM frame has a "length" field indicating its payload size.

Similarly, all HTTP/3 frames include their explicit payload

lengths in the frame header. Finally, the QUIC Long Header has a

"length" field which is equal to the payload length plus the

packet number length. In these cases, those fields are

intentionally preserved in the event definitions. Even though

this can lead to duplicate data when the full RawInfo is logged,

it allows a more direct mapping of the QUIC and HTTP/3

specifications to qlog, making it easier for users to interpret.

as described in [QLOG-MAIN], the RawInfo:data field can be

truncated for privacy or security purposes (for example excluding

payload data). In this case, the length properties should still

indicate the non-truncated lengths.

5. QUIC event definitions

Each subheading in this section is a qlog event category, while each

sub-subheading is a qlog event type. Concretely, for the following

two items, we have the category "connectivity" and event type

"server_listening", resulting in a concatenated qlog "name" field

value of "connectivity:server_listening".

5.1. connectivity

5.1.1. server_listening

Importance: Extra

Emitted when the server starts accepting connections.

Data:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note: some QUIC stacks do not handle sockets directly and are thus

unable to log IP and/or port information.

5.1.2. connection_started

Importance: Base

Used for both attempting (client-perspective) and accepting (server-

perspective) new connections. Note that this event has overlap with

connection_state_updated and this is a separate event mainly because

of all the additional data that should be logged.

Data:

Note: some QUIC stacks do not handle sockets directly and are thus

unable to log IP and/or port information.

5.1.3. connection_closed

Importance: Base

Used for logging when a connection was closed, typically when an

error or timeout occurred. Note that this event has overlap with

connectivity:connection_state_updated, as well as the

CONNECTION_CLOSE frame. However, in practice, when analyzing large

deployments, it can be useful to have a single event representing a

connection_closed event, which also includes an additional reason

{

 ip_v4?: IPAddress,

 ip_v6?: IPAddress,

 port_v4?: uint32,

 port_v6?: uint32,

 retry_required?:boolean // the server will always answer client initials with a retry (no 1-RTT connection setups by choice)

}

¶

¶

¶

¶

¶

{

 ip_version?: "v4" | "v6",

 src_ip?: IPAddress,

 dst_ip?: IPAddress,

 protocol?: string, // transport layer protocol (default "QUIC")

 src_port?: uint32,

 dst_port?: uint32,

 src_cid?: bytes,

 dst_cid?: bytes,

}

¶

¶

¶

field to provide additional information. Additionally, it is useful

to log closures due to timeouts, which are difficult to reflect

using the other options.

In QUIC there are two main connection-closing error categories:

connection and application errors. They have well-defined error

codes and semantics. Next to these however, there can be internal

errors that occur that may or may not get mapped to the official

error codes in implementation-specific ways. As such, multiple error

codes can be set on the same event to reflect this.

Triggers: * clean * handshake_timeout * idle_timeout * error // this

is called the "immediate close" in the QUIC specification *

stateless_reset * version_mismatch * application // for example

HTTP/3's GOAWAY frame

5.1.4. connection_id_updated

Importance: Base

This event is emitted when either party updates their current

Connection ID. As this typically happens only sparingly over the

course of a connection, this event allows loggers to be more

efficient than logging the observed CID with each packet in the

.header field of the "packet_sent" or "packet_received" events.

This is viewed from the perspective of the one applying the new id.

As such, if we receive a new connection id from our peer, we will

see the dst_ fields are set. If we update our own connection id

(e.g., NEW_CONNECTION_ID frame), we log the src_ fields.

Data:

¶

¶

{

 owner?:"local"|"remote", // which side closed the connection

 connection_code?:TransportError | CryptoError | uint32,

 application_code?:ApplicationError | uint32,

 internal_code?:uint32,

 reason?:string

}

¶

¶

¶

¶

¶

¶

{

 owner: "local" | "remote",

 old?:bytes,

 new?:bytes,

}

¶

5.1.5. spin_bit_updated

Importance: Base

To be emitted when the spin bit changes value. It SHOULD NOT be

emitted if the spin bit is set without changing its value.

Data:

5.1.6. connection_retried

TODO

5.1.7. connection_state_updated

Importance: Base

This event is used to track progress through QUIC's complex

handshake and connection close procedures. It is intended to provide

exhaustive options to log each state individually, but also provides

a more basic, simpler set for implementations less interested in

tracking each smaller state transition. As such, users should not

expect to see -all- these states reflected in all qlogs and

implementers should focus on support for the SimpleConnectionState

set.

Data: ~~~ { old?: ConnectionState | SimpleConnectionState, new:

ConnectionState | SimpleConnectionState }

enum ConnectionState { attempted, // initial sent/received

peer_validated, // peer address validated by: client sent Handshake

packet OR client used CONNID chosen by the server. transport-

draft-32, section-8.1 handshake_started, early_write, // 1 RTT can

be sent, but handshake isn't done yet handshake_complete, // TLS

handshake complete: Finished received and sent. tls-draft-32,

section-4.1.1 handshake_confirmed, // HANDSHAKE_DONE sent/received

(connection is now "active", 1RTT can be sent). tls-draft-32,

section-4.1.2 closing, draining, // connection_close sent/received

closed // draining period done, connection state discarded }

enum SimpleConnectionState { attempted, handshake_started,

handshake_confirmed, closed } ~~~

These states correspond to the following transitions for both client

and server:

¶

¶

¶

{

 state: boolean

}

¶

¶

¶

¶

¶

¶

¶

¶

Client:

send initial

state = attempted

get initial

state = validated (not really "needed" at the client, but

somewhat useful to indicate progress nonetheless)

get first Handshake packet

state = handshake_started

get Handshake packet containing ServerFinished

state = handshake_complete

send ClientFinished

state = early_write (1RTT can now be sent)

get HANDSHAKE_DONE

state = handshake_confirmed

Server:

get initial

state = attempted

send initial (don't think this needs a separate state, since some

handshake will always be sent in the same flight as this?)

send handshake EE, CERT, CV, ...

state = handshake_started

send ServerFinished

state = early_write (1RTT can now be sent)

get first handshake packet / something using a server-issued CID

of min length

state = validated

¶

* ¶

- ¶

* ¶

-

¶

* ¶

- ¶

* ¶

- ¶

* ¶

- ¶

* ¶

- ¶

¶

* ¶

- ¶

*

¶

* ¶

- ¶

* ¶

- ¶

*

¶

- ¶

Note:

get handshake packet containing ClientFinished

state = handshake_complete

send HANDSHAKE_DONE

state = handshake_confirmed

connection_state_changed with a new state of "attempted" is

the same conceptual event as the connection_started event above

from the client's perspective. Similarly, a state of "closing" or

"draining" corresponds to the connection_closed event.

5.1.8. MIGRATION-related events

e.g., path_updated

TODO: read up on the draft how migration works and whether to best

fit this here or in TRANSPORT TODO: integrate https://

tools.ietf.org/html/draft-deconinck-quic-multipath-02

For now, infer from other connectivity events and path_challenge/

path_response frames

5.2. security

5.2.1. key_updated

Importance: Base

Note: secret_updated would be more correct, but in the draft it's

called KEY_UPDATE, so stick with that for consistency

Data:

Triggers:

"tls" // (e.g., initial, handshake and 0-RTT keys are generated

by TLS)

"remote_update"

"local_update"

* ¶

- ¶

* ¶

- ¶

¶

¶

¶

¶

¶

¶

¶

{

 key_type:KeyType,

 old?:bytes,

 new:bytes,

 generation?:uint32 // needed for 1RTT key updates

}

¶

¶

*

¶

* ¶

* ¶

5.2.2. key_retired

Importance: Base

Data:

Triggers:

"tls" // (e.g., initial, handshake and 0-RTT keys are dropped

implicitly)

"remote_update"

"local_update"

5.3. transport

5.3.1. version_information

Importance: Core

QUIC endpoints each have their own list of of QUIC versions they

support. The client uses the most likely version in their first

initial. If the server does support that version, it replies with a

version_negotiation packet, containing supported versions. From

this, the client selects a version. This event aggregates all this

information in a single event type. It also allows logging of

supported versions at an endpoint without actual version negotiation

needing to happen.

Data:

Intended use:

When sending an initial, the client logs this event with

client_versions and chosen_version set

¶

¶

{

 key_type:KeyType,

 key?:bytes,

 generation?:uint32 // needed for 1RTT key updates

}

¶

¶

*

¶

* ¶

* ¶

¶

¶

¶

{

 server_versions?:Array<bytes>,

 client_versions?:Array<bytes>,

 chosen_version?:bytes

}

¶

¶

*

¶

Upon receiving a client initial with a supported version, the

server logs this event with server_versions and chosen_version

set

Upon receiving a client initial with an unsupported version, the

server logs this event with server_versions set and

client_versions to the single-element array containing the

client's attempted version. The absence of chosen_version implies

no overlap was found.

Upon receiving a version negotiation packet from the server, the

client logs this event with client_versions set and

server_versions to the versions in the version negotiation packet

and chosen_version to the version it will use for the next

initial packet

5.3.2. alpn_information

Importance: Core

QUIC implementations each have their own list of application level

protocols and versions thereof they support. The client includes a

list of their supported options in its first initial as part of the

TLS Application Layer Protocol Negotiation (alpn) extension. If

there are common option(s), the server chooses the most optimal one

and communicates this back to the client. If not, the connection is

closed.

Data:

Intended use:

When sending an initial, the client logs this event with

client_alpns set

When receiving an initial with a supported alpn, the server logs

this event with server_alpns set, client_alpns equalling the

client-provided list, and chosen_alpn to the value it will send

back to the client.

When receiving an initial with an alpn, the client logs this

event with chosen_alpn to the received value.

*

¶

*

¶

*

¶

¶

¶

¶

{

 server_alpns?:Array<string>,

 client_alpns?:Array<string>,

 chosen_alpn?:string

}

¶

¶

*

¶

*

¶

*

¶

Alternatively, a client can choose to not log the first event,

but wait for the receipt of the server initial to log this event

with both client_alpns and chosen_alpn set.

5.3.3. parameters_set

Importance: Core

This event groups settings from several different sources (transport

parameters, TLS ciphers, etc.) into a single event. This is done to

minimize the amount of events and to decouple conceptual setting

impacts from their underlying mechanism for easier high-level

reasoning.

All these settings are typically set once and never change. However,

they are typically set at different times during the connection, so

there will typically be several instances of this event with

different fields set.

Note that some settings have two variations (one set locally, one

requested by the remote peer). This is reflected in the "owner"

field. As such, this field MUST be correct for all settings included

a single event instance. If you need to log settings from two sides,

you MUST emit two separate event instances.

In the case of connection resumption and 0-RTT, some of the server's

parameters are stored up-front at the client and used for the

initial connection startup. They are later updated with the server's

reply. In these cases, utilize the separate parameters_restored

event to indicate the initial values, and this event to indicate the

updated values, as normal.

Data:

*

¶

¶

¶

¶

¶

¶

¶

Additionally, this event can contain any number of unspecified

fields. This is to reflect setting of for example unknown (greased)

transport parameters or employed (proprietary) extensions.

5.3.4. parameters_restored

Importance: Base

{

 owner?:"local" | "remote",

 resumption_allowed?:boolean, // valid session ticket was received

 early_data_enabled?:boolean, // early data extension was enabled on the TLS layer

 tls_cipher?:string, // (e.g., "AES_128_GCM_SHA256")

 aead_tag_length?:uint8, // depends on the TLS cipher, but it's easier to be explicit. Default value is 16

 // transport parameters from the TLS layer:

 original_destination_connection_id?:bytes,

 initial_source_connection_id?:bytes,

 retry_source_connection_id?:bytes,

 stateless_reset_token?:Token,

 disable_active_migration?:boolean,

 max_idle_timeout?:uint64,

 max_udp_payload_size?:uint32,

 ack_delay_exponent?:uint16,

 max_ack_delay?:uint16,

 active_connection_id_limit?:uint32,

 initial_max_data?:uint64,

 initial_max_stream_data_bidi_local?:uint64,

 initial_max_stream_data_bidi_remote?:uint64,

 initial_max_stream_data_uni?:uint64,

 initial_max_streams_bidi?:uint64,

 initial_max_streams_uni?:uint64,

 preferred_address?:PreferredAddress

}

interface PreferredAddress {

 ip_v4:IPAddress,

 ip_v6:IPAddress,

 port_v4:uint16,

 port_v6:uint16,

 connection_id:bytes,

 stateless_reset_token:Token

}

¶

¶

¶

When using QUIC 0-RTT, clients are expected to remember and restore

the server's transport parameters from the previous connection. This

event is used to indicate which parameters were restored and to

which values when utilizing 0-RTT. Note that not all transport

parameters should be restored (many are even prohibited from being

re-utilized). The ones listed here are the ones expected to be

useful for correct 0-RTT usage.

Data:

Note that, like parameters_set above, this event can contain any

number of unspecified fields to allow for additional/custom

parameters.

5.3.5. packet_sent

Importance: Core

Data:

¶

¶

{

 disable_active_migration?:boolean,

 max_idle_timeout?:uint64,

 max_udp_payload_size?:uint32,

 active_connection_id_limit?:uint32,

 initial_max_data?:uint64,

 initial_max_stream_data_bidi_local?:uint64,

 initial_max_stream_data_bidi_remote?:uint64,

 initial_max_stream_data_uni?:uint64,

 initial_max_streams_bidi?:uint64,

 initial_max_streams_uni?:uint64,

}

¶

¶

¶

¶

Note: We do not explicitly log the encryption_level or

packet_number_space: the header.packet_type specifies this by

inference (assuming correct implementation)

Triggers:

"retransmit_reordered" // draft-23 5.1.1

"retransmit_timeout" // draft-23 5.1.2

"pto_probe" // draft-23 5.3.1

"retransmit_crypto" // draft-19 6.2

"cc_bandwidth_probe" // needed for some CCs to figure out

bandwidth allocations when there are no normal sends

Note: for more details on "datagram_id", see Section 5.3.10. It is

only needed when keeping track of packet coalescing.

5.3.6. packet_received

Importance: Core

Data:

{

 header:PacketHeader,

 frames?:Array<QuicFrame>, // see appendix for the definitions

 is_coalesced?:boolean, // default value is false

 retry_token?:Token, // only if header.packet_type === retry

 stateless_reset_token?:bytes, // only if header.packet_type === stateless_reset. Is always 128 bits in length.

 supported_versions:Array<bytes>, // only if header.packet_type === version_negotiation

 raw?:RawInfo,

 datagram_id?:uint32

}

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

¶

¶

Note: We do not explicitly log the encryption_level or

packet_number_space: the header.packet_type specifies this by

inference (assuming correct implementation)

Triggers:

"keys_available" // if packet was buffered because it couldn't be

decrypted before

Note: for more details on "datagram_id", see Section 5.3.10. It is

only needed when keeping track of packet coalescing.

5.3.7. packet_dropped

Importance: Base

This event indicates a QUIC-level packet was dropped after partial

or no parsing.

Data:

For this event, the "trigger" field SHOULD be set (for example to

one of the values below), as this helps tremendously in debugging.

{

 header:PacketHeader,

 frames?:Array<QuicFrame>, // see appendix for the definitions

 is_coalesced?:boolean,

 retry_token?:Token, // only if header.packet_type === retry

 stateless_reset_token?:bytes, // only if header.packet_type === stateless_reset. Is always 128 bits in length.

 supported_versions:Array<bytes>, // only if header.packet_type === version_negotiation

 raw?:RawInfo,

 datagram_id?:uint32

}

¶

¶

¶

*

¶

¶

¶

¶

¶

{

 header?:PacketHeader, // primarily packet_type should be filled here, as other fields might not be parseable

 raw?:RawInfo,

 datagram_id?:uint32

}

¶

¶

Triggers:

"key_unavailable"

"unknown_connection_id"

"header_parse_error"

"payload_decrypt_error"

"protocol_violation"

"dos_prevention"

"unsupported_version"

"unexpected_packet"

"unexpected_source_connection_id"

"unexpected_version"

"duplicate"

"invalid_initial"

Note: sometimes packets are dropped before they can be associated

with a particular connection (e.g., in case of

"unsupported_version"). This situation is discussed more in Section

3.

Note: for more details on "datagram_id", see Section 5.3.10. It is

only needed when keeping track of packet coalescing.

5.3.8. packet_buffered

Importance: Base

This event is emitted when a packet is buffered because it cannot be

processed yet. Typically, this is because the packet cannot be

parsed yet, and thus we only log the full packet contents when it

was parsed in a packet_received event.

Data:

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

{

 header?:PacketHeader, // primarily packet_type and possible packet_number should be filled here, as other elements might not be available yet

 raw?:RawInfo,

 datagram_id?:uint32

}

¶

Note: for more details on "datagram_id", see Section 5.3.10. It is

only needed when keeping track of packet coalescing.

Triggers:

"backpressure" // indicates the parser cannot keep up,

temporarily buffers packet for later processing

"keys_unavailable" // if packet cannot be decrypted because the

proper keys were not yet available

5.3.9. packets_acked

Importance: Extra

This event is emitted when a (group of) sent packet(s) is

acknowledged by the remote peer for the first time. This information

could also be deduced from the contents of received ACK frames.

However, ACK frames require additional processing logic to determine

when a given packet is acknowledged for the first time, as QUIC uses

ACK ranges which can include repeated ACKs. Additionally, this event

can be used by implementations that do not log frame contents.

Data: ~~~ { packet_number_space?:PacketNumberSpace,

Note: if packet_number_space is omitted, it assumes the default

value of PacketNumberSpace.application_data, as this is by far the

most prevalent packet number space a typical QUIC connection will

use.

5.3.10. datagrams_sent

Importance: Extra

When we pass one or more UDP-level datagrams to the socket. This is

useful for determining how QUIC packet buffers are drained to the

OS.

Data:

¶

¶

*

¶

*

¶

¶

¶

¶

packet_numbers?:Array<uint64> } ~~~¶

¶

¶

¶

¶

{

 count?:uint16, // to support passing multiple at once

 raw?:Array<RawInfo>, // RawInfo:length field indicates total length of the datagrams, including UDP header length

 datagram_ids?:Array<uint32>

}

¶

Note: QUIC itself does not have a concept of a "datagram_id". This

field is a purely qlog-specific construct to allow tracking how

multiple QUIC packets are coalesced inside of a single UDP datagram,

which is an important optimization during the QUIC handshake. For

this, implementations assign a (per-endpoint) unique ID to each

datagram and keep track of which packets were coalesced into the

same datagram. As packet coalescing typically only happens during

the handshake (as it requires at least one long header packet), this

can be done without much overhead.

5.3.11. datagrams_received

Importance: Extra

When we receive one or more UDP-level datagrams from the socket.

This is useful for determining how datagrams are passed to the user

space stack from the OS.

Data:

Note: for more details on "datagram_ids", see Section 5.3.10.

5.3.12. datagram_dropped

Importance: Extra

When we drop a UDP-level datagram. This is typically if it does not

contain a valid QUIC packet (in that case, use packet_dropped

instead).

Data:

5.3.13. stream_state_updated

Importance: Base

This event is emitted whenever the internal state of a QUIC stream

is updated, as described in QUIC transport draft-23 section 3. Most

of this can be inferred from several types of frames going over the

¶

¶

¶

¶

{

 count?:uint16, // to support passing multiple at once

 raw?:Array<RawInfo>, // RawInfo:length field indicates total length of the datagrams, including UDP header length

 datagram_ids?:Array<uint32>

}

¶

¶

¶

¶

¶

{

 raw?:RawInfo

}

¶

¶

wire, but it's much easier to have explicit signals for these state

changes.

Data:

Note: QUIC implementations SHOULD mainly log the simplified

bidirectional (HTTP/2-alike) stream states (e.g., idle, open,

closed) instead of the more finegrained stream states (e.g.,

data_sent, reset_received). These latter ones are mainly for more

in-depth debugging. Tools SHOULD be able to deal with both types

equally.

¶

¶

{

 stream_id:uint64,

 stream_type?:"unidirectional"|"bidirectional", // mainly useful when opening the stream

 old?:StreamState,

 new:StreamState,

 stream_side?:"sending"|"receiving"

}

enum StreamState {

 // bidirectional stream states, draft-23 3.4.

 idle,

 open,

 half_closed_local,

 half_closed_remote,

 closed,

 // sending-side stream states, draft-23 3.1.

 ready,

 send,

 data_sent,

 reset_sent,

 reset_received,

 // receive-side stream states, draft-23 3.2.

 receive,

 size_known,

 data_read,

 reset_read,

 // both-side states

 data_received,

 // qlog-defined

 destroyed // memory actually freed

}

¶

¶

5.3.14. frames_processed

Importance: Extra

This event's main goal is to prevent a large proliferation of

specific purpose events (e.g., packets_acknowledged,

flow_control_updated, stream_data_received). We want to give

implementations the opportunity to (selectively) log this type of

signal without having to log packet-level details (e.g., in

packet_received). Since for almost all cases, the effects of

applying a frame to the internal state of an implementation can be

inferred from that frame's contents, we aggregate these events in

this single "frames_processed" event.

Note: This event can be used to signal internal state change not

resulting directly from the actual "parsing" of a frame (e.g., the

frame could have been parsed, data put into a buffer, then later

processed, then logged with this event).

Note: Implementations logging "packet_received" and which include

all of the packet's constituent frames therein, are not expected to

emit this "frames_processed" event (contrary to the HTTP-level

"frames_parsed" event). Rather, implementations not wishing to log

full packets or that wish to explicitly convey extra information

about when frames are processed (if not directly tied to their

reception) can use this event.

Note: for some events, this approach will lose some information

(e.g., for which encryption level are packets being acknowledged?).

If this information is important, please use the packet_received

event instead.

Note: in some implementations, it can be difficult to log frames

directly, even when using packet_sent and packet_received events.

For these cases, this event also contains the direct packet_number

field, which can be used to more explicitly link this event to the

packet_sent/received events.

Data:

5.3.15. data_moved

Importance: Base

¶

¶

¶

¶

¶

¶

¶

{

 frames:Array<QuicFrame>, // see appendix for the definitions

 packet_number?:uint64

}

¶

¶

Used to indicate when data moves between the different layers (for

example passing from HTTP/3 to QUIC stream buffers and vice versa)

or between HTTP/3 and the actual user application on top (for

example a browser engine). This helps make clear the flow of data,

how long data remains in various buffers and the overheads

introduced by individual layers.

For example, this helps make clear whether received data on a QUIC

stream is moved to the HTTP layer immediately (for example per

received packet) or in larger batches (for example, all QUIC packets

are processed first and afterwards the HTTP layer reads from the

streams with newly available data). This in turn can help identify

bottlenecks or scheduling problems.

Data:

Note: we do not for example use a "direction" field (with values

"up" and "down") to specify the data flow. This is because in some

optimized implementations, data might skip some individual layers.

Additionally, using explicit "from" and "to" fields is more flexible

and allows the definition of other conceptual "layers" (for example

to indicate data from QUIC CRYPTO frames being passed to a TLS

library ("security") or from HTTP/3 to QPACK ("qpack")).

Note: this event type is part of the "transport" category, but

really spans all the different layers. This means we have a few

leaky abstractions here (for example, the stream_id or stream offset

might not be available at some logging points, or the raw data might

not be in a byte-array form). In these situations, implementers can

decide to define new, in-context fields to aid in manual debugging.

5.4. recovery

Note: most of the events in this category are kept generic to

support different recovery approaches and various congestion control

algorithms. Tool creators SHOULD make an effort to support and

visualize even unknown data in these events (e.g., plot unknown

congestion states by name on a timeline visualization).

¶

¶

¶

{

 stream_id?:uint64,

 offset?:uint64,

 length?:uint64, // byte length of the moved data

 from?:string, // typically: use either of "application","http","transport"

 to?:string, // typically: use either of "application","http","transport"

 data?:bytes // raw bytes that were transferred

}

¶

¶

¶

¶

5.4.1. parameters_set

Importance: Base

This event groups initial parameters from both loss detection and

congestion control into a single event. All these settings are

typically set once and never change. Implementation that do, for

some reason, change these parameters during execution, MAY emit the

parameters_set event twice.

Data:

Additionally, this event can contain any number of unspecified

fields to support different recovery approaches.

5.4.2. metrics_updated

Importance: Core

This event is emitted when one or more of the observable recovery

metrics changes value. This event SHOULD group all possible metric

updates that happen at or around the same time in a single event

(e.g., if min_rtt and smoothed_rtt change at the same time, they

should be bundled in a single metrics_updated entry, rather than

split out into two). Consequently, a metrics_updated event is only

guaranteed to contain at least one of the listed metrics.

Data:

¶

¶

¶

{

 // Loss detection, see recovery draft-23, Appendix A.2

 reordering_threshold?:uint16, // in amount of packets

 time_threshold?:float, // as RTT multiplier

 timer_granularity?:uint16, // in ms

 initial_rtt?:float, // in ms

 // congestion control, Appendix B.1.

 max_datagram_size?:uint32, // in bytes // Note: this could be updated after pmtud

 initial_congestion_window?:uint64, // in bytes

 minimum_congestion_window?:uint32, // in bytes // Note: this could change when max_datagram_size changes

 loss_reduction_factor?:float,

 persistent_congestion_threshold?:uint16 // as PTO multiplier

}

¶

¶

¶

¶

¶

Note: to make logging easier, implementations MAY log values even if

they are the same as previously reported values (e.g., two

subsequent METRIC_UPDATE entries can both report the exact same

value for min_rtt). However, applications SHOULD try to log only

actual updates to values.

Additionally, this event can contain any number of unspecified

fields to support different recovery approaches.

5.4.3. congestion_state_updated

Importance: Base

This event signifies when the congestion controller enters a

significant new state and changes its behaviour. This event's

definition is kept generic to support different Congestion Control

algorithms. For example, for the algorithm defined in the Recovery

draft ("enhanced" New Reno), the following states are defined:

slow_start

congestion_avoidance

application_limited

recovery

Data:

{

 // Loss detection, see recovery draft-23, Appendix A.3

 min_rtt?:float, // in ms or us, depending on the overarching qlog's configuration

 smoothed_rtt?:float, // in ms or us, depending on the overarching qlog's configuration

 latest_rtt?:float, // in ms or us, depending on the overarching qlog's configuration

 rtt_variance?:float, // in ms or us, depending on the overarching qlog's configuration

 pto_count?:uint16,

 // Congestion control, Appendix B.2.

 congestion_window?:uint64, // in bytes

 bytes_in_flight?:uint64,

 ssthresh?:uint64, // in bytes

 // qlog defined

 packets_in_flight?:uint64, // sum of all packet number spaces

 pacing_rate?:uint64 // in bps

}

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

The "trigger" field SHOULD be logged if there are multiple ways in

which a state change can occur but MAY be omitted if a given state

can only be due to a single event occuring (e.g., slow start is

exited only when ssthresh is exceeded).

Some triggers for ("enhanced" New Reno):

persistent_congestion

ECN

5.4.4. loss_timer_updated

Importance: Extra

This event is emitted when a recovery loss timer changes state. The

three main event types are:

set: the timer is set with a delta timeout for when it will

trigger next

expired: when the timer effectively expires after the delta

timeout

cancelled: when a timer is cancelled (e.g., all outstanding

packets are acknowledged, start idle period)

Note: to indicate an active timer's timeout update, a new "set"

event is used.

Data:

TODO: how about CC algo's that use multiple timers? How generic do

these events need to be? Just support QUIC-style recovery from the

spec or broader?

{

 old?:string,

 new:string

}

¶

¶

¶

* ¶

* ¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

{

 timer_type?:"ack"|"pto", // called "mode" in draft-23 A.9.

 packet_number_space?: PacketNumberSpace,

 event_type:"set"|"expired"|"cancelled",

 delta?:float // if event_type === "set": delta time in ms or us (see configuration) from this event's timestamp until when the timer will trigger

}

¶

¶

TODO: read up on the loss detection logic in draft-27 onward and see

if this suffices

5.4.5. packet_lost

Importance: Core

This event is emitted when a packet is deemed lost by loss

detection.

Data:

For this event, the "trigger" field SHOULD be set (for example to

one of the values below), as this helps tremendously in debugging.

Triggers:

"reordering_threshold",

"time_threshold"

"pto_expired" // draft-23 section 5.3.1, MAY

5.4.6. marked_for_retransmit

Importance: Extra

This event indicates which data was marked for retransmit upon

detecing a packet loss (see packet_lost). Similar to our reasoning

for the "frames_processed" event, in order to keep the amount of

different events low, we group this signal for all types of

retransmittable data in a single event based on existing QUIC frame

definitions.

Implementations retransmitting full packets or frames directly can

just log the consituent frames of the lost packet here (or do away

with this event and use the contents of the packet_lost event

instead). Conversely, implementations that have more complex logic

(e.g., marking ranges in a stream's data buffer as in-flight), or

that do not track sent frames in full (e.g., only stream offset +

length), can translate their internal behaviour into the appropriate

frame instance here even if that frame was never or will never be

put on the wire.

¶

¶

¶

¶

{

 header?:PacketHeader, // should include at least the packet_type and packet_number

 // not all implementations will keep track of full packets, so these are optional

 frames?:Array<QuicFrame> // see appendix for the definitions

}

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

Note: much of this data can be inferred if implementations log

packet_sent events (e.g., looking at overlapping stream data offsets

and length, one can determine when data was retransmitted).

Data:

6. HTTP/3 event definitions

6.1. http

Note: like all category values, the "http" category is written in

lowercase.

6.1.1. parameters_set

Importance: Base

This event contains HTTP/3 and QPACK-level settings, mostly those

received from the HTTP/3 SETTINGS frame. All these parameters are

typically set once and never change. However, they are typically set

at different times during the connection, so there can be several

instances of this event with different fields set.

Note that some settings have two variations (one set locally, one

requested by the remote peer). This is reflected in the "owner"

field. As such, this field MUST be correct for all settings included

a single event instance. If you need to log settings from two sides,

you MUST emit two separate event instances.

Data:

Note: enabling server push is not explicitly done in HTTP/3 by use

of a setting or parameter. Instead, it is communicated by use of the

MAX_PUSH_ID frame, which should be logged using the frame_created

and frame_parsed events below.

¶

¶

{

 frames:Array<QuicFrame>, // see appendix for the definitions

}

¶

¶

¶

¶

¶

¶

{

 owner?:"local" | "remote",

 max_header_list_size?:uint64, // from SETTINGS_MAX_HEADER_LIST_SIZE

 max_table_capacity?:uint64, // from SETTINGS_QPACK_MAX_TABLE_CAPACITY

 blocked_streams_count?:uint64, // from SETTINGS_QPACK_BLOCKED_STREAMS

 // qlog-defined

 waits_for_settings?:boolean // indicates whether this implementation waits for a SETTINGS frame before processing requests

}

¶

¶

Additionally, this event can contain any number of unspecified

fields. This is to reflect setting of for example unknown (greased)

settings or parameters of (proprietary) extensions.

6.1.2. parameters_restored

Importance: Base

When using QUIC 0-RTT, clients are expected to remember and reuse

the server's SETTINGs from the previous connection. This event is

used to indicate which settings were restored and to which values

when utilizing 0-RTT.

Data:

Note that, like for parameters_set above, this event can contain any

number of unspecified fields to allow for additional and custom

settings.

6.1.3. stream_type_set

Importance: Base

Emitted when a stream's type becomes known. This is typically when a

stream is opened and the stream's type indicator is sent or

received.

Note: most of this information can also be inferred by looking at a

stream's id, since id's are strictly partitioned at the QUIC level.

Even so, this event has a "Base" importance because it helps a lot

in debugging to have this information clearly spelled out.

Data:

¶

¶

¶

¶

{

 max_header_list_size?:uint64,

 max_table_capacity?:uint64,

 blocked_streams_count?:uint64

}

¶

¶

¶

¶

¶

¶

6.1.4. frame_created

Importance: Core

HTTP equivalent to the packet_sent event. This event is emitted when

the HTTP/3 framing actually happens. Note: this is not necessarily

the same as when the HTTP/3 data is passed on to the QUIC layer. For

that, see the "data_moved" event.

Data:

Note: in HTTP/3, DATA frames can have arbitrarily large lengths to

reduce frame header overhead. As such, DATA frames can span many

QUIC packets and can be created in a streaming fashion. In this

case, the frame_created event is emitted once for the frame header,

and further streamed data is indicated using the data_moved event.

6.1.5. frame_parsed

Importance: Core

{

 stream_id:uint64,

 owner?:"local"|"remote"

 old?:StreamType,

 new:StreamType,

 associated_push_id?:uint64 // only when new == "push"

}

enum StreamType {

 data, // bidirectional request-response streams

 control,

 push,

 reserved,

 qpack_encode,

 qpack_decode

}

¶

¶

¶

¶

{

 stream_id:uint64,

 length?:uint64, // payload byte length of the frame

 frame:HTTP3Frame, // see appendix for the definitions,

 raw?:RawInfo

}

¶

¶

¶

HTTP equivalent to the packet_received event. This event is emitted

when we actually parse the HTTP/3 frame. Note: this is not

necessarily the same as when the HTTP/3 data is actually received on

the QUIC layer. For that, see the "data_moved" event.

Data:

Note: in HTTP/3, DATA frames can have arbitrarily large lengths to

reduce frame header overhead. As such, DATA frames can span many

QUIC packets and can be processed in a streaming fashion. In this

case, the frame_parsed event is emitted once for the frame header,

and further streamed data is indicated using the data_moved event.

6.1.6. push_resolved

Importance: Extra

This event is emitted when a pushed resource is successfully claimed

(used) or, conversely, abandoned (rejected) by the application on

top of HTTP/3 (e.g., the web browser). This event is added to help

debug problems with unexpected PUSH behaviour, which is commonplace

with HTTP/2.

6.2. qpack

Note: like all category values, the "qpack" category is written in

lowercase.

The QPACK events mainly serve as an aid to debug low-level QPACK

issues. The higher-level, plaintext header values SHOULD (also) be

logged in the http.frame_created and http.frame_parsed event data

(instead).

Note: qpack does not have its own parameters_set event. This was

merged with http.parameters_set for brevity, since qpack is a

¶

¶

{

 stream_id:uint64,

 length?:uint64, // payload byte length of the frame

 frame:HTTP3Frame, // see appendix for the definitions,

 raw?:RawInfo

}

¶

¶

¶

¶

{

 push_id?:uint64,

 stream_id?:uint64, // in case this is logged from a place that does not have access to the push_id

 decision:"claimed"|"abandoned"

}

¶

¶

¶

required extension for HTTP/3 anyway. Other HTTP/3 extensions MAY

also log their SETTINGS fields in http.parameters_set or MAY define

their own events.

6.2.1. state_updated

Importance: Base

This event is emitted when one or more of the internal QPACK

variables changes value. Note that some variables have two

variations (one set locally, one requested by the remote peer). This

is reflected in the "owner" field. As such, this field MUST be

correct for all variables included a single event instance. If you

need to log settings from two sides, you MUST emit two separate

event instances.

Data:

6.2.2. stream_state_updated

Importance: Core

This event is emitted when a stream becomes blocked or unblocked by

header decoding requests or QPACK instructions.

Note: This event is of "Core" importance, as it might have a large

impact on HTTP/3's observed performance.

Data:

6.2.3. dynamic_table_updated

Importance: Extra

¶

¶

¶

¶

{

 owner:"local" | "remote",

 dynamic_table_capacity?:uint64,

 dynamic_table_size?:uint64, // effective current size, sum of all the entries

 known_received_count?:uint64,

 current_insert_count?:uint64

}

¶

¶

¶

¶

¶

{

 stream_id:uint64,

 state:"blocked"|"unblocked" // streams are assumed to start "unblocked" until they become "blocked"

}

¶

¶

This event is emitted when one or more entries are inserted or

evicted from QPACK's dynamic table.

Data:

6.2.4. headers_encoded

Importance: Base

This event is emitted when an uncompressed header block is encoded

successfully.

Note: this event has overlap with http.frame_created for the

HeadersFrame type. When outputting both events, implementers MAY

omit the "headers" field in this event.

Data:

6.2.5. headers_decoded

Importance: Base

This event is emitted when a compressed header block is decoded

successfully.

¶

¶

{

 owner:"local" | "remote", // local = the encoder's dynamic table. remote = the decoder's dynamic table

 update_type:"inserted"|"evicted",

 entries:Array<DynamicTableEntry>

}

class DynamicTableEntry {

 index:uint64;

 name?:string | bytes;

 value?:string | bytes;

}

¶

¶

¶

¶

¶

{

 stream_id?:uint64,

 headers?:Array<HTTPHeader>,

 block_prefix:QPackHeaderBlockPrefix,

 header_block:Array<QPackHeaderBlockRepresentation>,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

Note: this event has overlap with http.frame_parsed for the

HeadersFrame type. When outputting both events, implementers MAY

omit the "headers" field in this event.

Data:

6.2.6. instruction_created

Importance: Base

This event is emitted when a QPACK instruction (both decoder and

encoder) is created and added to the encoder/decoder stream.

Data:

Note: encoder/decoder semantics and stream_id's are implicit in

either the instruction types or can be logged via other events

(e.g., http.stream_type_set)

6.2.7. instruction_parsed

Importance: Base

This event is emitted when a QPACK instruction (both decoder and

encoder) is read from the encoder/decoder stream.

Data:

¶

¶

{

 stream_id?:uint64,

 headers?:Array<HTTPHeader>,

 block_prefix:QPackHeaderBlockPrefix,

 header_block:Array<QPackHeaderBlockRepresentation>,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

¶

{

 instruction:QPackInstruction // see appendix for the definitions,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

¶

¶

Note: encoder/decoder semantics and stream_id's are implicit in

either the instruction types or can be logged via other events

(e.g., http.stream_type_set)

7. Generic events and Simulation indicators

7.1. generic

The main goal of the events in this category is to allow

implementations to fully replace their existing text-based logging

by qlog. This is done by providing events to log generic strings for

typical well-known logging levels (error, warning, info, debug,

verbose).

7.1.1. error

Importance: Core

Used to log details of an internal error. For errors that

effectively lead to the closure of a QUIC connection, it is

recommended to use transport:connection_closed instead.

Data:

7.1.2. warning

Importance: Base

Used to log details of an internal warning that might not get

reflected on the wire.

Data:

{

 instruction:QPackInstruction // see appendix for the definitions,

 length?:uint32,

 raw?:bytes

}

¶

¶

¶

¶

¶

¶

{

 code?:uint32,

 message?:string

}

¶

¶

¶

¶

{

 code?:uint32,

 message?:string

}

¶

7.1.3. info

Importance: Extra

Used mainly for implementations that want to use qlog as their one

and only logging format but still want to support unstructured

string messages.

Data:

7.1.4. debug

Importance: Extra

Used mainly for implementations that want to use qlog as their one

and only logging format but still want to support unstructured

string messages.

Data:

7.1.5. verbose

Importance: Extra

Used mainly for implementations that want to use qlog as their one

and only logging format but still want to support unstructured

string messages.

Data:

7.2. simulation

When evaluating a protocol evaluation, one typically sets up a

series of interoperability or benchmarking tests, in which the test

situations can change over time. For example, the network bandwidth

or latency can vary during the test, or the network can be fully

disable for a short time. In these setups, it is useful to know when

¶

¶

¶

{

 message:string

}

¶

¶

¶

¶

{

 message:string

}

¶

¶

¶

¶

{

 message:string

}

¶

[QLOG-MAIN]

[QUIC-HTTP]

exactly these conditions are triggered, to allow for proper

correlation with other events.

7.2.1. scenario

Importance: Extra

Used to specify which specific scenario is being tested at this

particular instance. This could also be reflected in the top-level

qlog's summary or configuration fields, but having a separate event

allows easier aggregation of several simulations into one trace.

7.2.2. marker

Importance: Extra

Used to indicate when specific emulation conditions are triggered at

set times (e.g., at 3 seconds in 2% packet loss is introduced, at

10s a NAT rebind is triggered).

8. Security Considerations

TBD

9. IANA Considerations

TBD

10. References

10.1. Normative References

Marx, R., Ed., "Main logging schema for qlog", Work in

Progress, Internet-Draft, draft-marx-qlog-main-schema-02,

2 November 2020, <https://tools.ietf.org/html/draft-marx-

qlog-main-schema-02>.

Bishop, M., Ed., "Hypertext Transfer Protocol Version 3

(HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

¶

¶

¶

{

 name?:string,

 details?:any

}

¶

¶

¶

{

 type?:string,

 message?:string

}

¶

¶

¶

https://tools.ietf.org/html/draft-marx-qlog-main-schema-02
https://tools.ietf.org/html/draft-marx-qlog-main-schema-02

[QUIC-QPACK]

[QUIC-TRANSPORT]

[RFC2119]

quic-http-32, 1 October 2020, <https://tools.ietf.org/

html/draft-ietf-quic-http-32>.

Frindell, A., Ed., "QPACK: Header Compression for HTTP/

3", Work in Progress, Internet-Draft, draft-ietf-quic-

qpack-19, 20 October 2020, <https://tools.ietf.org/html/

draft-ietf-quic-qpack-19>.

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-

Based Multiplexed and Secure Transport", Work in

Progress, Internet-Draft, draft-ietf-quic-transport-32, 1

October 2020, <https://tools.ietf.org/html/draft-ietf-

quic-transport-32>.

10.2. Informative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Appendix A. QUIC data field definitions

A.1. IPAddress

A.2. PacketType

A.3. PacketNumberSpace

class IPAddress : string | bytes;

// an IPAddress can either be a "human readable" form (e.g., "127.0.0.1" for v4 or "2001:0db8:85a3:0000:0000:8a2e:0370:7334" for v6) or use a raw byte-form (as the string forms can be ambiguous)

¶

enum PacketType {

 initial,

 handshake,

 zerortt = "0RTT",

 onertt = "1RTT",

 retry,

 version_negotiation,

 stateless_reset,

 unknown

}

¶

enum PacketNumberSpace {

 initial,

 handshake,

 application_data

}

¶

https://tools.ietf.org/html/draft-ietf-quic-http-32
https://tools.ietf.org/html/draft-ietf-quic-http-32
https://tools.ietf.org/html/draft-ietf-quic-qpack-19
https://tools.ietf.org/html/draft-ietf-quic-qpack-19
https://tools.ietf.org/html/draft-ietf-quic-transport-32
https://tools.ietf.org/html/draft-ietf-quic-transport-32
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

A.4. PacketHeader

A.5. Token

The token carried in an Initial packet can either be a retry token

from a Retry packet, a stateless reset token from a Stateless Reset

packet or one originally provided by the server in a NEW_TOKEN frame

used when resuming a connection (e.g., for address validation

purposes). Retry and resumption tokens typically contain encoded

metadata to check the token's validity when it is used, but this

metadata and its format is implementation specific. For that, this

field includes a general-purpose "details" field.

class PacketHeader {

 // Note: short vs long header is implicit through PacketType

 packet_type: PacketType;

 packet_number: uint64;

 flags?: uint8; // the bit flags of the packet headers (spin bit, key update bit, etc. up to and including the packet number length bits if present) interpreted as a single 8-bit integer

 token?:Token; // only if packet_type == initial

 length?: uint16, // only if packet_type == initial || handshake || 0RTT. Signifies length of the packet_number plus the payload.

 // only if present in the header

 // if correctly using transport:connection_id_updated events,

 // dcid can be skipped for 1RTT packets

 version?: bytes; // e.g., "ff00001d" for draft-29

 scil?: uint8;

 dcil?: uint8;

 scid?: bytes;

 dcid?: bytes;

}

¶

class Token {

 type?:"retry"|"resumption"|"stateless_reset";

 length?:uint32; // byte length of the token

 data?:bytes; // raw byte value of the token

 details?:any; // decoded fields included in the token (typically: peer's IP address, creation time)

}

¶

¶

A.6. KeyType

A.7. QUIC Frames

A.7.1. PaddingFrame

In QUIC, PADDING frames are simply identified as a single byte of

value 0. As such, each padding byte could be theoretically

interpreted and logged as an individual PaddingFrame.

However, as this leads to heavy logging overhead, implementations

SHOULD instead emit just a single PaddingFrame and set the

payload_length property to the amount of PADDING bytes/frames

included in the packet.

A.7.2. PingFrame

enum KeyType {

 server_initial_secret,

 client_initial_secret,

 server_handshake_secret,

 client_handshake_secret,

 server_0rtt_secret,

 client_0rtt_secret,

 server_1rtt_secret,

 client_1rtt_secret

}

¶

type QuicFrame = PaddingFrame | PingFrame | AckFrame | ResetStreamFrame | StopSendingFrame | CryptoFrame | NewTokenFrame | StreamFrame | MaxDataFrame | MaxStreamDataFrame | MaxStreamsFrame | DataBlockedFrame | StreamDataBlockedFrame | StreamsBlockedFrame | NewConnectionIDFrame | RetireConnectionIDFrame | PathChallengeFrame | PathResponseFrame | ConnectionCloseFrame | HandshakeDoneFrame | UnknownFrame;¶

¶

¶

class PaddingFrame{

 frame_type:string = "padding";

 length?:uint32; // total frame length, including frame header

 payload_length?:uint32;

}

¶

class PingFrame{

 frame_type:string = "ping";

 length?:uint32; // total frame length, including frame header

 payload_length?:uint32;

}

¶

A.7.3. AckFrame

Note: the packet ranges in AckFrame.acked_ranges do not necessarily

have to be ordered (e.g., [[5,9],[1,4]] is a valid value).

Note: the two numbers in the packet range can be the same (e.g.,

[120,120] means that packet with number 120 was ACKed). However, in

that case, implementers SHOULD log [120] instead and tools MUST be

able to deal with both notations.

A.7.4. ResetStreamFrame

class AckFrame{

 frame_type:string = "ack";

 ack_delay?:float; // in ms

 // first number is "from": lowest packet number in interval

 // second number is "to": up to and including // highest packet number in interval

 // e.g., looks like [[1,2],[4,5]]

 acked_ranges?:Array<[uint64, uint64]|[uint64]>;

 // ECN (explicit congestion notification) related fields (not always present)

 ect1?:uint64;

 ect0?:uint64;

 ce?:uint64;

 length?:uint32; // total frame length, including frame header

 payload_length?:uint32;

}

¶

¶

¶

class ResetStreamFrame{

 frame_type:string = "reset_stream";

 stream_id:uint64;

 error_code:ApplicationError | uint32;

 final_size:uint64; // in bytes

 length?:uint32; // total frame length, including frame header

 payload_length?:uint32;

}

¶

A.7.5. StopSendingFrame

A.7.6. CryptoFrame

A.7.7. NewTokenFrame

A.7.8. StreamFrame

class StopSendingFrame{

 frame_type:string = "stop_sending";

 stream_id:uint64;

 error_code:ApplicationError | uint32;

 length?:uint32; // total frame length, including frame header

 payload_length?:uint32;

}

¶

class CryptoFrame{

 frame_type:string = "crypto";

 offset:uint64;

 length:uint64;

 payload_length?:uint32;

}

¶

class NewTokenFrame{

 frame_type:string = "new_token";

 token:Token

}

¶

class StreamFrame{

 frame_type:string = "stream";

 stream_id:uint64;

 // These two MUST always be set

 // If not present in the Frame type, log their default values

 offset:uint64;

 length:uint64;

 // this MAY be set any time, but MUST only be set if the value is "true"

 // if absent, the value MUST be assumed to be "false"

 fin?:boolean;

 raw?:bytes;

}

¶

A.7.9. MaxDataFrame

A.7.10. MaxStreamDataFrame

A.7.11. MaxStreamsFrame

A.7.12. DataBlockedFrame

A.7.13. StreamDataBlockedFrame

class MaxDataFrame{

 frame_type:string = "max_data";

 maximum:uint64;

}

¶

class MaxStreamDataFrame{

 frame_type:string = "max_stream_data";

 stream_id:uint64;

 maximum:uint64;

}

¶

class MaxStreamsFrame{

 frame_type:string = "max_streams";

 stream_type:string = "bidirectional" | "unidirectional";

 maximum:uint64;

}

¶

class DataBlockedFrame{

 frame_type:string = "data_blocked";

 limit:uint64;

}

¶

class StreamDataBlockedFrame{

 frame_type:string = "stream_data_blocked";

 stream_id:uint64;

 limit:uint64;

}

¶

A.7.14. StreamsBlockedFrame

A.7.15. NewConnectionIDFrame

A.7.16. RetireConnectionIDFrame

A.7.17. PathChallengeFrame

A.7.18. PathResponseFrame

class StreamsBlockedFrame{

 frame_type:string = "streams_blocked";

 stream_type:string = "bidirectional" | "unidirectional";

 limit:uint64;

}

¶

class NewConnectionIDFrame{

 frame_type:string = "new_connection_id";

 sequence_number:uint32;

 retire_prior_to:uint32;

 connection_id_length?:uint8;

 connection_id:bytes;

 stateless_reset_token?:Token;

}

¶

class RetireConnectionIDFrame{

 frame_type:string = "retire_connection_id";

 sequence_number:uint32;

}

¶

class PathChallengeFrame{

 frame_type:string = "path_challenge";

 data?:bytes; // always 64-bit

}

¶

class PathResponseFrame{

 frame_type:string = "path_response";

 data?:bytes; // always 64-bit

}

¶

A.7.19. ConnectionCloseFrame

raw_error_code is the actual, numerical code. This is useful because

some error types are spread out over a range of codes (e.g., QUIC's

crypto_error).

A.7.20. HandshakeDoneFrame

A.7.21. UnknownFrame

¶

type ErrorSpace = "transport" | "application";

class ConnectionCloseFrame{

 frame_type:string = "connection_close";

 error_space?:ErrorSpace;

 error_code?:TransportError | ApplicationError | uint32;

 raw_error_code?:uint32;

 reason?:string;

 trigger_frame_type?:uint64 | string; // For known frame types, the appropriate "frame_type" string. For unknown frame types, the hex encoded identifier value

}

¶

class HandshakeDoneFrame{

 frame_type:string = "handshake_done";

}

¶

class UnknownFrame{

 frame_type:string = "unknown";

 raw_frame_type:uint64;

 raw_length?:uint32;

 raw?:bytes;

}

¶

A.7.22. TransportError

A.7.23. CryptoError

These errors are defined in the TLS document as "A TLS alert is

turned into a QUIC connection error by converting the one-byte alert

description into a QUIC error code. The alert description is added

to 0x100 to produce a QUIC error code from the range reserved for

CRYPTO_ERROR."

This approach maps badly to a pre-defined enum. As such, we define

the crypto_error string as having a dynamic component here, which

should include the hex-encoded value of the TLS alert description.

Appendix B. HTTP/3 data field definitions

B.1. HTTP/3 Frames

B.1.1. DataFrame

enum TransportError {

 no_error,

 internal_error,

 connection_refused,

 flow_control_error,

 stream_limit_error,

 stream_state_error,

 final_size_error,

 frame_encoding_error,

 transport_parameter_error,

 connection_id_limit_error,

 protocol_violation,

 invalid_token,

 application_error,

 crypto_buffer_exceeded

}

¶

¶

¶

enum CryptoError {

 crypto_error_{TLS_ALERT}

}

¶

type HTTP3Frame = DataFrame | HeadersFrame | PriorityFrame | CancelPushFrame | SettingsFrame | PushPromiseFrame | GoAwayFrame | MaxPushIDFrame | DuplicatePushFrame | ReservedFrame | UnknownFrame;¶

class DataFrame{

 frame_type:string = "data";

 raw?:bytes;

}

¶

B.1.2. HeadersFrame

This represents an uncompressed, plaintext HTTP Headers frame (e.g.,

no QPACK compression is applied).

For example:

B.1.3. CancelPushFrame

B.1.4. SettingsFrame

B.1.5. PushPromiseFrame

¶

¶

headers: [{"name":":path","value":"/"},{"name":":method","value":"GET"},{"name":":authority","value":"127.0.0.1:4433"},{"name":":scheme","value":"https"}]¶

class HeadersFrame{

 frame_type:string = "header";

 headers:Array<HTTPHeader>;

}

class HTTPHeader {

 name:string;

 value:string;

}

¶

class CancelPushFrame{

 frame_type:string = "cancel_push";

 push_id:uint64;

}

¶

class SettingsFrame{

 frame_type:string = "settings";

 settings:Array<Setting>;

}

class Setting{

 name:string;

 value:string;

}

¶

class PushPromiseFrame{

 frame_type:string = "push_promise";

 push_id:uint64;

 headers:Array<HTTPHeader>;

}

¶

B.1.6. GoAwayFrame

B.1.7. MaxPushIDFrame

B.1.8. DuplicatePushFrame

B.1.9. ReservedFrame

B.1.10. UnknownFrame

HTTP/3 re-uses QUIC's UnknownFrame definition, since their values

and usage overlaps.

class GoAwayFrame{

 frame_type:string = "goaway";

 stream_id:uint64;

}

¶

class MaxPushIDFrame{

 frame_type:string = "max_push_id";

 push_id:uint64;

}

¶

class DuplicatePushFrame{

 frame_type:string = "duplicate_push";

 push_id:uint64;

}

¶

class ReservedFrame{

 frame_type:string = "reserved";

}

¶

¶

B.2. ApplicationError

Appendix C. QPACK DATA type definitions

C.1. QPACK Instructions

Note: the instructions do not have explicit encoder/decoder types,

since there is no overlap between the insturctions of both types in

neither name nor function.

C.1.1. SetDynamicTableCapacityInstruction

enum ApplicationError{

 http_no_error,

 http_general_protocol_error,

 http_internal_error,

 http_stream_creation_error,

 http_closed_critical_stream,

 http_frame_unexpected,

 http_frame_error,

 http_excessive_load,

 http_id_error,

 http_settings_error,

 http_missing_settings,

 http_request_rejected,

 http_request_cancelled,

 http_request_incomplete,

 http_early_response,

 http_connect_error,

 http_version_fallback

}

¶

¶

type QPackInstruction = SetDynamicTableCapacityInstruction | InsertWithNameReferenceInstruction | InsertWithoutNameReferenceInstruction | DuplicateInstruction | HeaderAcknowledgementInstruction | StreamCancellationInstruction | InsertCountIncrementInstruction;¶

class SetDynamicTableCapacityInstruction {

 instruction_type:string = "set_dynamic_table_capacity";

 capacity:uint32;

}

¶

C.1.2. InsertWithNameReferenceInstruction

C.1.3. InsertWithoutNameReferenceInstruction

C.1.4. DuplicateInstruction

C.1.5. HeaderAcknowledgementInstruction

class InsertWithNameReferenceInstruction {

 instruction_type:string = "insert_with_name_reference";

 table_type:"static"|"dynamic";

 name_index:uint32;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

}

¶

class InsertWithoutNameReferenceInstruction {

 instruction_type:string = "insert_without_name_reference";

 huffman_encoded_name:boolean;

 name_length?:uint32;

 name?:string;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

}

¶

class DuplicateInstruction {

 instruction_type:string = "duplicate";

 index:uint32;

}

¶

class HeaderAcknowledgementInstruction {

 instruction_type:string = "header_acknowledgement";

 stream_id:uint64;

}

¶

C.1.6. StreamCancellationInstruction

C.1.7. InsertCountIncrementInstruction

C.2. QPACK Header compression

C.2.1. IndexedHeaderField

Note: also used for "indexed header field with post-base index"

C.2.2. LiteralHeaderFieldWithName

Note: also used for "Literal header field with post-base name

reference"

class StreamCancellationInstruction {

 instruction_type:string = "stream_cancellation";

 stream_id:uint64;

}

¶

class InsertCountIncrementInstruction {

 instruction_type:string = "insert_count_increment";

 increment:uint32;

}

¶

type QPackHeaderBlockRepresentation = IndexedHeaderField | LiteralHeaderFieldWithName | LiteralHeaderFieldWithoutName;¶

¶

class IndexedHeaderField {

 header_field_type:string = "indexed_header";

 table_type:"static"|"dynamic"; // MUST be "dynamic" if is_post_base is true

 index:uint32;

 is_post_base:boolean = false; // to represent the "indexed header field with post-base index" header field type

}

¶

¶

C.2.3. LiteralHeaderFieldWithoutName

C.2.4. QPackHeaderBlockPrefix

Appendix D. Change Log

D.1. Since draft-01:

Major changes:

Moved data_moved from http to transport. Also made the "from" and

"to" fields flexible strings instead of an enum (#111,#65)

Moved packet_type fields to PacketHeader. Moved packet_size field

out of PacketHeader to RawInfo:length (#40)

class LiteralHeaderFieldWithName {

 header_field_type:string = "literal_with_name";

 preserve_literal:boolean; // the 3rd "N" bit

 table_type:"static"|"dynamic"; // MUST be "dynamic" if is_post_base is true

 name_index:uint32;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

 is_post_base:boolean = false; // to represent the "Literal header field with post-base name reference" header field type

}

¶

class LiteralHeaderFieldWithoutName {

 header_field_type:string = "literal_without_name";

 preserve_literal:boolean; // the 3rd "N" bit

 huffman_encoded_name:boolean;

 name_length?:uint32;

 name?:string;

 huffman_encoded_value:boolean;

 value_length?:uint32;

 value?:string;

}

¶

class QPackHeaderBlockPrefix {

 required_insert_count:uint32;

 sign_bit:boolean;

 delta_base:uint32;

}

¶

¶

*

¶

*

¶

Made events that need to log packet_type and packet_number use a

header field instead of logging these fields individually

Added support for logging retry, stateless reset and initial

tokens (#94,#86,#117)

Moved separate general event categories into a single category

"generic" (#47)

Added "transport:connection_closed" event (#43,#85,#78,#49)

Added version_information and alpn_information events

(#85,#75,#28)

Added parameters_restored events to help clarify 0-RTT behaviour

(#88)

Smaller changes:

Merged loss_timer events into one loss_timer_updated event

Field data types are now strongly defined (#10,#39,#36,#115)

Renamed qpack instruction_received and instruction_sent to

instruction_created and instruction_parsed (#114)

Updated qpack:dynamic_table_updated.update_type. It now has the

value "inserted" instead of "added" (#113)

Updated qpack:dynamic_table_updated. It now has an "owner" field

to differentiate encoder vs decoder state (#112)

Removed push_allowed from http:parameters_set (#110)

Removed explicit trigger field indications from events, since

this was moved to be a generic property of the "data" field (#80)

Updated transport:connection_id_updated to be more in line with

other similar events. Also dropped importance from Core to Base

(#45)

Added length property to PaddingFrame (#34)

Added packet_number field to transport:frames_processed (#74)

Added a way to generically log packet header flags (first 8 bits)

to PacketHeader

Added additional guidance on which events to log in which

situations (#53)

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

*

¶

Added "simulation:scenario" event to help indicate simulation

details

Added "packets_acked" event (#107)

Added "datagram_ids" to the datagram_X and packet_X events to

allow tracking of coalesced QUIC packets (#91)

Extended connection_state_updated with more fine-grained states

(#49)

D.2. Since draft-00:

Event and category names are now all lowercase

Added many new events and their definitions

"type" fields have been made more specific (especially important

for PacketType fields, which are now called packet_type instead

of type)

Events are given an importance indicator (issue #22)

Event names are more consistent and use past tense (issue #21)

Triggers have been redefined as properties of the "data" field

and updated for most events (issue #23)

Appendix E. Design Variations

TBD

Appendix F. Acknowledgements

Thanks to Marten Seemann, Jana Iyengar, Brian Trammell, Dmitri

Tikhonov, Stephen Petrides, Jari Arkko, Marcus Ihlar, Victor

Vasiliev, Mirja Kuehlewind, Jeremy Laine, Kazu Yamamoto, Christian

Huitema, and Lucas Pardue for their feedback and suggestions.

Author's Address

Robin Marx

Hasselt University

Email: robin.marx@uhasselt.be

*

¶

* ¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

¶

¶

mailto:robin.marx@uhasselt.be

	QUIC and HTTP/3 event definitions for qlog
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Overview
	2.1. Importance
	2.2. Custom fields

	3. Events not belonging to a single connection
	4. QUIC and HTTP/3 fields
	4.1. Raw packet and frame information

	5. QUIC event definitions
	5.1. connectivity
	5.1.1. server_listening
	5.1.2. connection_started
	5.1.3. connection_closed
	5.1.4. connection_id_updated
	5.1.5. spin_bit_updated
	5.1.6. connection_retried
	5.1.7. connection_state_updated
	5.1.8. MIGRATION-related events

	5.2. security
	5.2.1. key_updated
	5.2.2. key_retired

	5.3. transport
	5.3.1. version_information
	5.3.2. alpn_information
	5.3.3. parameters_set
	5.3.4. parameters_restored
	5.3.5. packet_sent
	5.3.6. packet_received
	5.3.7. packet_dropped
	5.3.8. packet_buffered
	5.3.9. packets_acked
	5.3.10. datagrams_sent
	5.3.11. datagrams_received
	5.3.12. datagram_dropped
	5.3.13. stream_state_updated
	5.3.14. frames_processed
	5.3.15. data_moved

	5.4. recovery
	5.4.1. parameters_set
	5.4.2. metrics_updated
	5.4.3. congestion_state_updated
	5.4.4. loss_timer_updated
	5.4.5. packet_lost
	5.4.6. marked_for_retransmit

	6. HTTP/3 event definitions
	6.1. http
	6.1.1. parameters_set
	6.1.2. parameters_restored
	6.1.3. stream_type_set
	6.1.4. frame_created
	6.1.5. frame_parsed
	6.1.6. push_resolved

	6.2. qpack
	6.2.1. state_updated
	6.2.2. stream_state_updated
	6.2.3. dynamic_table_updated
	6.2.4. headers_encoded
	6.2.5. headers_decoded
	6.2.6. instruction_created
	6.2.7. instruction_parsed

	7. Generic events and Simulation indicators
	7.1. generic
	7.1.1. error
	7.1.2. warning
	7.1.3. info
	7.1.4. debug
	7.1.5. verbose

	7.2. simulation
	7.2.1. scenario
	7.2.2. marker

	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. QUIC data field definitions
	A.1. IPAddress
	A.2. PacketType
	A.3. PacketNumberSpace
	A.4. PacketHeader
	A.5. Token
	A.6. KeyType
	A.7. QUIC Frames
	A.7.1. PaddingFrame
	A.7.2. PingFrame
	A.7.3. AckFrame
	A.7.4. ResetStreamFrame
	A.7.5. StopSendingFrame
	A.7.6. CryptoFrame
	A.7.7. NewTokenFrame
	A.7.8. StreamFrame
	A.7.9. MaxDataFrame
	A.7.10. MaxStreamDataFrame
	A.7.11. MaxStreamsFrame
	A.7.12. DataBlockedFrame
	A.7.13. StreamDataBlockedFrame
	A.7.14. StreamsBlockedFrame
	A.7.15. NewConnectionIDFrame
	A.7.16. RetireConnectionIDFrame
	A.7.17. PathChallengeFrame
	A.7.18. PathResponseFrame
	A.7.19. ConnectionCloseFrame
	A.7.20. HandshakeDoneFrame
	A.7.21. UnknownFrame
	A.7.22. TransportError
	A.7.23. CryptoError

	Appendix B. HTTP/3 data field definitions
	B.1. HTTP/3 Frames
	B.1.1. DataFrame
	B.1.2. HeadersFrame
	B.1.3. CancelPushFrame
	B.1.4. SettingsFrame
	B.1.5. PushPromiseFrame
	B.1.6. GoAwayFrame
	B.1.7. MaxPushIDFrame
	B.1.8. DuplicatePushFrame
	B.1.9. ReservedFrame
	B.1.10. UnknownFrame

	B.2. ApplicationError
	Appendix C. QPACK DATA type definitions
	C.1. QPACK Instructions
	C.1.1. SetDynamicTableCapacityInstruction
	C.1.2. InsertWithNameReferenceInstruction
	C.1.3. InsertWithoutNameReferenceInstruction
	C.1.4. DuplicateInstruction
	C.1.5. HeaderAcknowledgementInstruction
	C.1.6. StreamCancellationInstruction
	C.1.7. InsertCountIncrementInstruction

	C.2. QPACK Header compression
	C.2.1. IndexedHeaderField
	C.2.2. LiteralHeaderFieldWithName
	C.2.3. LiteralHeaderFieldWithoutName
	C.2.4. QPackHeaderBlockPrefix

	Appendix D. Change Log
	D.1. Since draft-01:
	D.2. Since draft-00:
	Appendix E. Design Variations
	Appendix F. Acknowledgements
	Author's Address

