
QUIC R. Marx
Internet-Draft Hasselt University
Intended status: Standards Track July 03, 2019
Expires: January 4, 2020

Main logging schema for qlog
draft-marx-qlog-main-schema-00

Abstract

 This document describes a high-level schema for a standardized
 endpoint logging format called qlog. This format allows easy sharing
 of data and the creation of reusable visualization and debugging
 tools. The high-level schema in this document is intended to be
 protocol-agnostic. Separate documents specify how the format should
 be used for specific protocol data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Marx Expires January 4, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Main logging schema for qlog July 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 2

2. Design Goals . 3
3. The High Level Schema . 3
3.1. Top level container 3
3.2. Summary field . 4
3.3. Trace container . 4
3.3.1. vantage_point . 5
3.3.2. Title and Description 6
3.3.3. Configuration . 6
3.3.4. common_fields and event_fields 7

3.4. Field name semantics 10
 3.4.1. time, delta_time and reference_time + relative_time . 10

3.4.2. group_id and group_ids 11
3.4.3. CATEGORY and EVENT_TYPE 15
3.4.4. TRIGGER . 15
3.4.5. DATA . 15
3.4.6. Event field values 15

4. Tooling requirements . 15
5. Methods of Access . 16
6. Notes on Practical Use 16
7. Security Considerations 16
8. IANA Considerations . 16
9. Normative References . 16
Appendix A. Change Log . 17
A.1. Since draft-marx-qlog-main-schema-00: 17

Appendix B. Design Variations 17
Appendix C. Acknowledgements 17

 Author's Address . 17

1. Introduction

 Feedback and discussion welcome at https://github.com/quiclog/
internet-drafts

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/draft-marx-qlog-main-schema-00
https://github.com/quiclog/internet-drafts
https://github.com/quiclog/internet-drafts
https://datatracker.ietf.org/doc/html/rfc2119

Marx Expires January 4, 2020 [Page 2]

Internet-Draft Main logging schema for qlog July 2019

2. Design Goals

 The main tenets for the schema design are:

 o Streamable, event-based

 o Flexibility in the format, complexity in the tooling (e.g., few
 components are a MUST, tools need to deal with this)

 o Extensible but pragmatic (e.g., no complex fixed schema with
 extension points)

 o Aggregation and transformation friendly (e.g., the top-level
 element is a container for individual traces)

 o Explicit and human-readable

3. The High Level Schema

3.1. Top level container

 To allow separate qlog traces to be contained within a single,
 encompassing qlog file, the top-level element in the qlog schema
 defines only a small set of fields and an array of component traces.
 Only the "qlog_version" and "traces" fields MUST be present. For
 this document, the "qlog_version" field MUST have a value of draft-

00.

 {
 "qlog_version": "draft-00",
 "title": "Name of this particular qlog file (short)",
 "description": "Description for this group of traces (long)",
 "summary": {
 ...
 }
 "traces": [...]
 }

 Figure 1: Top-level element

 Typical logs will only contain a single element in the "traces"
 array. Multiple traces can then be combined into a single qlog file
 by taking the "traces" entries for each qlog file individually and
 copying them to the "traces" array of a new, aggregated qlog file.
 This is typically done in a post-processing step.

 For example, for a test setup, we perform logging on the CLIENT, on
 the SERVER and on a single point on their common NETWORK path. Each

https://datatracker.ietf.org/doc/html/draft-00
https://datatracker.ietf.org/doc/html/draft-00
https://datatracker.ietf.org/doc/html/draft-00

Marx Expires January 4, 2020 [Page 3]

Internet-Draft Main logging schema for qlog July 2019

 of these three logs is first created separately during the test.
 Afterwards, the three logs can be aggregated into a single qlog file.

3.2. Summary field

 In a real-life deployment with a large amount of generated logs, it
 can be useful to sort and filter logs based on some basic summarized
 or aggregated data (e.g., log length, packet loss rate, log location,
 ...). The summary field (if present) SHOULD be on top of the qlog
 file, as this allows for the file to be processed in a streaming
 fashion (i.e., the implementation could just read up to and including
 the summary field and then only load the full logs that are deemed
 interesting by the user).

 As the summary field is highly deployment-specific, this document
 does not specify any default fields or their semantics. Some
 examples of potential entries are:

"summary": {
 "trace_count":number, // amount of traces in this file
 "max_duration":string, // time duration of the longest trace
 "max_outgoing_loss_rate":number, // highest loss rate for outgoing packets
over all traces
 "total_event_count":number // total number of events across all traces
}

 o TODO: are there any field semantics we should specify here?

 o TODO: Will people actually use this? or will they store this info
 out-of-band (e.g., separate database for faster querying?)

3.3. Trace container

 Each trace container encompasses a single conceptual trace. The
 exact definition of a trace can be fluid. For example, a trace could
 contain all events for a single connection, for a single endpoint,
 for a single measurement interval, ...

 In the normal use case, a trace is a log of a single data flow
 collected at a single location or vantage point. For example, for
 QUIC, a single trace only contains events for a single logical QUIC
 connection. However, a single trace could also combine events from a
 variety of vantage points or use cases (e.g., multiple QUIC
 connections or the same connection viewed from different points in
 the network).

 The semantics and context of the trace can be deduced from the
 entries in the "common_fields" (specifically the "group_ids" field)
 and "event_fields" lists.

Marx Expires January 4, 2020 [Page 4]

Internet-Draft Main logging schema for qlog July 2019

 Only the "event_fields" and "events" fields MUST be present.

 {
 "vantage_point": {
 "name": "backend-67",
 "type": "SERVER"
 },
 "title": "Name of this particular trace (short)",
 "description": "Description for this trace (long)",
 "configuration": {
 "time_offset": "offset in ms",
 "time_units": "ms" | "us"
 },
 "common_fields": (see below),
 "event_fields": (see below),
 "events": [...]
 }

 Figure 2: Trace container

3.3.1. vantage_point

 This field describes the vantage point from which the trace
 originates. Its value is an object, with the following fields:

 o name: an optional, user-chosen string (e.g., "NETWORK-1",
 "loadbalancer45", "reverseproxy@192.168.1.1", ...)

 o type: one of three values: "SERVER", "CLIENT", "NETWORK".

 * CLIENT indicates an endpoint which initiates the connection.

 * SERVER indicates an endpoint which accepts the connection.

 * NETWORK indicates an observer in between CLIENT and SERVER.

 o flow: one of two values: "CLIENT" or "SERVER".

 * This field is only required if type is "NETWORK".

 * CLIENT indicates that this vantage point follows client data
 flow semantics (a PACKET_TX goes in the direction of the
 SERVER).

 * SERVER indicates that this vantage point follow server data
 flow semantics (a PACKET_TX goes in the direction of the
 client).

Marx Expires January 4, 2020 [Page 5]

Internet-Draft Main logging schema for qlog July 2019

 The type field MUST be present. The flow field MUST be present if
 the type field has value "NETWORK". The name field is optional.

 TODO (see issue 6): "NETWORK" should have a way to indicate what RX
 and TX mean (is current way enough? maybe identify endpoints by ID or
 4-tuple etc.)

3.3.2. Title and Description

 Both fields' values are generic strings, used for describing the
 contents of the trace. These can either be filled in automatically
 (e.g., showing the endpoint name and readable timestamp of the log),
 or can be filled manually when creating aggregated logs (e.g., qlog
 files that illustrate a specific problem across traces that want to
 include additional explanations for easier communication between
 teams, students, ...).

3.3.3. Configuration

 We take into account that a log file is usually not used in
 isolation, but by means of various tools. Especially when
 aggregating various traces together or preparing traces for a
 demonstration, one might wish to persist certain tool-based settings
 inside the log file itself. For this, the configuration field is
 used.

 The configuration field can be viewed as a generic metadata field
 that tools can fill with their own fields, based on per-tool logic.
 It is best practice for tools to prefix each added field with their
 tool name to prevent collisions across tools. This document only
 defines two standard, tool-independent configuration settings:
 "time_offset" and "time_units".

3.3.3.1. time_offset

 time_offset indicates by how many units of time (see next section)
 the starting time of the current trace should be offset. This is
 useful when comparing logs taken from various systems, where clocks
 might not be perfectly synchronous. Users could use manual tools or
 automated logic to align traces in time and the found optimal offsets
 can be stored in this field for future usage.

3.3.3.2. time_units

 Since timestamps can be stored in various granularities, this field
 allows to indicate whether storage happens in either milliseconds
 ("ms") or microseconds ("us"). If this field is not present, the
 default value is "ms". This configuration setting applies to all

Marx Expires January 4, 2020 [Page 6]

Internet-Draft Main logging schema for qlog July 2019

 other timestamps in the trace file as well, not just the
 "time_offset" field.

3.3.4. common_fields and event_fields

 To reduce file size and make logging easier, the trace schema lists
 the names of the specific fields that are logged per-event up-front,
 instead of repeating the field name with each value, as is common in
 traditiona JSON. This is done in the "event_fields" list. This
 allows us to encode individual events as an array of values, instead
 of an object. To reduce file size even further, common event fields
 that have the same value for all events in this trace, are listed as
 name-value pairs in "common_fields".

 For example, when logging events for a single QUIC connection, all
 events will share the same "original destination connection ID"
 (ODCID). This field and its value should be set in "common_fields",
 rather than "event_fields". However, if a single trace would contain
 events for multiple QUIC connections at the same time (e.g., a
 single, big output log for a server), the ODCID can be different
 across events, and SHOULD be part of "event_fields".

 Examples comparing traditional JSON vs the qlog format can be found
 in Figure 3 and Figure 4. The events described in these examples are
 purely for illustration. Actual event type definitions for the QUIC
 and HTTP/3 protocols can be found in TODO.

Marx Expires January 4, 2020 [Page 7]

Internet-Draft Main logging schema for qlog July 2019

 {
 "events": [{
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "ODCID": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "protocol_type": "QUIC_HTTP3",
 "time": 1553986553574,
 "CATEGORY": "TRANSPORT",
 "EVENT_TYPE": "PACKET_RX",
 "TRIGGER": "LINE",
 "DATA": [...]
 },{
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "ODCID": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "protocol_type": "QUIC_HTTP3",
 "time": 1553986553579,
 "CATEGORY": "APPLICATION",
 "EVENT_TYPE": "DATA_FRAME_NEW",
 "TRIGGER": "GET",
 "DATA": [...]
 },
 ...
]
 }

 Figure 3: Traditional JSON

Marx Expires January 4, 2020 [Page 8]

Internet-Draft Main logging schema for qlog July 2019

 {
 "common_fields": {
 "group_id": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "ODCID": "127ecc830d98f9d54a42c4f0842aa87e181a",
 "protocol_type": "QUIC_HTTP3",
 "reference_time": "1553986553572"
 },
 "event_fields": [
 "relative_time",
 "CATEGORY",
 "EVENT_TYPE",
 "TRIGGER",
 "DATA"
],
 "events": [[
 2,
 "TRANSPORT",
 "PACKET_RX",
 "LINE",
 [...]
],[
 7,
 "APPLICATION",
 "DATA_FRAME_NEW",
 "GET",
 [...]
],
 ...
]
 }

 Figure 4: qlog optimized JSON

 The main field names that can be included in these fields are defined
 in Section 3.4.

 Given that qlog is intended to be a flexible format, unknown field
 names in both "common_fields" and "event_fields" MUST be disregarded
 by the user (i.e., the presence of an uknown field is explicitly NOT
 an error).

 This approach makes line-per-line logging easier and faster, as each
 log statement only needs to include the data for the events, not the
 field names. Events can also be logged and processed separately, as
 part of a contiguous event-stream.

Marx Expires January 4, 2020 [Page 9]

Internet-Draft Main logging schema for qlog July 2019

3.3.4.1. common_fields format

 An object containing pairs of "field name"-"field value". Fields
 included in "common_fields" indicate that these field values are the
 same for each event in the "events" array (with the exception of the
 "group_ids" field, see Section 3.4.2)

 If even one event in the trace does not adhere to this convention,
 that field name should be in "event_fields" instead, and the value
 logged per event. An alternative route is to include the most
 commonly seen value in "common_fields" and then include the deviating
 field value in the generic "data" field for each non-confirming
 event. However, these semantics are not defined in this document.

3.3.4.2. event_fields format

 An array of field names (plain strings). Field names included in
 "event_fields" indicate that these field names are present *in this
 exact order* for each event in the "events" array. Each individual
 event then only has to log the corresponding values for those fields
 in the correct order.

3.4. Field name semantics

 This section lists pre-defined, reserved field names with specific
 semantics and expected corresponding value formats.

 Only a time-based field (see Section 3.4.1), the EVENT_TYPE field and
 the DATA field are mandatory. Typical setups will log
 reference_time, protocol_type and group_id in "common_fields" and
 relative_time, CATEGORY, EVENT_TYPE, TRIGGER and DATA in
 "event_fields".

 Other field names are allowed, both in "common_fields" and
 "event_fields", but their semantics depend on the context of the log
 usage (e.g., for QUIC, the ODCID field is used).

3.4.1. time, delta_time and reference_time + relative_time

 There are three main modes for logging time:

 o Include the full timestamp with each event ("time"). This
 approach uses the largest amount of characters.

 o Delta-encode each time value on the previously logged value
 ("delta_time"). The first event can log the full timestamp. This
 approach uses the least amount of characters.

Marx Expires January 4, 2020 [Page 10]

Internet-Draft Main logging schema for qlog July 2019

 o Specify a full "reference_time" timestamp up-front in
 "common_fields" and include only relatively-encoded values based
 on this reference_time with each event ("relative_time"). This
 approach uses a medium amount of characters.

 The first option is good for stateless loggers, the second and third
 for stateful loggers. The third option is generally preferred, since
 it produces smaller files while being easier to reason about.

 The time approach will use:
 1500, 1505, 1522, 1588

 The delta_time approach will use:
 1500, 5, 17, 66

 The relative_time approach will:
 - set the reference_time to 1500 in "common_fields"
 - use: 0, 5, 22, 88

 Figure 5: Three different approaches for logging timestamps

3.4.2. group_id and group_ids

 A single Trace can contain events from a variety of sources,
 belonging to for example a number of individual QUIC connections.
 For tooling considerations, it is necessary to have a well-defined
 way to split up events belonging to different logical groups into
 subgroups for visualization and processing. For example, if one type
 of log uses 4-tuples as identifiers and uses a field name
 "four_tuple" and another uses "ODCID", there is no way to know for
 generic tools which of these fields should be used to create
 subgroups. As such, qlog uses the generic "group_id" field to
 circumvent this issue.

 The "group_id" field can be any type of valid JSON object, but is
 typically a string or integer. For more complex use cases, the
 group_id could become a complex object with several fields (e.g., a
 4-tuple). In those cases, it would be wasteful to log these values
 in full every single time. This would also complicate tool-based
 processing. As a solution, qlog allows the extraction of group_id
 values into a separate "group_ids" field in the "common_fields",
 consisting of an array of the various present group ids for this
 trace. If this field is present, per-event "group_id" values are
 regarded as indices into the "group_ids" array. This is useful if
 the group_ids are known up-front or the qlog trace can be generated
 from a more verbose format afterwards. If this is not the case, it
 is acceptable to just log the complex objects as the "group_id" for

Marx Expires January 4, 2020 [Page 11]

Internet-Draft Main logging schema for qlog July 2019

 each event. Both use cases are demonstrated in Figure 6 and
 Figure 7.

 Since "group_id" and "group_ids" are generic names, they convey
 little of the semantics to the casual reader. It is best practice to
 also include a per use case additional field to the "common_fields"
 with a semantic name, that has the same value as the "group_id" or
 "group_ids" field. For example, see the "ODCID" field in Figure 4
 and the "four_tuples" field in Figure 7.

 TODO: maybe just make group_ids or group_id reference the named field
 instead? e.g., "group_id": "ODCID"

 TODO: for the simple use case (e.g., just 1 QUIC connection in the
 trace), MUST a trace include a group_id? maybe yes: the ODCID?
 (ODCID because the normal connection IDs can change during the QUIC
 connection).

Marx Expires January 4, 2020 [Page 12]

Internet-Draft Main logging schema for qlog July 2019

{
 "common_fields": {
 "protocol_type": "QUIC_HTTP3",
 },
 "event_fields": [
 "time",
 "group_id",
 "CATEGORY",
 "EVENT_TYPE",
 "TRIGGER",
 "DATA"
],
 "events": [[
 1553986553579,
 { "ip1": "2001:67c:1232:144:9498:6df6:f450:110b", "ip2": "2001:67c:
2b0:1c1::198", "port1": 59105, "port2": 80 }
 "TRANSPORT",
 "PACKET_RX",
 "LINE",
 [...]
],[
 1553986553588,
 { "ip1": "10.0.6.137", "ip2": "52.58.13.57", "port1": 56522,
"port2": 443 }
 "APPLICATION",
 "DATA_FRAME_NEW",
 "GET",
 [...]
],[
 1553986553598,
 { "ip1": "2001:67c:1232:144:9498:6df6:f450:110b", "ip2": "2001:67c:
2b0:1c1::198", "port1": 59105, "port2": 80 }
 "TRANSPORT",
 "PACKET_TX",
 "STREAM",
 [...]
],
 ...
]
}

 Figure 6: Repeated complex group id

Marx Expires January 4, 2020 [Page 13]

Internet-Draft Main logging schema for qlog July 2019

{
 "common_fields": {
 "protocol_type": "QUIC_HTTP3",
 "group_ids": [
 { "ip1": "2001:67c:1232:144:9498:6df6:f450:110b", "ip2": "2001:67c:
2b0:1c1::198", "port1": 59105, "port2": 80 },
 { "ip1": "10.0.6.137", "ip2": "52.58.13.57", "port1": 56522,
"port2": 443 }
],
 "four_tuples": [
 { "ip1": "2001:67c:1232:144:9498:6df6:f450:110b", "ip2": "2001:67c:
2b0:1c1::198", "port1": 59105, "port2": 80 },
 { "ip1": "10.0.6.137", "ip2": "52.58.13.57", "port1": 56522,
"port2": 443 }
]
 },
 "event_fields": [
 "time",
 "group_id",
 "CATEGORY",
 "EVENT_TYPE",
 "TRIGGER",
 "DATA"
],
 "events": [[
 1553986553579,
 0
 "TRANSPORT",
 "PACKET_RX",
 "LINE",
 [...]
],[
 1553986553588,
 1
 "APPLICATION",
 "DATA_FRAME_NEW",
 "GET",
 [...]
],[
 1553986553598,
 0
 "TRANSPORT",
 "PACKET_TX",
 "STREAM",
 [...]
],
 ...
]

}

 Figure 7: Indexed complex group id

Marx Expires January 4, 2020 [Page 14]

Internet-Draft Main logging schema for qlog July 2019

3.4.3. CATEGORY and EVENT_TYPE

 Both CATEGORY and EVENT_TYPE are separate, generic strings. CATEGORY
 allows a higher-level grouping of events per EVENT_TYPE.

 For example, instead of having an EVENT_TYPE of value
 "QUIC_PACKET_TX", we instead have a CATEGORY of "QUIC" and EVENT_TYPE
 of "PACKET_TX". This allows for fast and high-level filtering based
 on CATEGORY and re-use of EVENT_TYPEs across categories.

3.4.4. TRIGGER

 The TRIGGER field is a generic string. It indicates which type of
 event triggered this event to occur (alternately: which other event
 is the reason this event occured).

 This additional information is needed in the case where a single
 EVENT_TYPE can be caused by a variety of other events. In the normal
 case, the context of the surrounding log messages gives a hint as to
 which of these other events was the cause. However, in highly-
 parallel and optimized implementations, corresponding logs messages
 might be wide and far between in time. The trigger field allows
 adding an additional hint as to the cause, even if the surrounding
 messages do not provide this context.

 TODO: is this field needed at this level? see issue 7

3.4.5. DATA

 The DATA field is a generic object (list of name-value pairs). It
 contains the per-event metadata and its form and semantics are
 defined per specific sort of event (typically per EVENT_TYPE, but
 possibly also by combination of CATEGORY, EVENT_TYPE and TRIGGER).

3.4.6. Event field values

 The specific values for each of these fields and their semantics are
 defined in separate documents, specific per protocol or use case.

 For example: event definitions for QUIC and HTTP/3 can be found in
draft-marx-qlog-event-definitions-quic-h3-00.

4. Tooling requirements

 Tools MUST indicate which qlog version(s) they support.
 Additionally, they SHOULD indicate exactly which values for the
 CATEGORY, EVENT_TYPE and TRIGGER fields they look for to execute
 their logic. Tools SHOULD perform a (high-level) check if an input

https://datatracker.ietf.org/doc/html/draft-marx-qlog-event-definitions-quic-h3-00

Marx Expires January 4, 2020 [Page 15]

Internet-Draft Main logging schema for qlog July 2019

 qlog file adheres to the expected qlog schema. If a tool determines
 a qlog file does not contain enough supported information to
 correctly execute the tool's logic, it SHOULD generate a clear error
 message to this effect.

 Tools MUST not produce errors for any field names and values in the
 qlog format that they do not recognize. Tools CAN indicate unknown
 event occurences within their context (e.g., marking unknown events
 on a timeline for manual interpretation by the logger).

5. Methods of Access

 TBD : propose to use a .well-known URL to fetch logs from an endpoint
 / to send logs to.

6. Notes on Practical Use

 TBD : discuss that implementations do not have to output qlog
 directly. It is good practice to log in whatever way you want, and
 then just write a transformer to qlog for use in tooling.

7. Security Considerations

 TBD : discuss privacy and security considerations (e.g., what NOT to
 log, what to strip out of a log before sharing, ...)

8. IANA Considerations

 TBD

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

9.2. URIs

 [1] https://github.com/google/quic-trace

 [2] https://github.com/EricssonResearch/spindump

 [3] https://www.wireshark.org/

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://github.com/google/quic-trace
https://github.com/EricssonResearch/spindump
https://www.wireshark.org/

Marx Expires January 4, 2020 [Page 16]

Internet-Draft Main logging schema for qlog July 2019

Appendix A. Change Log

A.1. Since draft-marx-qlog-main-schema-00:

 o None yet.

Appendix B. Design Variations

 o Quic-trace [1] takes a slightly different approach based on
 protocolbuffers.

 o Spindump [2] also defines a custom text-based format for in-
 network measurements

 o Wireshark [3] also has a QUIC dissector and its results can be
 transformed into a json output format using tshark.

 The idea is that qlog is able to encompass the use cases for both of
 these alternate designs and that all tooling converges on the qlog
 standard.

Appendix C. Acknowledgements

 Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen
 Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja Kuehlewind
 and Lucas Pardue for their feedback and suggestions.

Author's Address

 Robin Marx
 Hasselt University

 Email: robin.marx@uhasselt.be

https://datatracker.ietf.org/doc/html/draft-marx-qlog-main-schema-00

Marx Expires January 4, 2020 [Page 17]

