
Workgroup: QUIC

Internet-Draft: draft-marx-qlog-main-schema-02

Published: 2 November 2020

Intended Status: Standards Track

Expires: 6 May 2021

Authors: R. Marx

Hasselt University

Main logging schema for qlog

Abstract

This document describes a high-level schema for a standardized

logging format called qlog. This format allows easy sharing of data

and the creation of reusable visualization and debugging tools. The

high-level schema in this document is intended to be protocol-

agnostic. Separate documents specify how the format should be used

for specific protocol data. The schema is also format-agnostic, and

can be represented in for example JSON, csv or protobuf.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 6 May 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Design goals

3. The high level qlog schema

3.1. summary

3.2. traces

3.3. Individual Trace containers

3.3.1. configuration

3.3.2. vantage_point

3.4. Field name semantics

3.4.1. timestamps

3.4.2. category and event

3.4.3. data

3.4.4. protocol_type

3.4.5. custom fields

3.4.6. triggers

3.4.7. group_id

3.4.8. common_fields

4. Serializing qlog

4.1. qlog to JSON mapping

4.1.1. numbers

4.1.2. bytes

4.1.3. Summarizing table

4.1.4. Other JSON specifics

4.2. qlog to NDJSON mapping

4.2.1. Supporting NDJSON in tooling

4.3. Other optimizated formatting options

4.3.1. Data structure optimizations

4.3.2. Compression

4.3.3. Binary formats

4.3.4. Overview and summary

4.4. Conversion between formats

5. Methods of access and generation

5.1. Set file output destination via an environment variable

5.2. Access logs via a well-known endpoint

6. Tooling requirements

7. Security and privacy considerations

8. IANA Considerations

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Change Log

A.1. Since draft-marx-qlog-main-schema-01:

A.2. Since draft-marx-qlog-main-schema-00:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Appendix B. Design Variations

Appendix C. Acknowledgements

Author's Address

1. Introduction

There is currently a lack of an easily usable, standardized endpoint

logging format. Especially for the use case of debugging and

evaluating modern Web protocols and their performance, it is often

difficult to obtain structured logs that provide adequate

information for tasks like problem root cause analysis.

This document aims to provide a high-level schema and harness that

describes the general layout of an easily usable, shareable,

aggregatable and structured logging format. This high-level schema

is protocol agnostic, with logging entries for specific protocols

and use cases being defined in other documents (see for example

[QLOG-QUIC-HTTP3] for QUIC and HTTP/3-related event definitions).

The goal of this high-level schema is to provide amenities and

default characteristics that each logging file should contain (or

should be able to contain), such that generic and reusable toolsets

can be created that can deal with logs from a variety of different

protocols and use cases.

As such, this document contains concepts such as versioning,

metadata inclusion, log aggregation, event grouping and log file

size reduction techniques.

Feedback and discussion welcome at https://github.com/quiclog/

internet-drafts. Readers are advised to refer to the "editor's

draft" at that URL for an up-to-date version of this document.

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

While the qlog schema's are format-agnostic, for readability the

qlog documents will use a JSON-inspired format ([RFC8259]) for

examples and definitions.

As qlog can be serialized both textually but also in binary, we

employ a custom datatype definition language, inspired loosely by

the "TypeScript" language.

This document describes how to employ JSON and NDJSON as textual

serializations for qlog in Section 4. Other documents will describe

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/quiclog/internet-drafts
https://github.com/quiclog/internet-drafts
https://www.typescriptlang.org/

how to utilize other concrete serialization options, though tips and

requirements for these are also listed in this document (Section 4).

The main general conventions in this document a reader should be

aware of are:

obj? : this object is optional

type1 | type2 : a union of these two types (object can be either

type1 OR type2)

obj:type : this object has this concrete type

obj:array<type> : this object is an array of this type

class : defines a new type

// : single-line comment

The main data types are:

int8 : signed 8-bit integer

int16 : signed 16-bit integer

int32 : signed 32-bit integer

int64 : signed 64-bit integer

uint8 : unsigned 8-bit integer

uint16 : unsigned 16-bit integer

uint32 : unsigned 32-bit integer

uint64 : unsigned 64-bit integer

float : 32-bit floating point value

double : 64-bit floating point value

byte : an individual raw byte (8-bit) value (use array<byte> or

the shorthand "bytes" to specify a binary blob)

string : list of Unicode (typically UTF-8) encoded characters

boolean : boolean

enum: fixed list of values (Unless explicity defined, the value

of an enum entry is the string version of its name (e.g., initial

= "initial"))

¶

¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

any : represents any object type. Mainly used here as a

placeholder for more concrete types defined in related documents

(e.g., specific event types)

All timestamps and time-related values (e.g., offsets) in qlog are

logged as doubles in the millisecond resolution.

Other qlog documents can define their own data types (e.g.,

separately for each Packet type that a protocol supports).

2. Design goals

The main tenets for the qlog schema design are:

Streamable, event-based logging

Flexibility in the format, complexity in the tooling (e.g., few

components are a MUST, tools need to deal with this)

Extensible and pragmatic (e.g., no complex fixed schema with

extension points)

Aggregation and transformation friendly (e.g., the top-level

element is a container for individual traces, group_id can be

used to tag events to a particular context)

Metadata is stored together with event data

3. The high level qlog schema

A qlog file should be able to contain several indivdual traces and

logs from multiple vantage points that are in some way related. To

that end, the top-level element in the qlog schema defines only a

small set of "header" fields and an array of component traces. For

this document, the required "qlog_version" field MUST have a value

of "draft-02".

As qlog can be serialized in a variety of ways, the "qlog_format"

field is used to indicate which serialization option was chosen. Its

value MUST either be one of the options defined in this document

(e.g., Section 4) or the field must be omitted entirely, in which

case it assumes the default value of "JSON".

In order to make it easier to parse and identify qlog files and

their serialization format, the "qlog_version" and "qlog_format"

fields and their values SHOULD be in the first 256 characters/bytes

of the resulting log file.

An example of the qlog file's top-level structure is shown in Figure

1.

*

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

¶

Figure 1: Top-level element

3.1. summary

In a real-life deployment with a large amount of generated logs, it

can be useful to sort and filter logs based on some basic summarized

or aggregated data (e.g., log length, packet loss rate, log

location, presence of error events, ...). The summary field (if

present) SHOULD be on top of the qlog file, as this allows for the

file to be processed in a streaming fashion (i.e., the

implementation could just read up to and including the summary field

and then only load the full logs that are deemed interesting by the

user).

As the summary field is highly deployment-specific, this document

does not specify any default fields or their semantics. Some

examples of potential entries are shown in Figure 2.

Definition:

class QlogFile {

 qlog_version:string,

 qlog_format?:string,

 title?:string,

 description?:string,

 summary?: Summary,

 traces: array<Trace|TraceError>

}

JSON serialization:

{

 "qlog_version": "draft-02",

 "qlog_format": "JSON",

 "title": "Name of this particular qlog file (short)",

 "description": "Description for this group of traces (long)",

 "summary": {

 ...

 },

 "traces": [...]

}

¶

¶

Figure 2: Summary example definition

3.2. traces

It is often advantageous to group several related qlog traces

together in a single file. For example, we can simultaneously

perform logging on the client, on the server and on a single point

on their common network path. For analysis, it is useful to

aggregate these three individual traces together into a single file,

so it can be uniquely stored, transferred and annotated.

As such, the "traces" array contains a list of individual qlog

traces. Typical qlogs will only contain a single trace in this

array. These can later be combined into a single qlog file by taking

the "traces" entry/entries for each qlog file individually and

copying them to the "traces" array of a new, aggregated qlog file.

This is typically done in a post-processing step.

The "traces" array can thus contain both normal traces (for the

definition of the Trace type, see Section 3.3), but also "error"

entries. These indicate that we tried to find/convert a file for

inclusion in the aggregated qlog, but there was an error during the

process. Rather than silently dropping the erroneous file, we can

opt to explicitly include it in the qlog file as an entry in the

"traces" array, as shown in Figure 3.

Definition (purely illustrative example):

class Summary {

 "trace_count":uint32, // amount of traces in this file

 "max_duration":uint64, // time duration of the longest trace in ms

 "max_outgoing_loss_rate":float, // highest loss rate for outgoing packets over all traces

 "total_event_count":uint64, // total number of events across all traces,

 "error_count":uint64 // total number of error events in this trace

}

JSON serialization:

{

 "trace_count": 1,

 "max_duration": 5006,

 "max_outgoing_loss_rate": 0.013,

 "total_event_count": 568,

 "error_count": 2

}

¶

¶

¶

Figure 3: TraceError definition

Note that another way to combine events of different traces in a

single qlog file is through the use of the "group_id" field,

discussed in Section 3.4.7.

3.3. Individual Trace containers

The exact conceptual definition of a Trace can be fluid. For

example, a trace could contain all events for a single connection,

for a single endpoint, for a single measurement interval, for a

single protocol, etc. As such, a Trace container contains some

metadata in addition to the logged events, see Figure 4.

In the normal use case however, a trace is a log of a single data

flow collected at a single location or vantage point. For example,

for QUIC, a single trace only contains events for a single logical

QUIC connection for either the client or the server.

The semantics and context of the trace can mainly be deduced from

the entries in the "common_fields" list and "vantage_point" field.

Definition:

class TraceError {

 error_description: string, // A description of the error

 uri?: string, // the original URI at which we attempted to find the file

 vantage_point?: VantagePoint // see {{vantage_point}}: the vantage point we were expecting to include here

}

JSON serialization:

{

 "error_description": "File could not be found",

 "uri": "/srv/traces/today/latest.qlog",

 "vantage_point": { type: "server" }

}

¶

¶

¶

¶

Figure 4: Trace container definition

3.3.1. configuration

We take into account that a qlog file is usually not used in

isolation, but by means of various tools. Especially when

aggregating various traces together or preparing traces for a

demonstration, one might wish to persist certain tool-based settings

inside the qlog file itself. For this, the configuration field is

used.

The configuration field can be viewed as a generic metadata field

that tools can fill with their own fields, based on per-tool logic.

It is best practice for tools to prefix each added field with their

tool name to prevent collisions across tools. This document only

defines two optional, standard, tool-independent configuration

settings: "time_offset" and "original_uris".

Definition:

class Trace {

 title?: string,

 description?: string,

 configuration?: Configuration,

 common_fields?: CommonFields,

 vantage_point: VantagePoint,

 events: array<Event>

}

JSON serialization:

{

 "title": "Name of this particular trace (short)",

 "description": "Description for this trace (long)",

 "configuration": {

 "time_offset": 150

 },

 "common_fields": {

 "ODCID": "abcde1234",

 "time_format": "absolute"

 },

 "vantage_point": {

 "name": "backend-67",

 "type": "server"

 },

 "events": [...]

}

¶

¶

Figure 5: Configuration definition

3.3.1.1. time_offset

The time_offset field indicates by how many milliseconds the

starting time of the current trace should be offset. This is useful

when comparing logs taken from various systems, where clocks might

not be perfectly synchronous. Users could use manual tools or

automated logic to align traces in time and the found optimal

offsets can be stored in this field for future usage. The default

value is 0.

3.3.1.2. original_uris

The original_uris field is used when merging multiple individual

qlog files or other source files (e.g., when converting .pcaps to

qlog). It allows to keep better track where certain data came from.

It is a simple array of strings. It is an array instead of a single

string, since a single qlog trace can be made up out of an

aggregation of multiple component qlog traces as well. The default

value is an empty array.

3.3.1.3. custom fields

Tools can add optional custom metadata to the "configuration" field

to store state and make it easier to share specific data viewpoints

and view configurations.

Two examples from the qvis toolset are shown in Figure 6.

Definition:

class Configuration {

 time_offset:double, // in ms,

 original_uris: array<string>,

 // list of fields with any type

}

JSON serialization:

{

 "time_offset": 150, // starts 150ms after the first timestamp indicates

 "original_uris": [

 "https://example.org/trace1.qlog",

 "https://example.org/trace2.qlog"

]

}

¶

¶

¶

¶

https://qvis.edm.uhasselt.be

Figure 6: Custom configuration fields example

3.3.2. vantage_point

The vantage_point field describes the vantage point from which the

trace originates, see Figure 7. Each trace can have only a single

vantage_point and thus all events in a trace MUST BE from the

perspective of this vantage_point. To include events from multiple

vantage_points, implementers can for example include multiple

traces, split by vantage_point, in a single qlog file.

{

 "configuration" : {

 "qvis" : {

 // when loaded into the qvis toolsuite's congestion graph tool

 // zoom in on the period between 1s and 2s and select the 124th event defined in this trace

 "congestion_graph": {

 "startX": 1000,

 "endX": 2000,

 "focusOnEventIndex": 124

 }

 // when loaded into the qvis toolsuite's sequence diagram tool

 // automatically scroll down the timeline to the 555th event defined in this trace

 "sequence_diagram" : {

 "focusOnEventIndex": 555

 }

 }

 }

}

¶

Figure 7: VantagePoint definition

The flow field is only required if the type is "network" (for

example, the trace is generated from a packet capture). It is used

to disambiguate events like "packet sent" and "packet received".

This is indicated explicitly because for multiple reasons (e.g.,

privacy) data from which the flow direction can be otherwise

inferred (e.g., IP addresses) might not be present in the logs.

Meaning of the different values for the flow field: * "client"

indicates that this vantage point follows client data flow semantics

(a "packet sent" event goes in the direction of the server). *

"server" indicates that this vantage point follow server data flow

semantics (a "packet sent" event goes in the direction of the

client). * "unknown" indicates that the flow's direction is unknown.

Depending on the context, tools confronted with "unknown" values in

the vantage_point can either try to heuristically infer the

semantics from protocol-level domain knowledge (e.g., in QUIC, the

client always sends the first packet) or give the user the option to

switch between client and server perspectives manually.

Definition:

class VantagePoint {

 name?: string,

 type: VantagePointType,

 flow?: VantagePointType

}

class VantagePointType {

 server, // endpoint which initiates the connection.

 client, // endpoint which accepts the connection.

 network, // observer in between client and server.

 unknown

}

JSON serialization examples:

{

 "name": "aioquic client",

 "type": "client",

}

{

 "name": "wireshark trace",

 "type": "network",

 "flow": "client"

}

¶

¶

¶

3.4. Field name semantics

Inside of the "events" field of a qlog trace is a list of events

logged by the endpoint. Each event is specified as a generic object

with a number of member fields and their associated data. Depending

on the protocol and use case, the exact member field names and their

formats can differ across implementations. This section lists the

main, pre-defined and reserved field names with specific semantics

and expected corresponding value formats.

Each qlog event at minimum requires the "time" (Section 3.4.1),

"name" (Section 3.4.2) and "data" (Section 3.4.3) fields. Other

typical fields are "time_format" (Section 3.4.1), "protocol_type"

(Section 3.4.4), "trigger" (Section 3.4.6), and "group_id" Section

3.4.7. As especially these later fields typically have identical

values across individual event instances, they are normally logged

separately in the "common_fields" (Section 3.4.8).

The specific values for each of these fields and their semantics are

defined in separate documents, specific per protocol or use case.

For example: event definitions for QUIC and HTTP/3 can be found in

[QLOG-QUIC-HTTP3].

Other fields are explicitly allowed by the qlog approach, and tools

SHOULD allow for the presence of unknown event fields, but their

semantics depend on the context of the log usage (e.g., for QUIC,

the ODCID field is used), see [QLOG-QUIC-HTTP3].

An example of a qlog event with its component fields is shown in

Figure 8.

¶

¶

¶

¶

¶

Figure 8: Event fields definition

3.4.1. timestamps

The "time" field indicates the timestamp at which the event occured.

Its value is typically the Unix timestamp since the 1970 epoch

(number of milliseconds since midnight UTC, January 1, 1970,

ignoring leap seconds). However, qlog supports two more succint

timestamps formats to allow reducing file size. The employed format

is indicated in the "time_format" field, which allows one of three

values: "absolute", "delta" or "relative":

Absolute: Include the full absolute timestamp with each event.

This approach uses the largest amount of characters. This is also

the default value of the "time_format" field.

Delta: Delta-encode each time value on the previously logged

value. The first event in a trace typically logs the full

Definition:

class Event {

 time: double,

 name: string,

 data: any,

 protocol_type?: string,

 group_id?: string|uint32,

 time_format?: "absolute"|"delta"|"relative",

 // list of fields with any type

}

JSON serialization:

{

 time: 1553986553572,

 name: "transport:packet_sent",

 event: "packet_sent",

 data: { ... }

 protocol_type: "QUIC_HTTP3",

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 time_format: "absolute",

 ODCID: "127ecc830d98f9d54a42c4f0842aa87e181a", // QUIC specific

}

¶

*

¶

*

absolute timestamp. This approach uses the least amount of

characters.

Relative: Specify a full "reference_time" timestamp (typically

this is done up-front in "common_fields", see Section 3.4.8) and

include only relatively-encoded values based on this

reference_time with each event. The "reference_time" value is

typically the first absolute timestamp. This approach uses a

medium amount of characters.

The first option is good for stateless loggers, the second and third

for stateful loggers. The third option is generally preferred, since

it produces smaller files while being easier to reason about. An

example for each option can be seen in Figure 9.

Figure 9: Three different approaches for logging timestamps

One of these options is typically chosen for the entire trace (put

differently: each event has the same value for the "time_format"

field). Each event MUST include a timestamp in the "time" field.

Events in each individual trace SHOULD be logged in strictly

ascending timestamp order (though not necessarily absolute value,

for the "delta" format). Tools CAN sort all events on the timestamp

before processing them, though are not required to (as this could

impose a significant processing overhead). This can be a problem

especially for multi-threaded and/or streaming loggers, who could

consider using a separate postprocesser to order qlog events in time

if a tool do not provide this feature.

Timestamps do not have to use the UNIX epoch timestamp as their

reference. For example for privacy considerations, any initial

reference timestamps (for example "endpoint uptime in ms" or "time

since connection start in ms") can be chosen. Tools SHOULD NOT

assume the ability to derive the absolute Unix timestamp from qlog

traces, nor allow on them to relatively order events across two or

more separate traces (in this case, clock drift should also be taken

into account).

¶

*

¶

¶

The absolute approach will use:

1500, 1505, 1522, 1588

The delta approach will use:

1500, 5, 17, 66

The relative approach will:

- set the reference_time to 1500 in "common_fields"

- use: 0, 5, 22, 88

¶

¶

¶

3.4.2. category and event

Events differ mainly in the type of metadata associated with them.

To help identify a given event and how to interpret its metadata in

the "data" field (see Section 3.4.3), each event has an associated

"name" field. This can be considered as a concatenation of two other

fields, namely event "category" and event "type".

Category allows a higher-level grouping of events per specific event

type. For example for QUIC and HTTP/3, the different categories

could be "transport", "http", "qpack", and "recovery". Within these

categories, the event Type provides additional granularity. For

example for QUIC and HTTP/3, within the "transport" Category, there

would be "packet_sent" and "packet_received" events.

Logging category and type separately conceptually allows for fast

and high-level filtering based on category and the re-use of event

types across categories. However, it also considerably inflates the

log size and this flexibility is not used extensively in practice at

the time of writing.

As such, the default approach in qlog is to concatenate both field

values using the ":" character in the "name" field, as can be seen

in Figure 10. As such, qlog category and type names MUST NOT include

this character.

Figure 10: Ways of logging category, type and name of an event.

Certain serializations CAN emit category and type as separate

fields, and qlog tools SHOULD be able to deal with both the

concatenated "name" field, and the separate "category" and "type"

fields. Text-based serializations however are encouraged to employ

the concatenated "name" field for efficiency.

3.4.3. data

The data field is a generic object. It contains the per-event

metadata and its form and semantics are defined per specific sort of

¶

¶

¶

¶

JSON serialization using separate fields:

{

 category: "transport",

 type: "packet_sent"

}

JSON serialization using ":" concatenated field:

{

 name: "transport:packet_sent"

}

¶

event. For example, data field value definitons for QUIC and HTTP/3,

see [QLOG-QUIC-HTTP3].

One purely illustrative example for a QUIC "packet_sent" event is

shown in Figure 11.

Figure 11: Example of the 'data' field for a QUIC packet_sent event

3.4.4. protocol_type

The "protocol_type" field indicates to which protocol (or protocol

"stack") this event belongs. This allows a single qlog file to

aggregate traces of different protocols (e.g., a web server offering

both TCP+HTTP/2 and QUIC+HTTP/3 connections).

For example, QUIC and HTTP/3 events have the "QUIC_HTTP3"

protocol_type value, see [QLOG-QUIC-HTTP3].

Typically however, all events in a single trace are of the same

protocol, and this field is logged once in "common_fields", see

Section 3.4.8.

¶

¶

Definition:

class TransportPacketSentEvent {

 packet_size?:uint32,

 header:PacketHeader,

 frames?:Array<QuicFrame>

}

JSON serialization:

{

 packet_size: 1280,

 header: {

 packet_type: "1RTT",

 packet_number: 123

 },

 frames: [

 {

 frame_type: "stream",

 length: 1000,

 offset: 456

 },

 {

 frame_type: "padding"

 }

]

}

¶

¶

¶

3.4.5. custom fields

Note that qlog files can always contain custom fields (e.g., a per-

event field indicating its privacy properties or path_id in

multipath protocols) and assign custom values to existing fields

(e.g., new categories/types for implemenation-specific events).

Loggers are free to add such fields and field values and tools MUST

either ignore these unknown fields or show them in a generic

fashion.

3.4.6. triggers

Sometimes, additional information is needed in the case where a

single event can be caused by a variety of other events. In the

normal case, the context of the surrounding log messages gives a

hint as to which of these other events was the cause. However, in

highly-parallel and optimized implementations, corresponding log

messages might separated in time. Another option is to explicitly

indicate these "triggers" in a high-level way per-event to get more

fine-grained information without much additional overhead.

In qlog, the optional "trigger" field contains a string value

describing the reason (if any) for this event instance occuring.

While this "trigger" field could be a property of the qlog Event

itself, it is instead a property of the "data" field instead. This

choice was made because many event types do not include a trigger

value, and having the field at the Event-level would cause overhead

in some serializations. Additional information on the trigger can be

added in the form of additional member fields of the "data" field

value, yet this is highly implementation-specific, as are the

trigger field's string values.

One purely illustrative example of some potential triggers for

QUIC's "packet_dropped" event is shown in Figure 12.

Figure 12: Trigger example

¶

¶

¶

¶

Definition:

class QuicPacketDroppedEvent {

 packet_type?:PacketType,

 raw_length?:uint32,

 trigger?: "key_unavailable" | "unknown_connection_id" | "decrypt_error" | "unsupported_version"

}

3.4.7. group_id

As discussed in Section 3.3, a single qlog file can contain several

traces taken from different vantage points. However, a single trace

from one endpoint can also contain events from a variety of sources.

For example, a server implementation might choose to log events for

all incoming connections in a single large (streamed) qlog file. As

such, we need a method for splitting up events belonging to separate

logical entities.

The simplest way to perform this splitting is by associating a

"group identifier" to each event that indicates to which conceptual

"group" each event belongs. A post-processing step can then extract

events per group. However, this group identifier can be highly

protocol and context-specific. In the example above, we might use

QUIC's "Original Destination Connection ID" to uniquely identify a

connection. As such, they might add a "ODCID" field to each event.

However, a middlebox logging IP or TCP traffic might rather use

four-tuples to identify connections, and add a "four_tuple" field.

As such, to provide consistency and ease of tooling in cross-

protocol and cross-context setups, qlog instead defines the common

"group_id" field, which contains a string value. Implementations are

free to use their preferred string serialization for this field, so

long as it contains a unique value per logical group. Some examples

can be seen in Figure 13.

Figure 13: Example of group_id usage

¶

¶

¶

JSON serialization for events grouped by four tuples and QUIC connection IDs:

events: [

 {

 time: 1553986553579,

 protocol_type: "TCP_HTTPS2",

 group_id: "ip1=2001:67c:1232:144:9498:6df6:f450:110b,ip2=2001:67c:2b0:1c1::198,port1=59105,port2=80",

 name: "transport:packet_received",

 data: { ... },

 },

 {

 time: 1553986553581,

 protocol_type: "QUIC_HTTP3",

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 name: "transport:packet_sent",

 data: { ... },

 }

]

Note that in some contexts (for example a Multipath transport

protocol) it might make sense to add additional contextual per-event

fields (for example "path_id"), rather than use the group_id field

for that purpose.

Note also that, typically, a single trace only contains events

belonging to a single logical group (for example, an individual QUIC

connection). As such, instead of logging the "group_id" field with

an identical value for each event instance, this field is typically

logged once in "common_fields", see Section 3.4.8.

3.4.8. common_fields

As discussed in the previous sections, information for a typical

qlog event varies in three main fields: "time", "name" and

associated data. Additionally, there are also several more advanced

fields that allow mixing events from different protocols and

contexts inside of the same trace (for example "protocol_type" and

"group_id"). In most "normal" use cases however, the values of these

advanced fields are consistent for each event instance (for example,

a single trace contains events for a single QUIC connection).

To reduce file size and making logging easier, qlog uses the

"common_fields" list to indicate those fields and their values that

are shared by all events in this component trace. This prevents

these fields from being logged for each individual event. An example

of this is shown in Figure 14.

¶

¶

¶

¶

Figure 14: Example of common_fields usage

JSON serialization with repeated field values per-event instance:

{

 events: [{

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 protocol_type: "QUIC_HTTP3",

 time_format: "relative",

 reference_time: "1553986553572",

 time: 2,

 name: "transport:packet_received",

 data: { ... }

 },{

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 protocol_type: "QUIC_HTTP3",

 time_format: "relative",

 reference_time: "1553986553572",

 time: 7,

 name: "http:frame_parsed",

 data: { ... }

 }

]

}

JSON serialization with repeated field values extracted to common_fields:

{

 common_fields: {

 group_id: "127ecc830d98f9d54a42c4f0842aa87e181a",

 protocol_type: "QUIC_HTTP3",

 time_format: "relative",

 reference_time: "1553986553572"

 },

 events: [

 {

 time: 2,

 name: "transport:packet_received",

 data: { ... }

 },{

 7,

 name: "http:frame_parsed",

 data: { ... }

 }

]

}

The "common_fields" field is a generic dictionary of key-value

pairs, where the key is always a string and the value can be of any

type, but is typically also a string or number. As such, unknown

entries in this dictionary MUST be disregarded by the user and tools

(i.e., the presence of an uknown field is explicitly NOT an error).

The list of default qlog fields that are typically logged in

common_fields (as opposed to as individual fields per event

instance) are:

time_format

reference_time

protocol_type

group_id

Tools MUST be able to deal with these fields being defined either on

each event individually or combined in common_fields. Note that if

at least one event in a trace has a different value for a given

field, this field MUST NOT be added to common_fields but instead

defined on each event individually. Good example of such fields are

"time" and "data", who are divergent by nature.

4. Serializing qlog

This document and other related qlog schema definitions are

intentionally serialization-format agnostic. This means that

implementers themselves can choose how to represent and serialize

qlog data practically on disk or on the wire. Some examples of

possible formats are JSON, CBOR, CSV, protocol buffers, flatbuffers,

etc.

All these formats make certain tradeoffs between flexibility and

efficiency, with textual formats like JSON typically being more

flexible but also less efficient than binary formats like protocol

buffers. The format choice will depend on the practical use case of

the qlog user. For example, for use in day to day debugging, a

plaintext readable (yet relatively large) format like JSON is

probably preferred. However, for use in production, a more optimized

yet restricted format can be better. In this latter case, it will be

more difficult to achieve interoperability between qlog

implementations of various protocol stacks, as some custom or

tweaked events from one might not be compatible with the format of

the other. This will also reflect in tooling: not all tools will

support all formats.

This being said, the authors prefer JSON as the basis for storing

qlog, as it retains full flexibility and maximum interoperability.

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

Storage overhead can be managed well in practice by employing

compression. For this reason, this document details both how to

practically transform qlog schema definitions to JSON and to the

streamable NDJSON. We discuss concrete options to bring down JSON

size and processing overheads in Section 4.3.

As depending on the employed format different deserializers/parsers

should be used, the "qlog_format" field is used to indicate the

chosen serialization approach. This field is always a string, but

can be made hierarchical by the use of the "." separator between

entries. For example, a value of "JSON.optimizationA" can indicate

that a default JSON format is being used, but that a certain

optimization of type A was applied to the file as well (see also

Section 4.3).

4.1. qlog to JSON mapping

When mapping qlog to normal JSON, the "qlog_format" field MUST have

the value "JSON". This is also the default qlog serialization and

default value of this field.

To facilitate this mapping, the qlog documents employ a format that

is close to pure JSON for its examples and data definitions. Still,

as JSON is not a typed format, there are some practical

peculiarities to observe.

4.1.1. numbers

While JSON has built-in support for integers up to 64 bits in size,

not all JSON parsers do. For example, none of the major Web browsers

support full 64-bit integers at this time, as all numerical values

(both floating-point numbers and integers) are internally

represented as floating point IEEE 754 values. In practice, this

limits their integers to a maximum value of 2^53-1. Integers larger

than that are either truncated or produce a JSON parsing error.

While this is expected to improve in the future (as "BigInt" support

has been introduced in most Browsers, though not yet integrated into

JSON parsers), we still need to deal with it here.

When transforming an int64, uint64 or double from qlog to JSON, the

implementer can thus choose to either log them as JSON numbers

(taking the risk of truncation or un-parseability) or to log them as

strings instead. Logging as strings should however only be

practically needed if the value is likely to exceed 2^53-1. In

practice, even though protocols such as QUIC allow 64-bit values for

for example stream identifiers, these high numbers are unlikely to

be reached for the overwhelming majority of cases. As such, it is

probably a valid trade-off to take the risk and log 64-bit values as

JSON numbers instead of strings.

¶

¶

¶

¶

¶

¶

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt

Tools processing JSON-based qlog SHOULD however be able to deal with

64-bit fields being serialized as either strings or numbers.

4.1.2. bytes

Unlike most binary formats, JSON does not allow the logging of raw

binary blobs directly. As such, when serializing a byte or

array<byte>, a scheme needs to be chosen.

To represent qlog bytes in JSON, they MUST be serialized to their

lowercase hexadecimal equivalents (with 0 prefix for values lower

than 10). All values are directly appended to each other, without

delimiters. The full value is not prefixed with 0x (as is sometimes

common). An example is given in Figure 15.

Figure 15: Example for serializing bytes

As such, the resulting string will always have an even amount of

characters and the original byte-size can be retrieved by dividing

the string length by 2.

4.1.2.1. Truncated values

In some cases, it can be interesting not to log a full raw blob but

instead a truncated value (for example, only the first 100 bytes of

an HTTP response body to be able to discern which file it actually

contained). In these cases, the original byte-size length cannot be

obtained from the serialized value directly. As such, all qlog

schema definitions SHOULD include a separate, length-indicating

field for all fields of type array<byte> they specify. This allows

always retrieving the original length, but also allows the omission

of any raw value bytes of the field completely (e.g., out of privacy

or security considerations).

To reduce overhead however and in the case the full raw value is

logged, the extra length-indicating field can be left out. As such,

tools MUST be able to deal with this situation and derive the length

of the field from the raw value if no separate length-indicating

field is present. All possible permutations are shown by example in

Figure 16.

¶

¶

¶

For the five raw unsigned byte input values of: 5 20 40 171 255, the JSON serialization is:

{

 raw: "051428abff"

}

¶

¶

¶

Figure 16: Example for serializing truncated bytes

4.1.3. Summarizing table

By definition, JSON strings are serialized surrounded by quotes.

Numbers without.

qlog type JSON type

int8 number

int16 number

int32 number

uint8 number

uint16 number

uint32 number

float number

int64 number or string

uint64 number or string

double number or string

bytes string (lowercase hex value)

string string

boolean string ("true" or "false")

enum string (full value/name, not index)

any object ({...})

array array ([...])

Table 1

// both the full raw value and its length are present (length is redundant)

{

 "raw_length": 5,

 "raw": "051428abff"

}

// only the raw value is present, indicating it represents the fields full value

// the byte length is obtained by calculating raw.length / 2

{

 "raw": "051428abff"

}

// only the length field is present, meaning the value was omitted

{

 "raw_length": 5,

}

// both fields are present and the lengths do not match: the value was truncated to the first three bytes.

{

 "raw_length": 5,

 "raw": "051428"

}

¶

4.1.4. Other JSON specifics

JSON files by definition ([RFC8259]) MUST utilize the UTF-8

encoding, both for the file itself and the string values.

Most JSON parsers strictly follow the JSON specification. This

includes the rule that trailing comma's are not allowed. As it is

frequently annoying to remove these trailing comma's when logging

events in a streaming fashion, tool implementers SHOULD allow the

last event entry of a qlog trace to be an empty object. This allows

loggers to simply close the qlog file by appending "{}]}]}" after

their last added event.

Finally, while not specifically required by the JSON specification,

all qlog field names in a JSON serialization MUST be lowercase.

4.2. qlog to NDJSON mapping

One of the downsides of using pure JSON is that it is inherently a

non-streamable format. Put differently, it is not possible to simply

append new qlog events to a log file without "closing" this file at

the end by appending "]}]}". Without these closing tags, most JSON

parsers will be unable to parse the file entirely. As most platforms

do not provide a standard streaming JSON parser (which would be able

to deal with this problem), this document also provides a qlog

mapping to a streamable JSON format called Newline-Delimited JSON

(NDJSON).

When mapping qlog to NDJSON, the "qlog_format" field MUST have the

value "NDJSON".

NDJSON is very similar to JSON, except that it interprets each line

in a file as a fully separate JSON object. Put differently, unlike

default JSON, it does not require a file to be wrapped as a full

object with "{ ... }" or "[...]". Using this setup, qlog events

can simply be appended as individually serialized lines at the back

of a streamed logging file.

For this to work, some qlog definitions have to be adjusted however.

Mainly, events are no longer part of the "events" array in the Trace

object, but are instead logged separately from the qlog "file

header" (QlogFile class in Section 3). Additionally, qlog's NDJSON

mapping does not allow logging multiple individual traces in a

single qlog file. As such, the QlogFile:traces field is replaced by

the singular "trace" field, which simply contains the Trace data

directly. An example can be seen in Figure 17. Note that the

"group_id" field can still be used on a per-event basis to include

events from conceptually different sources in a single NDJSON qlog

file.

¶

¶

¶

¶

¶

¶

¶

http://ndjson.org/
http://ndjson.org/

Note as well from Figure 17 that the file's header (QlogFileNDJSON)

also needs to be fully serialized on a single line to be NDJSON

compatible.

Figure 17: Top-level element

Finally, while not specifically required by the NDJSON

specification, all qlog field names in a NDJSON serialization MUST

be lowercase.

4.2.1. Supporting NDJSON in tooling

Note that NDJSON is not supported in most default programming

environments (unlike normal JSON). However, several custom NDJSON

parsing libraries exist that can be used and the format is easy

enough to parse with existing implementations (i.e., by splitting

the file into its component lines and feeding them to a normal JSON

parser individually, as each line by itself is a valid JSON object).

4.3. Other optimizated formatting options

Both the JSON and NDJSON formatting options described above are

serviceable in general small to medium scale (debugging) setups.

However, these approaches tend to be relatively verbose, leading to

larger file sizes. Additionally, generalized (ND)JSON

(de)serialization performance is typically (slightly) lower than

that of more optimized and predictable formats. Both aspects make

these formats more challenging (though still practical) to use in

large scale setups.

¶

Definition:

class QlogFileNDJSON {

 qlog_format: "NDJSON",

 qlog_version:string,

 title?:string,

 description?:string,

 summary?: Summary,

 trace: Trace

}

// list of qlog events, separated by newlines

NDJSON serialization:

{"qlog_format":"NDJSON","qlog_version":"draft-02","title":"Name of this particular NDJSON qlog file (short)","description":"Description for this NDJSON qlog file (long)","trace":{"common_fields":{"protocol_type":"QUIC_HTTP3","group_id":"127ecc830d98f9d54a42c4f0842aa87e181a","time_format":"relative","reference_time":"1553986553572"},"vantage_point":{"name":"backend-67","type":"server"}}}

{"time": 2, "name": "transport:packet_received", "data": { ... } }

{"time": 7, "name": "http:frame_parsed", "data": { ... } }

¶

¶

¶

http://ndjson.org/libraries.html
http://ndjson.org/libraries.html
https://qlog.edm.uhasselt.be/anrw/

During the development of qlog, we compared a multitude of

alternative formatting and optimization options. The results of this

study are summarized on the qlog github repository. The rest of this

section discusses some of these approaches implementations could

choose and the expected gains and tradeoffs inherent therein. Tools

SHOULD support mainly the compression options listed in Section

4.3.2, as they provide the largest wins for the least cost overall.

Over time, specific qlog formats and encodings can be created that

more formally define and combine some of the discussed optimizations

or add new ones. We choose to define these schemes in separate

documents to keep the main qlog definition clean and generalizable,

as not all contexts require the same performance or flexibility as

others and qlog is intended to be a broadly usable and extensible

format (for example more flexibility is needed in earlier stages of

protocol development, while more performance is typically needed in

later stages). This is also the main reason why the general qlog

format is the less optimized JSON instead of a more performant

option.

To be able to easily distinguish between these options in qlog

compatible tooling (without the need to have the user provide out-

of-band information or to (heuristically) parse and process files in

a multitude of ways, see also Section 6), we recommend using

explicit file extensions to indicate specific formats. As there are

no standards in place for this type of extension to format mapping,

we employ a commonly used scheme here. Our approach is to list the

applied optimizations in the extension in ascending order of

application (e.g., if a qlog file is first optimized with technique

A and then compressed with technique B, the resulting file would

have the extension ".qlog.A.B"). This allows tooling to start at the

back of the extension to "undo" applied optimizations to finally

arrive at the expected qlog representation.

4.3.1. Data structure optimizations

The first general category of optimizations is to alter the

representation of data within an (ND)JSON qlog file to reduce file

size.

The first option is to employ a scheme similar to the CSV (comma

separated value [rfc4180]) format, which utilizes the concept of

column "headers" to prevent repeating field names for each datapoint

instance. Concretely for JSON qlog, several field names are repeated

with each event (i.e., time, name, data). These names could be

extracted into a separate list, after which qlog events could be

serialized as an array of values, as opposed to a full object. This

approach was a key part of the original qlog format (prior to draft

02) using the "event_fields" field. However, tests showed that this

¶

¶

¶

¶

https://github.com/quiclog/internet-drafts/issues/30#issuecomment-617675097

optimization only provided a mean file size reduction of 5% (100MB

to 95MB) while significantly increasing the implementation

complexity, and this approach was abandoned in favor of the default

JSON setup. Implementations using this format should not employ a

separate file extension (as it still uses JSON), but rather employ a

new value of "JSON.namedheaders" (or "NDJSON.namedheaders") for the

"qlog_format" field (see Section 3).

The second option is to replace field values and/or names with

indices into a (dynamic) lookup table. This is a common compression

technique and can provide significant file size reductions (up to

50% in our tests, 100MB to 50MB). However, this approach is even

more difficult to implement efficiently and requires either

including the (dynamic) table in the resulting file (an approach

taken by for example Chromium's NetLog format) or defining a

(static) table up-front and sharing this between implementations.

Implementations using this approach should not employ a separate

file extension (as it still uses JSON), but rather employ a new

value of "JSON.dictionary" (or "NDJSON.dictionary") for the

"qlog_format" field (see Section 3).

As both options either proved difficult to implement, reduced qlog

file readability, and provided too little improvement compared to

other more straightforward options (for example Section 4.3.2),

these schemes are not inherently part of qlog.

4.3.2. Compression

The second general category of optimizations is to utilize a

(generic) compression scheme for textual data. As qlog in the

(ND)JSON format typically contains a large amount of repetition,

off-the-shelf (text) compression techniques typically succeed very

well in bringing down file sizes (regularly with up to two orders of

magnitude in our tests, even for "fast" compression levels). As

such, utilizing compression is recommended before attempting other

optimization options, even though this might (somewhat) increase

processing costs due to the additional compression step.

The first option is to use GZIP compression ([RFC1952]). This

generic compression scheme provides multiple compression levels

(providing a trade-off between compression speed and size

reduction). Utilized at level 6 (a medium setting thought to be

applicable for streaming compression of a qlog stream in commodity

devices), gzip compresses qlog JSON files to 7% of their initial

size on average (100MB to 7MB). For this option, the file extension

.qlog.gz SHOULD BE used. The "qlog_format" field should still

reflect the original JSON formatting of the qlog data (e.g., "JSON"

or "NDJSON").

¶

¶

¶

¶

¶

https://www.chromium.org/developers/design-documents/network-stack/netlog

The second option is to use Brotli compression ([RFC7932]). While

similar to gzip, this more recent compression scheme provides a

better efficiency. It also allows multiple compression levels.

Utilized at level 4 (a medium setting thought to be applicable for

streaming compression of a qlog stream in commodity devices), brotli

compresses qlog JSON files to 7% of their initial size on average

(100MB to 7MB). For this option, the file extension .qlog.br SHOULD

BE used. The "qlog_format" field should still reflect the original

JSON formatting of the qlog data (e.g., "JSON" or "NDJSON").

Other compression algorithms of course exist (for example xz, zstd,

and lz4). We mainly recommend gzip and brotli because of their

tweakable behaviour and wide support in web-based environments,

which we envision as the main tooling ecosystem (see also Section

6).

4.3.3. Binary formats

The third general category of optimizations is to use a more

optimized (often binary) format instead of the textual JSON format.

This approach inherently produces smaller files and often has better

(de)serialization performance. However, the resultant files are no

longer human readable and some formats require hard tradeoffs

between flexibility for performance.

The first option is to use the CBOR (Concise Binary Object

Representation [rfc7049]) format. For our purposes, CBOR can be

viewed as a straighforward binary variant of JSON. As such, existing

JSON qlog files can be trivially converted to and from CBOR (though

slightly more work is needed for NDJSON qlogs). While CBOR thus does

retain the full qlog flexibility, it only provides a 25% file size

reduction (100MB to 75MB) compared to textual (ND)JSON. As CBOR

support in programming environments is not as widespread as that of

textual JSON and the format lacks human readability, CBOR was not

chosen as the default qlog format. For this option, the file

extension .qlog.cbor SHOULD BE used. The "qlog_format" field should

still reflect the original JSON formatting of the qlog data (e.g.,

"JSON" or "NDJSON").

A second option is to use a more specialized binary format, such as

Protocol Buffers (protobuf). This format is battle-tested, has

support for optional fields and has libraries in most programming

languages. Still, it is significantly less flexible than textual

JSON or CBOR, as it relies on a separate, pre-defined schema (a

.proto file). As such, it it not possible to (easily) log new event

types in protobuf files without adjusting this schema as well, which

has its own practical challenges. As qlog is intended to be a

flexible, general purpose format, this type of format was not chosen

as its basic serialization. The lower flexibility does lead to

¶

¶

¶

¶

https://developers.google.com/protocol-buffers

significantly reduced file sizes. Our straightforward mapping of the

qlog main schema and QUIC/HTTP3 event types to protobuf created qlog

files 24% as large as the raw JSON equivalents (100MB to 24MB). For

this option, the file extension .qlog.protobuf SHOULD BE used. The

"qlog_format" field should reflect the different internal format,

for example: "qlog_format": "protobuf".

Note that binary formats can (and should) also be used in

conjunction with compression (see Section 4.3.2). For example, CBOR

compresses well (to about 6% of the original textual JSON size

(100MB to 6MB) for both gzip and brotli) and so does protobuf (5%

(gzip) to 3% (brotli)). However, these gains are similar to the ones

achieved by simply compression the textual JSON equivalents directly

(7%, see Section 4.3.2). As such, since compression is still needed

to achieve optimal file size reductions event with binary formats,

we feel the more flexible compressed textual JSON options are a

better default for the qlog format in general.

4.3.4. Overview and summary

In summary, textual JSON was chosen as the main qlog format due to

its high flexibility and because its inefficiencies can be largely

solved by the utilization of compression techniques (which are

needed to achieve optimal results with other formats as well).

Still, qlog implementers are free to define other qlog formats

depending on their needs and context of use. These formats should be

described in their own documents, the discussion in this document

mainly acting as inspiration and high-level guidance. Implementers

are encouraged to add concrete qlog formats and definitions to the

designated public repository.

The following table provides an overview of all the discussed qlog

formatting options with examples:

format qlog_format extension

JSON Section 4.1 JSON .qlog

NDJSON Section 4.2 NDJSON .qlog

named headers Section 4.3.1 (ND)JSON.namedheaders .qlog

dictionary Section 4.3.1 (ND)JSON.dictionary .qlog

CBOR Section 4.3.3 (ND)JSON .qlog.cbor

protobuf Section 4.3.3 protobuf .qlog.protobuf

gzip Section 4.3.2 no change .gz suffix

brotli Section 4.3.2 no change .br suffix

Table 2

¶

¶

¶

¶

¶

https://github.com/quiclog/qlog
https://github.com/quiclog/qlog

4.4. Conversion between formats

As discussed in the previous sections, a qlog file can be serialized

in a multitude of formats, each of which can conceivably be

transformed into or from one another without loss of information.

For example, a number of NDJSON streamed qlogs could be combined

into a JSON formatted qlog for later processing. Similarly, a

captured binary qlog could be transformed to JSON for easier

interpretation and sharing.

Secondly, we can also consider other structured logging approaches

that contain similar (though typically not identical) data to qlog,

like raw packet capture files (for example .pcap files from tcpdump)

or endpoint-specific logging formats (for example the NetLog format

in Google Chrome). These are sometimes the only options, if an

implementation cannot or will not support direct qlog output for any

reason, but does provide other internal or external (e.g.,

SSLKEYLOGFILE export to allow decryption of packet captures) logging

options For this second category, a (partial) transformation from/to

qlog can also be defined.

As such, when defining a new qlog serialization format or wanting to

utilize qlog-compatible tools with existing codebases lacking qlog

support, it is recommended to define and provide a concrete mapping

from one format to default JSON-serialized qlog. Several of such

mappings exist. Firstly, [pcap2qlog]((https://github.com/quiclog/

pcap2qlog) transforms QUIC and HTTP/3 packet capture files to qlog.

Secondly, netlog2qlog converts chromium's internal dictionary-

encoded JSON format to qlog. Finally, quictrace2qlog converts the

older quictrace format to JSON qlog. Tools can then easily integrate

with these converters (either by incorporating them directly or for

example using them as a (web-based) API) so users can provide

different file types with ease. For example, the qvis toolsuite

supports a multitude of formats and qlog serializations.

5. Methods of access and generation

Different implementations will have different ways of generating and

storing qlogs. However, there is still value in defining a few

default ways in which to steer this generation and access of the

results.

5.1. Set file output destination via an environment variable

To provide users control over where and how qlog files are created,

we define two environment variables. The first, QLOGFILE, indicates

a full path to where an individual qlog file should be stored. This

path MUST include the full file extension. The second, QLOGDIR, sets

¶

¶

¶

¶

https://github.com/quiclog/qvis/tree/master/visualizations/src/components/filemanager/netlogconverter
https://github.com/quiclog/quictrace2qlog
https://qvis.edm.uhasselt.be

a general directory path in which qlog files should be placed. This

path MUST include the directory separator character at the end.

In general, QLOGDIR should be preferred over QLOGFILE if an endpoint

is prone to generate multiple qlog files. This can for example be

the case for a QUIC server implementation that logs each QUIC

connection in a separate qlog file. An alternative that uses

QLOGFILE would be a QUIC server that logs all connections in a

single file and uses the "group_id" field (Section 3.4.7) to allow

post-hoc separation of events.

Implementations SHOULD provide support for QLOGDIR and MAY provide

support for QLOGFILE.

When using QLOGDIR, it is up to the implementation to choose an

appropriate naming scheme for the qlog files themselves. The chosen

scheme will typically depend on the context or protocols used. For

example, for QUIC, it is recommended to use the Original Destination

Connection ID (ODCID), followed by the vantage point type of the

logging endpoint. Examples of all options for QUIC are shown in

Figure 18.

Figure 18: Environment variable examples for a QUIC implementation

5.2. Access logs via a well-known endpoint

After generation, qlog implementers MAY make available generated

logs and traces on an endpoint (typically the server) via the

following .well-known URI:

.well-known/qlog/IDENTIFIER.extension

¶

¶

¶

¶

Command: QLOGFILE=/srv/qlogs/client.qlog quicclientbinary

Should result in the the quicclientbinary executable logging a single qlog file named client.qlog in the /srv/qlogs directory.

This is for example useful in tests when the client sets up just a single connection and then exits.

Command: QLOGDIR=/srv/qlogs/ quicserverbinary

Should result in the quicserverbinary executable generating several logs files, one for each QUIC connection.

Given two QUIC connections, with ODCID values "abcde" and "12345" respectively, this would result in two files:

/srv/qlogs/abcde_server.qlog

/srv/qlogs/12345_server.qlog

Command: QLOGFILE=/srv/qlogs/server.qlog quicserverbinary

Should result in the the quicserverbinary executable logging a single qlog file named server.qlog in the /srv/qlogs directory.

Given that the server handled two QUIC connections before it was shut down, with ODCID values "abcde" and "12345" respectively,

this would result in event instances in the qlog file being tagged with the "group_id" field with values "abcde" and "12345".

¶

¶

The IDENTIFIER variable depends on the context and the protocol. For

example for QUIC, the lowercase Original Destination Connection ID

(ODCID) is recommended, as it can uniquely identify a connection.

Additionally, the extension depends on the chosen format (see

Section 4.3.4). For example, for a QUIC connection with ODCID

"abcde", the endpoint for fetching its default JSON-formatted .qlog

file would be:

.well-known/qlog/abcde.qlog

Implementers SHOULD allow users to fetch logs for a given connection

on a 2nd, separate connection. This helps prevent pollution of the

logs by fetching them over the same connection that one wishes to

observe through the log. Ideally, for the QUIC use case, the logs

should also be approachable via an HTTP/2 or HTTP/1.1 endpoint

(i.e., on TCP port 443), to for example aid debugging in the case

where QUIC/UDP is blocked on the network.

qlog implementers SHOULD NOT enable this .well-known endpoint in

typical production settings to prevent (malicious) users from

downloading logs from other connections. Implementers are advised to

disable this endpoint by default and require specific actions from

the end users to enable it (and potentially qlog itself).

Implementers MUST also take into account the general privacy and

security guidelines discussed in Section 7 before exposing qlogs to

outside actors.

6. Tooling requirements

Tools ingestion qlog MUST indicate which qlog version(s), qlog

format(s), compression methods and potentially other input file

formats (for example .pcap) they support. Tools SHOULD at least

support .qlog files in the default JSON format (Section 4.1).

Additionally, they SHOULD indicate exactly which values for and

properties of the name (category and type) and data fields they look

for to execute their logic. Tools SHOULD perform a (high-level)

check if an input qlog file adheres to the expected qlog schema. If

a tool determines a qlog file does not contain enough supported

information to correctly execute the tool's logic, it SHOULD

generate a clear error message to this effect.

Tools MUST NOT produce breaking errors for any field names and/or

values in the qlog format that they do not recognize. Tools SHOULD

indicate even unknown event occurences within their context (e.g.,

marking unknown events on a timeline for manual interpretation by

the user).

Tool authors should be aware that, depending on the logging

implementation, some events will not always be present in all

¶

¶

¶

¶

¶

¶

[QLOG-QUIC-HTTP3]

[RFC1952]

[RFC2119]

[rfc4180]

traces. For example, using a circular logging buffer of a fixed

size, it could be that the earliest events (e.g., connection setup

events) are later overwritten by "newer" events. Alternatively, some

events can be intentionally omitted out of privacy or file size

considerations. Tool authors are encouraged to make their tools

robust enough to still provide adequate output for incomplete logs.

7. Security and privacy considerations

TODO : discuss privacy and security considerations (e.g., what NOT

to log, what to strip out of a log before sharing, ...)

TODO: strip out/don't log IPs, ports, specific CIDs, raw user data,

exact times, HTTP HEADERS (or at least :path), SNI values

TODO: see if there is merit in encrypting the logs and having the

server choose an encryption key (e.g., sent in transport parameters)

Good initial reference: Christian Huitema's blogpost

8. IANA Considerations

TODO: primarily the .well-known URI

9. References

9.1. Normative References

Marx, R., Ed., "QUIC and HTTP/3 event definitions

for qlog", Work in Progress, Internet-Draft, draft-marx-

qlog-event-definitions-quic-h3-02, 2 November 2020,

<https://tools.ietf.org/html/draft-marx-qlog-event-

definitions-quic-h3-02>.

9.2. Informative References

Deutsch, P., "GZIP file format specification version

4.3", RFC 1952, DOI 10.17487/RFC1952, May 1996, <https://

www.rfc-editor.org/info/rfc1952>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Shafranovich, Y., "Common Format and MIME Type for Comma-

Separated Values (CSV) Files", RFC 4180, DOI 10.17487/

RFC4180, October 2005, <https://www.rfc-editor.org/info/

rfc4180>.

¶

¶

¶

¶

¶

¶

https://huitema.wordpress.com/2020/07/21/scrubbing-quic-logs-for-privacy/
https://tools.ietf.org/html/draft-marx-qlog-event-definitions-quic-h3-02
https://tools.ietf.org/html/draft-marx-qlog-event-definitions-quic-h3-02
https://www.rfc-editor.org/info/rfc1952
https://www.rfc-editor.org/info/rfc1952
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4180
https://www.rfc-editor.org/info/rfc4180

[rfc7049]

[RFC7932]

[RFC8259]

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Alakuijala, J. and Z. Szabadka, "Brotli Compressed Data

Format", RFC 7932, DOI 10.17487/RFC7932, July 2016,

<https://www.rfc-editor.org/info/rfc7932>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Appendix A. Change Log

A.1. Since draft-marx-qlog-main-schema-01:

Decoupled qlog from the JSON format and described a mapping

instead (#89)

Data types are now specified in this document and proper

definitions for fields were added in this format

64-bit numbers can now be either strings or numbers, with a

preference for numbers (#10)

binary blobs are now logged as lowercase hex strings (#39,

#36)

added guidance to add length-specifiers for binary blobs

(#102)

Removed "time_units" from Configuration. All times are now in ms

instead (#95)

Removed the "event_fields" setup for a more straightforward JSON

format (#101,#89)

Added a streaming option using the NDJSON format (#109,#2,#106)

Described optional optimization options for implementers (#30)

Added QLOGDIR and QLOGFILE environment variables, clarified the

.well-known URL usage (#26,#33,#51)

Overall tightened up the text and added more examples

*

¶

-

¶

-

¶

-

¶

-

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc7932
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

A.2. Since draft-marx-qlog-main-schema-00:

All field names are now lowercase (e.g., category instead of

CATEGORY)

Triggers are now properties on the "data" field value, instead of

separate field types (#23)

group_ids in common_fields is now just also group_id

Appendix B. Design Variations

Quic-trace takes a slightly different approach based on

protocolbuffers.

Spindump also defines a custom text-based format for in-network

measurements

Wireshark also has a QUIC dissector and its results can be

transformed into a json output format using tshark.

The idea is that qlog is able to encompass the use cases for both of

these alternate designs and that all tooling converges on the qlog

standard.

Appendix C. Acknowledgements

Thanks to Jana Iyengar, Brian Trammell, Dmitri Tikhonov, Stephen

Petrides, Jari Arkko, Marcus Ihlar, Victor Vasiliev, Mirja

Kuehlewind, Jeremy Laine and Lucas Pardue for their feedback and

suggestions.

Author's Address

Robin Marx

Hasselt University

Email: robin.marx@uhasselt.be

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

https://github.com/google/quic-trace
https://github.com/EricssonResearch/spindump
https://www.wireshark.org/
mailto:robin.marx@uhasselt.be

	Main logging schema for qlog
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Design goals
	3. The high level qlog schema
	3.1. summary
	3.2. traces
	3.3. Individual Trace containers
	3.3.1. configuration
	3.3.1.1. time_offset
	3.3.1.2. original_uris
	3.3.1.3. custom fields

	3.3.2. vantage_point

	3.4. Field name semantics
	3.4.1. timestamps
	3.4.2. category and event
	3.4.3. data
	3.4.4. protocol_type
	3.4.5. custom fields
	3.4.6. triggers
	3.4.7. group_id
	3.4.8. common_fields

	4. Serializing qlog
	4.1. qlog to JSON mapping
	4.1.1. numbers
	4.1.2. bytes
	4.1.2.1. Truncated values

	4.1.3. Summarizing table
	4.1.4. Other JSON specifics

	4.2. qlog to NDJSON mapping
	4.2.1. Supporting NDJSON in tooling

	4.3. Other optimizated formatting options
	4.3.1. Data structure optimizations
	4.3.2. Compression
	4.3.3. Binary formats
	4.3.4. Overview and summary

	4.4. Conversion between formats

	5. Methods of access and generation
	5.1. Set file output destination via an environment variable
	5.2. Access logs via a well-known endpoint

	6. Tooling requirements
	7. Security and privacy considerations
	8. IANA Considerations
	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Change Log
	A.1. Since draft-marx-qlog-main-schema-01:
	A.2. Since draft-marx-qlog-main-schema-00:
	Appendix B. Design Variations
	Appendix C. Acknowledgements
	Author's Address

