
MANET Pr. Mase
Internet-Draft C. Adjih
Expires: November 27, 2005 Information and Communication
 Network Lab., Niigata University
 May 26, 2005

No Overhead Autoconfiguration OLSR
draft-mase-manet-autoconf-noaolsr-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on November 27, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2005).

Abstract

 This document specifies one method for autoconfiguration for the
 Optimized Link State Routing (OLSR) protocol for ad hoc networks.
 OLSR is a routing protocol for mobile ad hoc networks, designed for
 use in multi-hop wireless ad hoc networks ; and as such it specifies
 how individual nodes can construct routes to each other. To achieve
 this, it relies on preliminary assignment of unique IP addresses to
 OLSR interfaces ; hence the task of assigning addresses to

Mase & Adjih Expires November 27, 2005 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 interfaces, and checking their uniqueness is defined externally.
 This document proposes a complementary method, called "No Overhead
 Autoconfiguration for OLSR" (NOA-OLSR), to perform this task of
 ensuring uniqueness (Duplicate Address Detection, DAD) of addresses
 which have been selected. This method consists of modifications in
 the OLSR specification.

Table of Contents

1. Introduction . 5
2. Autoconfiguration Method Overview 6
3. Terminology . 9
4. Autoconfiguration Algorithms 11
4.1 Overview . 11
4.2 Address Selection . 11
4.3 Duplicate Address Detection 11
4.3.1 Overview . 11
4.3.2 Notation . 12
4.3.3 Neighbor Duplicate Address Detection 13
4.3.3.1 Rule R1 . 13

4.3.4 Two-hop duplicate address detection 14
4.3.4.1 Rule R2 . 14
4.3.4.2 Rule R3 . 14

4.3.5 Multihop duplicate address detection 15
4.3.5.1 Multihop DAD with two TC generators 16
4.3.5.2 Multihop DAD with two non-generators 17

 4.3.5.3 Multihop DAD with one TC Generator and one
 Non-Generator 21

4.3.5.4 Three-hop DAD, Specific Case 24
4.4 Sequence Number Consistency 25
4.4.1 Minimum Wrap-Around Limit 25
4.4.2 HELLO Sequence Number Consistency 25
4.4.3 TC Sequence Number Consistency 26

4.5 Autoconfiguration State 27
4.5.1 Introduction . 27
4.5.2 Functionning . 27

4.6 Node Familiarity . 29
5. Autoconfiguration Specifications 30
5.1 Overview . 30
5.2 Information Repository 30
5.2.1 Autoconfiguration State 30
5.2.2 State Information Base 30
5.2.3 Duplicate Set . 31
5.2.3.1 Message Content Identifier 31

5.2.4 Set and Unset Fields 32
5.3 Address Selection and Address Change 32
5.3.1 Address Selection 32
5.3.2 Address Change . 33

Mase & Adjih Expires November 27, 2005 [Page 2]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5.4 State Set Update . 34
5.4.1 Populating the State Set 34
5.4.2 State Tuple Update 35
5.4.3 Associated State Tuple Retrieval 36
5.4.4 State Tuple: HELLO information update 36
5.4.5 State Tuple: TC information update 37
5.4.6 State Tuple: MPR information update 37
5.4.7 Familiarity . 37

5.5 Changes in Message Processing 38
5.5.1 Overview . 38
5.5.2 Packet Processing and Message Flooding 38
5.5.2.1 Special Retransmission 39
5.5.2.2 Special Duplicate Tuple Creation 39

5.5.3 Autoconfiguration Message Pre-Processing 40
5.5.3.1 Hello Message Pre-Processing 40
5.5.3.2 TC Message Pre-Processing 41

5.5.4 Autoconfiguration Message Post-Processing 43
5.6 Changes in OLSR Message Processing 43
5.6.1 Changes in HELLO Message Format 43
5.6.2 Changes in HELLO Message Processing 44
5.6.2.1 State Set Update from HELLO 46

5.6.3 Changes in HELLO Message Generation 47
5.6.4 Changes in TC Message Format 48
5.6.5 Changes in TC Message Processing 48
5.6.5.1 State Set Update from TC 49
5.6.5.2 Conflict detection based on TC message content . . 49
5.6.5.3 Dismissed TC messages 50
5.6.5.4 Dismissed addresses in TC messages 50

5.6.6 Changes in TC Message Generation 51
5.6.7 Message Type for HELLO and TC Messages 53

5.7 Changes in MPR Computation 53
5.8 Changes in Routing Table Calculation 54

6. Proposed Values for Constants 55
7. IANA Considerations . 56
8. Limitations and interoperability considerations 57
8.1 Limitations . 57
8.2 Interoperability with Standard OLSR 58

 8.2.1 Considerations for Interoperability with Standard
 OLSR . 58
 8.2.2 Considerations for Isolation from Standard OLSR
 Nodes . 59

9. Requirements notation . 61
10. Security Considerations 62
11. Acknowledgements . 63
12. References . 64
12.1 Normative References 64
12.2 Informative References 64

 Authors' Addresses . 65

Mase & Adjih Expires November 27, 2005 [Page 3]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 Index . 66
 Intellectual Property and Copyright Statements 67

Mase & Adjih Expires November 27, 2005 [Page 4]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

1. Introduction

 A mobile ad hoc network is a collection of nodes, which collaborate
 to each other without depending on centralized control for enabling
 wireless communication among nodes. When two nodes are within direct
 transmission range, they communicate directly (one hop wireless
 communication) ; and otherwise they communicate using other nodes as
 intermediary nodes (multihop wireless communication), where the
 intermediary nodes act as routers for forwarding IP datagrams.
 Accordingly, routing is a key problem for mobile ad hoc networks and
 many routing protocols have been proposed. In IETF, in the MANET
 working group, two proactive routing protocols, OLSR [3] and TBRPF
 [4], and two reactive routing protocols, AODV [5] and DSR [6] are or
 will progress to experimental RFC status. However these routing
 protocols assume that each node has been assigned an unique IP
 address on each of its network interfaces. IP address
 autoconfiguration is therefore an important pratical issue and
 accordingly, many autoconfiguration methods for various types of
 MANET networks have been proposed.

 Many conventional methods are organized independently from routing
 protocols so that they can be used for any MANET regardless of the
 routing protocols. Some other methods are intended to work jointly
 with the routing protocols to improve efficiency of IP address
 autoconfiguration and duplicated address detection. For example,
 information about IP addresses in use can be collected with support
 of the routing protocol and can be used in selecting a new free
 addresses for a node seeking address allocation. Unfortunately, all
 of these proposed methods are rather expensive as they require
 significant control message overhead for either avoiding or resolving
 address conflicts.

 We propose a novel IP address autoconfiguration method for MANET with
 proactive routing for OLSR. Our method is an duplicate address
 detection without overhead based on properties of proactive link
 state routing protocols. The algorithmic and research related aspect
 can be find in the joint publication [9].

Mase & Adjih Expires November 27, 2005 [Page 5]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

2. Autoconfiguration Method Overview

 In this section, an overview of the autoconfiguration method is
 given, followed by a description of the structure of the document.

 The autoconfiguration algorithm detailed in this document applies to
 the OLSR protocol, and changes its operation. The node is assumed to
 implement the OLSR protocol ([3], thereafter denoted "standard
 OLSR"), complemented by the modifications specified here
 (thenceforth, "NOA-OLSR"). The node is also assumed to operate in a
 OLSR MANET environment in which the limitations and restrictions
 enumerated in Section 8 are respected.

 Under these assumptions, an OLSR node running NOA-OLSR will proceed
 as follows. An address is initially selected for its OLSR interface
 (manually, or using the autoconfiguration methods suggested in this
 document). Then, the node runs the OLSR protocol using this address,
 while at the same time constantly checking that it is not conflicting
 with the address of another node in the network (using the detection
 algorithm of this document). Finally, it doesn't run fully OLSR
 protocol initially, because it might be entering in a network where
 its address could be already used by another node, and it would
 possibly break routes of nodes which are already running. Instead,
 the node goes through several states, in the last of which, only, the
 node will ultimately run the full OLSR protocol. Similarily, in
 order to avoid routing table contamination, the other nodes avoid
 relying on this node initially, and will rely on it for routing and
 forwarding messages, when it has reached proper states.

 To sum up, the autoconfiguration of an OLSR node includes in three
 parts:

 o Address selection

 o Ongoing duplicate address detection

 o Gradual entry in the OLSR network and routing table contamination
 avoidance

 Considering the address selection, it is actually a peripherical
 issue of the protocol described in this document, because it is
 fairly independent of it. Hence an overview of address selection is
 provided, along with guidelines, and pointers to relevant references.

 The ongoing duplicate address detection is the main addition to the
 OLSR protocol, detailed in section Section 4.3 is , checking for
 inconsistencies in the routing protocol messages to diagnose
 duplicate address detection, using variants of the ideas pioneered by

Mase & Adjih Expires November 27, 2005 [Page 6]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 [8]:

 o The first kind of inconsistency is based on information included
 in OLSR messages (such as HELLO messages and TC messages): many
 cases of duplicate address in one MANET network result into
 inconsistent information being received ; topology information,
 for instance.

 o The second kind of inconsistency is based on sequence numbers:
 when two nodes, which selected the same IP address, are present in
 a network, they would send control messages that will be
 inconsistent.

 Finally the protocol introduces a state for each OLSR node, the
 "autoconfiguration state". As mentioned, it allows one OLSR node
 with a newly selected address to enter gradually in running OLSR
 network, by sending messages which will be used by more and more
 nodes. At the same time, it also prevents routing table calculation
 contamination by ensuring that routes go through nodes which have
 been present in the network long enough for the duplicate address
 detection to have been performed. The description of the
 autoconfiguration state is given in section Section 4.5.

 The description of the three parts constitutes the major part of this
 document. However, they include both algorithm aspects (such as how
 and why some DAD rule is used), and detailed specifications (such as
 the information bases used to implement the protocol). The choice
 was made to divide the document in two parts: first the algorithmic
 part which describe the ideas used, then the detailed specifications.
 Including some additional sections, the remaining of this document is
 organized as follows:

 o Section 3 collects specific terminology used

 o Section 4 provides the high-level, algorithmic, part of this
 document. It includes:

 * Address selection.

 * Ongoing duplicate address detection.

 * Principles behind checking sequence number consistency of
 messages.

 * Gradual entry in the OLSR network and routing table
 contamination avoidance.

Mase & Adjih Expires November 27, 2005 [Page 7]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 o Section 5 provides the specification of NOA-OLSR. It includes:

 * Description of the additions and changes to the information
 repository of OLSR.

 * Population of (new) state set.

 * Constraints of address selection.

 * Changes in packet processing, in OLSR message processing and
 OLSR message generation.

 * Changes in MPR computation and routing table calculation.

Mase & Adjih Expires November 27, 2005 [Page 8]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

3. Terminology

 This section provides definition for terms that have a specific
 meaning to the protocol specified in this document and that are used
 throughout the text.

 Address Conflict: When two nodes in the same MANET network share the
 same address, the situation is described as an "Address Conflict".
 The nodes involved are "conflicting nodes" and their shared
 address is called "conflicting address". Conflicting nodes may
 each send one message with the same sequence number and same
 message type: such messages are denoted "conflicting messages".

 Autoconfiguration State: The current autoconfiguration state of the
 node, one of HELLO, TOPOLOGY, and NORMAL, which indicates what
 messages it should (or should not) generate and processing it
 should (or should not) do (see Section 4.5).

 Busy Address: An address which is being used by some node in the
 network (see Section 4.2).

 Duplicate Address Detection (DAD): Duplicate address detection is the
 action of detecting address conflict, the situation where some
 nodes are using the same address in the same MANET network.

 Duplicate Address Detection Rule (DAD Rule): A duplicate address
 detection rule is one rule of this document, which used to detect
 the existence of address conflict (see Section 4.3).

 Familiar Address (Node): An address is familiar for a node, if the
 node has seen it in an OLSR message, for a sufficiently long
 period of time (see Section 4.6 and Section 5.4.7). A node is
 familiar for another node if it has a familiar address for this
 other node. An address or a node which is not familiar is said
 "unfamiliar".

 Message Content Identifier: A message content identifier is computed
 internally by the node to differentiate between the content of
 different messages, independently of the message header (see

Section 5.2.3.1).

 Message Content Identifier Generation Method: The message content
 identifier generation method, is the method that one node
 implements to compute a message content identifier from the
 content of a message (see Section 5.2.3.1).

Mase & Adjih Expires November 27, 2005 [Page 9]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 NOA-OLSR: "NOA-OLSR" is the protocol specified by this document. It
 is the standard OLSR protocol [3] with the additions and changes
 specified in this document.

 Routing Table Contamination Avoidance: Routing table contamination
 avoidance is the idea of preserving the routing table from
 incorrect information due to address conflict. This is achieved
 by using the autoconfiguration state (see Section 4.5).

 Sequence Number Consistency: All OLSR messages have a sequence
 number. One trademark of duplicate addresses, is sequence numbers
 of different messages, which could not result from a correct
 implementation of the OLSR protocol (such as decrease in sequence
 numbers, etc.). The properties of sequence numbers which would
 result from the normal OLSR protocol implementation are termed
 "Sequence number consistency" (see Section 4.4).

 Standard OLSR: The terms "standard OLSR protocol" refer to the OLSR
 protocol specified in [3]. The term "standard" is meant to
 differentiate with the "non-standard" OLSR protocol proposed in
 this document (thereafter, "NOA-OLSR"). It is not meant to
 express its normative status within IETF or standardization
 organizations.

 TC Generator: A node which generates TC messages (as originator).

Mase & Adjih Expires November 27, 2005 [Page 10]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

4. Autoconfiguration Algorithms

4.1 Overview

 This section provides a high-level view of the method used for
 autoconfiguration of the node: address selection, duplicate address
 detection based on rules, principles for sequence number consistency,
 use of the autoconfiguration state. The detailed specifications of
 the method are in Section 5.

4.2 Address Selection

 When a node is present in a MANET, it can monitor the protocol
 message exchanges and collect information regarding the addresses in
 use, the "busy address list". It can then selects its own address
 from the pool of free addresses by avoiding the busy address list.
 With OLSR, it is possible for each node to obtain busy address
 information through routing control messages received from other
 nodes (such information is available as part of the State Set
 introduced in Section 4.5).

 This document doesn't specify how the addresses should be selected,
 apart from the fact any selected address should not be the "busy
 address list".

 Some discussions and references about address selection (including
 IPv4 and IPv6 stateless address autoconfiguration) can be found, for
 instance, in the document [7].

4.3 Duplicate Address Detection

4.3.1 Overview

 Duplicate Address Detection is performed passively, i.e., without
 additional control messages. Some various passive DAD techniques
 were proposed in [8], we propose some others.

 In this section, the detection algorithms are detailed. Protocol
 specifications are given in a later section.

 In a MANET network with nodes running the OLSR, several different
 scenarios of address conflicts may occur. There are classified in
 three separated cases:

 Neighbor duplicate address detection: in this case, two neighbor
 nodes (in range of each other) have selected the same address.

Mase & Adjih Expires November 27, 2005 [Page 11]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 Two-hop duplicate address detection: in this case, two nodes which
 have selected the same address are two-hop neighbors. That is,
 there is another node in the network which is the neighbor of
 those both nodes.

 Multihop duplicate address detection: in this case, the two nodes in
 conflict are separated by two nodes or more.

 The three cases of duplicate address are different in that they can
 be detected by different methods: for instance the multihop duplicate
 address detection requires the use of TC message information, while
 the first two cases need not.

 Also, an additional case is added: it's a specific multihop address
 conflict case, where the address conflict results in deficiencies in
 the MPR selection.

4.3.2 Notation

 In the Section 4.3, the following conventions are used to describe
 the duplicate address conflict cases for the algorithms:

 o Capital letters are used to denote different nodes: such as "A",
 "B", "C", etc...

 o Numbers are used to represent different addresses, such as "1",
 "2", "3", etc...

 o The following notation is employed to represent the node "A" which
 has the address "1": "A{1}". In the event of an address conflict,
 two nodes may be using the same address, such as "A{1}" and "B{1}"
 for instance.

 o Each DAD rule is associated to a figure which graphically
 represents the topology. An example is given on Figure 1: one
 node "A" with address "1". In the figures which will follow, the
 nodes which should apply the DAD rule, are highlighted by the mark
 "**", like "A" is, on the sample figure.

 +--------------+
 | ** Node A{1} |
 +--------------+

 Figure 1

Mase & Adjih Expires November 27, 2005 [Page 12]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

4.3.3 Neighbor Duplicate Address Detection

 In the case of "neighbor duplicate address", two conflicting nodes
 are neighbors (see Figure 2). This case is special since many
 different non-OLSR methods could be used to detect the conflict:
 because the neighbor nodes would receive messages from each other
 directly, as they would, for instance, if they were connected on a
 Ethernet network. Thus, most of methods designed for (non-MANET) IP
 networks, such as IPv4 autoconfiguration detection methods or IPv6
 DAD, could be used.

 Still, due to topology changes such methods could fail, or could not
 be available in a node. Hence a rule to detect conflicts at the OLSR
 protocol level in this case is proposed. At mininum, the two OLSR
 nodes should at least periodically generate HELLO messages, hence the
 following duplicate address detection rule is used:

4.3.3.1 Rule R1

 Rule: R1 (see Figure 2)

 Context: An HELLO message is received by a node A{1}.

 Check: Is the address {1}, the address of the originator node ?

 Action: If it is the case, this node is in conflict and must select a
 new address.

 Rationale: A node doesn't receive its own HELLO messages (they are
 not forwarded), hence the occurence of such an event means that a
 node with the same address has sent an HELLO.

 +--------------+ +--------------+
 | ** Node A{1} | <---> | ** Node B{1} |
 +--------------+ +--------------+

 Figure 2

 As mentioned, this rule can be completed by other duplicate address
 detection mechanisms, not specified in this document, as they are
 beyond its scope.

 The detection R1 can be performed using HELLO messages (in any
 autoconfiguration state, including HELLO_STATE).

Mase & Adjih Expires November 27, 2005 [Page 13]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

4.3.4 Two-hop duplicate address detection

 In this case, the two conflicting nodes are two-hop neighbors, that
 is: they are not neighbor, but they have a common neighbor (see
 Figure 3). The rule proposed here relies on the fact that a common
 neighbor exists, and will receive the HELLO from both nodes. The
 detection proceeds in three steps: the common neighbor detects the
 conflict using those HELLOs, then it advertises the conflict in some
 message(s) (rule R2), and finally, the conflicting nodes change their
 address upon receiving this conflict advertisement (rule R3).

4.3.4.1 Rule R2

 Rule: R2 (see Figure 3)

 Context: In node B{2}: an HELLO message from address {1} was received
 previously, and another HELLO from address {1} is just received by
 B{2}.

 Check: Are the sequence numbers of the HELLOs inconsistent (as
 defined in Section 4.4)?

 Action: If it is the case, there are two or more neighbors using the
 same address {1}. B{2} will advertise that the address {1} is
 conflicting in its HELLO messages.

 Rationale: If two neighbors of one node have conflicting addresses,
 the HELLO sequence numbers will be inconsistent.

 +--------------+ +--------------+ +--------------+
 | Node A{1} | <---> | ** Node B{2} | <---> | Node C{1} |
 +--------------+ +--------------+ +--------------+

 Figure 3

4.3.4.2 Rule R3

 Rule: R3 (see Figure 4)

 Context: In node A{1} (and node C{1}): a neighbor B{2} is advertising
 that conflict exists with the address {1}.

 Check: -

Mase & Adjih Expires November 27, 2005 [Page 14]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 Action: If it is the case, A{1} is a conflicting node and must select
 a new address.

 +--------------+ +--------------+ +--------------+
 | ** Node A{1} | <---> | Node B{2} | <---> | ** Node C{1} |
 +--------------+ +--------------+ +--------------+

 Figure 4

 The detections R2 and R3 can be performed using HELLO messages (in
 any autoconfiguration state, including HELLO_STATE).

4.3.5 Multihop duplicate address detection

 In this section, DAD rules are proposed to handle the case where the
 distance between conflicting nodes is three hops or more. In this
 case, in general, it cannot be assumed that a single node has enough
 information to detect the conflict using exclusively the HELLO
 messages. Hence, the logical choice is here to use information
 inside TC messages. However the duplicate address detection is
 complicated by the optimizations of the OLSR routing protocol: first,
 not all nodes originate TC messages ; second, TC messages might
 include only a subset of neighbors ; third, OLSR messages may be
 split and as a consequence, an individual TC message from one node
 might not include all the topology information that the node should
 periodically refresh. Finally, the MPR selection algorithm can be
 affected by duplicate addresses, and prevent proper operation of the
 MPR flooding mechanism, hence prevent proper propagation of the TCs
 used by DAD.

 The DAD rules that are specified in the case of multihop DAD are
 classified depending on the status of the conflicting nodes with
 respect to TC generation: a node which generates TC messages (when it
 is a multipoint relay of some node) is called a TC generator. Three
 cases are possible and are handled:

 o Both conflicting nodes are TC generators.

 o One of the conflicting nodes is a TC generator, and the other is
 not.

 o None of the conflicting nodes is TC generator.

 In each of the three cases, the DAD rules allow detection both on the
 conflicting nodes (which would then change address) and on
 intermediary nodes (which would then avoid routing table
 contamination). Finally some DAD rules are used for preventing the

Mase & Adjih Expires November 27, 2005 [Page 15]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 following case:

 o Conflicting nodes are impeding MPR selection.

 The following four sections handle individually each case.

4.3.5.1 Multihop DAD with two TC generators

 In this case, the two nodes in conflict are both TC generators. Then
 each of them would ultimately receive one TC with its own originator
 address, but which it did not generate (for it was generated by the
 other node). The intermediate nodes would also detect conflict by
 noticing discrepancy in the sequence numbers or discrepancy in the
 content of the TC messages with same sequence number.

 The first rule applies to conflicting nodes (R4 (Section 4.3.5.1.1)),
 the second applies to other nodes in the network (R5
 (Section 4.3.5.1.2)).

4.3.5.1.1 Rule R4

 Rule: R4 (see Figure 5)

 Context: In node A{1} (or node C{1}): a TC with originator address
 {1} has been received. A{1} keeps track of the TC messages that
 it has sent.

 Check: Verify whether A has actually sent that TC: the message
 sequence number should be the same as one message that A has sent
 in the past, and then the content should be the same.

 Action: If it is not the case, A{1} is a conflicting node and must
 select a new address.

 +--------------+ +--------------+ +--------------+
 | ** Node A{1} | <- .. -> | Node B{2} | <- .. -> | ** Node C{1} |
 | TC generator | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 5

4.3.5.1.2 Rule R5

Mase & Adjih Expires November 27, 2005 [Page 16]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 Rule: R5 (see Figure 6)

 Context: In node B{2}: an TC message with originator address {1} was
 received previously by the node, and another TC with originator
 address {1} is just received by B{2}

 Check: Are the sequence numbers of the TC messages consistent (as
 defined in Section 4.4)? Is the content of the TC identical to
 the one(s) received before?

 Action: If it not is the case, there are two or more nodes using the
 same address {1}: then the TC should be forwarded (if it is has
 not already been), but the content of the TC will be ignored and
 not processed

 Rationale: This detects a conflict between TC generators. If the
 conflicting nodes are sending TC messages with same sequence
 number, standard MPR flooding might not allow the TC messages to
 reach the other node. Hence in case of conflict, the TC should be
 forwarded by default. Also, because a conflict has been detected,
 the received TC is guaranted to hold information which is
 inconsistent with the information already processed because it was
 issued by a different node ; and hence, the content of TC message
 should be ignored.

 +--------------+ +--------------+ +--------------+
 | Node A{1} | <- .. -> | ** Node B{2} | <- .. -> | Node C{1} |
 | TC generator | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 6

4.3.5.2 Multihop DAD with two non-generators

 In this section, DAD rules are given for the case where none of the
 conflicting nodes is a TC generator. In such a configuration, the
 conflict is detected by means of by using the TC messages of the
 multi-point relays of the nodes. As one conflicting node selects
 some MPR, these MPR will send TC messages indicating this selection:
 when one of the TC messages reaches the other conflicting node, this
 node will detect inconsistency by discovering that it did not,
 actually, select the TC originator as MPR.

 The DAD for intermediate nodes is, however more complex, because they
 cannot rely on sequence numbers as in previous section

Section 4.3.5.1, nor they can rely on knowledge of the actual MPR

Mase & Adjih Expires November 27, 2005 [Page 17]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 selection of every node like the nodes in conflict. Hence to detect
 occurences of such conflicts, another mechanism is used: it is based
 on the concept of familiar nodes. A node (an IP address) is familiar
 for another node, when the last one has had knowledge of existence of
 the first one for sufficiently long (see Section 4.6).

 The hypothesis made now is that most conflicts occur because of
 network merges. In such an address conflict, now, let's assume a
 node from one network is now sending TC messages including the
 address of one node (in conflict with this network) from another,
 newly merged, network. For instance, let us consider Figure 7, and
 let us assume that A{1}, C{2}, and E{4} were previously part of one
 network, while B{1} and D{3} (one of its MPRs) were part of another.
 It is reasonable to assume that D{3} will become the neighbor of few
 nodes of the first network, which it will advertise. Hence, most
 likely, the TC messages of D{3}, which advertise the conflicting node
 B{1}, also include mostly addresses of nodes from the merged network,
 which would be unfamiliar nodes for A{1}. Thence the DAD rule:
 ignore the information relative to familiar nodes, when it is inside
 TC messages from unfamiliar nodes, which also include too many
 unfamiliar nodes.

 Another rule is added for neighbors of the node A{1}, such as C{2}:
 because they have knowledge of the neighborhood of A{1}, they are
 able to directly check if D{3} is a neighbor of A{1}.

4.3.5.2.1 Rule R6

 Rule: R6 (see Figure 7)

 Context: In node A{1}: a TC message with originator address {3} has
 been received.

 Check: If this TC includes the address {1} of A, A checks whether it
 had recently selected {3} as MPR.

 Action: If it is not the case, A{1} is a conflicting node and must
 select a new address.

 Rationale: If A{1} has not selected {3} as MPR, then another node
 with address {1} must have done so, hence there is an address
 conflict.

Mase & Adjih Expires November 27, 2005 [Page 18]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 +--------------+ +--------------+
 | ** Node A{1} | | ** Node B{1} |
 | (non-MPR) | | (non-MPR) |
 +--------------+ +--------------+
 ^ ^
 | |
 V V
 +--------------+ +--------------+ +--------------+
 | Node C{2} | <- .. -> | Node E{4} | <- .. -> | Node D{3} |
 | TC generator | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 7

4.3.5.2.2 Rule R7

 Rule: R7 (see Figure 8)

 Context: In node E{4}: a TC message from originator {2}, which is
 familiar for E, had been received. It included the familiar (for
 E) address {1}. Another TC, from originator {3}, an unfamiliar
 node for E, is including the same familiar address {1}.

 Check: In this TC, check how many addresses are from familiar nodes.
 If too little addresses are familiar, then the TC is assumed to
 include an address {1} which is conflicting.

 Action: If conflict is assumed, then the information of the TC of {3}
 about address {1} is ignored (the previous one from {3} will still
 be used), but all other content is kept.

 Rationale: This is an heuristic for detecting conflict. Note that in
 any case, a route to {1} can still be computed using the TC
 message from {2}. Note also that after some time, {3} and all the
 nodes advertised by {3} will be familiar to E, ensuring that this
 rule will no longer apply.

Mase & Adjih Expires November 27, 2005 [Page 19]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 +--------------+ +--------------+
 | Node A{1} | | Node B{1} |
 | (non-MPR) | | (non-MPR) |
 +--------------+ +--------------+
 ^ ^
 | |
 V V
 +--------------+ +--------------+ +--------------+
 | Node C{2} | <- .. -> | ** Node E{4} | <- .. -> | Node D{3} |
 | TC generator | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 8

4.3.5.2.3 Rule R8

 Rule: R8 (see Figure 9)

 Context: In node C{2}: a HELLO message from node {1} was previously
 received, and a TC message from node {3} is now received.

 Check: If the TC message from {3} includes {1} as MPR selector, the
 HELLO from {1} should also have included {3} as symmetrical
 neighbor (actually more: as MPR)

 Action: If this not the case, then a conflict is assumed for address
 {1}. Then the information of the TC message of {3} about address
 {1} is ignored (the previous one from {3} will still be used), but
 all other content is kept.

 Rationale: This is another heuristic for detecting conflict, for
 every node which is neighbor of the conflicting nodes.

 +--------------+ +--------------+
 | Node A{1} | | Node B{1} |
 | (non-MPR) | | (non-MPR) |
 +--------------+ +--------------+
 ^ ^
 | |
 V V
 +--------------+ +--------------+ +--------------+
 | ** Node C{2} | <- .. -> | Node E{4} | <- .. -> | Node D{3} |
 | A's neighbor | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 9

Mase & Adjih Expires November 27, 2005 [Page 20]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

4.3.5.3 Multihop DAD with one TC Generator and one Non-Generator

 In case one of the nodes in conflict is a TC generator while the
 other one is not, the conflict can be detected by as previously. The
 TC generator can conduct duplicate address detection by checking the
 TC messages of the MPR of the other node using DAD rule R6
 (Section 4.3.5.2.1). The conflicting node that does not generate TC
 messages, can detect conflict with DAD rule R4 (Section 4.3.5.1.1).

 However for intermediary nodes, a new case is possible. We still
 assume most conflicts occur because of network merges. Then it is
 possible that for one network, one conflicting node is a TC generator
 in the other network, while the other one is not. Using the same
 logic as previously, the TC message of that conflicting node would
 include many unfamiliar nodes, hence one DAD rule is to reject such
 TC.

4.3.5.3.1 Rule R9

 Rule: R9 (see Figure 10)

 Context: In node E{4}: a TC from originator familiar node {2}
 (familiar for E) had been received and it included the (familiar
 for E) address {1}. Another TC message, from originator {1}, is
 received.

 Check: In this TC, check how many addresses are from familiar nodes.
 If too little addresses are familiar, then the TC is assumed to be
 from an unfamiliar node from a merged network.

 Action: If conflict is assumed, then the information of the TC is
 ignored (the previous one from {2} will still be used).

 Rationale: This is an heuristic for detecting conflict. Note that in
 any case, a route to {1} can still be computed using {2} and note
 that in absence of conflict, anyway, after some time, all the
 nodes advertised by {1} will be familiar to E, ensuring that this
 rule will no longer apply.

Mase & Adjih Expires November 27, 2005 [Page 21]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 +--------------+
 | Node A{1} |
 | (non-MPR) |
 +--------------+
 ^
 |
 V
 +--------------+ +--------------+ +--------------+
 | Node C{2} | <- .. -> | ** Node E{4} | <- .. -> | Node B{1} |
 | TC generator | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 10

 Additionally, still in the case of network merge, the nodes that are
 on the border of the network merge can actually use some heuristics
 for detecting conflicts. Indeed, if a node, is from another
 (merging) network, it is likely to have many unfamiliar nodes as
 neighbors. And those unfamiliar nodes will be present in the Hello
 messages of the node. Hence when a node detects that one of its
 neighbors has too many other neighbors that are unfamiliar, it can
 suspect the neighbor is from another network. In case the node is a
 TC generator, it will then mark the address of the node as
 unfamiliar.

4.3.5.3.2 Rule R10

 Rule: R10 (see Figure 11)

 Context: In node C{3}: a TC message is being generated, and it
 includes neighbor {1}.

 Check: \myitem{Check:} In the neighborhood of X{1} (which is obtained
 from the Hello messages, in the two-hop tuple set) check how many
 addresses are from familiar nodes. If too little addresses are
 familiar, then the neighbor is assumed to be an node from a merged
 network.

 Action: If too little address are familiar, the address {1} is
 advertised as being "with too many unfamiliar neighbors".

 Rationale: This is an heuristic to avoid routing table contamination.
 Note that the address {1} is still advertised and can be used by
 node A{1} to detect the conflict.

Mase & Adjih Expires November 27, 2005 [Page 22]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 +--------------+
 | Node X{1} |
 | |
 +--------------+
 ^
 |
 V
 +--------------+ +--------------+ +--------------+
 | Node A{1} | <- .. -> | Node B{2} | <- .. -> | ** Node C{3} |
 | | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 11

 The following rule uses the information transmitted by the previous
 one:

4.3.5.3.3 Rule R11

 Rule: R11 (see Figure 12)

 Context: In node B{2}: a TC message has been received from originator
 {3} and it includes neighbor {1} marked as ``with too many
 unfamiliar neighbors'', by rule R10 in node {3}.

 Check: -

 Action: The address {1} should be ignored in the processing of the TC
 message. But the other addresses may still be used, and the TC
 should still be forwarded.%with std MPR flooding.

 Rationale: This is an heuristic to avoid routing table contamination,
 using information from rule R10.

 +--------------+
 | Node X{1} |
 | |
 +--------------+
 ^
 |
 V
 +--------------+ +--------------+ +--------------+
 | Node A{1} | <- .. -> | ** Node B{2} | <- .. -> | Node C{3} |
 | | | | | TC generator |
 +--------------+ +--------------+ +--------------+

 Figure 12

Mase & Adjih Expires November 27, 2005 [Page 23]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

4.3.5.4 Three-hop DAD, Specific Case

 It has been noted that in some cases the MPR selection process can
 fail because of duplicate addresses (see [8]). As a result, the MPR
 flooding mechanism may fail to deliver a message to the entire
 network, and then the previous DAD rules may fail to detect the
 duplicate address detection. This situation is illustrated on
 Figure 13. A specific rule can be devised to prevent this situation
 and allow proper MPR selection: on the figure, the node B{2} is able
 to detect that there is an inconsistency in the neighborhood
 advertised by {1} and {3}, which may possibly arise from {1} being a
 duplicate address. In this case, the MPR selection of B would be
 deficient: so B can still preventively select {3} as MPR by itself.
 That way, the messages from A{1} going through B will reach D{1}
 (triggering one of the previous DAD rules).

4.3.5.4.1 Rule R12

 Rule: R12 (see Figure 13)

 Context: In node B{2}: a HELLO from node {1} had been received, and
 now an HELLO from node {3} is received.

 Check: If the HELLO from {3} includes {1} as symmetrical neighbor,
 the HELLO from {1} should also have included {3} as symmetrical
 neighbor.

 Action: If it is not the case, there is an inconsistency and the node
 B should select {3} as MPR.

 Rationale: Such inconsistencies should never happen in a static
 network, unless there is a conflict. Note also that due to
 topology changes, they may do so even if there is no conflict. In
 that case, note that the only penalty is an temporary increase of
 the number of MPR selected. It is still an excellent heuristic
 that will solve the MPR selection problem when the network is
 static.

Mase & Adjih Expires November 27, 2005 [Page 24]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 +--------------+ +--------------+
 | Node A{1} | | Node D{1} |
 +--------------+ +--------------+
 ^ ^
 | |
 V V
 +--------------+ +--------------+
 | ** Node B{2} | <---> | Node C{3} |
 +--------------+ +--------------+

 Figure 13

4.4 Sequence Number Consistency

 In [8], the use of sequence numbers to verify consistency has been
 used in some general cases. Here, sequence number consistency is
 checked for the OLSR protocol, and consist really of two cases: HELLO
 sequence number consistency, and TC sequence number consistency.

4.4.1 Minimum Wrap-Around Limit

 In the OLSR protocol [3], it is implicitly assumed that the sequence
 number of one node will wrap-around within an interval of time
 greater than DUP_HOLD_TIME. Hence this value is a good reference for
 the minimum expected interval before a wrap-round the sequence number
 of any node in the network, denoted MIN_WRAP_AROUND_INTERVAL.

4.4.2 HELLO Sequence Number Consistency

 In case of HELLO messages, it is assumed that they would be received
 in the same order as they are transmitted (because they are not
 forwarded). In this case, a node observing the HELLO messages from a
 neighbor will see that their sequence numbers are permanently
 increasing. Now if there are two neighbors B and C of one node A,
 the node A will receive alternatively messages from B and C, because
 each is transmitting indefinitly. Hence A must receive a sequence of
 packets from B, then some packets from C, then some packets from B,
 and so on. Let's assume that ultimately a sufficiently long sequence
 is received without packet loss, and which then will be in this
 order:

 o one packet B1 from B (possibly the last one of a sequence of
 packets from B)

 o some packets from C

Mase & Adjih Expires November 27, 2005 [Page 25]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 o one packet B2 from B (possibly the first one of a sequence of
 packets from B)

 Now because there was no packet loss, the sequence number of the
 packet B2 is the sequence number of the packet B1 plus 1. As a
 result, considering the sequence number of any packet from C:

 o If it is greater than the sequence number of B1, then: the
 sequence number of the packet B2 will be less or equal to the
 sequence number of the packets from C.

 o Otherwise it is equal to or less than the sequence number of B1.

 In both events, A observes a decrease or a repetition of the sequence
 numbers of B.

 Hence, for HELLO messages, it is sufficient to check if the HELLO
 received from one address is equal to, or less than, the sequence
 number of the previous HELLO received from this address.

 However, because a node may not be constantly a neighbor (and hence,
 quite naturally, a large number of successive HELLO messages may not
 be received), this condition should be checked only when there was no
 wrap-around, hence when the interval between the previous HELLO
 received and the last HELLO received from the same address is less
 than MIN_WRAP_AROUND_INTERVAL.

4.4.3 TC Sequence Number Consistency

 Because TC messages are forwarded with the MPR flooding mechanism,
 first, the same message may be received several time, secondly, the
 packet order can be changed, especially with the use of jitter.
 Hence the algorithm used previously for checking consistency of HELLO
 messages (Section 4.4.2) can not be used as is.

 Hence the following principles are used:

 o The sequence number and the receving time of the last TC message
 for each originator is recorded.

 o Each time a TC message is received from a given originator, with a
 given sequence number, the node checks whether if a TC message
 with similar identification already was received. If it was, it
 checks that the previous content is identical to the current
 content.

 o If the sequence number difference (in absolute value) between the
 new TC and previous TC from the same originator is above a given

Mase & Adjih Expires November 27, 2005 [Page 26]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 threshold MAX_TC_DIFF_SEQ_NUM, then duplicate address can be
 suspected. Such an event is possible, for instance if another
 node sends many non-TC messages or cease to be TC generator for
 some time ; thus an additional check is performed on the message
 rate: an approximation of the message rate is computed as the
 "sequence number difference divided by the reception time
 difference". If this message rate is greater than a threshold
 MAX_MESSAGE_RATE, then the TC Sequence Number are deemed
 inconsistent.

 If precise adjustement is desired for the values of
 MAX_TC_DIFF_SEQ_NUM, and MAX_MESSAGE_RATE (peak rate), it can be
 observed that one of the worst case occurs when two nodes are in
 conflict, and one is using the same sequence numbers of the other
 with a delay a little greater than DUP_HOLD_TIME.

4.5 Autoconfiguration State

4.5.1 Introduction

 Each node has an "autoconfiguration state". This state is an
 indicator of how long the node has been in the network. The central
 idea, is that each time a node selects a new address, it should enter
 the network gradually, running a restrained version of the OLSR
 protocol. By this way, that the node can detect which addresses are
 being used, checking for duplicates of its own address, while
 avoiding to disrupt the routing tables of the other nodes, in the
 event that its address is actually found to be in conflict.

4.5.2 Functionning

 There are exactly 3 autoconfiguration states, in each of which the
 behavior of the node is:

 HELLO_STATE: When a node newly assigns its own address, it enters the
 HELLO_STATE, where it generates HELLO messages, but not topology
 control (TC) messages. It does not participate in MPR selection
 nor MPR flooding, and does not participate in data packet
 forwarding either. It doesn't fill the topology set nor the
 routing table. When it detects that it has an address conflict
 with other nodes based on received hello messages (rules R1 to R3,
 and rule R12), it re-selects a new address based on the busy
 address list. When a pre-determined time has elapsed, in this
 state, without detecting address conflict, the node enters the
 topology state.

Mase & Adjih Expires November 27, 2005 [Page 27]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 TOPOLOGY_STATE: In this state, a node generates HELLO messages, but
 not TC messages. It processes TC messages, and performs MPR
 selection, but cannot be MPR itself and hence, does not forward TC
 messages. It fills the network topology set but not the routing
 table, and does not participate in data packet forwarding. When
 it detects that it has an address conflict with another node
 (based rules R1 to R12 applied to received messages), it re-
 selects a new address (using the recommendations of Section 4.2)
 and returns to the HELLO_STATE. When a pre-determined time
 elapses in the TOPOLOGY_STATE without detecting address conflict,
 the node enters the NORMAL_STATE.

 NORMAL_STATE: In this state, the node is running the "normal" OLSR
 protocol, completed with the algorithms specified in this document
 , and without message processing/generation restrictions
 associated to the state. More precisely, the node generates both
 HELLO messages and TC messages as usual. It processes TC messages
 generated by other nodes and forwards them as usual based on MPR
 flooding. It fills the topology set, calculates routing tables
 and participates in data forwarding. Only nodes in the
 NORMAL_STATE are selected as the intermediary nodes (forwarders)
 in the routing table calculation. When the node detects that it
 has an address conflict with other nodes (according to one of the
 rules R1 to R12), it re-selects a new address and enters the
 HELLO_STATE.

 The behavior in each state is summarized in the following table:

 +----------------+----------------+----------------+----------------+
 | State | HELLO_ STATE | TOPOLOGY_ | NORMAL_ STATE |
 | | | STATE | |
 +----------------+----------------+----------------+----------------+
Selectable as	no	no	yes
MPR			
MPR selection	no	yes	yes
TC message	no	no	yes
forwarding			
TC message	no	yes	yes
processing			
(MPR flooding)			
TC message	no	no	yes
generation			

Mase & Adjih Expires November 27, 2005 [Page 28]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

Routing table	no	no	yes
(and			
forwarding)			
DAD rules	R1, R2, R3,	R1 to R12	R1 to R12
	and R12		
State duration	HELLO_ STATE_	TOPOLOGY_	forever
(if no address	DURATION	STATE_	
change)		DURATION	
 +----------------+----------------+----------------+----------------+

4.6 Node Familiarity

 The concept of "node familiarity" is introduced for use of some
 heuristics in DAD rules. The definition is the following: a node (or
 more precisely, an IP address) is "familiar" for another node, when
 the last one has had knowledge of existence of the first one for
 sufficiently long. An node which is not familiar is "unfamiliar".

 In NOA-OLSR, a node (more precisely, an address) considered familiar
 when the time elapsed since the first time that its address has
 appeared in any OLSR message, is greater than a fixed time interval
 NODE_FAMILIAR_TIME (see Section 6).

Mase & Adjih Expires November 27, 2005 [Page 29]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5. Autoconfiguration Specifications

5.1 Overview

 This section provide a low-level view of the changes and additions to
 the standard OLSR, necessary to implement NOA-OLSR performing
 duplicate address detection. The high-level description of the
 method, including algorithms, is in Section 4.

5.2 Information Repository

 Though the exchange of OLSR control messages, each node accumulates
 information about the network. This information is stored according
 to the descriptions in section 4 of the OLSR specification [3],
 modified accordingly to the changes proposed to this section.

5.2.1 Autoconfiguration State

 Each node has one "autoconfiguration state" (see Section 4.5), which
 is one of HELLO_STATE, TOPOLOGY_STATE and NORMAL_STATE.

5.2.2 State Information Base

 The State Information Base is the State Set: a set of type which hold
 some information relevant to autoconfiguration for each address.

 For each address in the network, a 'State Tuple' (S_main_addr,
 S_time, S_state, S_last_hello_time, S_last_hello_seq_num,
 S_last_tc_time, S_last_tc_seq_num, S_conflict_time,
 S_MPR_remember_time, S_MPR_forced_time, S_creation_time) is recorded.

 A state tuple primarily records information about the
 autoconfiguration state of the node, but also with a set of data
 about these addresses, which are used to perform autoconfiguration.

 S_main_addr: the address of the node

 S_state: the autoconfiguration state of the address (see
Section 4.5)

 S_time: the time after which the tuple should be deleted

 S_last_hello_time, S_last_hello_seq_num: the last time an HELLO
 has been received from this address, and the sequence number of
 this last HELLO

 S_last_tc_time, S_last_tc_seq_num: the last time an TC has been
 received from this address (as originator), and the sequence

Mase & Adjih Expires November 27, 2005 [Page 30]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 number of this last TC

 S_conflict_time: the time until which the address is considered to
 be in conflict

 S_MPR_remember_time: the time after which the node forgets that
 this address was selected as MPR by this node.

 S_MPR_forced_time: the time during which this address must be
 choosen as MPR

 S_creation_time: the time at which the state tuple was created

5.2.3 Duplicate Set

 In the standard OLSR protocol, each node recorded a "Duplicate Tuple"
 which includes the following fields (D_addr, D_seq_num,
 D_retransmitted, D_iface_list, D_time) (see section 3.4 of the OLSR
 specification [3] where they are documented).

 In NOA-OLSR, the following field is added: D_content_id.
 D_content_id is used to identify the content of the message which was
 received, and is should be a sequence of bytes. Use and requirement
 of D_content_id are highlighted in the next section.

5.2.3.1 Message Content Identifier

 A message content identifier is used by NOA-OLSR to check whether the
 content of a message is identical to one received previously. In
 standard OLSR functionning, the message sequence numbers are used for
 this purpose ; however in NOA-OLSR, because of the possibility of
 duplicate addresses, two messages with same originator address and
 same sequence number can be different if they are originated from
 conflicting nodes. The message content identifier is used in this
 context, to verify whether the message are actually identical.

 Each implementation must have a method to generate message content
 identifiers from a received message, and such a method is naturally
 denoted "Message Content Identifier Generation Method". It is
 typically some kind of hash method, and it should met the following
 requirements:

 It must take in input the message content, and output one "message
 content identifier" (whose exact implementation is left to
 implementors). The message content is defined as the sequence of
 bytes of an OLSR message, excluding the message header (section

3.3.2 of the OLSR specification [3]).

Mase & Adjih Expires November 27, 2005 [Page 31]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 It must consistently generate the same message content identifier,
 when it is applied on the same message content.

 It should generate different message content identifiers, for
 different message contents, with a high probability (typically
 larger than the probability of address collision of one node).

 Two examples of methods which satisfy the requirements are the
 following:

 Copy method: the message content identifier is the sequence of
 bytes which constitute the message content itself.

 Hash method: the message content identifier is a sequence of bytes
 obtained after applying a hash function on the sequence of bytes
 of the message content. For instance the MD5 Message-Digest
 Algorithm [2], suitable at least for networks with less that one
 billion of OLSR nodes.

 Because the message content identifiers are not transmitted to other
 nodes, different nodes can implement different generation methods
 without compromising interoperability.

5.2.4 Set and Unset Fields

 Several of the newly introduced fields in the miscellanous tuple are
 not necessarily initialized at the tuple set creation. Such fields
 are:

 In state tuples, the fields: S_last_hello_time,
 S_last_hello_seq_num, S_last_tc_time, S_last_tc_seq_num,
 S_conflict_time, S_MPR_remember_time, S_MPR_forced_time

 In duplicate tuples, the field D_content_id

 After tuple creation, the node must be able to identify the fact that
 the field has been already set or not. How to do so is indeed an
 implementation issue, but in the remaining it is assumed that a node
 can verify whether a field "is set" which means that a value has been
 affected to the field yet. In the opposite case, the field "is not
 set".

5.3 Address Selection and Address Change

5.3.1 Address Selection

 A node can choose an address using any algorithm, as highlighted in
Section 4.2, subject to one constraint. The only constraint is that

Mase & Adjih Expires November 27, 2005 [Page 32]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 the address MUST NOT select any busy address, that is an address
 which has recently been used in the network.

 Precisely, a busy address is an address such that:

 o There exists a State Tuple in the State Set with:

 * S_main_addr == the given address ; and

 * S_time is not expired

 Hence it is required that either the address selection algorithm
 yields addresses which are different from any such addresses, or
 alternatively, that the algorithm run until the last address it
 generates is no longer busy. In case the algorithm is unable to
 generate a new address, the node may stop.

5.3.2 Address Change

 Upon detection of a conflict a node MUST change its address, by
 selecting a new one as described in Section 5.3.1.

 When a node sets a new address (for initialisation, or because it has
 just changed its address because of a conflict), the node SHOULD
 perform the following steps:

 The node sets its autoconfiguration state to HELLO_STATE.

 Any potential OLSR message waiting for transmission or forwarding
 at the routing protocol level, should be either send with the new
 proper address (originator), or should be discarded.

 Each link tuple of the Link Set must be modified so that
 L_local_iface_addr (which should be the previous address of the
 node), is set to new address.

 The MPR Selector Set is emptied.

 The routing table is emptied.

 Additionally, the autoconfiguration state evolves as follows:

 Also each time a conflict is detected, the node selects a new
 address and restarts from HELLO_STATE.

 If the node has been in state HELLO_STATE without address conflict
 for a duration greater than HELLO_STATE_DURATION, then:

Mase & Adjih Expires November 27, 2005 [Page 33]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 The node sets its autoconfiguration state to TOPOLOGY_STATE

 The node recomputes its MPR set

 If the node has been in state TOPOLOGY_STATE without address
 conflict for a duration greater than TOPOLOGY_STATE_DURATION,
 then:

 The node sets its autoconfiguration state to NORMAL_STATE

 The node recomputes its MPR set

 The node recalculates its routing table

5.4 State Set Update

 The State Set records information that the node gathered about all
 the addresses which are known in the network. It is updated by a
 variety of means at different steps of the OLSR processing.

5.4.1 Populating the State Set

 One of the main informations that State Set records is whether an
 address has already been seen in the network, and what was the
 autoconfiguration state associated with that address.

 Because all external addresses of the network come from OLSR messages
 received, such messages are the source of information used to
 populate the State Set. Because state tuples may be used quite early
 in the processing, the node MUST satisfy the following requirements:

 o For any address which is to be used, the node must preliminary
 update its state tuple with the proper associated
 autoconfiguration state if it is know, or with the STATE_UNDEFINED
 autoconfiguration state.

 More precisely, in the basic functionning of the OLSR protocol, TC
 and HELLO messages are exchanged and upon receiving such a message,
 and:

 o The node should update the state tuple of Sender Interface Address
 with STATE_UNDEFINED (as per Section 5.4.2).

 o The node should update the state tuple of the Originator Address
 with STATE_UNDEFINED (as per Section 5.4.2).

Mase & Adjih Expires November 27, 2005 [Page 34]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 o Depending on the message type, it should perform the following
 updates if it is one of the following:

 * HELLO_MESSAGE, HELLO_MESSAGE_WITH_STATE: update the state set
 according to Section 5.6.2.1

 * TC_MESSAGE, TC_MESSAGE_WITH_STATE: update the state set
 according to Section 5.6.5.1

5.4.2 State Tuple Update

 This section describes the steps taken for the action refered in
 other sections as: updating the state tuple for a given address
 "Address" with a given state "Autoconfiguration State". The steps
 are the following:

 o If there exists no state tuple where:

 S_main_addr == given Address

 then one is created and inserted in the tuple set with the
 following values:

 * S_main_addr = given Address

 * S_creation_time = current time

 * S_state = STATE_UNDEFINED

 * S_MPR_remember_time is not set

 * S_MPR_forced_time is not set

 * S_conflict_time is not set

 * S_last_hello_time is not set

 * S_last_tc_time is not set

 o The state tuple (newly created or not) where

 S_main_addr == given Address

 is then modified as follows:

 S_time = current time + NODE_STATE_HOLD_TIME

Mase & Adjih Expires November 27, 2005 [Page 35]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 After that, if the following condition is true:

 the given Autoconfiguration State is different from
 STATE_UNDEFINED, AND

 S_state is different from the given Autoconfiguration State

 Then a potential topology change is recorded and the state tuple
 is modified as follows:

 * S_state = given Autoconfiguration state

 A potential topology change implies that both the MPR set and the
 routing table SHOULD be recomputed.

5.4.3 Associated State Tuple Retrieval

 In many cases, the steps related to autoconfiguration use the state
 tuple associated to one address, that is: the state tuple such as
 S_main_addr is equal to that address (it is necessarily unique). If
 such a state tuple exists, then this is the one which is used when
 the "associated state tuple is retrieved".

 However, although such a state tuple should exist, it may be the case
 that such a state tuple has been deleted, because S_time has expired.
 This is because the state set is kept relatively independent from
 other processings and from other sets by design. When this case
 occurs when the "associated state tuple is retrieved", a new state
 tuple is created using the method in Section 5.4.2 (using
 STATE_UNDEFINED).

5.4.4 State Tuple: HELLO information update

 Each time the handling of a received HELLO message has been finished,
 the state tuple of its originator, that is the state tuple where:

 S_main_addr == Originator Address

 will exist (as an application of the rules Section 5.4.1). The node
 should then update or ensure that it had been updated as follows:

 S_last_hello_time = current time

 S_last_hello_seq_num = HELLO message sequence number

Mase & Adjih Expires November 27, 2005 [Page 36]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5.4.5 State Tuple: TC information update

 Each time the handling of a received TC message has been finished,
 the state tuple of its originator, that is the state tuple where:

 S_main_addr == Originator Address

 will exist (as an application of the rules Section 5.4.1). The node
 should then update or ensure that it had been updated as follows:

 S_last_tc_time = current time

 S_last_tc_seq_num = TC message sequence number

5.4.6 State Tuple: MPR information update

 Before recomputing its MPR set, as documented in section 8.3 of the
 OLSR specification [3], a node MUST use the current list of MPR to
 save the information that those nodes had been choosen as MPR in the
 recent past. This is used for DAD rule Section 4.3.5.2.1.

 For each address in its MPR set, the associated state tuple is
 retrieved (as per Section 5.4.3), and is modified as follows:

 o S_MPR_remember_time = current time + MAX_MPR_REMEMBER_TIME

5.4.7 Familiarity

 The concept of familiar addresses, which is described in Section 4.6,
 is used by NOA-OLSR. In the actual specification, the fact that a
 given address is familiar or unfamiliar is determined from the state
 set, as follows:

 1. If there exists a state tuple in the state set, such as:

 S_main_addr = given address, AND

 current time > S_creation_time + NODE_FAMILIAR_TIME

 then: the address is familiar

 2. Otherwise, the address is unfamiliar.

Mase & Adjih Expires November 27, 2005 [Page 37]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5.5 Changes in Message Processing

5.5.1 Overview

 This section gives a description of the changes in the processing of
 standard OLSR messages, namely HELLO messages and TC messages.

5.5.2 Packet Processing and Message Flooding

 The packet processing algorithm, documented in section 3.4 of the
 OLSR specification [3], has been changed. For convenience, such
 changes have been denoted "message pre-processing" and "message post-
 processing". Hence, an autoconfiguration pre-processing step and an
 autoconfiguration post-processing step have been added to the message
 processing of the standard OLSR.

 Upon receiving a OLSR packet, a node MUST perform a number of tasks
 for each encapsulated message, listed in section 3.4 of the OLSR
 specification [3]. The steps which have been added or changed are
 the following:

 1 ...

 1 bis {CHANGED:}Depending on whether or not the node has decided to
 interoperate with standard OLSR nodes (see Section 8.2), the node
 MUST check whether it must reject the message based on
 requirements of Section 5.6.7. It the message must be rejected,
 the processing of the message stops here.

 2 If the time to live of the message is less than or equal to '0'
 (zero), the message MUST silently be dropped. {CHANGED:} Even if
 the message was sent by the receiving node (i.e., the Originator
 Address of the message is the main address of the receiving node),
 the node MUST perform the autoconfiguration pre-processing given
 indicated in Section 5.5.3. This pre-processing will finish with
 one of four statuses:

 Address conflict detected The node MUST then stop the processing
 of the packet and change its address according to the rules of

Section 5.3.2.

 Interrupt message processing The node MUST then skip the
 processing of the current message, and proceed to the
 processing of the next message (if any) of the packet.

Mase & Adjih Expires November 27, 2005 [Page 38]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 Retransmit message and interrupt message processing The node MUST
 first perform a special retransmission of the message according
 to the rules listed in Section 5.5.2.1, then skip the
 processing of the current message, and proceed to the
 processing of the next message (if any) of the packet.

 Continue message processing The node MUST continue the processing
 of the message.

 3 ... 4 (same as in section 3.4 of the OLSR specification [3])

 5 {CHANGED:} the message SHOULD be post-processed according the the
 specifications of Section 5.5.4.

5.5.2.1 Special Retransmission

 A special retransmission method is used when it is assumed, that, in
 presence of address conflict, the MPR flooding mechanism alone would
 not necessarily guarantee the proper distribution of one message to
 the entire network. This retransmission can be performed as a result
 of the message pre-processing steps, it includes creation of a new
 duplicate tuple, followed by a retransmission of the message section

3.4.1 of the OLSR specification [3]:

 1. A new duplicate tuple is inserted in the duplicate set with the
 special duplicate tuple creation documented in Section 5.5.2.2.

 2. The TTL of the message is reduced by one.

 3. The hop-count of the message is increased by one.

 4. The message is broadcast on all interfaces (Notice: the remaining
 fields of the message header SHOULD be left unmodified.)

5.5.2.2 Special Duplicate Tuple Creation

 This document uses the duplicate set in additional ways differing
 from the standard OLSR [3]. Indeed, the duplicate set is also used
 for both messages generated by the node and for messages
 retransmitted using the Special Retransmission (Section 5.5.2.1)
 method. Such use relies on the creation of a duplicate tuple in a
 special way by one method, herehence called "Special Duplicate Tuple
 Creation". The duplicate tuple is created for a given message, and
 refering to the fields of the message, it is created as follows:

Mase & Adjih Expires November 27, 2005 [Page 39]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 D_addr = Originator Address

 D_seq_num = Message Sequence Number

 D_retransmitted = true

 D_time = current time + DUP_HOLD_TIME

 D_iface_list contains all the interfaces of the node

 D_content_id = computed message content identifier
 (Section 5.2.3.1)

5.5.3 Autoconfiguration Message Pre-Processing

 This section specifies the message pre-processing which MUST be
 implemented. Note that the message pre-processing uses the message
 headers but doesn't interpret (parse) the message content ; instead
 it considers the message content as a sequence of bytes.

 The following steps MUST be followed:

 1. If the message is a HELLO_MESSAGE or HELLO_WITH_STATE_MESSAGE,
 the node pre-processes the messages according to Section 5.5.3.1.

 2. Otherwise, if the message is a TC_MESSAGE or
 TC_WITH_STATE_MESSAGE, the node pre-processes the messages
 according to Section 5.5.3.2.

 3. Otherwise:

 1. If the message was sent by the receiving node (i.e., the
 Originator Address of the message is the main address of the
 receiving node) the message pre-processing finish with status
 'Interrupt Message Processing'

 2. Otherwise, this pre-processing finishes with status 'Continue
 Message Processing'.

5.5.3.1 Hello Message Pre-Processing

 The pre-processing of such messages MUST be performed as follows,
 checking for the R1 (Section 4.3.3.1).

 1. If the Originator Address of the message is the main address of
 the receiving node:

Mase & Adjih Expires November 27, 2005 [Page 40]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 1. there is a conflict and the pre-processing finishes with
 status 'Address conflict detected' (in accordance to DAD rule
 R1 (Section 4.3.3.1))

 2. Otherwise, the pre-processing finishes with status 'Continue
 message processing'

5.5.3.2 TC Message Pre-Processing

 The pre-processing of such message MUST be performed checking for the
 DAD rules R4 (Section 4.3.5.1.1) and R5 (Section 4.3.5.2.2) as
 follows:

5.5.3.2.1 Rule R4 check

 o If the following condition is true:

 Originator Address == main address of the node

 o AND if there exists no tuple in the tuple set where:

 D_addr == Originator Address, AND

 D_seq_num == Message Sequence Number

 D_content_id == computed message content identifier

 o then, in accordance to rule R4 (Section 4.3.5.1.1), a conflict as
 been detected and the pre-processing is finished with status
 'Address conflict detected'.

5.5.3.2.2 Rule R5 check

 The DAD rule R5 requires checking two conditions, namely, consistency
 of sequence numbers of TC messages, and consistency of message
 content of TC messages.

 The check for consistent sequence numbers is the following:

 o If the following condition is true:

 * Originator Address is different from main address of the node

 AND such TC has never been seen, that is: there exists no tuple in
 the duplicate set where:

Mase & Adjih Expires November 27, 2005 [Page 41]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 D_addr == Originator Address, AND

 D_seq_num == Message Sequence Number

 AND a TC sequence number inconsistency is detected using the rules
 of Section 4.4.3, that is, precisely: there exists one tuple in
 the state set where:

 S_main_addr == Originator Address, AND

 S_last_tc_time is set , AND

 | Message Sequence Number - S_last_tc_seq_um | >
 MAX_TC_DIFF_SEQ_NUM, (where |a| is the absolute value of 'a'),
 AND

 | Message Sequence Number - S_last_tc_seq_um | > (current time
 - S_last_tc_time) * MAX_MESSAGE_RATE

 then, in accordance to rule R5 (Section 4.3.5.1.2) a conflict has
 been detected between two other nodes, and the pre-processing is
 finished with status 'Retransmit message and interrupt message
 processing'.

 The check for consistent TC message content is the following:

 o If the following condition is true:

 * Originator Address is different from main address of the node

 AND such TC has been seen, that is: there exists at least one
 tuple in the duplicate set where:

 D_addr == Originator Address, AND

 D_seq_num == Message Sequence Number

 AND there exists no tuple in the duplicate set where:

 D_addr == Originator Address, AND

 D_seq_num == Message Sequence Number, AND

 D_content_id == computed message content identifier (see
Section 5.2.3.1)

 then, in accordance to rule R5 (Section 4.3.5.1.2) a conflict has
 been detected between two other nodes, and the pre-processing is

Mase & Adjih Expires November 27, 2005 [Page 42]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 finished with status 'Retransmit message and interrupt message
 processing'.

5.5.4 Autoconfiguration Message Post-Processing

 The node MUST do the following post-processing, to ensure that any
 forwared TC has an associated duplicate tuple with proper
 D_content_id:

 1. If the message is a TC_MESSAGE or a TC_WITH_STATE_MESSAGE:

 * If there exists a duplicate tuple such that:

 D_addr == Originator Address, AND

 D_seq_num == Message Sequence Number, AND

 D_content_id is not set

 * Then:

 The field D_content_id of this duplicate tuple is set to
 the value of the computed message content identifier
 (Section 5.2.3.1).

 2. Otherwise the post-processing stops.

5.6 Changes in OLSR Message Processing

 This section documents the changes to be applied in the general
 processing of the OLSR protocol: OLSR message processing for HELLO
 and TC messages.

5.6.1 Changes in HELLO Message Format

 A new kind of HELLO message is used: it includes now both the
 autoconfiguration state of the node which generates the HELLO and the
 autoconfiguration state of neighbor interface addresses. The Message
 Type of the message is HELLO_WITH_STATE_MESSAGE (see also

Section 5.6.7).

 Although another general format might be used, it is choosen to keep
 the format of a message HELLO_WITH_STATE is similar to a normal
 HELLO, except for the following: the reserved field is split in two
 and includes the state of the nodes (for the originator of the HELLO,
 and the neighbor nodes), as shown on Figure 14.

Mase & Adjih Expires November 27, 2005 [Page 43]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Node State | Neigh. State | Htime | Willingness |
 +-+
 | Link Code | Reserved | Link Message Size |
 +-+
 | Neighbor Interface Address |
 +-+
 ...

 Figure 14

 "Node State" is the autoconfiguration state of the node. "Neighbor
 State" ("Neigh. State") is the autoconfiguration state of the
 neighbors being advertised.

 As a result, only neighbors which all have the same autoconfiguration
 state can be sent in the same HELLO_WITH_STATE: this is not
 restrictive in practice, because several different HELLO_WITH_STATE
 can be generated at the same time (each with different neighbor
 state).

 The choice if which of HELLO or HELLO_WITH_STATE to use, is specified
 in Section 5.6.7.

5.6.2 Changes in HELLO Message Processing

 The HELLO Message Processing modifies on the processing described in
section 7.1.1 of the OLSR specification [3], in section 8.2.1 of the

 OLSR specification [3], and in section 8.4.1 of the OLSR
 specification [3].

 The changes in the HELLO Message Processing are related to the DAD
 rules R2 (Section 4.3.4.1), R3 (Section 4.3.4.2), and R12
 (Section 4.3.5.4.1).

 The "Originator Address" of a HELLO message is the main address of
 the node, which has emitted the message. Likewise, the "Neighbor
 State" MUST be computed from the Neighbor State field of the HELLO
 message (see Section 5.6.1).

 The application of the DAD rule R2 (Section 4.3.4.1) is done by
 performing the following processing with the message originator
 address:

 1. The state tuple relative to the Originator Address of the message
 is updated (see Section 5.4.2) with autoconfiguration state equal

Mase & Adjih Expires November 27, 2005 [Page 44]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 to the Neighbor State.

 2. If that associated state tuple verifies:

 * S_last_hello_seq_num is set, AND

 * current time - S_last_hello_time < MIN_WRAP_AROUND_INTERVAL,
 AND

 * S_last_hello_seq_num is equal or greater to the Message
 Sequence Number of the received HELLO

 then the Originator is conflicting with another node, according
 to rule R2 (Section 4.3.4.1), and as a consequence, the state
 tuple MUST be updated as follow:

 * S_conflict_time = current time + CONFLICT_HOLD_TIME

 The application of the DAD rule R3 (Section 4.3.4.2) is done by
 checking whether the address of the node is advertised by the means
 of Section 5.6.3 in the HELLO of another node, as follows:

 1. If inside the same HELLO message from another node, the address
 of the node appears more than one time, then:

 The node is in conflict and node MUST then stop the processing
 of the packet and change its address according to the rules of

Section 5.3.2

 The DAD rule @R12@ adds the following processing upon receiving a
 HELLO message:

 o for each address (henceforth: 2-hop neighbor address), listed in
 the HELLO message with Neighbor Type equal to SYM_NEIGH or
 MPR_NEIGH:

 1. if the main address of the 2-hop neighbor address == main
 address of the receiving node:

 silently ignore the 2-hop address

 2. otherwise if there exists a associated neighbor tuple where:

 N_neighbor_main_addr == 2-hop neighbor address, AND

 additionally there exists no two hop neighbor tuple where:

Mase & Adjih Expires November 27, 2005 [Page 45]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 N_neighbor_main_addr == 2-hop neighbor address, AND

 N_2hop_addr == Originator address

 then, a potential conflict is assumed and:

 + state tuple associated to the 2-hop neighbor address is
 retrieved (see Section 5.4.3), and it is updated as
 follows:

 + S_MPR_forced_time = current time + CONFLICT_HOLD_TIME

 Additionally, the node would now process its own HELLO messages,
 because one check has been removed in Section 5.5.2. This should be
 avoided, hence now prior to performing the HELLO processing of

section 7.1.1 of the OLSR specification [3], the node should check
 that:

 The Originator Address of HELLO message is not one of the main
 address of node

 and if it is not the case, the standard HELLO processing should be
 skipped.

5.6.2.1 State Set Update from HELLO

 The "Originator Address" of a HELLO message is the main address of
 the node, which has emitted the message, and is in the message header
 of the message (section 3.3.2 of the OLSR specification [3]). The
 "Node State" and the "Neighbor State" are fields inside the HELLO
 message and have been added for NOA-OLSR (see Section 5.6.1). Upon
 receiving a HELLO, and before any processing of the content (i.e.
 before using any of the addresses), the node SHOULD update the state
 set as follows:

 1. The state tuple associated to Originator Address must be updated
 with the autoconfiguration state "Node State" (as per

Section 5.4.2)

 2. For each of the neighbor interface address received in the HELLO
 message:

 1. The state tuple associated to neighbor interface address must
 be updated with the autoconfiguration state "Neighbor State"

Mase & Adjih Expires November 27, 2005 [Page 46]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5.6.3 Changes in HELLO Message Generation

 The HELLO Message Generation is the one described in section 6.2 of
 the OLSR specification [3], with modifications described in this
 section. There are two modifications. The first one is the
 application of the the DAD rule Section 4.3.4.2 and is related to
 rule Section 4.3.4.1: the address of neighbors which have been
 detected to be in conflict are advertised in the HELLO messages.
 There are implicitly advertised by a specific means: they are
 included twice in the HELLO message. The second modification relates
 to the specification of the autoconfiguration states in the messages.

 The amendments of section 6.2 of the OLSR specification [3] are
 hence:

 o The Node State field is set such that it corresponds to the node's
 current autoconfiguration state.

 o The Neighbor State field is set such that it corresponds to the
 autoconfiguration state of all addresses listed in the HELLO
 messages. Namely, for any Neighbor Interface Address which is
 advertised, it MUST be advertised in an HELLO message such that:

 * the associated state tuple (Section 5.4.3) has a S_state
 identical to the Neighbor State the message

 As a consequence, one node will send at least many different HELLO
 as there are different autoconfiguration states of neighbors.

 o The following rule is added: any neighbor conflicting address, as
 identified by the fact that there is one state tuple where:

 S_main_addr == address, AND

 S_conflict_time > current time

 and for which there exists one associated neighbor tuple where:

 N_neighbor_main_addr == S_main_addr

 this conflicting address MUST be cited at least once within the
 predetemined refreshing period REFRESH_INTERVAL in the following
 way: it must figure listed twice (or more) in the same link
 message, with proper Neighbor Code, and with either proper Link
 Code or LINK_UNSPEC.

Mase & Adjih Expires November 27, 2005 [Page 47]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5.6.4 Changes in TC Message Format

 A new kind of TC message is used: it includes now both the
 autoconfiguration state of the node which generates the TC and the
 autoconfiguration state of advertised addresses. The Message Type of
 the message is TC_WITH_STATE_MESSAGE. A similar change to HELLO
 messages (see Section 5.6.1) is performed: use of the reserved field
 for storing an extra Node State and Neighbor State (each of them
 within one byte)

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ANSN | Node State | Neigh. State |
 +-+
 | Advertised Neighbor Main Address |
 +-+
 ...

 Figure 15

 "Node State" is the autoconfiguration state of the node. "Neighbor
 State" ("Neigh. State") is the autoconfiguration state of the
 neighbors being advertised.

 Note that only nodes in STATE_NORMAL are sending TCs, and only nodes
 in STATE_TOPOLOGY or STATE_NORMAL are selecting MPR (as per

Section 4.5.2), hence the possible values in the "Node State" and
 "Neighbor State" fields are limited. Still, upon receiving a TC
 message, the TC processing should not assume this property is
 necessarily verified, for possible interoperability reasons.

 Additionaly, requirements about which of TC or TC_WITH_STATE to use,
 are specified in Section 5.6.7.

5.6.5 Changes in TC Message Processing

 The TC Message Processing specified in the section 9.5 of the OLSR
 specification [3] is now verifying the DAD rules R6
 (Section 4.3.5.2.1), R7 (Section 4.3.5.2.2), R8 (Section 4.3.5.2.3)
 and R9 (Section 4.3.5.3.1), and additionally, is adapted in several
 ways. The following adaptions SHOULD be added:

 o The TC processing of section 9.5 of the OLSR specification [3] and
 the additional TC processing in this section, is only performed
 when the node is in TOPOLOGY_STATE or NORMAL_STATE.

Mase & Adjih Expires November 27, 2005 [Page 48]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 o The state set should be updated from the TC messages.

 o Some TC messages uncover an address conflict involving the
 receiving node (rule R6 (Section 4.3.5.2.1)).

 o Some TC messages are to be ignored because they are estimated to
 include invalid information (rules R9 (Section 4.3.5.3.1)).

 o Some information in the TC messages (some addresses) should be
 ignored because it is estimated to be invalid (rules R5
 (Section 4.3.5.1.2) and @R12@).

 Each of these are described in the following sections.

5.6.5.1 State Set Update from TC

 The "Originator Address" of a TC message is the main address of the
 node, which has emitted the message, and is in the message header of
 the message (section 3.3.2 of the OLSR specification [3]). The "Node
 State" and the "Neighbor State" are fields inside the TC message and
 have been added for NOA-OLSR (see Section 5.6.4). Upon receiving a
 TC, and before any processing of the content (i.e. before using any
 of the addresses), the node SHOULD update the state set as follows:

 1. The state tuple associated to Originator Address must be updated
 with the autoconfiguration state "Node State" (as per

Section 5.4.2)

 2. For each of the advertised neighbor main address received in the
 TC message:

 1. The state tuple associated to advertised neighbor address
 must be updated with the autoconfiguration state "Neighbor
 State"

5.6.5.2 Conflict detection based on TC message content

 The rule R6 (Section 4.3.5.2.1) asserts that the node is in conflict,
 if it receives a TC which advertises its address in an situation
 where it shouldn't. The pratical steps for completing this check are
 the following:

 o If in the received TC message:

 * the advertised address includes the main address of the node,
 AND

Mase & Adjih Expires November 27, 2005 [Page 49]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 * the originator address is not in the MPR set of the node, AND

 * the associated state tuple of the originator address is such
 that at least one of the two following conditions is verified:

 + S_MPR_remember_time is not set, or else,

 + S_MPR_remember_time < current time

 o Then the node is in conflict: it will then stop the processing of
 the message and it MUST change its address according to the rules
 of Section 5.3.2.

5.6.5.3 Dismissed TC messages

 The rule R9 (Section 4.3.5.3.1) require certain TC messages to be
 dismissed because they are inconsistent with the collected
 information, and would contaminate routing tables. The familiarity
 (see Section 4.6) is at the core of the verification of rule R9.

 Before further processing a TC , the node MUST first checks whether
 the originator address of the TC is familiar (as described

Section 5.4.7). If and only if, it is the case, the following steps
 determine whether the TC processing should be interrupted according
 to rule R9:

 1. The number of familiar addresses Nf and the number of unfamiliar
 addresses Nu is computed for TC

 2. If the ratio of familiar addresses is too low, that is precisely
 if:

 Nf < (Nf + Nu) * MIN_TC_FAMILIARITY_RATE

 Then:

 * the TC message should be ignored

5.6.5.4 Dismissed addresses in TC messages

 Upon receiving a TC and prior to TC processing of each address
 according to section 9.5 of the OLSR specification [3], the DAD rules
 R7 (Section 4.3.5.2.2) and R8 (Section 4.3.5.2.3) require some
 addresses to be ignored to prevent routing table contamination.

 In application of the rule R7 (Section 4.3.5.2.2), the node SHOULD

Mase & Adjih Expires November 27, 2005 [Page 50]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 ignore any advertised address in a TC message which verifies the
 following conditions simultaneously:

 o The advertised address is not one interface address of the node,
 AND

 o The Originator Address of the TC is familiar (as per
Section 5.4.7), AND

 o The advertised address is familiar (as per Section 5.4.7), AND

 o There exists no topology tuple where:

 * Either T_last_addr == advertised address

 * or T_dest_addr == advertised address

 Additionaly, in application of the rule R8 (Section 4.3.5.2.3), the
 node SHOULD ignore any advertised address in a TC message which
 verifies the following conditions simultaneously:

 o There exists a neighbor tuple where:

 * N_neighbor_main_addr == advertised address, AND

 * N_status == SYM

 and then,

 o There exists no two hop tuple where:

 * N_neighbor_main_addr == advertised address, AND

 * N_2hop_addr == Originator Address

5.6.6 Changes in TC Message Generation

 In order to build the topology information base, each node, which has
 been selected as MPR, broadcasts Topology Control (TC) messages in
 the OLSR protocol. The following changes should be made in the TC
 message generation of section 9.3 of the OLSR specification [3].

 The conditions for actually generating TC messages, now additionally
 take into account the autoconfiguration state (see Section 4.5.2):

 o A node SHOULD only generate messages when it is in STATE_NORMAL

Mase & Adjih Expires November 27, 2005 [Page 51]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 The format of TC messages is different, and hence the TC message
 generation should fill properly the extra information:

 o The Node State field is set such that it corresponds to the
 current autoconfiguration state of the node.

 o The Neighbor State field is set such that it corresponds to the
 autoconfiguration state of all addresses advertised in the TC
 message. Namely, for any address which is advertised, it MUST be
 advertised in an TC message such that:

 * the associated state tuple (Section 5.4.3) has a S_state
 identical to the Neighbor State of the message

 As a consequence, one node will send at least as many different
 TCs as there are different autoconfiguration states of advertised
 addresses.

 Finally, the node MUST keep track of the TCs it has sent, and this is
 done by adding information in the duplicate set. To do so, after the
 generation of each TC message, the node records it by creating a
 duplicate tuple. However due to an address conflict, the node may
 already have such a tuple for a received TC from a conflicting node,
 hence the two steps update: first check whether there is such TC, and
 second, if not, create the duplicate tuple. This is done as follows,
 before the TC message is actually sent:

 1. the message content identifier is computed (as per
Section 5.2.3.1)

 2. If there exists a duplicate tuple where:

 * D_addr == main address of node

 * D_seq_num == TC message sequence number (in message header)

 Then the node is in conflict (as an application of rule R4
 (Section 4.3.5.1.1)), and

 * it will then stop the processing of the message and it MUST
 change its address according to the rules of Section 5.3.2

 3. Otherwise the node creates a duplicate tuple, accordingly to
 Special Duplicate Tuple Creation (Section 5.5.2.2).

Mase & Adjih Expires November 27, 2005 [Page 52]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

5.6.7 Message Type for HELLO and TC Messages

 New message types are introduced by NOA-OLSR, for use with the new
 HELLO message format in Section 5.6.1, and the new TC message format
 inSection 5.6.4. Because these messages simply use "reserved"
 (blank) fields in standard OLSR messages, it would be possible to use
 the standard message types HELLO_MESSAGE and TC_MESSAGE. However for
 interoperability reasons, a node SHOULD NOT do so. Instead it should
 decide first whether it wants to interoperate with standard OLSR
 implementations, or not interoperate. See Section 8.2 for a
 comprehensive discussion of interoperability with standard OLSR.

 Depending on whether it chooses to interoperate with the standard
 OLSR implementations the node, should originate messages as follows:

 Interoperating with standard OLSR: The node MUST generate messages
 with HELLO_MESSAGE type and TC_MESSAGE type when the fields "node
 state" and the "neighbor state" of the message are both in state
 NORMAL. It MUST ignore all the messages with "node state" ==
 NORMAL_STATE and message type HELLO_WITH_STATE_MESSAGE or
 TC_WITH_STATE_MESSAGE.

 Never interoperating with standard OLSR: The node MUST generate all
 HELLO and TC messages with a message type of
 HELLO_WITH_STATE_MESSAGE or TC_WITH_STATE_MESSAGE. It MUST ignore
 all the messages with message type HELLO_MESSAGE and TC_MESSAGE.

5.7 Changes in MPR Computation

 The MPR computation is changed as follows. First, before any new MPR
 computation, it must be kept track of the previous MPR set, as
 indicated in Section 5.4.6.

 During MPR computation, the node should avoid any node in a state
 different from STATE_NORMAL (as Section 4.5.2 specifies). After the
 MPR computation has been achieved, yielding a new MPR set, this set
 is completed with the MPR enforced by autoconfiguration rules (namely
 rule R12 (Section 4.3.5.4.1)), as follows:

 The node MUST add to its MPR set, the address S_main_addr of any
 state tuple where:

 S_main_addr is not already in the newly computed MPR list

 S_MPR_forced_time > current time

Mase & Adjih Expires November 27, 2005 [Page 53]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 There exists a neighbor tuple in the neighbor set where:

 N_neighbor_main_addr == S_main_addr

 N_status == SYM

5.8 Changes in Routing Table Calculation

 Standard routing table calculation is described in section 10 of the
 OLSR specification [3]. However with the introduction of the
 autoconfiguration state, it should now be exclusively be performed
 when the node is in NORMAL_STATE (see Section 4.5.2).

 The computed routes should also only have forwarders which are in the
 NORMAL_STATE, and hence the routing table computation algorithm
 should be modified. The property of using only forwarders in the
 NORMAL_STATE can be expressed as ensuring that only route entries
 where:

 R_next_addr is associated to a state tuple (as retrieved by
Section 5.4.3) where S_state == NORMAL_STATE

 OR ELSE: R_next_addr == R_dest_addr (i.e. this is a direct
 neighbor)

 This property can be ensured by:

 o in step 3 of the algorithm of section 10 of the OLSR specification
 [3], using only 2-hop tuples where N_neighbor_main_addr is
 associated to a state tuple (Section 5.4.3) with S_state ==
 NORMAL_STATE

 o in "the second step 3", sub-step 3.1: using only topology tuples
 where T_last_addr is associated to a state tuple (Section 5.4.3)
 with S_state == NORMAL_STATE

Mase & Adjih Expires November 27, 2005 [Page 54]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

6. Proposed Values for Constants

 The proposed values of the specification are documented here. Many
 of them are depend on the constants section 18 of the OLSR
 specification [3].

 HELLO_STATE_DURATION (= HELLO_INTERVAL)

 TOPOLOGY_STATE_DURATION (= TC_INTERVAL)

 MAX_MPR_REMEMBER_TIME (= 2 x NEIGHB_HOLD_TIME)

 CONFLICT_HOLD_TIME (= NEIGHB_HOLD_TIME)

 NODE_FAMILIAR_TIME

 MIN_WRAP_AROUND_INTERVAL (= DUP_HOLD_TIME)

 MIN_TC_FAMILIARITY_RATE (= 50%)

 MAX_TC_DIFF_SEQ_NUM, MAX_MESSAGE_RATE

 NODE_STATE_HOLD_TIME (= 10 x DUP_HOLD_TIME)

 Codes for Autoconfiguration State (in messages)

 o NORMAL_STATE = 0

 o TOPOLOGY_STATE = 1

 o HELLO_STATE = 2

 o UNDEFINED_STATE = 3

 In this section, several proposed values are dependent on OLSR
 protocol values. However, it is allowed in standard OLSR, to change
 some parameters (which will result in changes of "validity time" of
 some messages, for instance): then there is an ambiguity about which
 parameters should be chosen: the parameters of the receiving node, or
 the parameters of the sender node. The values that are proposed here
 can be used by default, and can be replaced by more appropriate
 values where necessary.

Mase & Adjih Expires November 27, 2005 [Page 55]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

7. IANA Considerations

 Two new types of control messages are defined in NOA-OLSR. Because
 this document is a draft, some values in the range reserved for
 private/local use (see section 22 of the OLSR specification [3]) are
 proposed:

 HELLO_WITH_STATE_MESSAGE = 130

 TC_WITH_STATE_MESSAGE = 131

 Values in the range 5-127 might be allocated in the OLSR registry
 using standards action, for these new messages.

Mase & Adjih Expires November 27, 2005 [Page 56]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

8. Limitations and interoperability considerations

 There are several limitations associated with NOA-OLSR proposed in
 this specification. The most important of them is related to the
 fact that the node is assumed to work exclusively in an environment
 where all nodes have a single interface, but there exists some other
 minor limitations which are explained in Section 8.1. The other kind
 of limitation is a direct consequence of the previous one: although
 an implementation of NOA-OLSR will interoperate with most standard
 OLSR implementations, some features of standard OLSR interact
 negatively, and unconditional interoperability is not warranted. The
 conditions of interoperability are documented in Section 8.1.

8.1 Limitations

 The limitations of NOA-OLSR protocol are highlighted in this
 document. Some of the limitations will be addressed in future
 versions of this document, some are intrinsic to the method, and may
 be lifted by added requirements on the OLSR protocol. In this
 section, the analysis of these limitations is provided.

 In this version of this draft, the first one, the duplicate detection
 rules have been specified only the most common case, where the node
 has a single interface participating in the MANET. This rules can
 naturally be extended to integrate multiple interfaces, but doing so
 is not immediatly straightforward, and hence will be the subject of
 further specification. Meanwhile, an implementation of this
 specification of NOA-OLSR cannot be expected to perform reliably with
 several interfaces, and more precisely:

 o Some duplicate address conflicts will not be detected.

 o The assumptions of some rules are no longer verified. For
 instance, rule R1 assumes that a node will not receive the HELLO
 messages that it generates.

 o The changes in OLSR processing will result, in some cases, in a
 general state of the node (including the data of the miscellaneous
 information repositories) which is inconsistent and otherwise
 impossible in both the standard OLSR and NOA-OLSR. This will
 result in unpredictable behavior.

 Another present restriction derives from the assumption that TC
 messages will include only MPR selectors in rule R6. The rule could
 be approprietly relaxed, but for any implementation which doesn't, in
 some cases, the node will not interoperate with nodes which are
 advertising more than their MPR selector set. Precisely, these are
 nodes which include they auxiliary functionning of "Redundant

Mase & Adjih Expires November 27, 2005 [Page 57]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 Topology Information" in section 15 of the OLSR specification [3]
 (with TC_REDUNDANCY different from 0, see section 15.1 of the OLSR
 specification [3]).

 Concerning the intrisic restrictions due to the DAD rules, the most
 noticeable is the use of message sequence numbers to detect message
 inconsistency (as Section 4.4). This assumes, logically, that the
 message sequence numbers will be linearily incremented, however this
 is property of the standard OLSR is not stated as a "REQUIREMENT".
 Practices such as computing a sequence number from the content of the
 message, for instance, would defeat autoconfiguration mechanisms.

 Finally, the necessary changes auxiliary functions of OLSR (such as
 for options "Non-OLSR Interfaces", section 12 of the OLSR
 specification [3]), are not addressed in this documente, and the
 impact of NOA-OLSR on auxiliary functionning is not addressed for the
 time being.

8.2 Interoperability with Standard OLSR

 A node implementing NOA-OLSR protocol relies on some assumptions
 given in the previous Section 8.1, hence might not be able to
 interoperate successfully with a MANET comprising given standard OLSR
 implementations.

 Two modes of operation are defined in Section 5.6.7:

 o a node that never interoperates with nodes running standard OLSR.

 o a node that always interoperates with nodes running the standard
 OLSR protocol.

 The discussion and logic behind interoperability is found in
Section 8.2.1, and the discussion and logic behind isolation is in
Section 8.2.2.

8.2.1 Considerations for Interoperability with Standard OLSR

 A sufficient condition for interoperability between two link state
 routing protocols running on the same network, is that they both use
 the same topology information and the same algorithm for route
 calculation, and also if topology information exchange is not
 disrupted. This sufficient condition is verified for the standard
 OLSR and NOA-OLSR, when it is implemented as documented here and in

Section 5.6.7. Namely:

 o When a node is in the NORMAL_STATE, it will advertise all
 information about addresses in NORMAL_STATE inside HELLO and TC

Mase & Adjih Expires November 27, 2005 [Page 58]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 messages which are compliant with standard OLSR.

 o When a node is not in the NORMAL_STATE, or alternatively when it
 advertises information about addresses which are not in
 NORMAL_STATE, it uses messages that the standard OLSR will not
 process.

 The sufficient conditions are satisfied because:

 o As the standard OLSR does, NOA-OLSR uses only nodes in the
 NORMAL_STATE for computing routes as forwarders.

 o MPR flooding is not disrupted, because: nodes with NOA-OLSR which
 are not in NORMAL_STATE are invisible to the standard OLSR. As a
 result:

 * MPR flooding from Sstandard OLSR nodes: standard OLSR nodes
 will never attempt to select as MPR some nodes which are not in
 NORMAL_STATE, hence no problem arises.

 * MPR flooding from nodes with NOA-OLSR: nodes implementing NOA-
 OLSR, that are not in NORMAL_STATE, are not selected as MPR.

 Because of some of the current restrictions of NOA-OLSR, it might be
 the case that in some networks, one given implementation of modified
 OLSR won't interoperate with one given standard OLSR implementation.
 This issue is addressed in the next Section 8.2.2.

8.2.2 Considerations for Isolation from Standard OLSR Nodes

 It may be desired to isolate an implementation of NOA-OLSR from the
 standard OLSR networks. This is a perticuliar instance of the
 related problem of separating of a OLSR, MANET or general network in
 different administrative entities.

 In the OLSR protocol, all links between OLSR interfaces are
 discovered by means of neighbor sensing. Then, isolating one node to
 another node can be achieved by either of them ignoring the messages
 of the other. This results into an asymmetrical link, which will
 neither be used for MPR selection, nor MPR flooding nor route
 calculation, and in practice, in isolation of the nodes from each
 other.

 However doing so, requires generally an external mechanism to
 exchange information sufficient for one node to determine whether it
 want to be isolated from another. In the case of NOA-OLSR, this
 information is implicitly provided as follows:

Mase & Adjih Expires November 27, 2005 [Page 59]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

 o A node which doesn't wish to interoperate with standard OLSR,
 should transmit all its HELLO and TC messages with message type
 HELLO_WITH_STATE and TC_WITH_STATE

 o A node which wishes to interoperate with standard OLSR, should
 transmit all its HELLO and TC messages, when in STATE_NORMAL, ,
 with message type HELLO_MESSAGE and TC_MESSAGE

 These rules must be respected, as enforced by Section 5.6.7. Note
 that as a consequence, a node which receives HELLO message from a
 node in STATE_NORMAL (or from a standard OLSR node), can deduce which
 kind of policy it enforce.

Mase & Adjih Expires November 27, 2005 [Page 60]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

9. Requirements notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [1].

Mase & Adjih Expires November 27, 2005 [Page 61]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

10. Security Considerations

 As the standard OLSR does not specify any special security measure,
 it makes a target for various attacks (see section 20 of the OLSR
 specification [3]) ; NOA-OLSR is subject to the same attacks, but
 also to other attacks: such as forging messages in order to
 deliberatly trigger some DAD rules, hence forcing an address change,
 or increasing OLSR control traffic. However the conditions in which
 such attacks can be sucessfully conducted are some conditions in
 which more severe attacks can be conducted with the standard OLSR
 protocol. Hence, in practice, vulnerability of NOA-OLSR protocol
 against deliberate attacks, is identical to the vulnerability of the
 standard OLSR protocol.

Mase & Adjih Expires November 27, 2005 [Page 62]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

11. Acknowledgements

 This work was funded by Strategic Information and Communications R&D
 Promotion Programme (SCOPE), Ministry of Internal Affairs and
 Communications, Japan.

 The authors would also like to thank Sota Yoshida, Masoto Goto,
 Takashi Hasegawa for their valuable contributions to NOA-OLSR, along
 wth Yasuhiro Owada, and many other students of Information and
 Communication Network Laboratory for other various aspects for
 developping and testing of this protocol.

 (document generation date: Thu May 26 15:00:15 2005)

Mase & Adjih Expires November 27, 2005 [Page 63]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

12. References

12.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

12.2 Informative References

 [2] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
 April 1992.

 [3] Clausen, T. and P. Jacquet, "Optimized Link State Routing
 Protocol (OLSR)", RFC 3626, October 2003.

 [4] Ogier, R., Templin, F., and M. Lewis, "Topology Dissemination
 Based on Reverse-Path Forwarding (TBRPF)", RFC 3684,
 February 2004.

 [5] Perkins, C., Belding-Royer, E., and S. Das, "Ad hoc On-Demand
 Distance Vector (AODV) Routing", RFC 3561, July 2003.

 [6] Johnson, D., "The Dynamic Source Routing Protocol for Mobile Ad
 Hoc Networks (DSR)", draft-ietf-manet-dsr-10 (work in progress),
 July 2004.

 [7] Ruffino, S., Stupar, P., and T. Clausen, "Autoconfiguration in a
 MANET: connectivity scenarios and technical issues",

draft-ruffino-manet-autoconf-scenarios-00 (work in progress),
 October 2004.

 [8] Weniger, K., "Passive Duplicate Address Detection in Mobile Ad
 hoc Networks", March 2003.

 [9] Mase, K., "No Overhead IP Address Autoconfiguration for Mobile
 Ad Hoc Networks with Proactive Routing", Work in progress.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3626
https://datatracker.ietf.org/doc/html/rfc3684
https://datatracker.ietf.org/doc/html/rfc3561
https://datatracker.ietf.org/doc/html/draft-ietf-manet-dsr-10
https://datatracker.ietf.org/doc/html/draft-ruffino-manet-autoconf-scenarios-00

Mase & Adjih Expires November 27, 2005 [Page 64]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

Authors' Addresses

 Pr. Kenichi Mase
 Information and Communication Network Lab.,Niigata University
 Niigata University
 Niigata 950-2181,
 Japan

 Phone: +81 25 262 7446
 Email: mase@ie.niigata-u.ac.jp
 URI: http://www.net.ie.niigata-u.ac.jp/

 Cedric Adjih
 Information and Communication Network Lab.,Niigata University
 Niigata University
 (Permanent address: INRIA Domaine de Voluceau, Rocquencourt, France)
 Niigata 950-2181,
 Japan

 Email: cedric@net.ie.niigata-u.ac.jp, cedric.adjih@inria.fr

http://www.net.ie.niigata-u.ac.jp/

Mase & Adjih Expires November 27, 2005 [Page 65]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

Index

 D
 Duplicate Address Detection Rule
 R1 13
 R2 14
 R3 14
 R4 16
 R5 16
 R6 18
 R7 19
 R8 20
 R9 21
 R10 22
 R11 23
 R12 24

 I
 Index
 Document structure 7

 S
 Specification
 Busy Address 33

 T
 terminology
 Address Conflict 9
 Autoconfiguration State 9
 Busy Address 9
 Conflicting Address 9
 Conflicting Message 9
 Conflicting Node 9
 DAD Rule 9
 Duplicate Address Detection (DAD) 9
 familiar address 9
 familiar node 9
 Message Content Identifier Generation Method 9
 Message Content Identifier 9
 NOA-OLSR 10
 Routing Table Contamination Avoidance 10
 Sequence Number Consistency 10
 Standard OLSR 10
 TC Generator 10
 unfamiliar node 9

Mase & Adjih Expires November 27, 2005 [Page 66]

Internet-Draft No Overhead Autoconfiguration OLSR May 2005

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2005). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Mase & Adjih Expires November 27, 2005 [Page 67]

