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Abstract

   The primary state variables used by all TCP congestion control
   algorithms, cwnd and ssthresh are heavily overloaded, carrying
   different semantics in different states.  This leads to excess
   implementation complexity and poorly defined behaviors under some
   combinations of events, such as loss recovery during cwnd validation.
   We propose a new framework for TCP congestion control, and to recast
   current standard algorithms to use new state variables.  This new
   framework will not generally change the behavior of any of the
   primary congestion control algorithms when invoked in isolation but
   will to permit new algorithms with better behaviors in many corner
   cases, such as when two distinct primary algorithms are invoked
   concurrently.  It will also foster the creation of new algorithms to
   address some events that are poorly treated by today's standards.
   For the vast majority of traditional algorithms the transformation to
   the new state variables is completely straightforward.  However, the
   resulting implementation will technically be in violation of all
   existing TCP standards, even if it is fully compliant with their
   principles and intent.
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1.  Introduction

   The primary state variables used by all TCP congestion control
   algorithms, cwnd and ssthresh, are heavily overloaded, carrying
   different semantics in different states.  This leads to excess
   implementation complexity and poorly defined behaviors under some
   combinations of events, such as overlapping application stalls and
   loss recovery.  Multiple algorithms sharing the same state variables
   lead to excess complexity and conflicting correctness constraints,
   making it unreasonably difficult to implement, test and evaluate new
   algorithms.

   We are proposing a new framework for TCP congestion control and it
   use new state variables that separate transmission scheduling, which
   determines precisely when data is sent, from congestion control,
   which determines the amount of data to be sent in each RTT.  This
   separation greatly simplifies the interactions between the two
   subsystems and permits vast range of new algorithms that are not
   feasible with the current parameterization.

   This note describes the new framework, represented through its state
   variables, and presents a preliminary mapping between current
   standards and new algorithms based on the new state variables.  At
   this point the new algorithms are not fully specified, and many have
   still unconstrained design choices.  In most cases, our goal is to
   precisely mimic todays standard TCP, at least as far as well defined
   primary behaviors.  In general, it is a non-goal to mimic behaviors
   in poorly defined corner cases, or other cases where standard
   behaviors are viewed as being problematic.

   It is called Laminar because one of its design goals is to eliminate
   unnecessary turbulence introduced by TCP itself.

1.1.  Overview of the new algorithm

   The new framework separate transmission scheduling, which determines
   precisely when data is sent, from Congestion Control, which
   determines the total amount of data sent in any given RTT.

   The default algorithm for transmission scheduling is a strict
   implementation of Van Jacobsons' packet conservation principle
   [Jacobson88].  Data arriving at the receiver cause ACKs which in turn
   cause the sender to transmit an equivalent quantity of data back into
   the network.  The primary state variable is implicit in the quantity
   of data and ACKs circulating in the network.  This state observed
   through a new "total_pipe" estimator, which is a generalization of
   "pipe" as described in RFC 3517.  [RFC3517]

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517
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   A new state variable, CCwin, is the primary congestion control state
   variable.  It is updated only by the congestion control algorithms,
   which are concerned with detecting and regulating the overall level
   of congestion along the path.  CCwin is TCP's best estimate for an
   appropriate average window size.  In general, it rises when the
   network seem to be underfilled and is reduced in the presence of
   congestion signals, such as loss, ECN marks or increased delay.
   Although CCwin resembles cwnd, it is actually quite different, for
   one thing the new parameterization does not use ssthresh at all.

   Any time CCwin is larger than total_pipe, the default algorithm to
   grow total_pipe is for each ACK to trigger one segment of additional
   data.  This is essentially an implicit slowstart, but it is gated by
   the difference between CCwin and total_pipe, rather than the
   difference between cwnd and ssthresh.

   During Fast Retransmit, the congestion control algorithm, such as
   CUBIC, generally reduces CCwin in a single step.  Proportional Rate
   Reduction [PRR] is used to gradually reduce total_pipe to agree with
   CCwin.  PRR is based on Laminar principles, so its specification has
   many parallels to this document.

   Connection startup is accomplished as follows: CCwin is set to
   MAX_WINDOW (akin to ssthresh), and IW segments are transmitted.  The
   ACKs from these segments trigger additional data transmissions, and
   slowstart proceeds as it does today.  The very first congestion event
   is a special case because there is not a prior value for CCwin.  By
   default on the first congestion event only, CCwin would be set from
   total_pipe, and then standard congestion control is invoked.

   The primary advantage of the Laminar framework is that by
   partitioning congestion control and transmission scheduling into
   separate subsystems, each is subject to far simpler simpler design
   constraints, making it far easier to develop many new algorithms that
   are not feasible with the current organization of the code.

1.2.  Standards Impact

   Since we are proposing to to refactor existing standards into new
   state variables, all of the current congestion control standards
   documents will potentially need to be revised.  Note that there are
   roughly 60 RFC that mention cwnd or ssthresh, and all of them should
   be reviewed for material that may need to be updated.

   This document does not propose to change the TCP friendly paradigm.
   By default all updated algorithms using these new state variables
   would have behaviors similar to the current TCP implementations.  We
   do however anticipate some second order effects which we will address
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   in section XXX below.  For example while testing PRR it was observed
   that suppressing bursts by slightly delaying transmissions can
   improve average performance, even though in a strict sense the new
   algorithm is less aggressive than the old.

1.3.  Meta Language

   We use the following terms when describing algorithms and their
   alternatives:

   Standard - The current state of the art, including both formal
   standards and widely deployed algorithms that have come into standard
   use, even though they may not be formally specified.  [Although PRR
   does not yet technically meet these criteria, we include it here].

   default - The simplest or most straightforward algorithm that fits
   within the Laminar framework.  For example implicit slowstart
   whenever total_pipe is less than CCwin.  This term does not make a
   statment about the relative aggressiveness or any other properties of
   the algorithm except that it is a reasonable choice and
   straightforward to implement.

   conformant - An algorithm that can produce the same packet trace as a
   TCP implementation that strictly conforms to the current standards.

   mimic - An algorithm constructed to be conformant to standards.

   opportunity - An algorithm that can do something better than the
   standard algorithm, typically better behavior in a corner cases that
   is either not well specified or where the standard behavior is viewed
   as being less than ideal.

   more/less aggressive - Any algorithm that sends segments earlier/
   later than another (typically conformant) algorithm under identical
   sequences of events.  Note that this is an evaluation of the packet
   level behavior, and does not reflect any higher order effects.

   Net more/less aggressive - Any algorithm that gets more/less average
   data rate than another (typically conformant) algorithm.  This is an
   empirical statement based on measurement (or perhaps justified
   speculation), and potentially indicates a problem with failing to be
   "TCP friendly".

2.  State variables and definitions

   CCwin - The primary congestion control state variable.
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   DeliveredData - The total number of bytes that the current ACK
   indicates have been delivered to the receiver.  (See PRR for more
   detail).

   total_pipe - The total quantity of circulating data and ACKs.  In
   addition to RFC 3517 pipe, it includes DeliveredData for the current
   ack, plus any data held for delayed transmission, for example to
   permit a later TSO transmission.

   sendcnt - The quantity of data to be sent in response to the current
   event.

   application stall - The application is failing to keep TCP in bulk
   mode: either the sender is running out of data to send, or the
   receiver is not reading it fast enough.  When there is an application
   stall, congestion control does not regulate data transmission and
   some of the protocol events are triggered by application reads or
   writes, as appropriate.

3.  Updated Algorithms

   A survey of standard, common and proposed algorithms, and how they
   might be reimplemented under the Laminar framework.

3.1.  Congestion avoidance

   Under the Laminar framework the loss recovery mechanism does not, by
   default, interfere with the primary congestion control algorithms.
   The CCwin state variable is updated only by the algorithms that
   decide how much data to send on successive round trips.  For example
   standard Reno AIMD congestion control [RFC5681] can be implemented by
   raising CCwin by one segment every CCwin worth of ACKs (once per RTT)
   and halving it on every loss or ECN signal (e.g.  CCwin = CCwin/2).
   During recovery the transmission scheduling part of the Laminar
   framework makes the necessary adjustments to bring total_pipe to
   agree with CCwin, without tampering with CCwin.

   This separation between computing CCwin and transmission scheduling
   will enable new classes of congestion control algorithms, such as
   fluid models that adjust CCwin on every ACK, even during recovery.
   This is safe because raising CCwin does not directly trigger any
   transmissions, it just steers the transmission scheduling closer to
   the end of recovery.  Fluid models have a number of advantages, such
   as simpler closed form mathematical representations, and are
   intrinsically more tolerant to reordering since non-recovery
   disordered states don't inhibit growing the window.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5681
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   Investigating alternative algorithms and their impact is out of scope
   for this document.  It is important to note that while our goal here
   is not to alter the TCP friendly paradigm, Laminar does not include
   any implicit or explicit mechanism to prevent a Tragedy of the
   Commons.  However, see the comments in Section 6.

   The initial slowstart does not use the CCwin, except that CCwin
   starts at the largest possible value.  It is the transmission
   scheduling algorithms that are responsible for performing the
   slowstart.  On the first loss it is necessary to compute a reasonable
   CCwin from total_pipe.  Ideally, we might save total_pipe at the time
   each segment is scheduled for transmission, and use the saved value
   associated with the lost segment to prime CCwin.  However, this
   approach requires extra state attached to every segment in the
   retransmit queue.  A simpler approach is to have a mathematical model
   the slowstart, and to prime CCwin from total_pipe at the time the
   loss is detected, but scaled down by the effective slowstart
   multiplier (e.g. 1.5 or 2).  In either case, once CCwin is primed
   from total_pipe, it is typically appropriate to invoke the reduction
   on loss function, to reduce it again per the congestion control
   algorithm.

   Nearly all congestion control algorithms need to have some mechanism
   to prevent CCwin from growing while it is not regulating
   transmissions e.g. during application stalls.

3.2.  Proportional Rate Reduction

   Since PRR [I-D.ietf-tcpm-proportional-rate-reduction] was designed
   with Laminar principles in mind, updating it is a straightforward
   variable substitution.  CCwin replaces ssthresh, and RecoverFS is
   initialized from total_pipe at the beginning of recovery.  Thus PRR
   provides a gradual window reduction from the prior total_pipe down to
   the new CCwin.

   There is one important difference from the current standards: CCwin
   is computed solely on the basis of the prior value of CCwin.  Compare
   this to RFC 5681 which specifies that the congestion control function
   is computed on the basis of the FlightSize (e.g.
   ssthresh=FlightSize/2 ) This change from prior standard completely
   alters how application stalls interact with congestion control.

   Consider what happens if there is an application stall for most of
   the RTT just before a Fast Retransmit: Under Laminar it is likely
   that CCwin will be set to a value that is larger than total_pipe, and
   subject to available application data PRR will go directly to
   slowstart mode, to raise total_pipe up to CCwin.  Note that the final
   CCwin value does not depend on the duration of the application stall.

https://datatracker.ietf.org/doc/html/rfc5681
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   WIth standard TCP, any application stall reducs the final value of
   cwnd at the end of recovery.  In some sense application stalls during
   recovery are treated as though they are additional losses, and have a
   detrimental effect on the connection data rate that lasts far longer
   than the stall itself.

   If there are no application stalls, the standard and Laminar variants
   of the PRR algorithm should have identical behaviors.  Although it is
   tempting to characterize Laminar as being more aggressive than the
   standards, it would be more apropos to characterize the standard as
   being excessively timid under common combinations of overlapping
   events that are not well represented by benchmarks or models.

3.3.  Restart after idle, Congestion Window Validation and Pacing

   Decoupling congestion control from transmission scheduling permits us
   to develop new algorithms to raise total_pipe to CCwin after an
   application stall or other events.  Although it was stated earlier
   that the default transmission scheduling algorithm for raising
   total_pipe is an implicit slowstart, there is lots of opportunity for
   better algorithms.

   We imagine a new class of hybrid transmission scheduling algorithms
   that use a combination of pacing and slowstart to reestablish TCP's
   self clock.  For example, whenever total_pipe is significantly below
   CCwin, RTT and CCwin can be used to directly compute a pacing rate.
   We suspect that pacing at the previous full rate will prove to be
   somewhat brittle, yielding erratic results.  It is more likely that a
   hybrid strategy will work better, for example by pacing at some
   fraction (1/2 or 1/4) of the prior rate until total_pipe reaches some
   fraction of CCwin (e.g.  CCwin/2) and then using conventional
   slowstart to bring total_pipe the rest of the way up to CCwin

   This is far less aggressive than standard TCP without cwnd validation
   [RFC2861]or when the application stall was less than one RTO, since
   standards permit TCP to send a full cwnd size burst in these
   situations.  It is potentially more aggressive than conventional
   slowstart invoked by cwnd validation when the application stall is
   longer than several RTOs.  Both standard behaviors in these
   situations have always been viewed as problematic, because interface
   rate bursts are clearly too aggressive and a full slowstart is
   clearly too conservative.  Mimicking either is a non-goal, when there
   is ample opportunity to find a better compromise.

   Although strictly speaking any new transmission scheduling algorithms
   are independent of the Laminar framework, they are expected to have
   substantially better behavior in many common environments and as such
   strongly motivate the effort required to refactor TCP implementations

https://datatracker.ietf.org/doc/html/rfc2861
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   and standards.

3.4.  RTO and F-RTO

   We are not proposing any changes to the RTO timer or the
   F-RTO[RFC5682] algorithm used to detect spurious retransmissions.
   Once it is determined that segments were lost, CCwin is updated to a
   new value as determined by the congestion control function, and
   Laminar implicit slowstart is used to clock out (re)transmissions.
   Once all holes are filled, a hybrid paced transmissions can be used
   to reestablish TCPs self clock at the new data rate.  This can be the
   same hybrid pacing algorithm as is used to recover the self clock
   after application stalls.

   Note that as long as there is non-contiguous data at the receiver the
   retransmission algorithms require timely SACK information to make
   proper decisions about which segments to send.  Pacing during loss
   recovery is not recommended without further investigation.

3.5.  Undo

   Since CCwin is not used to implement transmission scheduling, undo is
   trivial.  CCwin can just be set back to a prior value and the
   transmission scheduling algorithm will transmit more (or less) data
   as needed.

3.6.  Control Block Interdependence

   Under the Laminar framework, congestion control state can be easily
   shared between connections[RFC2140].  An ensemble of connections can
   each maintain their own total_pipe (partial_pipe?) which in aggregate
   tracks a single common CCwin.  A master transmission scheduler
   allocates permission to send (sndcnt) to each of the constituent
   connection on the basis of the difference between the CCwin and the
   aggregate total_pipe, and a fairness or capacity allocation policy
   that balances the flows.  Note that ACKs on one connection in an
   ensemble might be used to clock transmissions on another connection,
   and that following a loss, the window reductions can be allocated to
   flows other than the one experiencing the loss.

3.7.  New Reno

   The key to making Laminar function well without SACK is having good
   estimators for DeliveredData and total_pipe.  By definition every
   duplicate ACK indicates that one segment has arrived at the receiver
   and total_pipe has fallen by one.  On any ACK that advances snd.una,
   total pipe can be updated from snd.nxt-snd.una, and DeliveredData is
   the change in snd.una, minus the estimated DeliveredData of the
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   preceding duplicate ACKs.

4.  Example Pseudocode

   The example pseudocode in this section incorporates (or subsumes) the
   following algorithms:

   On startup:

     CCwin = MAX_WINOW
     sndBank = IW

   On every ACK:

     DeliveredData = delta(snd.una) + delta(SACKd)
     pipe = (RFC 3517 pipe algorithm)
     total_pipe = pipe+DeliveredData+sndBank
     sndcnt = DeliveredData    // Default outcome

     if new_recovery():
        if CCwin == MAX_WIN:
           CCwin = total_pipe/2 // First time only
        CCwin = CCwin/2         // Reno congestion control
        prr_delivered = 0       // Total bytes delivered during recov
        prr_out = 0             // Total bytes sent during recovery
        RecoverFS = total_pipe  //

     if !in_recovery() && !application_limited():
        CCwin += (MSS/CCwin)
     prr_delivered += DeliveredData  // noop if not in recovery

https://datatracker.ietf.org/doc/html/rfc3517
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     if total_pipe > CCwin:
        // Proportional Rate Reduction
        sndcnt = CEIL(prr_delivered * CCwin / RecoverFS) - prr_out

     else if total_pipe < CCwin:
        if in_recovery():
           // PRR Slow Start Reduction Bound
           limit = MAX(prr_delivered - prr_out, DeliveredData) + SMSS
           sndcnt = MIN(CCwin - total_pipe, limit)
        else:
           // slow start with appropriate byte counting
           inc = MIN(DeliveredData, 2*MSS)
           sndcnt = DeliveredData + inc

     // cue the (re)transmission machinery
     sndBank += sndcnt
     limit = maxBank()
     if sndBank > limit:
        sndBank = limit
     tcp_output()

   For any data transmission or retransmission:

   tcp_output():
     while sndBank && tso_ok():
        len = sendsomething()
        sndBank -= len
        prr_out += len  // noop if not in recovery

5.  Compatibility with existing implementations

   On a segment by segment basis, the above algorithm is [believed to
   be] fully conformant with or less aggressive than standards under all
   conditions.

   However this condition is not sufficient to guarantee that average
   performance can't be substantially better (net more aggressive) than
   standards.  Consider an application that keeps TCP in bulk mode
   nearly all of the time, but has occasional pauses that last some
   fraction of one RTT.  A fully conforment TCP would be permitted to
   "catch up" by sending a partial window burst at full interface rate.
   In some networks, such bursts might be very disruptive, causing
   otherwise unnecessary packet losses and corresponding cwnd
   reductions.
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   In Laminar, such a burst would be permitted, but the default
   algorithm would be slowstart.  A better algorithm would be to pace
   the data at (some fraction of) the prior rate.  Neither pacing nor
   slowstart is likely to cause unnecessary losses, and as was observed
   while testing PRR, being less aggressive at the segment level has the
   potential to increase average performance[IMC11PRR].  In this
   scenario Laminar with pacing has the potential to outperform both of
   the behaviors described by standards.

6.  Security Considerations

   The Laminar framework does not change the risk profile for TCP (or
   other transport protocols) themselves.

   However, the complexity of current algorithms as embodied in today's
   code present a substantial barrier to people wishing to cheat "TCP
   friendliness".  It is a fairly well known and easily rediscovered
   result that custom tweaks to make TCP more aggressive in one
   environment generally make it fragile and perform less well across
   the extreme diversity of the Internet.  This negative outcome is a
   substantial intrinsic barrier to wide deployment of rogue congestion
   control algorithms.

   A direct consequence of the changes proposed in this note, decoupling
   congestion control from other algorithms, is likely to reduce the
   barrier to rogue algorithms.  However this separation and the ability
   to introduce new congestion control algorithms is a key part of the
   motivation for this work.

   It is also important to note that web browsers have already largely
   defeated TCP's ability to regulate congestion by opening many
   concurrent connections.  When a Web page contains content served from
   multiple domains (the norm these days) all modern browsers open
   between 35 and 60 connections (see:

http://www.browserscope.org/?category=network ).  This is the Web
   community's deliberate workaround for TCP's perceived poor
   performance and inability fill certain kinds of consumer grade
   networks.  As a consequence the transport layer has already lost a
   substantial portion of its ability to regulate congestion.  It was
   not anticipated that the tragedy of the commons in Internet
   congestion would be driven by competition between applications and
   not TCP implementations.

   In the short term, we can continue to try to use standards and peer
   pressure to moderate the rise in overall congestion levels, however
   the only real solution is to develop mechanisms in the Internet
   itself to apply some sort of backpressure to overly aggressive

http://www.browserscope.org/?category=network


Mathis                   Expires August 24, 2012               [Page 12]



Internet-Draft                 Laminar TCP                 February 2012

   applications and transport protocols.  We need to redouble efforts by
   the ConEx WG and others to develop mechanisms to inform policy with
   information about congestion and it's causes.  Otherwise we have a
   looming tragedy of the commons, in which TCP has only a minor role.

   Implementers that change Laminar from counting bytes to segments have
   to be cautious about the effects of ACK splitting attacks[Savage99],
   where the receiver acknowledges partial segments for the purpose of
   confusing the sender's congestion accounting.

7.  IANA Considerations

   This document makes no request of IANA.

   Note to RFC Editor: this section may be removed on publication as an
   RFC.
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