
TCP Maintenance Working Group M. Mathis
Internet-Draft Google, Inc
Intended status: Experimental February 21, 2012
Expires: August 24, 2012

Laminar TCP and the case for refactoring TCP congestion control
draft-mathis-tcpm-tcp-laminar-00.txt

Abstract

 The primary state variables used by all TCP congestion control
 algorithms, cwnd and ssthresh are heavily overloaded, carrying
 different semantics in different states. This leads to excess
 implementation complexity and poorly defined behaviors under some
 combinations of events, such as loss recovery during cwnd validation.
 We propose a new framework for TCP congestion control, and to recast
 current standard algorithms to use new state variables. This new
 framework will not generally change the behavior of any of the
 primary congestion control algorithms when invoked in isolation but
 will to permit new algorithms with better behaviors in many corner
 cases, such as when two distinct primary algorithms are invoked
 concurrently. It will also foster the creation of new algorithms to
 address some events that are poorly treated by today's standards.
 For the vast majority of traditional algorithms the transformation to
 the new state variables is completely straightforward. However, the
 resulting implementation will technically be in violation of all
 existing TCP standards, even if it is fully compliant with their
 principles and intent.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 24, 2012.

Copyright Notice

Mathis Expires August 24, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Laminar TCP February 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Overview of the new algorithm 3
1.2. Standards Impact . 4
1.3. Meta Language . 5

2. State variables and definitions 5
3. Updated Algorithms . 6
3.1. Congestion avoidance 6
3.2. Proportional Rate Reduction 7

 3.3. Restart after idle, Congestion Window Validation and
 Pacing . 8

3.4. RTO and F-RTO . 9
3.5. Undo . 9
3.6. Control Block Interdependence 9
3.7. New Reno . 9

4. Example Pseudocode . 10
5. Compatibility with existing implementations 11
6. Security Considerations 12
7. IANA Considerations . 13
8. References . 13

 Author's Address . 14

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mathis Expires August 24, 2012 [Page 2]

Internet-Draft Laminar TCP February 2012

1. Introduction

 The primary state variables used by all TCP congestion control
 algorithms, cwnd and ssthresh, are heavily overloaded, carrying
 different semantics in different states. This leads to excess
 implementation complexity and poorly defined behaviors under some
 combinations of events, such as overlapping application stalls and
 loss recovery. Multiple algorithms sharing the same state variables
 lead to excess complexity and conflicting correctness constraints,
 making it unreasonably difficult to implement, test and evaluate new
 algorithms.

 We are proposing a new framework for TCP congestion control and it
 use new state variables that separate transmission scheduling, which
 determines precisely when data is sent, from congestion control,
 which determines the amount of data to be sent in each RTT. This
 separation greatly simplifies the interactions between the two
 subsystems and permits vast range of new algorithms that are not
 feasible with the current parameterization.

 This note describes the new framework, represented through its state
 variables, and presents a preliminary mapping between current
 standards and new algorithms based on the new state variables. At
 this point the new algorithms are not fully specified, and many have
 still unconstrained design choices. In most cases, our goal is to
 precisely mimic todays standard TCP, at least as far as well defined
 primary behaviors. In general, it is a non-goal to mimic behaviors
 in poorly defined corner cases, or other cases where standard
 behaviors are viewed as being problematic.

 It is called Laminar because one of its design goals is to eliminate
 unnecessary turbulence introduced by TCP itself.

1.1. Overview of the new algorithm

 The new framework separate transmission scheduling, which determines
 precisely when data is sent, from Congestion Control, which
 determines the total amount of data sent in any given RTT.

 The default algorithm for transmission scheduling is a strict
 implementation of Van Jacobsons' packet conservation principle
 [Jacobson88]. Data arriving at the receiver cause ACKs which in turn
 cause the sender to transmit an equivalent quantity of data back into
 the network. The primary state variable is implicit in the quantity
 of data and ACKs circulating in the network. This state observed
 through a new "total_pipe" estimator, which is a generalization of
 "pipe" as described in RFC 3517. [RFC3517]

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517

Mathis Expires August 24, 2012 [Page 3]

Internet-Draft Laminar TCP February 2012

 A new state variable, CCwin, is the primary congestion control state
 variable. It is updated only by the congestion control algorithms,
 which are concerned with detecting and regulating the overall level
 of congestion along the path. CCwin is TCP's best estimate for an
 appropriate average window size. In general, it rises when the
 network seem to be underfilled and is reduced in the presence of
 congestion signals, such as loss, ECN marks or increased delay.
 Although CCwin resembles cwnd, it is actually quite different, for
 one thing the new parameterization does not use ssthresh at all.

 Any time CCwin is larger than total_pipe, the default algorithm to
 grow total_pipe is for each ACK to trigger one segment of additional
 data. This is essentially an implicit slowstart, but it is gated by
 the difference between CCwin and total_pipe, rather than the
 difference between cwnd and ssthresh.

 During Fast Retransmit, the congestion control algorithm, such as
 CUBIC, generally reduces CCwin in a single step. Proportional Rate
 Reduction [PRR] is used to gradually reduce total_pipe to agree with
 CCwin. PRR is based on Laminar principles, so its specification has
 many parallels to this document.

 Connection startup is accomplished as follows: CCwin is set to
 MAX_WINDOW (akin to ssthresh), and IW segments are transmitted. The
 ACKs from these segments trigger additional data transmissions, and
 slowstart proceeds as it does today. The very first congestion event
 is a special case because there is not a prior value for CCwin. By
 default on the first congestion event only, CCwin would be set from
 total_pipe, and then standard congestion control is invoked.

 The primary advantage of the Laminar framework is that by
 partitioning congestion control and transmission scheduling into
 separate subsystems, each is subject to far simpler simpler design
 constraints, making it far easier to develop many new algorithms that
 are not feasible with the current organization of the code.

1.2. Standards Impact

 Since we are proposing to to refactor existing standards into new
 state variables, all of the current congestion control standards
 documents will potentially need to be revised. Note that there are
 roughly 60 RFC that mention cwnd or ssthresh, and all of them should
 be reviewed for material that may need to be updated.

 This document does not propose to change the TCP friendly paradigm.
 By default all updated algorithms using these new state variables
 would have behaviors similar to the current TCP implementations. We
 do however anticipate some second order effects which we will address

Mathis Expires August 24, 2012 [Page 4]

Internet-Draft Laminar TCP February 2012

 in section XXX below. For example while testing PRR it was observed
 that suppressing bursts by slightly delaying transmissions can
 improve average performance, even though in a strict sense the new
 algorithm is less aggressive than the old.

1.3. Meta Language

 We use the following terms when describing algorithms and their
 alternatives:

 Standard - The current state of the art, including both formal
 standards and widely deployed algorithms that have come into standard
 use, even though they may not be formally specified. [Although PRR
 does not yet technically meet these criteria, we include it here].

 default - The simplest or most straightforward algorithm that fits
 within the Laminar framework. For example implicit slowstart
 whenever total_pipe is less than CCwin. This term does not make a
 statment about the relative aggressiveness or any other properties of
 the algorithm except that it is a reasonable choice and
 straightforward to implement.

 conformant - An algorithm that can produce the same packet trace as a
 TCP implementation that strictly conforms to the current standards.

 mimic - An algorithm constructed to be conformant to standards.

 opportunity - An algorithm that can do something better than the
 standard algorithm, typically better behavior in a corner cases that
 is either not well specified or where the standard behavior is viewed
 as being less than ideal.

 more/less aggressive - Any algorithm that sends segments earlier/
 later than another (typically conformant) algorithm under identical
 sequences of events. Note that this is an evaluation of the packet
 level behavior, and does not reflect any higher order effects.

 Net more/less aggressive - Any algorithm that gets more/less average
 data rate than another (typically conformant) algorithm. This is an
 empirical statement based on measurement (or perhaps justified
 speculation), and potentially indicates a problem with failing to be
 "TCP friendly".

2. State variables and definitions

 CCwin - The primary congestion control state variable.

Mathis Expires August 24, 2012 [Page 5]

Internet-Draft Laminar TCP February 2012

 DeliveredData - The total number of bytes that the current ACK
 indicates have been delivered to the receiver. (See PRR for more
 detail).

 total_pipe - The total quantity of circulating data and ACKs. In
 addition to RFC 3517 pipe, it includes DeliveredData for the current
 ack, plus any data held for delayed transmission, for example to
 permit a later TSO transmission.

 sendcnt - The quantity of data to be sent in response to the current
 event.

 application stall - The application is failing to keep TCP in bulk
 mode: either the sender is running out of data to send, or the
 receiver is not reading it fast enough. When there is an application
 stall, congestion control does not regulate data transmission and
 some of the protocol events are triggered by application reads or
 writes, as appropriate.

3. Updated Algorithms

 A survey of standard, common and proposed algorithms, and how they
 might be reimplemented under the Laminar framework.

3.1. Congestion avoidance

 Under the Laminar framework the loss recovery mechanism does not, by
 default, interfere with the primary congestion control algorithms.
 The CCwin state variable is updated only by the algorithms that
 decide how much data to send on successive round trips. For example
 standard Reno AIMD congestion control [RFC5681] can be implemented by
 raising CCwin by one segment every CCwin worth of ACKs (once per RTT)
 and halving it on every loss or ECN signal (e.g. CCwin = CCwin/2).
 During recovery the transmission scheduling part of the Laminar
 framework makes the necessary adjustments to bring total_pipe to
 agree with CCwin, without tampering with CCwin.

 This separation between computing CCwin and transmission scheduling
 will enable new classes of congestion control algorithms, such as
 fluid models that adjust CCwin on every ACK, even during recovery.
 This is safe because raising CCwin does not directly trigger any
 transmissions, it just steers the transmission scheduling closer to
 the end of recovery. Fluid models have a number of advantages, such
 as simpler closed form mathematical representations, and are
 intrinsically more tolerant to reordering since non-recovery
 disordered states don't inhibit growing the window.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5681

Mathis Expires August 24, 2012 [Page 6]

Internet-Draft Laminar TCP February 2012

 Investigating alternative algorithms and their impact is out of scope
 for this document. It is important to note that while our goal here
 is not to alter the TCP friendly paradigm, Laminar does not include
 any implicit or explicit mechanism to prevent a Tragedy of the
 Commons. However, see the comments in Section 6.

 The initial slowstart does not use the CCwin, except that CCwin
 starts at the largest possible value. It is the transmission
 scheduling algorithms that are responsible for performing the
 slowstart. On the first loss it is necessary to compute a reasonable
 CCwin from total_pipe. Ideally, we might save total_pipe at the time
 each segment is scheduled for transmission, and use the saved value
 associated with the lost segment to prime CCwin. However, this
 approach requires extra state attached to every segment in the
 retransmit queue. A simpler approach is to have a mathematical model
 the slowstart, and to prime CCwin from total_pipe at the time the
 loss is detected, but scaled down by the effective slowstart
 multiplier (e.g. 1.5 or 2). In either case, once CCwin is primed
 from total_pipe, it is typically appropriate to invoke the reduction
 on loss function, to reduce it again per the congestion control
 algorithm.

 Nearly all congestion control algorithms need to have some mechanism
 to prevent CCwin from growing while it is not regulating
 transmissions e.g. during application stalls.

3.2. Proportional Rate Reduction

 Since PRR [I-D.ietf-tcpm-proportional-rate-reduction] was designed
 with Laminar principles in mind, updating it is a straightforward
 variable substitution. CCwin replaces ssthresh, and RecoverFS is
 initialized from total_pipe at the beginning of recovery. Thus PRR
 provides a gradual window reduction from the prior total_pipe down to
 the new CCwin.

 There is one important difference from the current standards: CCwin
 is computed solely on the basis of the prior value of CCwin. Compare
 this to RFC 5681 which specifies that the congestion control function
 is computed on the basis of the FlightSize (e.g.
 ssthresh=FlightSize/2) This change from prior standard completely
 alters how application stalls interact with congestion control.

 Consider what happens if there is an application stall for most of
 the RTT just before a Fast Retransmit: Under Laminar it is likely
 that CCwin will be set to a value that is larger than total_pipe, and
 subject to available application data PRR will go directly to
 slowstart mode, to raise total_pipe up to CCwin. Note that the final
 CCwin value does not depend on the duration of the application stall.

https://datatracker.ietf.org/doc/html/rfc5681

Mathis Expires August 24, 2012 [Page 7]

Internet-Draft Laminar TCP February 2012

 WIth standard TCP, any application stall reducs the final value of
 cwnd at the end of recovery. In some sense application stalls during
 recovery are treated as though they are additional losses, and have a
 detrimental effect on the connection data rate that lasts far longer
 than the stall itself.

 If there are no application stalls, the standard and Laminar variants
 of the PRR algorithm should have identical behaviors. Although it is
 tempting to characterize Laminar as being more aggressive than the
 standards, it would be more apropos to characterize the standard as
 being excessively timid under common combinations of overlapping
 events that are not well represented by benchmarks or models.

3.3. Restart after idle, Congestion Window Validation and Pacing

 Decoupling congestion control from transmission scheduling permits us
 to develop new algorithms to raise total_pipe to CCwin after an
 application stall or other events. Although it was stated earlier
 that the default transmission scheduling algorithm for raising
 total_pipe is an implicit slowstart, there is lots of opportunity for
 better algorithms.

 We imagine a new class of hybrid transmission scheduling algorithms
 that use a combination of pacing and slowstart to reestablish TCP's
 self clock. For example, whenever total_pipe is significantly below
 CCwin, RTT and CCwin can be used to directly compute a pacing rate.
 We suspect that pacing at the previous full rate will prove to be
 somewhat brittle, yielding erratic results. It is more likely that a
 hybrid strategy will work better, for example by pacing at some
 fraction (1/2 or 1/4) of the prior rate until total_pipe reaches some
 fraction of CCwin (e.g. CCwin/2) and then using conventional
 slowstart to bring total_pipe the rest of the way up to CCwin

 This is far less aggressive than standard TCP without cwnd validation
 [RFC2861]or when the application stall was less than one RTO, since
 standards permit TCP to send a full cwnd size burst in these
 situations. It is potentially more aggressive than conventional
 slowstart invoked by cwnd validation when the application stall is
 longer than several RTOs. Both standard behaviors in these
 situations have always been viewed as problematic, because interface
 rate bursts are clearly too aggressive and a full slowstart is
 clearly too conservative. Mimicking either is a non-goal, when there
 is ample opportunity to find a better compromise.

 Although strictly speaking any new transmission scheduling algorithms
 are independent of the Laminar framework, they are expected to have
 substantially better behavior in many common environments and as such
 strongly motivate the effort required to refactor TCP implementations

https://datatracker.ietf.org/doc/html/rfc2861

Mathis Expires August 24, 2012 [Page 8]

Internet-Draft Laminar TCP February 2012

 and standards.

3.4. RTO and F-RTO

 We are not proposing any changes to the RTO timer or the
 F-RTO[RFC5682] algorithm used to detect spurious retransmissions.
 Once it is determined that segments were lost, CCwin is updated to a
 new value as determined by the congestion control function, and
 Laminar implicit slowstart is used to clock out (re)transmissions.
 Once all holes are filled, a hybrid paced transmissions can be used
 to reestablish TCPs self clock at the new data rate. This can be the
 same hybrid pacing algorithm as is used to recover the self clock
 after application stalls.

 Note that as long as there is non-contiguous data at the receiver the
 retransmission algorithms require timely SACK information to make
 proper decisions about which segments to send. Pacing during loss
 recovery is not recommended without further investigation.

3.5. Undo

 Since CCwin is not used to implement transmission scheduling, undo is
 trivial. CCwin can just be set back to a prior value and the
 transmission scheduling algorithm will transmit more (or less) data
 as needed.

3.6. Control Block Interdependence

 Under the Laminar framework, congestion control state can be easily
 shared between connections[RFC2140]. An ensemble of connections can
 each maintain their own total_pipe (partial_pipe?) which in aggregate
 tracks a single common CCwin. A master transmission scheduler
 allocates permission to send (sndcnt) to each of the constituent
 connection on the basis of the difference between the CCwin and the
 aggregate total_pipe, and a fairness or capacity allocation policy
 that balances the flows. Note that ACKs on one connection in an
 ensemble might be used to clock transmissions on another connection,
 and that following a loss, the window reductions can be allocated to
 flows other than the one experiencing the loss.

3.7. New Reno

 The key to making Laminar function well without SACK is having good
 estimators for DeliveredData and total_pipe. By definition every
 duplicate ACK indicates that one segment has arrived at the receiver
 and total_pipe has fallen by one. On any ACK that advances snd.una,
 total pipe can be updated from snd.nxt-snd.una, and DeliveredData is
 the change in snd.una, minus the estimated DeliveredData of the

Mathis Expires August 24, 2012 [Page 9]

Internet-Draft Laminar TCP February 2012

 preceding duplicate ACKs.

4. Example Pseudocode

 The example pseudocode in this section incorporates (or subsumes) the
 following algorithms:

 On startup:

 CCwin = MAX_WINOW
 sndBank = IW

 On every ACK:

 DeliveredData = delta(snd.una) + delta(SACKd)
 pipe = (RFC 3517 pipe algorithm)
 total_pipe = pipe+DeliveredData+sndBank
 sndcnt = DeliveredData // Default outcome

 if new_recovery():
 if CCwin == MAX_WIN:
 CCwin = total_pipe/2 // First time only
 CCwin = CCwin/2 // Reno congestion control
 prr_delivered = 0 // Total bytes delivered during recov
 prr_out = 0 // Total bytes sent during recovery
 RecoverFS = total_pipe //

 if !in_recovery() && !application_limited():
 CCwin += (MSS/CCwin)
 prr_delivered += DeliveredData // noop if not in recovery

https://datatracker.ietf.org/doc/html/rfc3517

Mathis Expires August 24, 2012 [Page 10]

Internet-Draft Laminar TCP February 2012

 if total_pipe > CCwin:
 // Proportional Rate Reduction
 sndcnt = CEIL(prr_delivered * CCwin / RecoverFS) - prr_out

 else if total_pipe < CCwin:
 if in_recovery():
 // PRR Slow Start Reduction Bound
 limit = MAX(prr_delivered - prr_out, DeliveredData) + SMSS
 sndcnt = MIN(CCwin - total_pipe, limit)
 else:
 // slow start with appropriate byte counting
 inc = MIN(DeliveredData, 2*MSS)
 sndcnt = DeliveredData + inc

 // cue the (re)transmission machinery
 sndBank += sndcnt
 limit = maxBank()
 if sndBank > limit:
 sndBank = limit
 tcp_output()

 For any data transmission or retransmission:

 tcp_output():
 while sndBank && tso_ok():
 len = sendsomething()
 sndBank -= len
 prr_out += len // noop if not in recovery

5. Compatibility with existing implementations

 On a segment by segment basis, the above algorithm is [believed to
 be] fully conformant with or less aggressive than standards under all
 conditions.

 However this condition is not sufficient to guarantee that average
 performance can't be substantially better (net more aggressive) than
 standards. Consider an application that keeps TCP in bulk mode
 nearly all of the time, but has occasional pauses that last some
 fraction of one RTT. A fully conforment TCP would be permitted to
 "catch up" by sending a partial window burst at full interface rate.
 In some networks, such bursts might be very disruptive, causing
 otherwise unnecessary packet losses and corresponding cwnd
 reductions.

Mathis Expires August 24, 2012 [Page 11]

Internet-Draft Laminar TCP February 2012

 In Laminar, such a burst would be permitted, but the default
 algorithm would be slowstart. A better algorithm would be to pace
 the data at (some fraction of) the prior rate. Neither pacing nor
 slowstart is likely to cause unnecessary losses, and as was observed
 while testing PRR, being less aggressive at the segment level has the
 potential to increase average performance[IMC11PRR]. In this
 scenario Laminar with pacing has the potential to outperform both of
 the behaviors described by standards.

6. Security Considerations

 The Laminar framework does not change the risk profile for TCP (or
 other transport protocols) themselves.

 However, the complexity of current algorithms as embodied in today's
 code present a substantial barrier to people wishing to cheat "TCP
 friendliness". It is a fairly well known and easily rediscovered
 result that custom tweaks to make TCP more aggressive in one
 environment generally make it fragile and perform less well across
 the extreme diversity of the Internet. This negative outcome is a
 substantial intrinsic barrier to wide deployment of rogue congestion
 control algorithms.

 A direct consequence of the changes proposed in this note, decoupling
 congestion control from other algorithms, is likely to reduce the
 barrier to rogue algorithms. However this separation and the ability
 to introduce new congestion control algorithms is a key part of the
 motivation for this work.

 It is also important to note that web browsers have already largely
 defeated TCP's ability to regulate congestion by opening many
 concurrent connections. When a Web page contains content served from
 multiple domains (the norm these days) all modern browsers open
 between 35 and 60 connections (see:

http://www.browserscope.org/?category=network). This is the Web
 community's deliberate workaround for TCP's perceived poor
 performance and inability fill certain kinds of consumer grade
 networks. As a consequence the transport layer has already lost a
 substantial portion of its ability to regulate congestion. It was
 not anticipated that the tragedy of the commons in Internet
 congestion would be driven by competition between applications and
 not TCP implementations.

 In the short term, we can continue to try to use standards and peer
 pressure to moderate the rise in overall congestion levels, however
 the only real solution is to develop mechanisms in the Internet
 itself to apply some sort of backpressure to overly aggressive

http://www.browserscope.org/?category=network

Mathis Expires August 24, 2012 [Page 12]

Internet-Draft Laminar TCP February 2012

 applications and transport protocols. We need to redouble efforts by
 the ConEx WG and others to develop mechanisms to inform policy with
 information about congestion and it's causes. Otherwise we have a
 looming tragedy of the commons, in which TCP has only a minor role.

 Implementers that change Laminar from counting bytes to segments have
 to be cautious about the effects of ACK splitting attacks[Savage99],
 where the receiver acknowledges partial segments for the purpose of
 confusing the sender's congestion accounting.

7. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

8. References

 [Jacobson88]
 Jacobson, V., "Congestion Avoidance and Control",
 SIGCOMM 18(4), August 1988.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 April 1997.

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,
 September 2009.

 [I-D.ietf-tcpm-proportional-rate-reduction]
 Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP",

draft-ietf-tcpm-proportional-rate-reduction-00 (work in
 progress), October 2011.

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/draft-ietf-tcpm-proportional-rate-reduction-00

Mathis Expires August 24, 2012 [Page 13]

Internet-Draft Laminar TCP February 2012

 [IMC11PRR]
 Mathis, M., Dukkipati, N., Cheng, Y., and M. Ghobadi,
 "Proportional Rate Reduction for TCP", Proceedings of the
 2011 ACM SIGCOMM conference on Internet measurement
 conference , 2011.

 [Savage99]
 Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP congestion control with a misbehaving receiver",
 SIGCOMM Comput. Commun. Rev. 29(5), October 1999.

Author's Address

 Matt Mathis
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 93117
 USA

 Email: mattmathis@google.com

Mathis Expires August 24, 2012 [Page 14]

