
TCP Maintenance Working Group M. Mathis
Internet-Draft Google, Inc
Intended status: Experimental July 15, 2012
Expires: January 16, 2013

Laminar TCP and the case for refactoring TCP congestion control
draft-mathis-tcpm-tcp-laminar-01.txt

Abstract

 The primary state variables used by all TCP congestion control
 algorithms, cwnd and ssthresh, are heavily overloaded, carrying
 different semantics in different states. This leads to excess
 implementation complexity and poorly defined behaviors under some
 combinations of events, such as application stalls during loss
 recovery. We propose a new framework for TCP congestion control, and
 to recast current standard algorithms to use new state variables.
 This new framework will not generally change the behavior of any of
 the primary congestion control algorithms when they are invoked in
 isolation. It will permit new algorithms with better behaviors in
 many corner cases, such as when two distinct primary algorithms are
 invoked concurrently. It will also foster the creation of new
 algorithms to address some events that are poorly treated by today's
 standards. For the vast majority of traditional algorithms the
 transformation to the new state variables is completely
 straightforward. However, the resulting implementation is likely to
 technically be in violation of existing TCP standards, even if it is
 fully compliant with their principles and intent.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2013.

Copyright Notice

Mathis Expires January 16, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Laminar TCP July 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Overview of the new algorithm 3
3. Standards Impact . 4
4. Meta Language . 5
5. State variables and definitions 6
6. Updated Algorithms . 6
6.1. Congestion avoidance 7
6.2. Proportional Rate Reduction 8

 6.3. Restart after idle, Congestion Window Validation and
 Pacing . 8

6.4. RTO and F-RTO . 9
6.5. Undo . 10
6.6. Control Block Interdependence 10
6.7. New Reno . 10

7. Example Pseudocode . 11
8. Compatibility with existing implementations 12
9. Security Considerations 13
10. IANA Considerations . 14
11. References . 14

 Author's Address . 15

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mathis Expires January 16, 2013 [Page 2]

Internet-Draft Laminar TCP July 2012

1. Introduction

 The primary state variables used by all TCP congestion control
 algorithms, cwnd and ssthresh, are heavily overloaded, carrying
 different semantics in different states. Multiple algorithms sharing
 the same state variables lead to excess complexity, conflicting
 correctness constraints, and makes it unreasonably difficult to
 implement, test and evaluate new algorithms.

 We are proposing a new framework for TCP congestion control that
 separate transmission scheduling, which determines precisely when
 data is sent, from pure congestion control, which determines the
 amount of data to be sent in each RTT. This separation is
 implemented with new state variables and greatly simplifies the
 interactions between the two subsystems. It permits vast range of
 new algorithms that are not feasible with the current
 parameterization.

 This note describes the new framework and presents a preliminary
 mapping between current standards and new algorithms based on the new
 state variables. At this point the new algorithms are not fully
 specified, and many have still unconstrained design choices. In most
 cases, our goal is to precisely mimic today's standard TCP, at least
 as far as well defined primary behaviors. In general, it is a non-
 goal to mimic behaviors in poorly defined corner cases, or other
 cases where standard behaviors are viewed as being problematic.

 It is called Laminar because one of its design goals is to eliminate
 unnecessary turbulence introduced by TCP itself.

2. Overview of the new algorithm

 The new framework separates transmission scheduling, which determines
 precisely when data is sent, from pure Congestion Control, which
 determines the total amount of data sent in any given RTT.

 The default algorithm for transmission scheduling is a strict
 implementation of Van Jacobsons' packet conservation principle
 [Jacobson88]. Data arriving at the receiver cause ACKs which in turn
 cause the sender to transmit an equivalent quantity of data back into
 the network. The primary state variable is implicit in the quantity
 of data and ACKs circulating in the network. This state observed
 through an improved "total_pipe" estimator, which is based on "pipe"
 as described in RFC 3517 [RFC3517] but also includes the quantity of
 data reported by the current ACK and pending transmissions that have
 passed congestion control but are waiting for other events such as
 TSO.

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517

Mathis Expires January 16, 2013 [Page 3]

Internet-Draft Laminar TCP July 2012

 A new state variable, CCwin, is the primary congestion control state
 variable. It is updated only by the congestion control algorithms,
 which are concerned with detecting and regulating the overall level
 of congestion along the path. CCwin is TCP's best estimate for an
 appropriate average window size. In general, it rises when the
 network seem to be underfilled and is reduced in the presence of
 congestion signals, such as loss, ECN marks or increased delay.
 Although CCwin resembles cwnd, cwnd is overloaded and used by
 multiple algorithms (such as burst suppression) with different and
 sometimes conflicting goals.

 Any time total_pipe is different from CCwin the transmission
 scheduling algorithm slightly adjusts the number of segments sent in
 response to each ACK. Slow start and Proportional Rate Reduction
 [PRRid] are both embedded in the transmission scheduling algorithm.

 If CCwin is larger than total_pipe, the default algorithm to grow
 total_pipe is for each ACK to trigger one segment of additional data.
 This is essentially an implicit slowstart, but it is gated by the
 difference between CCwin and total_pipe, rather than the difference
 between cwnd and ssthresh. In the future, additional algorithms such
 as pacing, might be used to raise total_pipe.

 During Fast Retransmit, the congestion control algorithm, such as
 CUBIC, generally reduces CCwin in a single step. Proportional Rate
 Reduction [PRRid] is used to gradually reduce total_pipe to agree
 with CCwin. PRR was based on Laminar principles, so its
 specification has many parallels to this document.

 Connection startup is accomplished as follows: CCwin is set to
 MAX_WIN (akin to ssthresh), and IW segments are transmitted. The
 ACKs from these segments trigger additional data transmissions, and
 slowstart proceeds as it does today. The very first congestion event
 is a special case because there is not a prior value for CCwin. By
 default and on the first congestion event only, CCwin would be set
 from total_pipe, and then standard congestion control is invoked.

 The primary advantage of the Laminar framework is that by
 partitioning congestion control and transmission scheduling into
 separate subsystems, each is subject to simpler design constraints,
 making it far easier to develop many new algorithms that are not
 feasible with the current organization of the code.

3. Standards Impact

 Since we are proposing to refactor existing standards into new state
 variables, all of the current congestion control standards documents

Mathis Expires January 16, 2013 [Page 4]

Internet-Draft Laminar TCP July 2012

 will potentially need to be reviewed. Although there are roughly 60
 RFCs that mention cwnd or ssthresh, most only need self evident
 reinterpretation. Others, such as MIBs, warrant a sentence or two
 clarifying how to map CCwin and total_pipe onto existing
 specifications that use cwnd and ssthresh. There are however several
 RFCs that explicitly address the interplay between cwnd and ssthresh
 in today's TCP, including RFC 5681 [RFC5681], RFC 5682 [RFC5682], RFC

4015 [RFC4015], and RFC 6582 [RFC6582]. These need to be reviewed
 more carefully. In most cases the algorithms can easily be restated
 under the Laminar framework. Others, such as Congestion Window
 Validation [RFC2861], potentially require redesign.

 This document does not propose to change the TCP friendly paradigm
 [RFC2914]. By default all updated algorithms using these new state
 variables would have behaviors similar to the current TCP
 implementations, however over the longer term the intent is to permit
 new algorithms that are not feasible today. For example, since CCwin
 does not directly affect transmissions during recovery, it is
 straightforward to permit recovery ACKs to raise CCwin even while PRR
 is reducing total_pipe. This facilitates so called "fluid model"
 algorithms which further decouple congestion control from the details
 of the TCP the protocol.

 But even without these advanced algorithms, we do anticipate some
 second order effects. For example while testing PRR it was observed
 that suppressing bursts by slightly delaying transmissions can
 improve average performance, even though in a strict sense the new
 algorithm is less aggressive than the old [IMC11PRR].

4. Meta Language

 We use the following terms when describing algorithms and their
 alternatives:

 Standard - The current state of the art, including both formal
 standards and widely deployed algorithms that have come into standard
 use, even though they may not be formally specified. [Although PRR
 does not yet technically meet these criteria, we include it here].

 default - The simplest or most straightforward algorithm that fits
 within the Laminar framework. For example implicit slowstart
 whenever total_pipe is less than CCwin. This term does not make a
 statment about the relative aggressiveness or any other properties of
 the algorithm except that it is a reasonable choice and
 straightforward to implement.

 conformant - An algorithm that can produce the same packet trace as a

https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc5682
https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc2914

Mathis Expires January 16, 2013 [Page 5]

Internet-Draft Laminar TCP July 2012

 TCP implementation that strictly conforms to the current standards.

 mimic - An algorithm constructed to be conformant to standards.

 opportunity - An algorithm that can do something better than the
 standard algorithm, typically better behavior in a corner cases that
 is either not well specified or where the standard behavior is viewed
 as being less than ideal.

 more/less aggressive - Any algorithm that sends segments earlier/
 later than another (typically conformant) algorithm under identical
 sequences of events. Note that this is an evaluation of the packet
 level behavior, and does not reflect any higher order effects.

 Observed performance - A statement about algorithm performance based
 on a measurement study or other observations based on a significant
 sample of authentic Internet paths. e.g. an algorithm might have
 observed data rate that is different than another (typically
 conformant) algorithm.

 application stall - The application is failing to keep up with TCP:
 either the sender is running out of data to send, or the receiver is
 not reading it fast enough. When there is an application stall,
 congestion control does not regulate data transmission and some of
 the protocol events are triggered by application reads or writes, as
 appropriate.

5. State variables and definitions

 CCwin - The primary congestion control state variable.

 DeliveredData - The total number of bytes that the current ACK
 indicates have been delivered to the receiver. (See [PRRid] for more
 details).

 total_pipe - The total quantity of circulating data and ACKs. In
 addition to RFC 3517 pipe, it includes DeliveredData for the current
 ack, plus any data held for delayed transmission, for example to
 permit a later TSO transmission.

 sendcnt - The quantity of data to be sent in response to the current
 ACK or other event.

6. Updated Algorithms

 A survey of standard, common and proposed algorithms, and how they

https://datatracker.ietf.org/doc/html/rfc3517

Mathis Expires January 16, 2013 [Page 6]

Internet-Draft Laminar TCP July 2012

 might be reimplemented under the Laminar framework.

6.1. Congestion avoidance

 Under the Laminar framework the loss recovery mechanism does not, by
 default, interfere with the primary congestion control algorithms.
 The CCwin state variable is updated only by the algorithms that
 decide how much data to send on successive round trips. For example
 standard Reno AIMD congestion control [RFC5681] can be implemented by
 raising CCwin by one segment every CCwin worth of ACKs (once per RTT)
 and halving it on every loss or ECN signal (e.g. CCwin = CCwin/2).
 During recovery the transmission scheduling part of the Laminar
 framework makes the necessary adjustments to bring total_pipe to
 agree with CCwin, without tampering with CCwin.

 This separation between computing CCwin and transmission scheduling
 will enable new classes of congestion control algorithms, such as
 fluid models that adjust CCwin on every ACK, even during recovery.
 This is safe because raising CCwin does not directly trigger any
 transmissions, it just steers the transmission scheduling closer to
 the end of recovery. Fluid models have a number of advantages, such
 as simpler closed form mathematical representations, and are
 intrinsically more tolerant to reordering since non-recovery
 disordered states don't inhibit window growth.

 Investigating alternative algorithms and their impact is out of scope
 for this document. It is important to note that while our goal here
 is not to alter the TCP friendly paradigm, Laminar does not include
 any implicit or explicit mechanism to prevent a Tragedy of the
 Commons. However, see the comments in Section 9.

 The initial slowstart does not use CCwin, except that CCwin starts at
 the largest possible value. It is the transmission scheduling
 algorithms that are responsible for performing the slowstart. On the
 first loss it is necessary to compute a reasonable CCwin from
 total_pipe. Ideally, we might save total_pipe at the time each
 segment is scheduled for transmission, and use the saved value
 associated with the lost segment to prime CCwin. However, this
 approach requires extra state attached to every segment in the
 retransmit queue. A simpler approach is to have a mathematical model
 the slowstart, and to prime CCwin from total_pipe at the time the
 loss is detected, but scaled down by the effective slowstart
 multiplier (e.g. 1.5 or 2). In either case, once CCwin is primed
 from total_pipe, it is typically appropriate to invoke the reduction
 on loss function, to reduce it again per the congestion control
 algorithm.

 Nearly all congestion control algorithms need to have some mechanism

https://datatracker.ietf.org/doc/html/rfc5681

Mathis Expires January 16, 2013 [Page 7]

Internet-Draft Laminar TCP July 2012

 to prevent CCwin from growing while it is not regulating
 transmissions e.g. during prolonged application stalls.

6.2. Proportional Rate Reduction

 Since PRR [PRRid] was designed with Laminar principles in mind,
 updating it is a straightforward variable substitution. CCwin
 replaces ssthresh, and RecoverFS is initialized from total_pipe at
 the beginning of recovery. Thus PRR provides a gradual window
 reduction from the prior total_pipe down to the new CCwin.

 There is one important difference from the current standards: CCwin
 is computed solely on the basis of the prior value of CCwin. Compare
 this to RFC 5681 which specifies that the congestion control function
 is computed on the basis of the FlightSize (e.g.
 ssthresh=FlightSize/2) This change from prior standard completely
 alters how application stalls interact with congestion control.

 Consider what happens if there is an application stall for most of
 the RTT just before a Fast Retransmit: Under Laminar it is likely
 that CCwin will be set to a value that is larger than total_pipe, and
 subject to available application data PRR will go directly to
 slowstart mode, to raise total_pipe up to CCwin. Note that the final
 CCwin value does not depend on the duration of the application stall.

 With standard TCP, any application stall reduces the final value of
 cwnd at the end of recovery. In some sense application stalls during
 recovery are treated as though they are additional losses, and have a
 detrimental effect on the connection data rate that lasts far longer
 than the stall itself.

 If there are no application stalls, the standard and Laminar variants
 of the PRR algorithm should have identical behaviors. Although it is
 tempting to characterize Laminar as being more aggressive than the
 standards, it would be more apropos to characterize the standard as
 being excessively timid under certain combinations of overlapping
 events that are not well represented by benchmarks or models.

6.3. Restart after idle, Congestion Window Validation and Pacing

 Decoupling congestion control from transmission scheduling permits us
 to develop new algorithms to raise total_pipe to CCwin after an
 application stall or other events. Although it was stated earlier
 that the default transmission scheduling algorithm for raising
 total_pipe is an implicit slowstart, there is opportunity for better
 algorithms.

 We imagine a class of hybrid transmission scheduling algorithms that

https://datatracker.ietf.org/doc/html/rfc5681

Mathis Expires January 16, 2013 [Page 8]

Internet-Draft Laminar TCP July 2012

 use a combination of pacing and slowstart to reestablish TCP's self
 clock. (See [Visweswaraiah99].) For example, whenever total_pipe is
 significantly below CCwin, RTT and CCwin can be used to directly
 compute a pacing rate. We suspect that pacing at the previous full
 rate will prove to be somewhat brittle, sometimes causing excessive
 loss and yielding erratic results. It is more likely that a hybrid
 strategy will work better and be better for the network, for example
 by pacing at some fraction (1/2 or 1/4) of the prior rate until
 total_pipe reaches some fraction of CCwin (e.g. CCwin/2) and then
 using conventional slowstart to bring total_pipe the rest of the way
 up to CCwin.

 This is far less aggressive than standard TCP without cwnd validation
 [RFC2861] or when the application stall was less than one RTO, since
 standards permit TCP to send a full cwnd size burst in these
 situations. It is potentially more aggressive than conventional
 slowstart invoked by cwnd validation when the application stall is
 longer than several RTOs. Both standard behaviors in these
 situations have always been viewed as problematic, because interface
 rate bursts are clearly too aggressive and a full slowstart is
 clearly too conservative. Mimicking either is a non-goal, when there
 is ample opportunity to find a better compromise.

 Although strictly speaking any new transmission scheduling algorithms
 are independent of the Laminar framework, they are expected to have
 substantially better behavior in many common environments and as such
 strongly motivate the effort required to refactor TCP implementations
 and standards.

6.4. RTO and F-RTO

 We are not proposing any changes to the RTO timer or the F-RTO
 [RFC5682] algorithm used to detect spurious retransmissions. Once it
 is determined that segments were lost, CCwin is updated to a new
 value as determined by the congestion control function, and Laminar
 implicit slowstart is used to clock out (re)transmissions. Once all
 holes are filled, a hybrid paced transmissions can be used to
 reestablish TCPs self clock at the new data rate. This can be the
 same hybrid pacing algorithm as is used to recover the self clock
 after application stalls.

 Note that as long as there is non-contiguous data at the receiver the
 retransmission algorithms require timely SACK information to make
 proper decisions about which segments to send. Pacing during loss
 recovery is not recommended without further investigation.

https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/rfc5682

Mathis Expires January 16, 2013 [Page 9]

Internet-Draft Laminar TCP July 2012

6.5. Undo

 Since CCwin is not used to implement transmission scheduling, undo is
 trivial. CCwin can just be set back to its prior value and the
 transmission scheduling algorithm will transmit more (or less) data
 as needed. It is useful to note that the discussion about ssthresh
 in [RFC4015] also applies to CCwin in TCP Laminar. Some people might
 find it useful to think of CCwin as being equivalent to
 MAX(ssthresh,cwnd).

 There is an opportunity to do substantially better than current
 algorithms. Undo can be implemented by saving the arithmetic
 difference between the current and prior value of CCwin, and then
 adding this delta back into CCwin when all retransmissions are deemed
 to be spurious. If the congestion avoidance algorithm is linear (or
 can be linearized), and is mathematically transportable across undo,
 it is possible to design a congestion control algorithm that is
 completely immune to reordering in the sense that the overall
 evolution of CCwin is not affected by low level reordering, even if
 it is pervasive. This is an area for future research.

6.6. Control Block Interdependence

 Under the Laminar framework, congestion control state can be easily
 shared between connections [RFC2140]. An ensemble of connections can
 each maintain their own total_pipe (partial_pipe?) which in aggregate
 tracks a single common CCwin. A master transmission scheduler
 allocates permission to send (sndcnt) to each of the constituent
 connection on the basis of the difference between the CCwin and the
 aggregate total_pipe, and a fairness or capacity allocation policy
 that balances the flows. Note that ACKs on one connection in an
 ensemble might be used to clock transmissions on another connection,
 and that following a loss, the window reductions can be allocated to
 flows other than the one experiencing the loss.

6.7. New Reno

 The key to making Laminar function well without SACK is having good
 estimators for DeliveredData and total_pipe. By definition every
 duplicate ACK indicates that one segment has arrived at the receiver
 and total_pipe has fallen by one. On any ACK that advances snd.una,
 total pipe can be updated from snd.nxt-snd.una, and DeliveredData is
 the change in snd.una, minus the sum of the estimated DeliveredData
 of the preceding duplicate ACKs. As with SACK the total
 DeliveredData must agree with the overall forward progress over time.

https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc2140

Mathis Expires January 16, 2013 [Page 10]

Internet-Draft Laminar TCP July 2012

7. Example Pseudocode

 On startup:

 CCwin = MAX_WIN
 sndBank = IW

 On every ACK:

 DeliveredData = delta(snd.una) + delta(SACKd)
 pipe = (RFC 3517 pipe algorithm)
 total_pipe = pipe+DeliveredData+sndBank
 sndcnt = DeliveredData // Default # transmissions

 if new_recovery():
 if CCwin == MAX_WIN:
 CCwin = total_pipe/2 // First time only
 CCwin = CCwin/2 // Reno congestion control
 prr_delivered = 0 // Total bytes delivered during recov
 prr_out = 0 // Total bytes sent during recovery
 RecoverFS = total_pipe //

 if !in_recovery() && !application_limited():
 CCwin += (MSS/CCwin)
 prr_delivered += DeliveredData // noop if not in recovery

https://datatracker.ietf.org/doc/html/rfc3517

Mathis Expires January 16, 2013 [Page 11]

Internet-Draft Laminar TCP July 2012

 if total_pipe > CCwin:
 // Proportional Rate Reduction
 sndcnt = CEIL(prr_delivered * CCwin / RecoverFS) - prr_out

 else if total_pipe < CCwin:
 if in_recovery():
 // PRR Slow Start Reduction Bound
 limit = MAX(prr_delivered - prr_out, DeliveredData) + SMSS
 sndcnt = MIN(CCwin - total_pipe, limit)
 else:
 // slow start with appropriate byte counting
 inc = MIN(DeliveredData, 2*MSS)
 sndcnt = DeliveredData + inc

 // cue the transmission machinery
 sndBank += sndcnt
 limit = maxBank()
 if sndBank > limit:
 sndBank = limit
 tcp_output()

 For any data transmission or retransmission:

 tcp_output():
 while sndBank && tso_ok():
 len = sendsomething()
 sndBank -= len
 prr_out += len // noop if not in recovery

8. Compatibility with existing implementations

 On a segment by segment basis, the above algorithm is [believed to
 be] fully conformant with or less aggressive than standards under all
 conditions.

 However this condition is not sufficient to guarantee that observed
 performance can't be better than standards. Consider an application
 that keeps TCP in bulk mode nearly all of the time, but has
 occasional pauses that last some fraction of one RTT. A fully
 conforment TCP would be permitted to "catch up" by sending a partial
 window burst at full interface rate. On some networks, such bursts
 might be very disruptive, causing otherwise unnecessary packet losses
 and corresponding cwnd reductions.

Mathis Expires January 16, 2013 [Page 12]

Internet-Draft Laminar TCP July 2012

 In Laminar the default algorithm would be slowstart. Other
 algorithms that might cause the same bursts would be permitted,
 although are not described here. A better algorithm would be to pace
 the data at (some fraction of) the prior rate. Neither pacing nor
 slowstart is likely to cause unnecessary losses, and as was observed
 while testing PRR, being less aggressive at the segment level has the
 potential to increase the observed performance[IMC11PRR]. In this
 scenario Laminar with pacing has the potential to outperform both of
 the behaviors described by standards.

9. Security Considerations

 The Laminar framework does not change the risk profile for TCP (or
 other transport protocols) themselves.

 However, the complexity of current algorithms as embodied in today's
 code present a substantial barrier to people wishing to cheat "TCP
 friendliness". It is a fairly well known and easily rediscovered
 result that custom tweaks to make TCP more aggressive in one
 environment generally make it fragile and perform less well across
 the extreme diversity of the Internet. This negative outcome is a
 substantial intrinsic barrier to wide deployment of rogue congestion
 control algorithms.

 A direct consequence of the changes proposed in this note, decoupling
 congestion control from other algorithms, is likely to reduce the
 barrier to rogue algorithms. However this separation and the ability
 to introduce new congestion control algorithms is a key part of the
 motivation for this work.

 It is also important to note that web browsers have already largely
 defeated TCP's ability to regulate congestion by opening many
 concurrent connections. When a Web page contains content served from
 multiple domains (the norm these days) all modern browsers open
 between 35 and 60 connections (see:

http://www.browserscope.org/?category=network). This is the Web
 community's deliberate workaround for TCP's perceived poor
 performance and inability make full use of certain types of consumer
 grade networks. As a consequence the transport layer has already
 lost a substantial portion of its ability to regulate congestion. It
 was not anticipated that the tragedy of the commons in Internet
 congestion would be driven by competition between applications and
 not between TCP implementations.

 In the short term, we can continue to try to use standards and peer
 pressure to moderate the rise in overall congestion levels, however
 the only real solution is to develop mechanisms in the Internet

http://www.browserscope.org/?category=network

Mathis Expires January 16, 2013 [Page 13]

Internet-Draft Laminar TCP July 2012

 itself to apply some sort of backpressure to overly aggressive
 applications and transport protocols. We need to redouble efforts by
 the ConEx WG and others to develop mechanisms to inform policy with
 information about congestion and it's causes. Otherwise we have a
 looming tragedy of the commons, in which TCP has only a minor role.

 Implementers that change Laminar from counting bytes to segments have
 to be cautious about the effects of ACK splitting attacks[Savage99],
 where the receiver acknowledges partial segments for the purpose of
 confusing the sender's congestion accounting.

10. IANA Considerations

 This document makes no request of IANA.

 Note to RFC Editor: this section may be removed on publication as an
 RFC.

11. References

 [Jacobson88]
 Jacobson, V., "Congestion Avoidance and Control",
 SIGCOMM 18(4), August 1988.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 April 1997.

 [RFC2861] Handley, M., Padhye, J., and S. Floyd, "TCP Congestion
 Window Validation", RFC 2861, June 2000.

 [RFC2914] Floyd, S., "Congestion Control Principles", BCP 41,
RFC 2914, September 2000.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC4015] Ludwig, R. and A. Gurtov, "The Eifel Response Algorithm
 for TCP", RFC 4015, February 2005.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5682] Sarolahti, P., Kojo, M., Yamamoto, K., and M. Hata,
 "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting
 Spurious Retransmission Timeouts with TCP", RFC 5682,

https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2861
https://datatracker.ietf.org/doc/html/bcp41
https://datatracker.ietf.org/doc/html/rfc2914
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc4015
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5682

Mathis Expires January 16, 2013 [Page 14]

Internet-Draft Laminar TCP July 2012

 September 2009.

 [RFC6582] Henderson, T., Floyd, S., Gurtov, A., and Y. Nishida, "The
 NewReno Modification to TCP's Fast Recovery Algorithm",

RFC 6582, April 2012.

 [PRRid] Mathis, M., Dukkipati, N., and Y. Cheng, "Proportional
 Rate Reduction for TCP",

draft-mathis-tcpm-proportional-rate-reduction-01 (work in
 progress), July 2011.

 [IMC11PRR]
 Mathis, M., Dukkipati, N., Cheng, Y., and M. Ghobadi,
 "Proportional Rate Reduction for TCP", Proceedings of the
 2011 ACM SIGCOMM conference on Internet measurement
 conference , 2011.

 [Savage99]
 Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,
 "TCP congestion control with a misbehaving receiver",
 SIGCOMM Comput. Commun. Rev. 29(5), October 1999.

 [Visweswaraiah99]
 Visweswaraiah, V., "Improving Restart of Idle TCP
 Connections", Tech Report USC TR 97-661, November 1997.

Author's Address

 Matt Mathis
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 93117
 USA

 Email: mattmathis@google.com

https://datatracker.ietf.org/doc/html/rfc6582
https://datatracker.ietf.org/doc/html/draft-mathis-tcpm-proportional-rate-reduction-01

Mathis Expires January 16, 2013 [Page 15]

