
Workgroup: WG Working Group

Internet-Draft: draft-mathis-tsvwg-safecc-02

Published: 10 March 2023

Intended Status: Experimental

Expires: 11 September 2023

Authors: M. Mathis

MLab

Safe Congestion Control

Abstract

We present criteria for evaluating Congestion Control Algorithms

(CCAs) for behaviors that have the potential to cause harm to

Internet applications or users.

Although our primary focus is the safety of transport layer

congestion control, many of these criteria should be applied to all

protocol layers: entire stacks, libraries and applications

themselves.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-mathis-tsvwg-safecc/.

Discussion of this document takes place on the TSVWG Working Group

mailing list (mailto:tsvwg@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/tsvwg/. Subscribe at https://

www.ietf.org/mailman/listinfo/tsvwg/.

Source for this draft and an issue tracker can be found at https://

github.com/mattmathis/safeCC/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-mathis-tsvwg-safecc/
https://datatracker.ietf.org/doc/draft-mathis-tsvwg-safecc/
mailto:tsvwg@ietf.org
https://mailarchive.ietf.org/arch/browse/tsvwg/
https://mailarchive.ietf.org/arch/browse/tsvwg/
https://www.ietf.org/mailman/listinfo/tsvwg/
https://www.ietf.org/mailman/listinfo/tsvwg/
https://github.com/mattmathis/safeCC/
https://github.com/mattmathis/safeCC/
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 11 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Preamble

2. Introduction

3. Conventions and Definitions

4. Tentative list of criteria

4.1. Free from congestion collapse

4.2. Free from regenerative congestion

4.3. Bound steady state losses

4.4. Bound slowstart duration and loss

4.5. Bound losses on link changes

4.6. No unnecessary slowstarts

4.7. Freedom from starvation

4.8. Bound standing queue

4.9. Bound control frequency

4.10. Maintain queue headroom

4.11. Monotonic response

4.12. Balanced probe size

4.13. Self scaling

5. Security Considerations

6. IANA Considerations

7. Normative References

Appendix A. Estimating the minimum RTT

Acknowledgments

Author's Address

1. Preamble

This document is written in extra terse congestion control jargon.

In the final version many single sentences in this draft will expand

into full paragraphs.

¶

¶

¶

¶

https://trustee.ietf.org/license-info

Exhaustion

Material

Editorial comments to authors are enclosed in [square brackets] or

tagged with @@@@.

Unformatted references appear below many sections.

[Remove this section before publication]

2. Introduction

We present criteria for evaluating Congestion Control Algorithms

(CCA) for behaviors that have the potential to cause harm to

Internet applications or users.

Ideally we would cast these criteria as requirements; however such

an effort is doomed to fail because many of them have technical

exceptions that are unavoidable in ways that are not important.

[Introduce non-material] For an example of this issue see

Section 4.1

As an interim position: all implementations SHOULD comply with all

criteria, and MUST document all exceptions and evaluate the risks

associated with the exceptions. Under what circumstances and how

severely they fail to comply, and what is the extent of the harm

that non-compliance might cause?

To prove the criteria proposed in this note they should be used to

evaluate current and legacy CCAs: we expect to find alignment

between known CCA pathologies and failed criteria. Any discrepancies

may suggest additional criteria or sharpen our understanding of how

to decide if a failed criteria is material or not.

Indeed, Reno[rfc5681] and Cubic[Cubic] are known to fail several the

criteria presented here, and as a consequence exhibit pathologies

including bufferbloat[bufferbloat], [starvation] and poor

scaling[Scaling].

3. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

a network overloaded to the extent that the average

delivery rate is below one segment per flow per RTT.

failing a criteria in a manner that is likely to cause

pathological behaviors under some conditions.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Non-Material

Under adverse conditions

technically failing some criteria, but unimportant,

insignificant or otherwise unlikely to cause pathological

behaviors.

refers to any increase in any congestion

signals (loss, delay, marks or reduced queue space or capacity,

etc) from any initial state. For example introducing 1 Mb/s cross

traffic to an otherwise ideal 10 Gb/s link is an adverse

condition that should not trigger any of the misbehavior's

described below.

4. Tentative list of criteria

These are generally in order of declining severity. Items at the top

of the list have the potential to cause large scale internet

disruptions if they are widely deployed. Items at the bottom of the

list can cause unexpected or poor performance to the user.

4.1. Free from congestion collapse

Adverse conditions do not cause increasing overhead, specifically do

not cause duplicate data at the receiver.

Test: for a fixed work load, the overhead must be constant,

independent of the network congestions across the entire operating

range of the application or network

If there is packet loss, the retransmits must exactly match the

losses.

Example of an application that can cause congestion collapse: an

automatic download engine that responds to transient network errors

or persistent congestion by restarting downloads from the beginning.

For example git-clone can not be restarted mid transfer. Failures

caused by extreme overload or transient outages require removing and

re-cloning the destination.

Non-material example of congestion collapse: A download engine that

properly restarts from where it left off still needs to repeat the

connection establishment, ssl negotiation and other signaling, thus

increases its overhead by a few bytes. If the payload is not tiny,

this is generally non-material. If the payload is tiny and the

relative overhead might be large, and might be prone to congestion

collapse.

¶

¶

¶

¶

¶

¶

¶

¶

4.2. Free from regenerative congestion

Adverse conditions must not cause additional presented load. Any

congestion indication should cause transmissions to be later than

they would have been without the congestion.

This criteria is well understood at the transport layer: all

congestion signals must cause the sender to delay future

transmissions, and at least slightly reduce their average sending

rate.

This criteria is not well understood by application designers. Many

applications open multiple transport connections and use aggressive

retry strategies with insufficiently adaptive timers (see

Section 4.13). This flawed strategy is generally an attempt to

maintain constant performance without reacting adverse network

conditions.

Some (past?) streaming video application are known to request

additional video chunks on alternate connections without regard to

the delivery status of chunks already in progress. Such a strategy

often yields better performance when the application is a minority

of the traffic, but can cause massive regenerative congestion and

eventual collapse in a large scale deployment.

4.3. Bound steady state losses

Steady state bulk transport should not cause more than 2% loss

[study needed] over any unchanging network.

Any transport with some form of selective acknowledgements can

easily operate at a much higher loss rate. The real problem is the

harm that transport might cause to all single packet transactions,

including DNS queries and connection establishment for nearly all

protocols and services. Single packet transactions generally can

only use an RTO timer for recovery, often without any preceding RTT

measurement, thus they typically take several orders of magnitude

more time than any selective acknowledgment based recovery built

into a transport protocol.

The question at hand is really how much harm should we permit

transport to inflict on all other protocols?

For example, are we ok with happy eyeballs [happyEyeballs] getting

the wrong answer 2% of the time, because the IPv6 connection

establishment failed on the first message?

[BTW I consider 2% to be a bit excessive: 1% or 0.1% would be

better, however that may be unrealistically low. Reno and Cubic can

both easily cause much higher loss rates.]

¶

¶

¶

¶

¶

¶

¶

¶

¶

[We need some studies to justify the appropriate value for the final

document.]

4.4. Bound slowstart duration and loss

Slowstart into a droptail queue should not cause more than one RTT

of loss nor cause more than 50% loss for that RTT. Provisional

window or rate reductions should start promptly when losses or

disorder is first detected, even before the loss recovery can decide

if the missing segments are due to reordering or loss.

4.5. Bound losses on link changes

Step changes in link properties (RTT, bandwidth or queue size) or

cross traffic should not cause losses that are larger than the

change in maximum flight size supported by the link. Specifically,

during loss recovery the transport is not permitted to send more

data than the receiver reported as having been delivered. This is

the strict Conservative property from Proportional Rate reduction.

4.6. No unnecessary slowstarts

All application stacks must use connection caching, Congestion

Control state caching or some other mechanism such that application

workloads are prevented from causing persistent or repeated

overlapping slowstarts.

[RFC9040] TCP Control Block Interdependence

draft-kuhn-tsvwg-careful-resume-00 Careful convergence of congestion

control from retained state with QUIC

4.7. Freedom from starvation

Flows below some resource threshold (data rate, window size, ConEx

marks, etc) will successfully search upwards, as long as there is

either idle capacity or other flows above the some threshold. To

some extent the thresholds will depend on the path properties and

other sources of noise.

@@@@ more work is needed here.

4.8. Bound standing queue

In the absence of losses or ECN, bulk flow should not cause steady

state standing queues larger than k*minRTT*maxBW, for some

predefined k, specific to the CCA. K must be smaller than 2 (maximum

RTT would be 3*minRTT)

¶

¶

¶

¶

¶

¶

¶

¶

¶

Note that this criteria implies that ECN based CCAs must also have

some mechanism to limit data inflight, and that all CCAs must

address the minimum RTT estimator problem described in Appendix A.

4.9. Bound control frequency

Control frequency scales with 1/rtt but is insensitive to data rate.

This property is referred to as "scalable" in other sources.

[RFC9330] Low Latency, Low Loss, and Scalable Throughput (L4S)

Internet Service: Architecture

Robert Morris Scalable TCP Congestion Control

4.10. Maintain queue headroom

Individual flows do not persistently maintain full queues even if

the queues are smaller than minRTT*maxBW. When there is queue full,

Congestion Control should reduce its window enough to create some

small headroom to prevent locking out new flows.

Ideally this criteria would also be applied to flow aggregates,

however significant additional research would be needed. @@@@

4.11. Monotonic response

The CCA should have monotonic response to all congestion signals

that it responds to (loss, marks, delay, etc) otherwise it will have

multiple stable operating points for the same network conditions. It

would be likely to exhibit stable pathologies such as latecomer

(dis)advantage.

4.12. Balanced probe size

Balance the worst case queue backlog against the need to trigger

mode shifting in links that use queue backlog as a trigger.

Self clock transport preserves ACK modulation from one RTT to the

next. Many half duplex link layers implicitly use bursts preserved

by transport self clock as part of optimizing their channel

allocation algorithms. Batching or decimating ACKs on the return

path can cause relatively large bursts of packets to traverse the

entire forward path from the sender to the receiver, potentially

causing jitter to other flows sharing the same queues.

Pacing can interact poorly with link layers that rely on queue

backlogs to trigger transmissions or scheduling mode changes. These

types of link scheduling algorithms are pervasive in wireless and

other shared media where channel arbitration is relatively

expensive. Indeed, the initial design of BBR's bandwidth probe phase

¶

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

was inspired by the need to trigger mode changes in many wireless

networks.

@@@@ More work needed here.

4.13. Self scaling

All protocol layers must be self scaling. If the network is too

slow, the application must also slow down to avoid "stacking"

requests.

Specifically all application timers that cancel or restart lower

layers transactions must not start overlapping transactions and must

use an RTO style retry algorithm based on observed transaction

times, including exponential backoff on repeated failures.

Alternatively an application might refuse to run after excessive

failures.

This criteria must be applied recursively all the way up the

protocol stack for all applications that might be unattended (e.g.

cron jobs and IOT devices).

5. Security Considerations

This document provides evaluation criteria for Congestion Control

and other implementations or algorithms that might be deployed on

the internet. It has no direct security considerations of its own.

Over the long haul it is expected to increase the overall robustness

of the Internet by helping to eliminate certain pathological

behaviors that have the potential cause the Internet to be fragile

under some conditions.

6. IANA Considerations

This document has no IANA actions.

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

Appendix A. Estimating the minimum RTT

It has been shown that all distributed algorithms to measure minimum

RTTs in packet switched mesh networks are subject to failures caused

by the inability to distinguish between true minimum path delays and

delays that have been inflated by standing queues caused by other

flows.

This failure mechanism was shown in a formal proof [noPower] and

demonstrated in connection with Vegas TCP [vegas][VegasFailure].

BBR [BBR] uses a distributed algorithm designed to protect the

network from one of the more easily observed failure cases, where

multiple long running flows "stack" standing queues on queues

created by prior flows. BBR attempts to explicitly synchronize

minimum RTT measurements by having all flows reduce their sending

rates for approximately 1 RTT every 10 seconds. The measurements are

synchronized by the measurements themselves. When a flow observes a

new minimum RTT sample, it set a 10 second timer to schedule its

next measurement. If flows are indeed causing "stacked" queues, they

are likely to get a new minimum RTT from some other flow's

measurement, which will cause synchronized measurements on the next

cycle.

It is not known if the minimum RTT algorithm used in BBR is

sufficient to protect the Internet from all failure cases. We

suspect that the BBR algorithm does not fully mitigate the problem

as outlined in the proof [noPower].

However given the transactional nature of modern Internet workloads

each flow has frequent idle, which helps other flows observe

accurate minimum RTTs.

It is also not known if a naive minimum RTT algorithm, without any

attempt a synchronized minimum RTT measurements, is sufficient for

to protect the Internet from the problems described in Section 4.8.

L.S. Brakmo, S. O’Malley, and L.L. Peterson. “TCP Vegas: New

techniques for congestion detection and avoidance”, Computer

Communication Review, Vol. 24, No. 4, pp. 24-35, Oct. 1994.

L.S. Brakmo and L.L. Peterson. “TCP Vegas: end to end congestion

avoidance on a global internet”, IEEE Journal on Selected Areas in

Communications, Vol. 13, No. 8, pp. 1465-80, Oct. 1995.

J. Ahn, P. Danzig, Z. Liu, and L. Yan, “Evaluation of TCP Vegas:

emulation and experiment”, Computer Communication Review, Vol. 25,

No. 4, pp. 185-95, Oct. 1995.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.cs.princeton.edu/research/techreps/TR-616-00 [@@@@ Wrong

paper?]

[noPower] J. Jaffe, "Flow Control Power is Nondecentralizable," in

IEEE Transactions on Communications, vol. 29, no. 9, pp. 1301-1306,

September 1981, doi: 10.1109/TCOM.1981.1095152.

Acknowledgments

TODO acknowledge.

Author's Address

Matt Mathis

Freelance, Measurement Lab

Email: mattmathis@measurementlab.net

URI: https://mattmathis.net/

¶

¶

¶

mailto:mattmathis@measurementlab.net
https://mattmathis.net/

	Safe Congestion Control
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Preamble
	2. Introduction
	3. Conventions and Definitions
	4. Tentative list of criteria
	4.1. Free from congestion collapse
	4.2. Free from regenerative congestion
	4.3. Bound steady state losses
	4.4. Bound slowstart duration and loss
	4.5. Bound losses on link changes
	4.6. No unnecessary slowstarts
	4.7. Freedom from starvation
	4.8. Bound standing queue
	4.9. Bound control frequency
	4.10. Maintain queue headroom
	4.11. Monotonic response
	4.12. Balanced probe size
	4.13. Self scaling

	5. Security Considerations
	6. IANA Considerations
	7. Normative References
	Appendix A. Estimating the minimum RTT
	Acknowledgments
	Author's Address

