P2PSIP Working Group E. Cooper _T0C

Internet-Draft A. Johnston
Intended status: Standards

P. Matthews
Track
Expires: August 28, 2008 Avaya

February 25,
2008

An ID/Locator Architecture for P2PSIP
draft-matthews-p2psip-id-loc-01

Status of this Memo

By submitting this Internet-Draft, each author represents that any
applicable patent or other IPR claims of which he or she is aware have
been or will be disclosed, and any of which he or she becomes aware
will be disclosed, in accordance with Section 6 of BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on August 28, 2008.

Abstract

This document describes an architecture where peers in an peer-to-peer
overlay use special IP addresses to identify other peers. Two of the
advantages of this approach are that (a) most existing applications can
run in an overlay without needing any changes and (b) peer mobility and
NAT traversal are handled in a way that is transparent to most
applications.

Table of Contents

1. Introduction

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

2. Overview/Example
3. Terminology
4. Details
4.1. LSI
4.2. Peer Protocol
4.3. Shim Layer
5. Domain Names
6. Example
7. IANA Considerations
8. Security Considerations
9. Appendix: Discussion of Design Choices

9.1. LSIs have Local Significance
10. Relationship to HIP

11. References
11.1. Normative References
11.2. Informative References

8§ Authors' Addresses
8§ Intellectual Property and Copyright Statements
1. Introduction TOC

This document describes a scheme whereby the applications running on a
peer can use a special IP addresses, called "LSIs" (Locally Significant
Identifiers), to identify other peers in the peer-to-peer overlay,
rather than using real IP addresses or peer IDs. Using these LSIs
brings the following advantages:

*An LSI is unique, unlike the real IP address of most peers (which
is often a private IP address);

*An LSI can be used in the Socket API without change, unlike 160-
bit peer 1IDs;

*Applications using LSIs do not have to worry about NAT traversal,
mobility, or multi-homing, since these are handled by a helper
application.

The scheme effectively turns the overlay into a VPN. Like other VPNs,
it can be implemented so that most applications are unaware that they
are using the VPN. Only applications that want to take advantage of the
special properties of the overlay need to be aware.

Though not discussed further in the document, this scheme can be
trivially extended to handle clients as well.

This scheme is not a Peer Protocol in itself. Rather, it is an
enhancement to a Peer Protocol.

This approach can be compared with the approach taken by many of the
other proposals in P2PSIP (e.g., RELOAD, ASP, P2PP, and XPP/PCAN). In
these proposals, peers are identified with bitstrings that do not look
like addresses, forcing applications that want to run in an overlay to
use a new (as yet unspecified) API, rather than the existing Socket
API. Furthermore, though these proposals handle NAT traversal for the
Peer protocol, they do not handle NAT traversal for applications,
forcing each application to invent its own ICE variation. None of these
proposals currently consider mobility at all. All of this means that
any application that wants to run in an overlay requires significant
modification.

This scheme grew out of the authors' previous efforts to adapt HIP to
peer-to-peer overlays. More details on the relationship of this work to
HIP is given in Section 10 (Relationship to HIP).

2. Overview/Example TOC

This section gives an overview of how the scheme works. It is non-
normative.

This overview is in the form of an extended example and assume a
particular implementation approach. While not fully general, experience
has shown that this is a good way to explain the concepts.

Consider a peer-to-peer overlay. This overlay is assigned a domain name
by the peer that created it; say it is "example.com". This overlay has
a number of peers, of which there are three of interest, called
"venus", "earth", and "mars". Each peer in the overlay is assigned a
domain name underneith the "example.com" domain; for example
"mars.example.com". The domain names of peers are NOT stored in DNS.
Instead, each peer stores a mapping between its domain name and its
peer ID in the overlay's Distributed Database.

The machines Venus and Mars are using popular commercial operating
systems. To allow them to join the overlay, a user named Wilma has
installed some peer-to-peer software. This software has two parts. One
part an implementation of the Peer Protocol with some ID-LOC
extensions, the other part is a TAP device driver http://
en.wikipedia.org/wiki/TUN/TAP. This is shown in the following figure.

http://en.wikipedia.org/wiki/TUN/TAP
http://en.wikipedia.org/wiki/TUN/TAP

[[| Peer Protocol |

| Application | | with ID-LOC |
[[[| Userspace
+ + + emeeemmaaaaaa
| + | Kernel
| TCP/IP stack + |
I + I

| Ethernet |
| Device Driver |

+ + +
I
| TAP Device Driver |
I

Figure 1

The "+" signs show the typical path of an application data packet
traveling to/from a remote peer. Packets sent by the application pass
down through the kernel's TCP/IP stack. Packets satisfying certain
criteria are intercepted by the TAP driver and passed to the Peer
Protocol, which modifies them before sending them back down through the
kernel's TCP/IP stack and out through the Ethernet device driver. In
the reverse direction, incoming packets arrive at the Ethernet device
driver and pass up through the TCP/IP stack and are delivered to the
Peer Protocol. There they are modified and then passed to the TAP
driver which reinjects them into the bottom of the TCP/IP stack. They
then pass up through the TCP/IP stack and are delivered to the
application.

Wilma wishes to view a website on the machine Mars. To do this, she
opens a popular web brower and enters "http://mars.example.com" into
the address bar. This causes the web browser to do gethostbyname() on
"mars.example.com", which in turn causes a DNS query packet to be
formed and sent down the TCP/IP stack. It is important to note that
this web browser has not been modified in any way, and thus has no
knowledge that it is operating in a peer-to-peer overlay.

The DNS query packet is intercepted by the TAP driver, which passes it
to the Peer Protocol process. The Peer Protocol notices that the domain
name is in the "example.com" overlay which Venus is currently a member
of. So the Peer Protocol does a Distributed Database query for
"mars.example.com" and gets back the 160-bit peer ID of Mars.

The Peer Protocol process stores the peer ID of Mars and assigns it an
LSI (call it Y). The Peer Protocol process then creates a DNS response
packet indicating that "mars.example.com" maps to Y. This packet is

passed to the TAP driver, which injects it into the bottom of the TCP/
IP stack.

The result is that the Wilma's web browser gets back the LSI "Y" as the
address of Mars.

Wilma's web browser then issues a connect() call to create a TCP
connection to "Y". This causes the TCP/IP stack to send a SYN packet
with destination "Y". This packet is intercepted by the TAP driver and
passed to the Peer Protocol process.

The Peer Protocol stores the TCP SYN while it sets up a UDP connection
between Venus and Mars. This UDP connection is established using the
connection establishment procedures of the peer protocol and uses ICE
to traverse any NATs between Venus and Mars. This UDP connection is
then uses as a "pipe" to carry all traffic between Venus and Mars
encapsulated inside it.

This approach is known as the "Outer UDP encapsulation". An
alternative approach, known as the "Null encapsulation" is described
in the normative text below.

Venus | === web browser TCP connection == | Mars
| ===== other TCP connection ====== |
| -------- outer UDP pipe ---------- |

Once this UDP pipe is established, the Peer Protocol process on Venus
then modifies the TCP SYN so that it will travel inside the "UDP pipe"
to the machine Mars. By doing this, the web browser and the web server
do not need to run ICE or deal with peer IDs.

At Mars, the UDP header is removed and the TCP SYN is then passed to
the TAP driver on Mars, which passes it up through the TCP/IP stack.
Subsequent TCP packets between Venus and Mars are also encapsulated
inside UDP and sent along the pipe.

3. Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

Readers are expected to be familar with [I-D.ietf-p2psip-concepts]
(Bryan, D., Matthews, P., Shim, E., Willis, D., and S. Dawkins,
“Concepts and Terminology for Peer to Peer SIP,” July 2008.) and the
terms defined there.

This document defines the following terms:

LSI: An IP address uses to identify a peer in the overlay.

Outer UDP Encapsulation An encapsulation scheme for packets
travelling between two peers in the overlay that insert a UDP
header and a demux header between the IP header and the existing
transport header.

Null Encapsulation An excapsulation scheme for packets travelling
between two peers in the overlay that does not insert any extra
headers, but instead modifies fields in the existing IP and
transport headers.

4. Details TOC

Figure X shows the conceptual relationship between the parts discussed
in this section.

| |
Peer Protocol | SIP | Other Apps

TCP, UDP, etc

Shim layer

IP (v4 or v6)

In this architecture, the Peer Protocol is responsible for creating the
mapping between LSIs and real addresses, while the Shim layer is
responsible for doing the translation on a packet-by-packet basis as
well as adding any necessary encapsulation. More details on these roles
can be found below.

T0C

4.1. LSI
An LSI is either:

*An IPv4 address selected from a range to be allocated by IANA
(likely a /16), or

*An IPv6 address selected from a range to be determined (perhaps
the ORCHID range [RFC4843] (Nikander, P., lLaganier, J., and F.
Dupont, “An IPv6 Prefix for Overlay Routable Cryptographic Hash
Identifiers (ORCHID),” April 2007.)).

An LSI has local significance only.

Applications can freely intermix LSIs with ordinary (“real”) addresses.
For example, an application can use LSIs to identify nodes in the
overlay, and real addresses to identify nodes off the overlay.

4.2. Peer Protocol TOC

The job of the Peer Protocol in this scheme (in addition to its other
duties of managing the overlay and implementing the Distributed
Database [I-D.jetf-p2psip-concepts] (Bryan, D., Matthews, P., Shim, E.,
Willis, D., and S. Dawkins, “Concepts and Terminology for Peer to Peer
SIP,” July 2008.)) is to establish connections between peers and to
manage the mappings between LSIs and real addresses. To do this, the
Peer Protocol does an ICE exchange with the destination peer to
negotiate a set of addresses and ports to use for the data traffic.

The stimulus for doing this ICE exchange is an indication from the Shim
layer saying that is has no set of real addresses to use for a given
destination LSI (cf. an ARP cache miss). The Peer Protocol then does an
ICE exchange with the destination peer, routing the Offer/Answer though
other peers in the overlay. Once the exchange has completed, the Peer
Protocol installs the appropriate mapping entry into the Shim layer.

4.3. Shim Layer TOC

The shim layer is a new layer introduced between the IP layer and the
transport layer. It has two functions: translating LSIs to/from real
addresses, and adding any necessary encapsulation.

There are two forms of encapsulation: null encapsulation and outer-UDP
encapsulation.

Application data Application data

Transport (TCP or UDP only) Transport header

IP header (v4 or v6)

UDP header Null Encapsulation

IP header (v4 or v6)

|
|
|
|
|
|
|
| Demux header
|
|
|
|
|
|
|

Outer-UDP Encapsulation
The Demux header looks like:

0 1 2 3
012345678901 23456789012345678901
B s e el T S S S S S i s T S Sy Spup s
| Protocol | Reserved |
B T b b e T T S el o TR P Sy Sy S S S T

Here the protocol field indicates which transport (or other) protocol
follows, and uses the same codepoints as used for the ‘protocol’ field
in the IPv4/IPv6 header.

The null encapsulation adds no extra bytes but simply translates LSIs
to real addresses and modifies port numbers as necessary to traverse
NATs. The null encapsulation is very similar to existing protocol
stacks, but requires more work to set up and maintain because each
connection requires its own set of ICE connectivity checks.

By contrast, the Outer-UDP encapsulation adds a UDP header plus a 4-
byte demux header between the IP header and the transport header. The
Outer-UDP encapsulation multiplexes all connections between two given
nodes inside a single UDP "pipe". Because intervening NATs see only the
outer UDP header, this encapsulation requires only one ICE exchange (to
set up the outer pipe), regardless of how many connections there are
inside the pipe.

The Outer-UDP encapsulation can be used with all transport protocols,
while the null encapsulation can only be used with UDP and TCP.

To explain the mapping and encapsulations in more detail, consider a
transport layer PDU is sent from X:x to Y:y, where X is the LSI of the
local host, Y is the LSI of the remote host, and x and y are the port
numbers allocated off of these identifiers. For both encapsulations,

the Peer Protocol will have used ICE to determine a corresponding set
of real addresses and ports.

For the null encapsulation, each transport layer 5-tuple (transport
protocol, X, x,Y,y) will have a corresponding set of real addresses and
ports (X',x’,Y",y"). When sending, the port numbers x and y in the
transport header are replaced with x’ and y’, and an IP header is added
containing addresses X’ and Y’ is added. (TBD: Are the addresses in the
transport layer pseudo-header also replaced?). The reverse replacement
is done when receiving a PDU.

If either X or Y change their real address, then an ICE exchange is
required to determine a new 5-tuple for each connection. For UDP, this
new 5-tuple is simply used in place of the old.

OPEN ISSUE: For TCP, this doesn’t work, since generating the new 5-
tuple requires a new TCP handshake. This seems to imply that the TCP
layer has to be aware of the change in address. So what do we do? Do
we just say “don’t use null encapsulation for TCP if you want
mobility to work”? Or do we figure out how to make this work?

For the outer-UDP encapsulation, there is a single 5-tuple
(UDP, X" ,x",Y",y") for each (X,Y) pair. When sending, the transport
header is not modified, instead a demux header and a outer UDP header
is added. Ports x’ and y’ are inserted in the outer UDP header, and an
IP header containing addresses X’ and Y’ is added.

Mobility is simpler with the Outer-UDP encapsulation. In this case,
only a single ICE exchange is required, and the new 5-tuple is simply
used in place of the old. There are no TCP concerns in this case, since
the TCP header is never modified.

5. Domain Names TOC

Each overlay is assigned a domain name by the peer that creates the
overlay. This can be any domain name that the peer has authority over.
Each peer is assigned a unique domain name underneith the overlay's
domain name. This document does not specify how this assignment is
done, but one option might be to use the peer's machine name as the
label in front of the overlay domain name, and then use some scheme to
break ties.

Each peer MUST store a mapping between its domain name and its peer ID
in the Distributed Database. The peer's domain name MAY be stored in
DNS as well.

TOC

6. Example

In this section, we show a SIP call between two UAs in an overlay.

This example illustrates how this scheme allows applications to work in
an overlay without being aware of that fact. The two SIP UAs in this
example use standard client-server SIP to communicate, without needing
any SIP extensions.

IMPORTANT NOTE: Without extensions to SIP, there is no way to do an AOR
to contact URI lookup using the Distributed Database. So in this
example, Wilma calls Fred by specifying Fred’s machine name, using the
domain name scheme described in the previous section. With this caveat,
everything works with SIP as it is today.

The figure below shows the call flow for this example.

Wilma Fred
Venus Earth Mars
I I I
|-- DD query for mars.example.com ---->| [
[<----mmme - DD response ---------- | |
I I I
[----------- Msg w/ICE Offer ---------- >| |
| [----- Msg w/ICE Offer ---->|
| |<---- Msg w/ICE Ans ------- |
[<----mnan-- Msg w/ ICE AnS ------------ | |
I I
| <z=================== JCE Connectivity Checks :::::::::::::::::::::>|
I I
R TCP and TLS handshake ---------------------- > |
I I
[<-----mmmee - - SIP transaction over TLS connection --------------- >|

This example shows three machines, named “Venus”, “Earth”, and “Mars”
which are part of a larger overlay named “example.com”. Wilma is on
Venus, and Fred is on Mars.

Wilma initiates the call by typing in "sips:fred@mars.example.com" into
her UA. Wilma’s UA does a gethostbyname() call to resolve
“mars.example.com” and this is resolved by doing a Distributed Database
lookup. In this example, it turns out that the corresponding resource
record is stored on the machine "Earth". As a result, an LSI for the
peer Mars is returned from the gethostbyname() call to wWilma’s UA.

NOTE: The Peer Protocol allocates an LSI and remembers that it maps
to the machine named "mars.solar-system.p2p" which has the peer 1id
learned from the response.

Wilma’s UA then issues a connect() to this LSI. This causes TCP to send
a SYN to this LSI. Since there is currently no direct connection

between Venus and Mars, the Shim layer finds no mapping for this LSI
and thus generates an indication to the Peer Protocol.

The Peer Protocol layer on Venus now does an ICE offer/answer exchange
with the Peer Protocol layer on Mars. The Offer is sent on the existing
connection to Earth, which forwards it to Mars, and the Answer is
returned in the same way. ICE connectivity checks are then done, and
the result is a tuple of real addresses and ports for the connection.
If null encapsulation is used, then the TCP connection was established
as part of the ICE connectivity checks. This new connection is used
only for SIP signaling, and subsequent connections require a new offer/
answer exchange.

But if Outer-UDP encapsulation is used, then all the ICE connectivity
checks do is establish a UDP "pipe" between the two peers, and the TCP
and TLS handshakes must still be done inside that pipe (as shown
above). However, this UDP pipe can be used for all traffic between
Venus and Mars, including subsequent RTP packets) without the need of
subsequent offer/answer exchanges.

7. IANA Considerations TOC
TBD.
8. Security Considerations TOC
TBD.
9. Appendix: Discussion of Design Choices TOC

This appendix discusses the thinking around some of the design choices
made.

9.1. LSIs have Local Significance TOC

In the design presented here, the LSIs presented to applications have
local significance only. For IPv4, this seems to be the only reasonable
choice, as it would be difficult to get an IPv4 block of addresses
large enough to be of wider significance. However, for IPv6, a wider
scope would be possible, and that option was considered. In particular,
it would have been possible to use a globally scoped identifier, like

the HIT of HIP. At first blush, it seems that using a globally scoped
identifier would allow an applications to send the identifier (embedded
in protocol messages) to an application on other nodes and have that
identifier make sense.

However, an examination of the details shows that there are problems
with this approach. Say a node X has an indentifier for node Z (e.g., a
HIT) and sends its to node Y. For Y to be able to use this identifier,
it must know how to establish a connection with node Z. If node Y is in
multiple overlays, then Y has no idea which overlay to search to find
node Z. It is this difficulty that led us to the decision to make LSI
have local significance only.

10. Relationship to HIP TOC

The fundamental concept in this document, that of an identifier for a
node which is distinct from the node’s real addresses, has been adopted
from HIP. In HIP, this identifier (known as a HIT [I-D.ietf-hip-base]
(Moskowitz, R., Nikander, P., Jokela, P., and T. Henderson, “Host
Identity Protocol,” October 2007.)) is always an IPv6 identifier, and
has global scope and cryptographic properties, making it
computationally hard for an second node to steal a node’s identity.
(Current HIP implementations also implement an IPv4 identifier as a
local identifier, but the properties of this IPv4 identifier are not
currently specified anywhere).

11. References TOC

11.1. Normative References
_T0C
[I-D.ietf- Rosenberg, J., “Interactive Connectivity Establishment
mmusic-ice] (ICE): A Protocol for Network Address Translator (NAT)
Traversal for Offer/Answer Protocols,” draft-ietf-
mmusic-ice-19 (work in progress), October 2007 (TXT).
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-mmusic-ice-19.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml

11.2. Informative References TOC

[I-D.ietf-
hip-base]

[I-D.ietf-
p2psip-

concepts]

[RFC4843]

Authors' Addresses

Moskowitz, R., Nikander, P., Jokela, P., and T.
Henderson, “Host Identity Protocol,” draft-ietf-hip-
base-10 (work in progress), October 2007 (TXT).
Bryan, D., Matthews, P., Shim, E., Willis, D., and S.
Dawkins, “Concepts and Terminology for Peer to Peer
SIP,” draft-ietf-p2psip-concepts-02 (work in
progress), July 2008 (TXT).

Nikander, P., Laganier, J., and F. Dupont, “An IPv6
Prefix for Overlay Routable Cryptographic Hash
Identifiers (ORCHID),” RFC 4843, April 2007 (TXT).

_T0C
Eric Cooper
Avaya
1135 Innovation Drive
Ottawa, Ontario K2K 3G7
Canada
Phone: +1 613 592 4343 x228
Email: ecooper@avaya.com

Alan Johnston
Avaya
St. Louis, MO 63124
USA
Email: alan@sipstation.com

Philip Matthews
Avaya
100 Innovation Drive
Ottawa, Ontario K2K 3G7
Canada
Phone: +1 613 592 4343 x224
Email: philip matthews@magma.ca

Full Copyright Statement

T0C

Copyright © The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

http://www.ietf.org/internet-drafts/draft-ietf-hip-base-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-hip-base-10.txt
http://www.ietf.org/internet-drafts/draft-ietf-p2psip-concepts-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-p2psip-concepts-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-p2psip-concepts-02.txt
http://tools.ietf.org/html/rfc4843
http://tools.ietf.org/html/rfc4843
http://tools.ietf.org/html/rfc4843
http://www.rfc-editor.org/rfc/rfc4843.txt
mailto:ecooper@avaya.com
mailto:alan@sipstation.com
mailto:philip_matthews@magma.ca

This document and the information contained herein are provided on an
“AS IS” basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has made
any independent effort to identify any such rights. Information on the
procedures with respect to rights in RFC documents can be found in

BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this specification
can be obtained from the IETF on-line IPR repository at http://
www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary rights
that may cover technology that may be required to implement this
standard. Please address the information to the IETF at ietf-

ipr@ietf.org.

http://www.ietf.org/ipr
http://www.ietf.org/ipr
mailto:ietf-ipr@ietf.org
mailto:ietf-ipr@ietf.org

	An ID/Locator Architecture for P2PSIPdraft-matthews-p2psip-id-loc-01
	Status of this Memo
	Abstract
	Table of Contents
	1. Introduction
	2. Overview/Example
	3. Terminology
	4. Details
	4.1. LSI
	4.2. Peer Protocol
	4.3. Shim Layer
	5. Domain Names
	6. Example
	7. IANA Considerations
	8. Security Considerations
	9. Appendix: Discussion of Design Choices
	9.1. LSIs have Local Significance
	10. Relationship to HIP
	11. References
	11.1. Normative References
	11.2. Informative References
	Authors' Addresses
	Full Copyright Statement
	Intellectual Property

