
Workgroup: Crypto Forum

Internet-Draft:

draft-mattsson-cfrg-aes-gcm-sst-03

Published: 16 March 2024

Intended Status: Informational

Expires: 17 September 2024

Authors: M. Campagna

Amazon Web Services

A. Maximov

Ericsson

J. Preuß Mattsson

Ericsson

Galois Counter Mode with Secure Short Tags (GCM-SST)

Abstract

This document defines the Galois Counter Mode with Secure Short Tags

(GCM-SST) Authenticated Encryption with Associated Data (AEAD)

algorithm. GCM-SST can be used with any keystream generator, not

just a block cipher. The main differences compared to GCM [GCM] is

that GCM-SST uses an additional subkey Q, that fresh subkeys H and Q

are derived for each nonce, and that the POLYVAL function from AES-

GCM-SIV is used instead of GHASH. This enables short tags with

forgery probabilities close to ideal. This document also registers

several instances of Advanced Encryption Standard (AES) with Galois

Counter Mode with Secure Short Tags (AES-GCM-SST).

This document is the product of the Crypto Forum Research Group.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

emanjon.github.io/draft-mattsson-cfrg-aes-gcm-sst/draft-mattsson-

cfrg-aes-gcm-sst.html. Status information for this document may be

found at https://datatracker.ietf.org/doc/draft-mattsson-cfrg-aes-

gcm-sst/.

Discussion of this document takes place on the Crypto Forum Research

Group mailing list (mailto:cfrg@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/search/?email_list=cfrg. Subscribe

at https://www.ietf.org/mailman/listinfo/cfrg/.

Source for this draft and an issue tracker can be found at https://

github.com/emanjon/draft-mattsson-cfrg-aes-gcm-sst.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

¶

¶

¶

¶

¶

¶

¶

https://emanjon.github.io/draft-mattsson-cfrg-aes-gcm-sst/draft-mattsson-cfrg-aes-gcm-sst.html
https://emanjon.github.io/draft-mattsson-cfrg-aes-gcm-sst/draft-mattsson-cfrg-aes-gcm-sst.html
https://emanjon.github.io/draft-mattsson-cfrg-aes-gcm-sst/draft-mattsson-cfrg-aes-gcm-sst.html
https://datatracker.ietf.org/doc/draft-mattsson-cfrg-aes-gcm-sst/
https://datatracker.ietf.org/doc/draft-mattsson-cfrg-aes-gcm-sst/
mailto:cfrg@ietf.org
https://mailarchive.ietf.org/arch/search/?email_list=cfrg
https://www.ietf.org/mailman/listinfo/cfrg/
https://github.com/emanjon/draft-mattsson-cfrg-aes-gcm-sst
https://github.com/emanjon/draft-mattsson-cfrg-aes-gcm-sst

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 September 2024.

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Galois Counter Mode with Secure Short Tags (GCM-SST)

3.1. Authenticated Encryption Function

3.2. Authenticated Decryption Function

3.3. Encoding (ct, tag) Tuples

4. AES with Galois Counter Mode with Secure Short Tags

4.1. AES-GCM-SST AEAD Instances

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. AES-GCM-SST Test Vectors

A.1. AES-GCM-SST Test #1 (128-bit key)

Case #1a

Case #1b

Case #1c

Case #1d

Case #1e

A.2. AES-GCM-SST Test #2 (128-bit key)

A.3. AES-GCM-SST Test #3 (256-bit key)

Case #3a

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Case #3b

Case #3c

Case #3d

Case #3e

A.4. AES-GCM-SST Test #4 (256-bit key)

Change Log

Acknowledgments

Authors' Addresses

1. Introduction

Advanced Encryption Standard (AES) in Galois Counter Mode (AES-GCM)

[GCM] is a widely used AEAD algorithm [RFC5116] due to its

attractive performance in both software and hardware as well as its

provable security. During the NIST standardization, Ferguson pointed

out two weaknesses in the GCM authentication function [Ferguson].

The weaknesses are especially concerning when GCM is used with short

tags. The first weakness significantly increases the probability of

successful forgery. The second weakness reveals the subkey H if the

attacker manages to create successful forgeries. With knowledge of

the subkey H, the attacker always succeeds with subsequent

forgeries. The probability of multiple successful forgeries is

therefore significantly increased.

As a comment to NIST, Nyberg et al. [Nyberg] explained how small

changes based on proven theoretical constructions mitigate these

weaknesses. Unfortunately, NIST did not follow the advice from

Nyberg et al. and instead specified additional requirements for use

with short tags in Appendix C of [GCM]. NIST did not give any

motivations for the specific choice of parameters, or for that

matter the security levels they were assumed to give. As shown by

Mattsson et al. [Mattsson], an attacker can almost always gain

feedback on success or failure of forgery attempts, contradicting

NIST's assumptions for short tags. NIST also appears to have used

non-optimal attacks to calculate the parameters. A detailed

evaluation of GCM and other block cipher modes of operation is given

by [Rogaway]. Rogaway is critical of GCM with short tags and

recommends disallowing GCM with tags shorter than 96-bits. NIST is

planning to remove support for GCM with tags shorter than 96-bits

[Revise]. While Counter with CBC-MAC (CCM) [RFC5116] with short tags

has forgery probabilities close to ideal, CCM has lower performance

than GCM.

32-bit tags are standard in most radio link layers including 5G, 64-

bit tags are very common in transport and application layers of the

Internet of Things, and 32-, 64-, and 80-bit tags are common in

media-encryption applications. Audio packets are small, numerous,

and ephemeral, so on the one hand, they are very sensitive in

percentage terms to crypto overhead, and on the other hand, forgery

¶

¶

of individual packets is not a big concern. Due to its weaknesses,

GCM is typically not used with short tags. The result is either

decreased performance from larger than needed tags [MoQ], or

decreased performance from using much slower constructions such as

AES-CTR combined with HMAC [RFC3711][I-D.ietf-sframe-enc]. Short

tags are also useful to protect packets transporting a signed

payload such as a firmware update.

This document defines the Galois Counter Mode with Secure Short Tags

(GCM-SST) Authenticated Encryption with Associated Data (AEAD)

algorithm following the recommendations from Nyberg et al. [Nyberg].

GCM-SST is defined with a general interface so that it can be used

with any keystream generator, not just a 128-bit block cipher. The

main differences compared to GCM [GCM] is that GCM-SST uses an

additional subkey Q, that fresh subkeys H and Q are derived for each

nonce, and that the POLYVAL function from AES-GCM-SIV [RFC8452] is

used instead of GHASH, see Section 3. This enables short tags with

forgery probability close to ideal and significantly decreases the

probability of multiple successful forgeries, see Section 5. The

performance of GCM-SST is very similar to GCM [GCM]. The two

additional AES invocations are compensated by the use of POLYVAL,

the ”little-endian version” of GHASH, which is faster on little-

endian architectures. GCM-SST maintains the additive encryption

characteristic of GCM, which enables efficient implementations on

modern processor architectures, see [Gueron] and Section 2.4 of

[GCM-Update]. This document also registers several instances of

Advanced Encryption Standard (AES) with Galois Counter Mode with

Secure Short Tags (AES-GCM-SST) where AES [AES] in counter mode is

used as the keystream generator. See Section 4. GCM-SST has been

standardized for use with AES-256 and SNOW 5G [SNOW] in 3GPP 5G

Advance.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Primitives:

K is the key as defined in [RFC5116]

N is the nonce as defined in [RFC5116]

A is the associated data as defined in [RFC5116]

P is the plaintext as defined in [RFC5116]

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

= is the assignment operator

!= is the inequality operator

x || y is concatenation of the octet strings x and y

XOR is the bitwise exclusive OR operator

len(x) is the length of x in bits.

zeropad(x) right pads an octet string x with zeroes to a multiple

of 128 bits

truncate(x, t) is the truncation operation. The first t bits of x

are kept

n is the number of 128-bit chunks in zeropad(P)

m is the number of 128-bit chunks in zeropad(A)

POLYVAL is defined in [RFC8452]

BE32(x) is the big-endian encoding of 32-bit integer x

LE64(x) is the little-endian encoding of 64-bit integer x

V[y] is the 128-bit chunk with index y in the array V; the first

chunk has index 0.

V[x:y] are the range of chunks x to y in the array V

3. Galois Counter Mode with Secure Short Tags (GCM-SST)

This section defines the Galois Counter Mode with Secure Short Tags

(GCM-SST) AEAD algorithm following the recommendations from Nyberg

et al. [Nyberg]. GCM-SST is defined with a general interface so that

it can be used with any keystream generator, not just a 128-bit

block cipher.

GCM-SST adheres to an AEAD interface [RFC5116] and the encryption

function takes four variable-length octet string parameters. A

secret key K, a nonce N, the associated data A, and a plaintext P.

The keystream generator is instantiated with K and N. The keystream

MAY depend on P and A. The minimum and maximum lengths of all

parameters depend on the keystream generator. The keystream

generator produces a keystream Z consisting of 128-bit chunks where

the first three chunks Z[0], Z[1], and Z[2] are used as the three

subkeys H, Q, and M. The following keystream chunks Z[3], Z[4], ...,

Z[n + 2] are used to encrypt the plaintext. Instead of GHASH [GCM],

GCM-SST makes use of the POLYVAL function from AES-GCM-SIV

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

¶

[RFC8452], which results in more efficient software implementations

on little-endian architectures. GHASH and POLYVAL can be defined in

terms of one another [RFC8452]. The subkeys H and Q are field

elements used in POLYVAL while the subkey M is used for the final

masking of the tag. Both encryption and decryption are only defined

on inputs that are a whole number of octets.

Figures illustrating the GCM-SST encryption and decryption functions

are shown in [SST1][SST2].

3.1. Authenticated Encryption Function

Encrypt(K, N, A, P)

The encryption function encrypts a plaintext and returns the

ciphertext along with an authentication tag that verifies the

authenticity of the plaintext and associated data, if provided.

Prerequisites and security:

The key MUST be randomly chosen from a uniform distribution.

For a given key, the nonce MUST NOT be reused under any

circumstances.

Supported tag_length associated with the key.

Definitions of supported input-output lengths.

Inputs:

Key K (variable-length octet string)

Nonce N (variable-length octet string)

Associated data A (variable-length octet string)

Plaintext P (variable-length octet string)

Outputs:

Ciphertext ct (variable-length octet string)

Tag tag (octet string with length tag_length)

Steps:

If the lengths of K, N, A, P are not supported return error and

abort

Initiate keystream generator with K and N

¶

¶

¶

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

¶

1.

¶

2. ¶

Let H = Z[0], Q = Z[1], M = Z[2]

Let ct = P XOR truncate(Z[3:n + 2], len(P))

Let S = zeropad(A) || zeropad(ct)

Let L = LE64(len(ct)) || LE64(len(A))

Let X = POLYVAL(H, S[0], S[1], ...)

Let full_tag = POLYVAL(Q, X XOR L) XOR M

Let tag = truncate(full_tag, tag_length)

Return (ct, tag)

3.2. Authenticated Decryption Function

Decrypt(K, N, A, ct, tag)

The decryption function decrypts a ciphertext, verifies that the

authentication tag is correct, and returns the plaintext on success

or an error if tag verification failed.

Prerequisites and security:

The calculation of the plaintext P (step 10) MAY be done in

parallel with the tag verification (step 3-9). If tag

verification fails, the plaintext P and the expected_tag MUST NOT

be given as output.

The comparison of the input tag with the expected_tag MUST be

done in constant time.

Supported tag_length associated with the key.

Definitions of supported input-output lengths.

Inputs:

Key K (variable-length octet string)

Nonce N (variable-length octet string)

Associated data A (variable-length octet string)

Ciphertext ct (variable-length octet string)

Tag tag (octet string with length tag_length)

3. ¶

4. ¶

5. ¶

6. ¶

7. ¶

8. ¶

9. ¶

10. ¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

Outputs:

Plaintext P (variable-length octet string) or an error indicating

that the authentication tag is invalid for the given inputs.

Steps:

If the lengths of K, N, A, or ct are not supported, or if

len(tag) != tag_length return error and abort

Initiate keystream generator with K and N

Let H = Z[0], Q = Z[1], M = Z[2]

Let S = zeropad(A) || zeropad(ct)

Let L = LE64(len(ct)) || LE64(len(A))

Let X = POLYVAL(H, S[0], S[1], ...)

Let full_tag = POLYVAL(Q, X XOR L) XOR M

Let expected_tag = truncate(full_tag, tag_length)

If tag != expected_tag, return error and abort

Let P = ct XOR truncate(Z[3:n + 2], len(ct))

Return P

3.3. Encoding (ct, tag) Tuples

Applications MAY keep the ciphertext and the authentication tag in

distinct structures or encode both as a single octet string C. In

the latter case, the tag MUST immediately follow the ciphertext ct:

C = ct || tag

4. AES with Galois Counter Mode with Secure Short Tags

This section defines Advanced Encryption Standard (AES) with Galois

Counter Mode with Secure Short Tags (AES-GCM-SST). When GCM-SSM is

instantiated with AES, the keystream generator is AES in counter

mode

Z[i] = AES-ENC(K, N || BE32(i))

where AES-ENC is the AES encrypt function [AES].

¶

*

¶

¶

1.

¶

2. ¶

3. ¶

4. ¶

5. ¶

6. ¶

7. ¶

8. ¶

9. ¶

10. ¶

11. ¶

¶

¶

¶

¶

¶

4.1. AES-GCM-SST AEAD Instances

We define six AEAD instances, in the format of [RFC5116], that use

AES-GCM-SST. They differ only in key length (K_LEN) and tag length.

The tag lengths 32, 64, and 80 have been chosen to align with secure

media frames [I-D.ietf-sframe-enc]. The key length and tag length

are related to different security properties, and an application

encrypting audio packets with small tags might require 256-bit

confidentiality.

Numeric ID Name K_LEN (bytes) tag_length (bits)

TBD1 AEAD_AES_128_GCM_SST_4 16 32

TBD2 AEAD_AES_128_GCM_SST_8 16 64

TBD3 AEAD_AES_128_GCM_SST_10 16 80

TBD4 AEAD_AES_256_GCM_SST_4 32 32

TBD5 AEAD_AES_256_GCM_SST_8 32 64

TBD6 AEAD_AES_256_GCM_SST_10 32 80

Table 1: AEAD Algorithms

Common parameters for the six AEAD instances:

P_MAX (maximum size of the plaintext) is 2 - 48 octets.

A_MAX (maximum size of the associated data) is 2 octets.

N_MIN and N_MAX (minimum and maximum size of the nonce) are both

12 octets

C_MAX (maximum size of the ciphertext and tag) is P_MAX +

tag_length (in bytes)

5. Security Considerations

GCM-SST uses an additional subkey Q and that new subkeys H, Q are

derived for each nonce. The use of an additional subkey Q enables

short tags with forgery probabilities close to ideal. Deriving new

subkeys H, Q for each nonce significantly decreases the probability

of multiple successful forgeries. These changes are based on proven

theoretical constructions and follows the recommendations in

[Nyberg]. See [Nyberg] for details and references to security proofs

for the construction.

GCM-SST MUST be used in a nonce-respecting setting: for a given key,

a nonce MUST only be used once. The nonce MAY be public or

predictable. It can be a counter, the output of a permutation, or a

generator with a long period. Every key MUST be randomly chosen from

a uniform distribution. Implementations SHOULD randomize the nonce

by mixing a unique number like a sequence number with a per-key

¶

¶

* 36 ¶

* 36 ¶

*

¶

*

¶

¶

random salt. This improves security against pre-computation attacks

and multi-key attacks [Bellare].

The GCM-SST tag_length SHOULD NOT be smaller than 4 bytes and cannot

be larger than 16 bytes. For short tags of length t < 128 - log2(n +

m + 1) bits, the worst-case forgery probability is bounded by ≈ 2

[Nyberg]. With the constraints listed in Section 4.1, n + m + 1 < 2

128-bit blocks, and tags of length up to 95 bits therefore have an

almost perfect security level. This is significantly better than GCM

where the security level is only t – log2(n + m + 1) bits [GCM]. As

one can note, for 128-bit tags and long messages, the forgery

probability is not close to ideal and similar to GCM [GCM]. If tag

verification fails, the plaintext and expected_tag MUST NOT be given

as output. The full_tag in GCM-SST does not depend on the tag

length. An application can make the tag dependent on the tag length

by including tag_length in the nonces.

The confidentiality offered by AES-GCM-SST against passive attackers

is equal to AES-GCM [GCM] and given by the birthday bound. The

maximum size of the plaintext (P_MAX) has been adjusted from GCM

[RFC5116] as there is now three subkeys instead of two.

For the AES-GCM-SST algorithms in Table 1 the worst-case forgery

probability is bounded by ≈ 2 where t is the tag length in bits

[Nyberg]. This is true for all allowed plaintext and associated data

lengths. The maximum size of the associated data (A_MAX) has been

lowered from GCM [RFC5116] to enable forgery probability close to

ideal for 80-bit tags even with maximum size plaintexts and

associated data. Just like [RFC5116] AES-GCM-SST only allows 96-bit

nonces.

If r random nonces are used with the same key, the collision

probability for AES-GCM-SST is ≈ r / 2 . As an attacker can test r

nonces for collisions with complexity r, the security of AES-GCM-SST

with random nonces is only ≈ 2 / r. It is therefore NOT RECOMMENDED

to use AES-GCM-SST with random nonces.

In general, there is a very small possibility in GCM-SST that either

or both of the subkeys H and Q are zero, so called weak keys. If

both keys are zero, the resulting tag will not depend on the

message. There are no obvious ways to detect this condition for an

attacker, and the specification admits this possibility in favor of

complicating the flow with additional checks and regeneration of

values. In AES-GCM-SST, H and Q are generated with the AES-ENC

permutation on different input, so H and Q cannot both be zero.

¶

-t

33

¶

¶

-t

¶

2 97

97

¶

¶

[AES]

[RFC2119]

[RFC5116]

[RFC8174]

[RFC8452]

[Bellare]

[Ferguson]

[GCM]

6. IANA Considerations

IANA is requested to assign the entries in the first two columns of

Table 1 to the "AEAD Algorithms" registry under the "Authenticated

Encryption with Associated Data (AEAD) Parameters" heading with this

document as reference.

7. References

7.1. Normative References

"ADVANCED ENCRYPTION STANDARD (AES)", NIST Federal

Information Processing Standards Publication 197,

November 2001, <https://nvlpubs.nist.gov/nistpubs/FIPS/

NIST.FIPS.197-upd1.pdf>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/rfc/

rfc5116>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Gueron, S., Langley, A., and Y. Lindell, "AES-GCM-SIV:

Nonce Misuse-Resistant Authenticated Encryption", RFC

8452, DOI 10.17487/RFC8452, April 2019, <https://www.rfc-

editor.org/rfc/rfc8452>.

7.2. Informative References

Bellare, M. and B. Tackmann, "The Multi-User Security of

Authenticated Encryption: AES-GCM in TLS 1.3", November

2017, <https://eprint.iacr.org/2016/564.pdf>.

Ferguson, N., "Authentication weaknesses in GCM", May

2005, <https://csrc.nist.gov/CSRC/media/Projects/Block-

Cipher-Techniques/documents/BCM/Comments/CWC-GCM/

Ferguson2.pdf>.

Dworkin, M., "Recommendation for Block Cipher Modes of

Operation: Galois/Counter Mode (GCM) and GMAC", NIST

Special Publication 800-38D, November 2007, <https://

¶

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc5116
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8452
https://www.rfc-editor.org/rfc/rfc8452
https://eprint.iacr.org/2016/564.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/Ferguson2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/Ferguson2.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/CWC-GCM/Ferguson2.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

[GCM-Update]

[Gueron]

[I-D.ietf-sframe-enc]

[I-D.irtf-cfrg-aegis-aead]

[Mattsson]

[MoQ]

[Nyberg]

[Revise]

[RFC3711]

nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-38d.pdf>.

McGrew, D. and J. Viega, "GCM Update", May 2005,

<https://csrc.nist.gov/csrc/media/projects/block-cipher-

techniques/documents/bcm/comments/cwc-gcm/gcm-

update.pdf>.

Gueron, S., "Constructions based on the AES Round and

Polynomial Multiplication that are Efficient on Modern

Processor Architectures", October 2023, <https://

csrc.nist.gov/csrc/media/Presentations/2023/

constructions-based-on-the-aes-round/images-media/sess-5-

gueron-bcm-workshop-2023.pdf>.

Omara, E., Uberti, J., Murillo, S. G., Barnes,

R., and Y. Fablet, "Secure Frame (SFrame)", Work in

Progress, Internet-Draft, draft-ietf-sframe-enc-07, 29

February 2024, <https://datatracker.ietf.org/doc/html/

draft-ietf-sframe-enc-07>.

Denis, F. and S. Lucas, "The AEGIS Family

of Authenticated Encryption Algorithms", Work in

Progress, Internet-Draft, draft-irtf-cfrg-aegis-aead-10,

20 January 2024, <https://datatracker.ietf.org/doc/html/

draft-irtf-cfrg-aegis-aead-10>.

Mattsson, J. and M. Westerlund, "Authentication Key

Recovery on Galois/Counter Mode (GCM)", May 2015,

<https://eprint.iacr.org/2015/477.pdf>.

IETF, "Media Over QUIC", September 2022, <https://

datatracker.ietf.org/wg/moq/about/>.

Nyberg, K., Gilbert, H., and M. Robshaw, "Galois MAC with

forgery probability close to ideal", June 2005, <https://

csrc.nist.gov/CSRC/media/Projects/Block-Cipher-

Techniques/documents/BCM/Comments/general-comments/

papers/Nyberg_Gilbert_and_Robshaw.pdf>.

NIST, "Announcement of Proposal to Revise SP 800-38D",

August 2023, <https://csrc.nist.gov/news/2023/proposal-

to-revise-sp-800-38d>.

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Norrman, "The Secure Real-time Transport Protocol

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/cwc-gcm/gcm-update.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/cwc-gcm/gcm-update.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/cwc-gcm/gcm-update.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/constructions-based-on-the-aes-round/images-media/sess-5-gueron-bcm-workshop-2023.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/constructions-based-on-the-aes-round/images-media/sess-5-gueron-bcm-workshop-2023.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/constructions-based-on-the-aes-round/images-media/sess-5-gueron-bcm-workshop-2023.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/constructions-based-on-the-aes-round/images-media/sess-5-gueron-bcm-workshop-2023.pdf
https://datatracker.ietf.org/doc/html/draft-ietf-sframe-enc-07
https://datatracker.ietf.org/doc/html/draft-ietf-sframe-enc-07
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aegis-aead-10
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-aegis-aead-10
https://eprint.iacr.org/2015/477.pdf
https://datatracker.ietf.org/wg/moq/about/
https://datatracker.ietf.org/wg/moq/about/
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Nyberg_Gilbert_and_Robshaw.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Nyberg_Gilbert_and_Robshaw.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Nyberg_Gilbert_and_Robshaw.pdf
https://csrc.nist.gov/CSRC/media/Projects/Block-Cipher-Techniques/documents/BCM/Comments/general-comments/papers/Nyberg_Gilbert_and_Robshaw.pdf
https://csrc.nist.gov/news/2023/proposal-to-revise-sp-800-38d
https://csrc.nist.gov/news/2023/proposal-to-revise-sp-800-38d

[Rogaway]

[SNOW]

[SST1]

[SST2]

(SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004,

<https://www.rfc-editor.org/rfc/rfc3711>.

Rogaway, P., "Evaluation of Some Blockcipher Modes of

Operation", February 2011, <https://www.cryptrec.go.jp/

exreport/cryptrec-ex-2012-2010r1.pdf>.

Ekdahl, P., Johansson, T., Maximov, A., and J. Yang,

"SNOW-Vi: an extreme performance variant of SNOW-V for

lower grade CPUs", March 2021, <https://eprint.iacr.org/

2021/236>.

Campagna, M., Maximov, A., and J. Preuß Mattsson, "Galois

Counter Mode with Secure Short Tags (GCM-SST)", October

2023, <https://csrc.nist.gov/csrc/media/Events/2023/

third-workshop-on-block-cipher-modes-of-operation/

documents/accepted-papers/

Galois%20Counter%20Mode%20with%20Secure%20Short%20Tags.pd

f>.

Campagna, M., Maximov, A., and J. Preuß Mattsson, "Galois

Counter Mode with Secure Short Tags (GCM-SST)", October

2023, <https://csrc.nist.gov/csrc/media/Presentations/

2023/galois-counter-mode-with-secure-short-tags/images-

media/sess-5-mattsson-bcm-workshop-2023.pdf>.

Appendix A. AES-GCM-SST Test Vectors

A.1. AES-GCM-SST Test #1 (128-bit key)

Case #1a

 KEY = { 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f }

 NONCE = { 30 31 32 33 34 35 36 37 38 39 3a 3b }

 H = { 22 ce 92 da cb 50 77 4b ab 0d 18 29 3d 6e ae 7f }

 Q = { 03 13 63 96 74 be fa 86 4d fa fb 80 36 b7 a0 3c }

 M = { 9b 1d 49 ea 42 b0 0a ec b0 bc eb 8d d0 ef c2 b9 }

¶

 AAD = { }

 PLAINTEXT = { }

encode-LEN = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

 full-TAG = { 9b 1d 49 ea 42 b0 0a ec b0 bc eb 8d d0 ef c2 b9 }

 TAG = { 9b 1d 49 ea }

CIPHERTEXT = { }

¶

https://www.rfc-editor.org/rfc/rfc3711
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2012-2010r1.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-2012-2010r1.pdf
https://eprint.iacr.org/2021/236
https://eprint.iacr.org/2021/236
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Galois%20Counter%20Mode%20with%20Secure%20Short%20Tags.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Galois%20Counter%20Mode%20with%20Secure%20Short%20Tags.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Galois%20Counter%20Mode%20with%20Secure%20Short%20Tags.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Galois%20Counter%20Mode%20with%20Secure%20Short%20Tags.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Galois%20Counter%20Mode%20with%20Secure%20Short%20Tags.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/galois-counter-mode-with-secure-short-tags/images-media/sess-5-mattsson-bcm-workshop-2023.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/galois-counter-mode-with-secure-short-tags/images-media/sess-5-mattsson-bcm-workshop-2023.pdf
https://csrc.nist.gov/csrc/media/Presentations/2023/galois-counter-mode-with-secure-short-tags/images-media/sess-5-mattsson-bcm-workshop-2023.pdf

Case #1b

Case #1c

Case #1d

Case #1e

 AAD = { 40 41 42 43 44 }

 PLAINTEXT = { }

encode-LEN = { 00 00 00 00 00 00 00 00 28 00 00 00 00 00 00 00 }

 full-TAG = { 7f f3 cb a4 d5 f3 08 a5 70 4e 2f d5 f2 3a e8 f9 }

 TAG = { 7f f3 cb a4 }

CIPHERTEXT = { }

¶

 AAD = { }

 PLAINTEXT = { 60 61 62 63 64 65 66 67 68 69 6a 6b }

encode-LEN = { 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

 full-TAG = { f8 de 17 85 fd 1a 90 d9 81 8f cb 7b 44 69 8a 8b }

 TAG = { f8 de 17 85 }

CIPHERTEXT = { 64 f0 5b ae 1e d2 40 3a 71 25 5e dd }

¶

 AAD = { 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f }

 PLAINTEXT = { 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e }

encode-LEN = { f8 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 }

 full-TAG = { 93 43 56 14 0b 84 48 2c d0 14 c7 40 7e e9 cc b6 }

 TAG = { 93 43 56 14 }

CIPHERTEXT = { 64 f0 5b ae 1e d2 40 3a 71 25 5e dd 53 49 5c e1

 7d c0 cb c7 85 a7 a9 20 db 42 28 ff 63 32 10 }

¶

 AAD = { 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e }

 PLAINTEXT = { 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

 70 }

encode-LEN = { 88 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 }

 full-TAG = { f8 50 b7 97 11 43 ab e9 31 5a d7 eb 3b 0a 16 81 }

 TAG = { f8 50 b7 97 }

CIPHERTEXT = { 64 f0 5b ae 1e d2 40 3a 71 25 5e dd 53 49 5c e1

 7d }

¶

A.2. AES-GCM-SST Test #2 (128-bit key)

A.3. AES-GCM-SST Test #3 (256-bit key)

Case #3a

Case #3b

 KEY = { 29 23 be 84 e1 6c d6 ae 52 90 49 f1 f1 bb e9 eb }

 NONCE = { 9a 50 ee 40 78 36 fd 12 49 32 f6 9e }

 AAD = { 1f 03 5a 7d 09 38 25 1f 5d d4 cb fc 96 f5 45 3b

 13 0d }

 PLAINTEXT = { ad 4f 14 f2 44 40 66 d0 6b c4 30 b7 32 3b a1 22

 f6 22 91 9d }

 H = { 2d 6d 7f 1c 52 a7 a0 6b f2 bc bd 23 75 47 03 88 }

 Q = { 3b fd 00 96 25 84 2a 86 65 71 a4 66 e5 62 05 92 }

 M = { 9e 6c 98 3e e0 6c 1a ab c8 99 b7 8d 57 32 0a f5 }

encode-LEN = { a0 00 00 00 00 00 00 00 90 00 00 00 00 00 00 00 }

 full-TAG = { 45 03 bf b0 96 82 39 b3 67 e9 70 c3 83 c5 10 6f }

 TAG = { 45 03 bf b0 96 82 39 b3 }

CIPHERTEXT = { b8 65 d5 16 07 83 11 73 21 f5 6c b0 75 45 16 b3

 da 9d b8 09 }

¶

 KEY = { 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f }

 NONCE = { 30 31 32 33 34 35 36 37 38 39 3a 3b }

 H = { 3b d9 9f 8d 38 f0 2e a1 80 96 a4 b0 b1 d9 3b 1b }

 Q = { af 7f 54 00 16 aa b8 bc 91 56 d9 d1 83 59 cc e5 }

 M = { b3 35 31 c0 e9 6f 4a 03 2a 33 8e ec 12 99 3e 68 }

¶

 AAD = { }

 PLAINTEXT = { }

encode-LEN = { 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

 full-TAG = { b3 35 31 c0 e9 6f 4a 03 2a 33 8e ec 12 99 3e 68 }

 TAG = { b3 35 31 c0 e9 6f 4a 03 }

CIPHERTEXT = { }

¶

 AAD = { 40 41 42 43 44 }

 PLAINTEXT = { }

encode-LEN = { 00 00 00 00 00 00 00 00 28 00 00 00 00 00 00 00 }

 full-TAG = { 63 ac ca 4d 20 9f b3 90 28 ff c3 17 04 01 67 61 }

 TAG = { 63 ac ca 4d 20 9f b3 90 }

CIPHERTEXT = { }

¶

Case #3c

Case #3d

Case #3e

A.4. AES-GCM-SST Test #4 (256-bit key)

 AAD = { }

 PLAINTEXT = { 60 61 62 63 64 65 66 67 68 69 6a 6b }

encode-LEN = { 60 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 }

 full-TAG = { e1 de bf fd 5f 3a 85 e3 48 bd 6f cc 6e 62 10 90 }

 TAG = { e1 de bf fd 5f 3a 85 e3 }

CIPHERTEXT = { fc 46 2d 34 a7 5b 22 62 4f d7 3b 27 }

¶

 AAD = { 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f }

 PLAINTEXT = { 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e }

encode-LEN = { f8 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 }

 full-TAG = { c3 5e d7 83 9f 21 f7 bb a5 a8 a2 8e 1f 49 ed 04 }

 TAG = { c3 5e d7 83 9f 21 f7 bb }

CIPHERTEXT = { fc 46 2d 34 a7 5b 22 62 4f d7 3b 27 84 de 10 51

 33 11 7e 17 58 b5 ed d0 d6 5d 68 32 06 bb ad }

¶

 AAD = { 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e }

 PLAINTEXT = { 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f

 70 }

encode-LEN = { 88 00 00 00 00 00 00 00 78 00 00 00 00 00 00 00 }

 full-TAG = { 49 7c 14 77 67 a5 3d 57 64 ce fd 03 26 fe e7 b5 }

 TAG = { 49 7c 14 77 67 a5 3d 57 }

CIPHERTEXT = { fc 46 2d 34 a7 5b 22 62 4f d7 3b 27 84 de 10 51

 33 }

¶

 KEY = { 29 23 be 84 e1 6c d6 ae 52 90 49 f1 f1 bb e9 eb

 b3 a6 db 3c 87 0c 3e 99 24 5e 0d 1c 06 b7 b3 12 }

 NONCE = { 9a 50 ee 40 78 36 fd 12 49 32 f6 9e }

 AAD = { 1f 03 5a 7d 09 38 25 1f 5d d4 cb fc 96 f5 45 3b

 13 0d }

 PLAINTEXT = { ad 4f 14 f2 44 40 66 d0 6b c4 30 b7 32 3b a1 22

 f6 22 91 9d }

 H = { 13 53 4b f7 8a 91 38 fd f5 41 65 7f c2 39 55 23 }

 Q = { 32 69 75 a3 3a ff ae ac af a8 fb d1 bd 62 66 95 }

 M = { 59 48 44 80 b6 cd 59 06 69 27 5e 7d 81 4a d1 74 }

encode-LEN = { a0 00 00 00 00 00 00 00 90 00 00 00 00 00 00 00 }

 full-TAG = { c4 a1 ca 9a 38 c6 73 af bf 9c 73 49 bf 3c d5 4d }

 TAG = { c4 a1 ca 9a 38 c6 73 af bf 9c }

CIPHERTEXT = { b5 c2 a4 07 f3 3e 99 88 de c1 2f 10 64 7b 3d 4f

 eb 8f f7 cc }

¶

Change Log

This section is to be removed before publishing as an RFC.

Changes from -02 to -03:

Added performance information and considerations.

Editorial changes.

Changes from -01 to -02:

The length encoding chunk is now called L

Use of the notation POLYVAL(H, X_1, X_2, ...) from RFC 8452

Removed duplicated text in security considerations.

Changes from -00 to -01:

Link to NIST decision to remove support for GCM with tags shorter

than 96-bits based on Mattsson et al.

Mention that 3GPP 5G Advance will use GCM-SST with AES-256 and

SNOW 5G.

Corrected reference to step numbers during decryption

Changed T to full_tag to align with tag and expected_tag

Link to images from the NIST encryption workshop illustrating the

GCM-SST encryption and decryption functions.

Updated definitions

Editorial changes.

Acknowledgments

The authors thank Richard Barnes, Scott Fluhrer, and Eric Lagergren

for their valuable comments and feedback. Some of the formatting and

text were inspired by and borrowed from [I-D.irtf-cfrg-aegis-aead].

Authors' Addresses

Matthew Campagna

Amazon Web Services

Canada

Email: campagna@amazon.com

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

mailto:campagna@amazon.com

Alexander Maximov

Ericsson AB

Sweden

Email: alexander.maximov@ericsson.com

John Preuß Mattsson

Ericsson AB

Sweden

Email: john.mattsson@ericsson.com

mailto:alexander.maximov@ericsson.com
mailto:john.mattsson@ericsson.com

	Galois Counter Mode with Secure Short Tags (GCM-SST)
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Galois Counter Mode with Secure Short Tags (GCM-SST)
	3.1. Authenticated Encryption Function
	3.2. Authenticated Decryption Function
	3.3. Encoding (ct, tag) Tuples

	4. AES with Galois Counter Mode with Secure Short Tags
	4.1. AES-GCM-SST AEAD Instances

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. AES-GCM-SST Test Vectors
	A.1. AES-GCM-SST Test #1 (128-bit key)
	Case #1a
	Case #1b
	Case #1c
	Case #1d
	Case #1e

	A.2. AES-GCM-SST Test #2 (128-bit key)
	A.3. AES-GCM-SST Test #3 (256-bit key)
	Case #3a
	Case #3b
	Case #3c
	Case #3d
	Case #3e

	A.4. AES-GCM-SST Test #4 (256-bit key)

	Change Log
	Acknowledgments
	Authors' Addresses

