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Abstract

Being able to securely read information from sensors, to securely

control actuators, and to not enable distributed denial-of-service

attacks are essential in a world of connected and networking things

interacting with the physical world. This document summarizes a

number of known attacks on CoAP and show that just using CoAP with a

security protocol like DTLS, TLS, or OSCORE is not enough for secure

operation. Several of the discussed attacks can be mitigated with

the solutions in draft-ietf-core-echo-request-tag.
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1. Introduction

Being able to securely read information from sensors and to securely

control actuators are essential in a world of connected and

networking things interacting with the physical world. One protocol

used to interact with sensors and actuators is the Constrained

Application Protocol (CoAP) [RFC7252]. Any Internet-of-Things (IoT)

deployment valuing security and privacy would use a security

protocol such as DTLS [I-D.ietf-tls-dtls13], TLS [RFC8446], or

OSCORE [RFC8613] to protect CoAP, where the choice of security

protocol depends on the transport protocol and the presence of

intermediaries. The use of CoAP over UDP and DTLS is specified in 

[RFC7252] and the use of CoAP over TCP and TLS is specified in 

[RFC8323]. OSCORE protects CoAP end-to-end with the use of COSE 

[RFC8152] and the CoAP Object-Security option [RFC8613], and can

therefore be used over any transport.

The Constrained Application Protocol (CoAP) [RFC7252] was designed

with the assumption that security could be provided on a separate

layer, in particular by using DTLS [RFC6347]. The four properties

traditionally provided by security protocols are:

Data confidentiality

Data origin authentication
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Data integrity checking

Replay protection

In this document we show that protecting CoAP with a security

protocol on another layer is not nearly enough to securely control

actuators (and in many cases sensors) and that secure operation

often demands far more than the four properties traditionally

provided by security protocols. We describe several serious attacks

any on-path attacker (i.e., not only "trusted intermediaries") can

do and discusses tougher requirements and mechanisms to mitigate the

attacks. In general, secure operation of actuators also requires the

three properties:

Data-to-data binding

Data-to-space binding

Data-to-time binding

"Data-to-data binding" is e.g., binding of responses to a request or

binding of data fragments to each other. "Data-to-space binding" is

the binding of data to an absolute or relative point in space (i.e.,

a location) and may in the relative case be referred to as

proximity. "Data-to-time binding" is the binding of data to an

absolute or relative point in time and may in the relative case be

referred to as freshness. The two last properties may be bundled

together as "Data-to-spacetime binding".

Freshness is a measure of when a message was sent on a timescale of

the recipient. A client or server that receives a message can either

verify that the message is fresh or determine that it cannot be

verified that the message is fresh. What is considered fresh is

application dependent. Freshness is completely different from replay

protection, but most replay protection mechanism use a sequence

number. Assuming the client is well-behaving, such a sequence number

that can be used by the server as a relative measure of when a

message was sent on a timescale of the sender. Replay protection is

mandatory in TLS and OSCORE and optional in DTLS. DTLS and TLS use

sequence numbers for both requests and responses. In TLS the

sequence numbers are implicit and not sent in the record. OSCORE use

sequence numbers for requests and some responses. Most OSCORE

responses are bound to the request and therefore, enable the client

to determine if the response is fresh or not.

The request delay attack (valid for DTLS, TLS, and OSCORE and

described in Section 2.2) lets an attacker control an actuator at a

much later time than the client anticipated. The response delay and

mismatch attack (valid for DTLS and TLS and described in Section

2.3) lets an attacker respond to a client with a response meant for
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an older request. The request fragment rearrangement attack (valid

for DTLS, TLS, and OSCORE and described in Section 2.4) lets an

attacker cause unauthorized operations to be performed on the

server, and responses to unauthorized operations to be mistaken for

responses to authorized operations.

The goal with this document is motivating generic and protocol-

specific recommendations on the usage of CoAP. Mechanisms mitigating

some of the attacks discussed in this document can be found in [I-

D.ietf-core-echo-request-tag]. This document is a companion document

to [I-D.ietf-core-echo-request-tag] giving more information on the

attacks motivating the mechanisms.

2. Attacks on CoAP

Internet-of-Things (IoT) deployments valuing security and privacy,

need to use a security protocol such as DTLS, TLS, or OSCORE to

protect CoAP. This is especially true for deployments of actuators

where attacks often (but not always) have serious consequences. The

attacks described in this section are made under the assumption that

CoAP is already protected with a security protocol such as DTLS,

TLS, or OSCORE, as an attacker otherwise can easily forge false

requests and responses.

2.1. The Block Attack

An on-path attacker can block the delivery of any number of requests

or responses. The attack can also be performed by an attacker

jamming the lower layer radio protocol. This is true even if a

security protocol like DTLS, TLS, or OSCORE is used. Encryption

makes selective blocking of messages harder, but not impossible or

even infeasible. With DTLS and TLS, proxies can read the complete

CoAP message, and with OSCORE, the CoAP header and several CoAP

options are not encrypted. In all three security protocols, the IP-

addresses, ports, and CoAP message lengths are available to all on-

path attackers, which may be enough to determine the server,

resource, and command. The block attack is illustrated in Figures 1

and 2.

Figure 1: Blocking a request
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Client   Foe   Server

   |      |      |

   +----->X      |      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x47

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 1 (Lock)

   |      |      |



Where 'X' means the attacker is blocking delivery of the message.

Figure 2: Blocking a response

While blocking requests to, or responses from, a sensor is just a

denial-of-service attack, blocking a request to, or a response from,

an actuator results in the client losing information about the

server's status. If the actuator e.g., is a lock (door, car, etc.),

the attack results in the client not knowing (except by using out-

of-band information) whether the lock is unlocked or locked, just

like the observer in the famous Schrödinger’s cat thought

experiment. Due to the nature of the attack, the client cannot

distinguish the attack from connectivity problems, offline servers,

or unexpected behavior from middle boxes such as NATs and firewalls.

Remedy: Any IoT deployment of actuators where synchronized state is

important need to use confirmable messages and the client need to

take appropriate actions when a response is not received and it

therefore loses information about the server's status.

2.2. The Request Delay Attack

An on-path attacker may not only block packets, but can also delay

the delivery of any packet (request or response) by a chosen amount

of time. If CoAP is used over a reliable and ordered transport such

as TCP with TLS or OSCORE (with TLS-like sequence number handling),

no messages can be delivered before the delayed message. If CoAP is

used over an unreliable and unordered transport such as UDP with

DTLS or OSCORE, other messages can be delivered before the delayed

message as long as the delayed packet is delivered inside the replay

window. When CoAP is used over UDP, both DTLS and OSCORE allow out-

of-order delivery and uses sequence numbers together with a replay

window to protect against replay attacks against requests. The

replay window has a default length of 64 in DTLS and 32 in OSCORE.

The attacker can influence the replay window state by blocking and

delaying packets. By first delaying a request, and then later, after

delivery, blocking the response to the request, the client is not

¶

Client   Foe   Server

   |      |      |

   +------------>|      Code: 0.03 (PUT)

   |      | PUT  |     Token: 0x47

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 1 (Lock)

   |      |      |

   |      X<-----+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x47

   |      |      |
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made aware of the delayed delivery except by the missing response.

In general, the server has no way of knowing that the request was

delayed and will therefore happily process the request. Note that

delays can also happen for other reasons than a malicious attacker.

If some wireless low-level protocol is used, the attack can also be

performed by the attacker simultaneously recording what the client

transmits while at the same time jamming the server. The request

delay attack is illustrated in Figure 3.

Figure 3: Delaying a request

Where '@' means the attacker is storing and later forwarding the

message (@ may alternatively be seen as a wormhole connecting two

points in time).

While an attacker delaying a request to a sensor is often not a

security problem, an attacker delaying a request to an actuator

performing an action is often a serious problem. A request to an

actuator (for example a request to unlock a lock) is often only

meant to be valid for a short time frame, and if the request does

not reach the actuator during this short timeframe, the request

should not be fulfilled. In the unlock example, if the client does

not get any response and does not physically see the lock opening,

the user is likely to walk away, calling the locksmith (or the IT-

support).

If a non-zero replay window is used (the default when CoAP is used

over UDP), the attacker can let the client interact with the

actuator before delivering the delayed request to the server
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Client   Foe   Server

   |      |      |

   +----->@      |      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x9c

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Unlock)

   |      |      |

     ....   ....

   |      |      |

   |      @----->|      Code: 0.03 (PUT)

   |      | PUT  |     Token: 0x9c

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Unlock)

   |      |      |

   |      X<-----+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x9c

   |      |      |
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(illustrated in Figure 4). In the lock example, the attacker may

store the first "unlock" request for later use. The client will

likely resend the request with the same token. If DTLS is used, the

resent packet will have a different sequence number and the attacker

can forward it. If OSCORE is used, resent packets will have the same

sequence number and the attacker must block them all until the

client sends a new message with a new sequence number (not shown in 

Figure 4). After a while when the client has locked the door again,

the attacker can deliver the delayed "unlock" message to the door, a

very serious attack.

Figure 4: Delaying request with reordering

¶

Client   Foe   Server

   |      |      |

   +----->@      |      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x9c

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Unlock)

   |      |      |

   +------------>|      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x9c

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Unlock)

   |      |      |

   <-------------+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x9c

   |      |      |

     ....   ....

   |      |      |

   +------------>|      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x7a

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 1 (Lock)

   |      |      |

   <-------------+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x7a

   |      |      |

   |      @----->|      Code: 0.03 (PUT)

   |      | PUT  |     Token: 0x9c

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Unlock)

   |      |      |

   |      X<-----+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x9c

   |      |      |



While the second attack (Figure 4) can be mitigated by using a

replay window of length zero, the first attack (Figure 3) cannot. A

solution must enable the server to verify that the request was

received within a certain time frame after it was sent or enable the

server to securely determine an absolute point in time when the

request is to be executed. This can be accomplished with either a

challenge-response pattern, by exchanging timestamps between client

and server, or by only allowing requests a short period after client

authentication.

Requiring a fresh client authentication (such as a new TLS/DTLS

handshake or an EDHOC key exchange [I-D.ietf-lake-edhoc]) mitigates

the problem, but requires larger messages and more processing than a

dedicated solution. Security solutions based on exchanging

timestamps require exactly synchronized time between client and

server, and this may be hard to control with complications such as

time zones and daylight saving. Wall clock time is not monotonic,

may reveal that the endpoints will accept expired certificates, or

reveal the endpoint's location. Use of non-monotonic clocks is

problematic as the server will accept requests if the clock is moved

backward and reject requests if the clock is moved forward. Even if

the clocks are synchronized at one point in time, they may easily

get out-of-sync and an attacker may even be able to affect the

client or the server time in various ways such as setting up a fake

NTP server, broadcasting false time signals to radio-controlled

clocks, or exposing one of them to a strong gravity field. As soon

as client falsely believes it is time synchronized with the server,

delay attacks are possible. A challenge response mechanism where the

server does not need to synchronize its time with the client is

easier to analyze but require more roundtrips. The challenges,

responses, and timestamps may be sent in a CoAP option or in the

CoAP payload.

Remedy: Any IoT deployment of actuators where freshness is important

should use the mechanisms specified in [I-D.ietf-core-echo-request-

tag] unless another application specific challenge-response or

timestamp mechanism is used.

2.3. The Response Delay and Mismatch Attack

The following attack can be performed if CoAP is protected by a

security protocol where the response is not bound to the request in

any way except by the CoAP token. This would include most general

security protocols, such as DTLS, TLS, and IPsec, but not OSCORE.

CoAP [RFC7252] uses a client generated token that the server echoes

to match responses to request, but does not give any guidelines for

the use of token with DTLS and TLS, except that the tokens currently

"in use" SHOULD (not SHALL) be unique. In HTTPS, this type of

binding is always assured by the ordered and reliable delivery, as
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well as mandating that the server sends responses in the same order

that the requests were received.

The attacker performs the attack by delaying delivery of a response

until the client sends a request with the same token, the response

will be accepted by the client as a valid response to the later

request. If CoAP is used over a reliable and ordered transport such

as TCP with TLS, no messages can be delivered before the delayed

message. If CoAP is used over an unreliable and unordered transport

such as UDP with DTLS, other messages can be delivered before the

delayed message as long as the delayed packet is delivered inside

the replay window. Note that mismatches can also happen for other

reasons than a malicious attacker, e.g., delayed delivery or a

server sending notifications to an uninterested client.

The attack can be performed by an attacker on the wire, or an

attacker simultaneously recording what the server transmits while at

the same time jamming the client. As (D)TLS encrypts the Token, the

attacker needs to predict when the Token is resused. How hard that

is depends on the CoAP library, but some implementations are known

to omit the Token as much as possible and others lets the

application chose the Token. If the response is a "piggybacked

response", the client may additionally check the Message ID and drop

it on mismatch. That doesn't make the attack impossible, but lowers

the probability.

The response delay and mismatch attack is illustrated in Figure 5.
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¶

¶

Client   Foe   Server

   |      |      |

   +------------>|      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x77

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Unlock)

   |      |      |

   |      @<-----+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x77

   |      |      |

     ....   ....

   |      |      |

   +----->X      |      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x77

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 0 (Lock)

   |      |      |

   <------@      |      Code: 2.04 (Changed)

   | 2.04 |      |     Token: 0x77

   |      |      |



Figure 5: Delaying and mismatching response to PUT

If we once again take a lock as an example, the security

consequences may be severe as the client receives a response message

likely to be interpreted as confirmation of a locked door, while the

received response message is in fact confirming an earlier unlock of

the door. As the client is likely to leave the (believed to be

locked) door unattended, the attacker may enter the home,

enterprise, or car protected by the lock.

The same attack may be performed on sensors. As illustrated in 

Figure 6, an attacker may convince the client that the lock is

locked, when it in fact is not. The "Unlock" request may be also be

sent by another client authorized to control the lock.

Figure 6: Delaying and mismatching response to GET

As illustrated in Figure 7, an attacker may even mix responses from

different resources as long as the two resources share the same

(D)TLS connection on some part of the path towards the client. This

can happen if the resources are located behind a common gateway, or

¶
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Client   Foe   Server

   |      |      |

   +------------>|      Code: 0.01 (GET)

   | GET  |      |     Token: 0x77

   |      |      |  Uri-Path: lock

   |      |      |

   |      @<-----+      Code: 2.05 (Content)

   |      | 2.05 |     Token: 0x77

   |      |      |   Payload: 1 (Locked)

   |      |      |

   +------------>|      Code: 0.03 (PUT)

   | PUT  |      |     Token: 0x34

   |      |      |  Uri-Path: lock

   |      |      |   Payload: 1 (Unlock)

   |      |      |

   |      X<-----+      Code: 2.04 (Changed)

   |      | 2.04 |     Token: 0x34

   |      |      |

   +----->X      |      Code: 0.01 (GET)

   | GET  |      |     Token: 0x77

   |      |      |  Uri-Path: lock

   |      |      |

   <------@      |      Code: 2.05 (Content)

   | 2.05 |      |     Token: 0x77

   |      |      |   Payload: 1 (Locked)

   |      |      |



are served by the same CoAP proxy. An on-path attacker (not

necessarily a (D)TLS endpoint such as a proxy) may e.g., deceive a

client that the living room is on fire by responding with an earlier

delayed response from the oven (temperatures in degree Celsius).

Figure 7: Delaying and mismatching response from other resource

Remedy: Section 4.2 of [I-D.ietf-core-echo-request-tag] formally

updates the client token processing for CoAP [RFC7252]. Following

this updated processing mitigates the attack.

2.4. The Request Fragment Rearrangement Attack

These attack scenarios show that the Request Delay and Block Attacks

can be used against block-wise transfers to cause unauthorized

operations to be performed on the server, and responses to

unauthorized operations to be mistaken for responses to authorized

operations. The combination of these attacks is described as a

separate attack because it makes the Request Delay Attack relevant

to systems that are otherwise not time-dependent, which means that

they could disregard the Request Delay Attack.

This attack works even if the individual request/response pairs are

encrypted, authenticated and protected against the Response Delay

and Mismatch Attack, provided the attacker is on the network path

and can correctly guess which operations the respective packages

belong to.

¶

Client   Foe   Server

   |      |      |

   +------------>|      Code: 0.01 (GET)

   | GET  |      |     Token: 0x77

   |      |      |  Uri-Path: oven/temperature

   |      |      |

   |      @<-----+      Code: 2.05 (Content)

   |      | 2.05 |     Token: 0x77

   |      |      |   Payload: 225

   |      |      |

     ....   ....

   |      |      |

   +----->X      |      Code: 0.01 (GET)

   | GET  |      |     Token: 0x77

   |      |      |  Uri-Path: livingroom/temperature

   |      |      |

   <------@      |      Code: 2.05 (Content)

   | 2.05 |      |     Token: 0x77

   |      |      |   Payload: 225

   |      |      |

¶
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The attacks can be performed on any security protocol where the

attacker can delay the delivery of a message unnoticed. This

incluses DTLS, IPsec, and most OSCORE configurations. The attacks

does not work on TCP with TLS or OSCORE (with TLS-like sequence

number handling) as in these cases no messages can be delivered

before the delayed message.

2.4.1. Completing an Operation with an Earlier Final Block

In this scenario (illustrated in Figure 8), blocks from two

operations on a POST-accepting resource are combined to make the

server execute an action that was not intended by the authorized

client. This works only if the client attempts a second operation

after the first operation failed (due to what the attacker made

appear like a network outage) within the replay window. The client

does not receive a confirmation on the second operation either, but,

by the time the client acts on it, the server has already executed

the unauthorized action.

Figure 8: Completing an operation with an earlier final block

Remedy: If a client starts new block-wise operations on a security

context that has lost packets, it needs to label the fragments in

such a way that the server will not mix them up.

¶

¶

Client   Foe   Server

   |      |      |

   +------------->    POST "incarcerate" (Block1: 0, more to come)

   |      |      |

   <-------------+    2.31 Continue (Block1: 0 received, send more)

   |      |      |

   +----->@      |    POST "valjean" (Block1: 1, last block)

   |      |      |

   +----->X      |    All retransmissions dropped

   |      |      |

(Client: Odd, but let's go on and promote Javert)

   |      |      |

   +------------->    POST "promote" (Block1: 0, more to come)

   |      |      |

   |      X<-----+    2.31 Continue (Block1: 0 received, send more)

   |      |      |

   |      @------>    POST "valjean" (Block1: 1, last block)

   |      |      |

   |      X<-----+    2.04 Valjean Promoted

   |      |      |

¶



A mechanism to that effect is described as Request-Tag [I-D.ietf-

core-echo-request-tag]. Had it been in place in the example and used

for body integrity protection, the client would have set the

Request-Tag option in the "promote" request. Depending on the

server's capabilities and setup, either of four outcomes could have

occurred:

The server could have processed the reinjected POST "valjean"

as belonging to the original "incarcerate" block; that's the

expected case when the server can handle simultaneous block

transfers.

The server could respond 5.03 Service Unavailable, including a

Max-Age option indicating how long it prefers not to take any

requests that force it to overwrite the state kept for the

"incarcerate" request.

The server could decide to drop the state kept for the

"incarcerate" request's state, and process the "promote"

request. The reinjected POST "valjean" will then fail with 4.08

Request Entity incomplete, indicating that the server does not

have the start of the operation any more.

2.4.2. Injecting a Withheld First Block

If the first block of a request is withheld by the attacker for

later use, it can be used to have the server process a different

request body than intended by the client. Unlike in the previous

scenario, it will return a response based on that body to the

client.

Again, a first operation (that would go like "Girl stole apple. What

shall we do with her?" - "Set her free.") is aborted by the proxy,

and a part of that operation is later used in a different operation

to prime the server for responding leniently to another operation

that would originally have been "Evil Queen poisoned apple. What

shall we do with her?" - "Lock her up.". The attack is illustrated

in Figure 9.
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Figure 9: Injecting a withheld first block

The remedy described in Section 2.4.1 works also for this case. Note

that merely requiring that blocks of an operation should have

incrementing sequence numbers would be insufficient to remedy this

attack.

2.4.3. Attack difficulty

The success of any fragment rearrangement attack has multiple

prerequisites:

A client sends different block-wise requests that are only

distinguished by their content.

This is generally rare in typical CoRE applications, but can

happen when the bodies of FETCH requests exceed the fragmentation

threshold, or when SOAP patterns are emulated.

A client starts later block-wise operations after an earlier one

has failed.

Client   Foe   Server

   |      |      |

   +----->@      |    POST "Girl stole apple. Wh"

   |      |      |        (Block1: 0, more to come)

(Client: We'll try that one later again; for now, we have something

more urgent:)

   |      |      |

   +------------->    POST "Evil Queen poisened apple. Wh"

   |      |      |        (Block1: 0, more to come)

   |      |      |

   |      @<-----+    2.31 Continue (Block1: 0 received, send more)

   |      |      |

   |      @------>    POST "Girl stole apple. Wh"

   |      |      |        (Block1: 0, more to come)

   |      |      |

   |      X<-----+    2.31 Continue (Block1: 0 received, send more)

   |      |      |

   <------@      |    2.31 Continue (Block1: 0 received, send more)

   |      |      |

   +------------->    POST "at shall we do with her?"

   |      |      |        (Block1: 1, last block)

   |      |      |

   <-------------+    2.05 "Set her free."

   |      |      |        (Block1: 1 received and this is the result)
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This happens regularly as a consequence of operating in a low-

power and lossy network: Losses can cause failed operation

(especially when the network is unavailable for time exceeding

the "few expected round-trips" they may be limited to per 

[RFC7959]), and the cost of reestablishing a security context.

The attacker needs to be able to determine which packets contain

which fragments.

This can be achieved by an on-path attacker by observing request

timing, or simply by observing request sizes in the case when a

body is split into precisely two blocks.

It is not a prerequisite that the resulting misassembled request

body is syntactically correct: As the server erroneously expects the

body to be integrity protected from an authorized source, it might

be using a parser not suitable for untrusted input. Such a parser

might crash the server in extreme cases, but might also produce a

valid but incorrect response to the request the client associates

the response with. Note that many constrained applications aim to

minimize traffic and thus employ compact data formats; that

compactness leaves little room for syntactically invalid messages.

The attack is easier if the attacker has control over the request

bodies (which would be the case when a trusted proxy validates the

attacker's authorization to perform two given requests, and an

attack on the path between the proxy and the server recombines the

blocks to a semantically different request). Attacks of that shape

can easily result in reassembled bodies chosen by the attacker, but

no services are currently known that operate in this way.

Summarizing, it is unlikely that an attacker can perform any of the

fragment rearrangement attacks on any given system - but given the

diversity of applications built on CoAP, it is easily to imagine

that single applications would be vulnerable. As block-wise transfer

is a basic feature of CoAP and its details are sometimes hidden

behind abstractions or proxies, application authors can not be

expected to design their applications with these attacks in mind,

and mitigation on the protocol level is prudent.

2.5. The Relay Attack

Yet another type of attack can be performed in deployments where

actuator actions are triggered automatically based on proximity and

without any user interaction, e.g., a car (the client) constantly

polling for the car key (the server) and unlocking both doors and

engine as soon as the car key responds. An attacker (or pair of

attackers) may simply relay the CoAP messages out-of-band, using for

examples some other radio technology. By doing this, the actuator

¶
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¶

¶

¶

¶
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(i.e., the car) believes that the client is close by and performs

actions based on that false assumption. The attack is illustrated in

Figure 10. In this example the car is using an application specific

challenge-response mechanism transferred as CoAP payloads.

Figure 10: Relay attack (the client is the actuator)

The consequences may be severe, and in the case of a car, lead to

the attacker unlocking and driving away with the car, an attack that

unfortunately is happening in practice.

Remedy: Getting a response over a short-range radio cannot be taken

as proof of proximity and can therefore not be used to take actions

based on such proximity. Any automatically triggered mechanisms

relying on proximity need to use other stronger mechanisms to

establish proximity. Mechanisms that can be used are: measuring the

round-trip time and calculating the maximum possible distance based

on the speed of light, or using radio with an extremely short range

like NFC (centimeters instead of meters). Another option is to

include geographical coordinates (from e.g., GPS) in the messages

and calculate proximity based on these, but in this case the

location measurements need to be very precise and the system need to

make sure that an attacker cannot influence the location estimation.

Some types of global navigation satellite systems (GNSS) receivers

are vulnerable to spoofing attacks.

3. Security Considerations

The whole document can be seen as security considerations for CoAP.

4. IANA Considerations

This document has no actions for IANA.

5. Informative References

¶

Client   Foe         Foe   Server

   |      |           |      |

   +----->| ......... +----->|      Code: 0.02 (POST)

   | POST |           | POST |     Token: 0x3a

   |      |           |      |  Uri-Path: lock

   |      |           |      |   Payload: JwePR2iCe8b0ux (Challenge)

   |      |           |      |

   |<-----+ ......... |<-----+      Code: 2.04 (Changed)

   | 2.04 |           | 2.04 |     Token: 0x3a

   |      |           |      |   Payload: RM8i13G8D5vfXK (Response)

   |      |           |      |
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