
Network Working Group N. Barry
Internet-Draft Stellar Development Foundation
Intended status: Experimental G. Losa
Expires: December 31, 2018 UCLA
 D. Mazieres
 Stanford University
 J. McCaleb
 Stellar Development Foundation
 S. Polu
 Stripe Inc.
 June 29, 2018

The Stellar Consensus Protocol (SCP)
draft-mazieres-dinrg-scp-04

Abstract

 SCP is an open Byzantine agreement protocol resistant to Sybil
 attacks. It allows Internet infrastructure stakeholders to reach
 agreement on a series of values without unanimous agreement on what
 constitutes the set of important stakeholders. A big differentiator
 from other Byzantine agreement protocols is that, in SCP, nodes
 determine the composition of quorums in a decentralized way: each
 node selects sets of nodes it considers large or important enough to
 speak for the whole network, and a quorum must contain such a set for
 each of its members.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2018.

Barry, et al. Expires December 31, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft scp June 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. The Model . 3
2.1. Configuration . 3
2.2. Input and output . 4

3. Protocol . 5
3.1. Federated voting . 5
3.2. Basic types . 7
3.3. Quorum slices . 8
3.4. Nominate message . 10
3.5. Ballots . 12
3.6. Prepare message . 13
3.7. Commit message . 16
3.8. Externalize message 18
3.9. Summary of phases . 18
3.10. Message envelopes . 19

4. Security considerations 20
5. Acknowledgments . 20
6. References . 21
6.1. Normative References 21
6.2. Informative References 21

 Authors' Addresses . 22

1. Introduction

 Various aspects of Internet infrastructure depend on irreversible and
 transparent updates to data sets such as authenticated mappings [cite
 Li-Man-Watson draft]. Examples include public key certificates and
 revocations, transparency logs [RFC6962], preload lists for HSTS
 [RFC6797] and HPKP [RFC7469], and IP address delegation
 [I-D.paillisse-sidrops-blockchain].

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc6962
https://datatracker.ietf.org/doc/html/rfc6797
https://datatracker.ietf.org/doc/html/rfc7469

Barry, et al. Expires December 31, 2018 [Page 2]

Internet-Draft scp June 2018

 The Stellar Consensus Protocol (SCP) specified in this draft allows
 Internet infrastructure stakeholders to collaborate in applying
 irreversible transactions to public state. SCP is an open Byzantine
 agreement protocol that resists Sybil attacks by allowing individual
 parties to specify minimum quorum memberships in terms of specific
 trusted peers. Each participant chooses combinations of peers on
 which to depend such that these combinations can be trusted in
 aggregate. The protocol guarantees safety so long as these
 dependency sets transitively overlap and contain sufficiently many
 honest nodes correctly obeying the protocol.

 Though bad configurations are theoretically possible, several
 analogies provide an intuition for why transitive dependencies
 overlap in practice. For example, given multiple entirely disjoint
 Internet-protocol networks, people would have no trouble agreeing on
 the fact that the network containing the world's top web sites is
 the Internet. Such a consensus can hold even without unanimous
 agreement on what constitute the world's top web sites. Similarly,
 if network operators listed all the ASes from whom they would
 consider peering or transit worthwhile, the transitive closures of
 these sets would contain significant overlap, even without unanimous
 agreement on the "tier-1 ISP" designation. Finally, while different
 browsers and operating systems have slightly different lists of valid
 certificate authorities, there is significant overlap in the sets, so
 that a hypothetical system requiring validation from "all CAs" would
 be unlikely to diverge.

 A more detailed abstract description of SCP and its rationale,
 including an English-language proof of safety, is available in [SCP].
 In particular, that reference shows that a necessary property for
 safety, termed _quorum intersection despite ill-behaved nodes_, is
 sufficient to guarantee safety under SCP, making SCP optimally safe
 against Byzantine node failure for any given configuration.

 This document specifies the end-system logic and wire format of the
 messages in SCP.

2. The Model

 This section describes the configuration and input/output values of
 the consensus protocol.

2.1. Configuration

 Each participant or _node_ in the SCP protocol has a digital
 signature key and is named by the corresponding public key, which we
 term a "NodeID".

Barry, et al. Expires December 31, 2018 [Page 3]

Internet-Draft scp June 2018

 Each node also selects one or more sets of nodes (each of which
 includes itself) called _quorum slices_. A quorum slice represents a
 large or important enough set of peers that the node selecting the
 quorum slice believes the slice collectively speaks for the whole
 network.

 A _quorum_ is a non-empty set of nodes containing at least one quorum
 slice of each of its members. For instance, suppose "v1" has the
 single quorum slice "{v1, v2, v3}", while each of "v2", "v3", and
 "v4" has the single quorum slice "{v2, v3, v4}". In this case, "{v2,
 v3, v4}" is a quorum because it contains a slice for each member. On
 the other hand "{v1, v2, v3}" is not a quorum, because it does not
 contain a quorum slice for "v2" or "v3". The smallest quorum
 including "v1" in this example is the set of all nodes "{v1, v2, v3,
 v4}".

 Unlike traditional Byzantine agreement protocols, nodes in SCP only
 care about quorums to which they belong themselves (and hence that
 contain at least one of their quorum slices). Intuitively, this is
 what protects nodes from Sybil attacks. In the example above, if
 "v3" deviates from the protocol, maliciously inventing 96 Sybils "v5,
 v6, ..., v100", the honest nodes' quorums will all still include one
 another, ensuring that "v1", "v2", and "v4" continue to agree on
 output values.

 Every message in the SCP protocol specifies the sender's quorum
 slices. Hence, by collecting messages, a node dynamically learns
 what constitutes a quorum and can decide when a particular message
 has been sent by a quorum to which it belongs. (Again, nodes do not
 care about quorums to which they do not belong themselves.)

2.2. Input and output

 SCP produces a series of output _values_ for consecutively numbered
 slots. At the start of a slot, higher-layer software on each node
 supplies a candidate input value. Nodes then exchange protocol
 messages to agree on one or a combination of nodes' input values as
 the slot's output value. After a pause to assemble new input values,
 the process repeats for the next slot, with a 5-second interval
 between slots.

 A value typically encodes a set of actions to apply to a replicated
 state machine. During the pause between slots, nodes accumulate the
 next set of actions, amortizing the cost of consensus on one slot
 over arbitrarily many individual state machine operations.

 In practice, only one or a small number of nodes' input values
 actually affect the output value for any given slot. As discussed in

Barry, et al. Expires December 31, 2018 [Page 4]

Internet-Draft scp June 2018

Section 3.4, which nodes' input values to use depends on a
 cryptographic hash of the slot number and node public keys. A node's
 chances of affecting the output value depend on how often it appears
 in other nodes' quorum slices.

 From SCP's perspective, values are just opaque byte arrays whose
 interpretation is left to higher-layer software. However, SCP
 requires a _validity_ function (to check whether a value is valid)
 and a _combining function_ that reduces multiple candidate values
 into a single _composite_ value. When nodes nominate multiple values
 for a slot, SCP nodes invoke this function to converge on a single
 composite value. By way of example, in an application where values
 consist of sets of transactions, the combining function could take
 the union of transaction sets. Alternatively, if values represent a
 timestamp and a set of transactions, the combining function might
 pair the highest nominated timestamp with the transaction set that
 has the highest hash value.

3. Protocol

 The protocol consists of exchanging digitally-signed messages bound
 to nodes' quorum slices. The format of all messages is specified
 using XDR [RFC4506]. In addition to quorum slices, messages
 compactly convey votes on sets of conceptual statements. The core
 technique of voting with quorum slices is termed _federated voting_.
 We describe federated voting next, then detail protocol messages in
 the subsections that follow.

 The protocol goes through four phases: NOMINATE, PREPARE, COMMIT, and
 EXTERNALIZE. The NOMINATE and PREPARE phases run concurrently
 (though NOMINATE's messages are sent earlier and it ends before
 PREPARE ends). The COMMIT and EXTERNALIZE phrases are exclusive,
 with COMMIT occurring immediately after PREPARE and EXTERNALIZE
 immediately after COMMIT.

3.1. Federated voting

 Federated voting is a process through which nodes _confirm_
 statements. Not every attempt at federated voting may succeed--an
 attempt to vote on some statement "a" may get stuck, with the result
 that nodes can confirm neither "a" nor its negation "!a". However,
 when a node succeeds in confirming a statement "a", federated voting
 guarantees two things:

 1. No two well-behaved nodes will confirm contradictory statements
 in any configuration and failure scenario in which any protocol
 can guarantee safety for the two nodes (i.e., quorum intersection
 for the two nodes holds despite ill-behaved nodes).

https://datatracker.ietf.org/doc/html/rfc4506

Barry, et al. Expires December 31, 2018 [Page 5]

Internet-Draft scp June 2018

 2. If a node that is guaranteed safety by #1 confirms a statement
 "a", and that node is a member of one or more quorums consisting
 entirely of well-behaved nodes, then eventually every member of
 every such quorum will also confirm "a".

 Intuitively, these conditions are key to ensuring agreement among
 nodes as well as a weak form of liveness (the non-blocking property
 [building-blocks]) that is compatible with the FLP impossibility
 result [FLP].

 As a node "v" collects signed copies of a federated voting message
 "m" from peers, two thresholds trigger state transitions in "v"
 depending on the message. We define these thresholds as follows:

 o _quorum threshold_: When every member of a quorum to which "v"
 belongs (including "v" itself) has issued message "m"

 o _blocking threshold_: When at least one member of each of "v"'s
 quorum slices (a set that does not necessarily include "v" itself)
 has issued message "m"

 Each node "v" can send several types of message with respect to a
 statement "a" during federated voting:

 o _vote_ "a" states that "a" is a valid statement and constitutes a
 promise by "v" not to vote for any contradictory statement, such
 as "!a".

 o _accept_ "a" says that nodes may or may not come to agree on "a",
 but if they don't, then the system has experienced a catastrophic
 set of Byzantine failures to the point that no quorum containing
 "v" consists entirely of correct nodes. (Nonetheless, accepting
 "a" is not sufficient to act on it, as doing so could violate
 agreement, which is worse than merely getting stuck from lack of a
 correct quorum.)

 o _vote-or-accept_ "a" is the disjunction of the above two messages.
 A node implicitly sends such a message if it sends either _vote_
 "a" or _accept_ "a". Where it is inconvenient and unnecessary to
 differentiate between _vote_ and _accept_, a node can explicitly
 send a _vote-or-accept_ message.

 o _confirm_ "a" indicates that _accept_ "a" has reached quorum
 threshold at the sender. This message is interpreted the same as
 accept "a", but allows recipients to optimize their quorum
 checks by ignoring the sender's quorum slices, as the sender
 asserts it has already checked them.

Barry, et al. Expires December 31, 2018 [Page 6]

Internet-Draft scp June 2018

 Figure 1 illustrates the federated voting process. A node "v" votes
 for a valid statement "a" that doesn't contradict statements in past
 vote or _accept_ messages sent by "v". When the _vote_ message
 reaches quorum threshold, the node accepts "a". In fact, "v" accepts
 "a" if the _vote-or-accept_ message reaches quorum threshold, as some
 nodes may accept "a" without first voting for it. Specifically, a
 node that cannot vote for "a" because it has voted for "a"'s negation
 "!a" still accepts "a" when the message _accept_ "a" reaches blocking
 threshold (meaning assertions about "!a" have no hope of reaching
 quorum threshold barring catastrophic Byzantine failure).

 If and when the message _accept_ "a" reaches quorum threshold, then
 "v" has confirmed "a" and the federated vote has succeeded. In
 effect, the _accept_ messages constitute a second vote on the fact
 that the initial vote messages succeeded. Once "v" enters the
 confirmed state, it may issue a _confirm_ "a" message to help other
 nodes confirm "a" more efficiently by pruning their quorum search at
 "v".

 "vote-or-accept a" "accept a"
 reaches reaches
 quorum threshold quorum threshold
 +-----------------+ +-----------------+
 | | | |
 | V | V
 +-----------+ +-----------+ +-----------+
 a is +---->| voted a | |accepted a | |confirmed a|
 valid | +-----------+ +-----------+ +-----------+
 | | ^
 +-----------+ | | "accept a" reaches
 |uncommitted|------+-----------------+ blocking threshold
 +-----------+ |
 | |
 | +-----------+
 +---->| voted !a |
 +-----------+

 Figure 1: Federated voting process

3.2. Basic types

 SCP employs 32- and 64-bit integers, as defined below.

 typedef unsigned int uint32;
 typedef int int32;
 typedef unsigned hyper uint64;
 typedef hyper int64;

Barry, et al. Expires December 31, 2018 [Page 7]

Internet-Draft scp June 2018

 SCP uses the SHA-256 cryptograhpic hash function [RFC6234], and
 represents hash values as a simple array of 32 bytes.

 typedef opaque Hash[32];

 SCP employs the Ed25519 digital signature algorithm [RFC8032]. For
 cryptographic agility, however, public keys are represented as a
 union type that can later be compatibly extended with other key
 types.

 typedef opaque uint256[32];

 enum PublicKeyType
 {
 PUBLIC_KEY_TYPE_ED25519 = 0
 };

 union PublicKey switch (PublicKeyType type)
 {
 case PUBLIC_KEY_TYPE_ED25519:
 uint256 ed25519;
 };

 // variable size as the size depends on the signature scheme used
 typedef opaque Signature<64>;

 Nodes are public keys, while values are simply opaque arrays of
 bytes.

 typedef PublicKey NodeID;

 typedef opaque Value<>;

3.3. Quorum slices

 Theoretically a quorum slice can be an arbitrary set of nodes.
 However, arbitrary predicates on sets cannot be encoded concisely.
 Instead we specify quorum slices as any set of k-of-n members, where
 each of the n members can either be an individual node ID, or,
 recursively, another k-of-n set.

https://datatracker.ietf.org/doc/html/rfc6234
https://datatracker.ietf.org/doc/html/rfc8032

Barry, et al. Expires December 31, 2018 [Page 8]

Internet-Draft scp June 2018

 // supports things like: A,B,C,(D,E,F),(G,H,(I,J,K,L))
 // only allows 2 levels of nesting
 struct SCPSlices
 {
 uint32 threshold; // the k in k-of-n
 PublicKey validators<>;
 SCPSlices1 innerSets<>;
 };
 struct SCPSlices1
 {
 uint32 threshold; // the k in k-of-n
 PublicKey validators<>;
 SCPSlices2 innerSets<>;
 };
 struct SCPSlices2
 {
 uint32 threshold; // the k in k-of-n
 PublicKey validators<>;
 };

 Let "k" be the value of "threshold" and "n" the sum of the sizes of
 the "validators" and "innerSets" vectors in a message sent by some
 node "v". A message "m" sent by "v" reaches quorum threshold at "v"
 when three things hold:

 1. "v" itself has issued (digitally signed) the message,

 2. The number of nodes in "validators" who have signed "m" plus the
 number "innerSets" that (recursively) meet this condition is at
 least "k", and

 3. These three conditions apply (recursively) at some combination of
 nodes sufficient for condition #2.

 A message reaches blocking threshold at "v" when the number of
 "validators" making the statement plus (recursively) the number
 "innerSets" reaching blocking threshold exceeds "n-k". (Blocking
 threshold depends only on the local node's quorum slices and hence
 does not require a recursive check on other nodes like step #3
 above.)

 As described in Section 3.10, every protocol message is paired with a
 cryptographic hash of the sender's "SCPSlices" and digitally signed.
 Inner protocol messages described in the next few sections should be
 understood to be received alongside such a quorum slice specification
 and digital signature.

Barry, et al. Expires December 31, 2018 [Page 9]

Internet-Draft scp June 2018

3.4. Nominate message

 For each slot, the SCP protocol begins in a NOMINATE phase, whose
 goal is to devise one or more candidate output values for the
 consensus protocol. In this phase, nodes send nomination messages
 comprising a monotonically growing set of values:

 struct SCPNominate
 {
 Value voted<>; // X
 Value accepted<>; // Y
 };

 The "voted" and "accepted" sets are disjoint; any value that is
 eligible for both sets is placed only in the "accepted" set.

 "voted" consists of candidate values that the sender has voted to
 nominate. Each node progresses through a series of nomination
 rounds in which it may increase the set of values in its own
 "voted" field by adding the contents of the "voted" and "accepted"
 fields of "SCPNominate" messages received from a growing set of
 peers. In round "n" of slot "i", each node determines an additional
 peer whose nominated values it should incorporate in its own
 "SCPNominate" message as follows:

 o Let "Gi(m) = SHA-256(i || m)", where "||" denotes the
 concatenation of serialized XDR values. Treat the output of "Gi"
 as a 256-bit binary number in big-endian format.

 o For each peer "v", define "weight(v)" as the fraction of quorum
 slices containing "v".

 o Define the set of nodes "neighbors(n)" as the set of nodes v for
 which "Gi(1 || n || v) < 2^{256} * weight(v)", where "1" and "n"
 are both 32-bit XDR "int" values.

 o Define "priority(n, v)" as "Gi(2 || n || v)", where "2" and "n"
 are both 32-bit XDR "int" values.

 For each round "n" until nomination has finished (see below), a node
 starts _echoing_ the available peer "v" with the highest value of
 "priority(n, v)" from among the nodes in "neighbors(n)". To echo
 "v", the node merges any valid values from "v"'s "voted" and
 "accepted" sets into its own "voted" set.

 XXX - expand "voted" with only the 10 values with lowest Gi hash in
 any given round to avoid blowing out the message size?

Barry, et al. Expires December 31, 2018 [Page 10]

Internet-Draft scp June 2018

 Note that when echoing nominations, nodes must exclude and neither
 vote for nor accept values rejected by the higher-layer application's
 validity function. This validity function must not depend on state
 that can permanently differ across nodes. By way of example, it is
 okay to reject values that are syntactically ill-formed, that are
 semantically incompatible with the previous slot's value, that
 contain invalid digital signatures, that contain timestamps in the
 future, or that specify upgrades to unknown versions of the protocol.
 By contrast, the application cannot reject values that are
 incompatible with the results of a DNS query or some dynamically
 retrieved TLS certificate, as different nodes could see different
 results when doing such queries.

 Nodes must not send an "SCPNominate" message until at least one of
 the "voted" or "accepted" fields is non-empty. When these fields are
 both empty, a node that has the highest priority among its neighbors
 in the current round (and hence should be echoing its own votes) adds
 the higher-layer software's input value to its "voted" field. Nodes
 that do not have the highest priority wait to hear "SCPNominate"
 messages from the nodes whose nominations they are echoing.

 If a particular valid value "x" reaches quorum threshold in the
 messages sent by peers (meaning that every node in a quorum contains
 "x" either in the "voted" or the "accepted" field), then the node at
 which this happens moves "x" from its "voted" field to its "accepted"
 field and broadcasts a new "SCPNominate" message. Similarly, if "x"
 reaches blocking threshold in a node's peers' "accepted" field
 (meaning every one of a node's quorum slices contains at least one
 node with "x" in its "accepted" field), then the node adds "x" to its
 own "accepted" field (removing it from "voted" if applicable). These
 two cases correspond to the two conditions for entering the
 "accepted" state in Figure 1.

 A node stops adding any new values to its "voted" set as soon as any
 value "x" reaches quorum threshold in the "accepted" fields of
 received "SCPNominate" messages. Following the terminology of

Section 3.1, this condition corresponds to when the node confirms "x"
 as nominated. Note, however, that the node continues adding new
 values to "accepted" as appropriate. Doing so may lead to more
 values becoming confirmed nominated even after the "voted" set is
 closed to new values.

 A node always begins nomination in round "1". Round "n" lasts for
 "1+n" seconds, after which, if no value has been confirmed nominated,
 the node proceeds to round "n+1". A node continues to echo votes
 from the highest priority neighbor in prior rounds as well as the
 current round. In particular, until any value is confirmed
 nominated, a node continues expanding its "voted" field with values

Barry, et al. Expires December 31, 2018 [Page 11]

Internet-Draft scp June 2018

 nominated by highest priority neighbors from prior rounds even when
 the values appeared after the end of those prior rounds.

 As defined in the next two sections, the NOMINATE phase ends when a
 node has confirmed "prepare(b)" for some any ballot "b", as this is
 the point at which the nomination outcome no longer influences the
 protocol. Until this point, a node must continue to transmit
 "SCPNominate" messages as well as to expand its "accepted" set (even
 if "voted" is closed because some value has been confirmed
 nominated).

3.5. Ballots

 Once there is a candidate on which to try to reach consensus, a node
 moves through three phases of balloting: PREPARE, COMMIT, and
 EXTERNALIZE. Balloting employs federated voting to chose between
 commit and _abort_ statements for ballots. A ballot is a pair
 consisting of a counter and candidate value:

 // Structure representing ballot <n, x>
 struct SCPBallot
 {
 uint32 counter; // n
 Value value; // x
 };

 We use the notation "<n, x>" to represent a ballot with "counter ==
 n" and "value == x".

 Ballots are totally ordered with "counter" more significant than
 "value". Hence, we write "b1 < b2" to mean that either "(b1.counter
 < b2.counter)" or "(b1.counter == b2.counter && b1.value <
 b2.value)". Values are compared lexicographically as a strings of
 unsigned octets.

 The protocol moves through federated voting on successively higher
 ballots until nodes confirm "commit(b)" for some ballot "b", at which
 point consensus terminates and outputs "b.value" for the slot. To
 ensure that only one value can be chosen for a slot and that the
 protocol cannot get stuck if individual ballots get stuck, there are
 two restrictions on voting:

 1. A node cannot vote for both "commit(b)" and "abort(b)" on the
 same ballot (the two outcomes are contradictory), and

 2. A node may not vote for or accept "commit(b)" for any ballot "b"
 unless it has confirmed "abort" for every lesser ballot with a
 different value.

Barry, et al. Expires December 31, 2018 [Page 12]

Internet-Draft scp June 2018

 The second condition requires voting to abort large numbers of
 ballots before voting to commit a ballot "b". We call this
 preparing ballot "b", and introduce the following notation for the
 associated set of abort statements.

 o "prepare(b)" encodes an "abort" statement for every ballot less
 than "b" containing a value other than "b.value", i.e.,
 "prepare(b) = { abort(b1) | b1 < b AND b1.value != b.value }".

 o "vote prepare(b)" stands for a set of _vote_ messages for every
 "abort" statement in "prepare(b)".

 o Similarly, "accept prepare(b)", "vote-or-accept prepare(b)", and
 "confirm prepare(b)" encode sets of _accept_, _vote-or-accept_,
 and _confirm_ messages for every "abort" statement in
 "prepare(b)".

 Using this terminology, a node must confirm "prepare(b)" before
 issuing a _vote_ or _accept_ message for the statement "commit(b)".

3.6. Prepare message

 The first phase of balloting is the PREPARE phase. During this
 phase, as soon as a node has a valid candidate value (see the rules
 for "ballot.value" below), it begins sending the following message:

 struct SCPPrepare
 {
 SCPBallot ballot; // b
 SCPBallot *prepared; // p
 SCPBallot *preparedPrime; // p'
 uint32 hCounter; // h.counter or 0 if h == NULL
 uint32 cCounter; // c.counter or 0 if !c || !hCounter
 };

 This message compactly conveys the following (conceptual) federated
 voting messages:

 o "vote-or-accept prepare(ballot)"

 o If "prepared != NULL": "accept prepare(prepared)"

 o If "preparedPrime != NULL": "accept prepare(preparedPrime)"

 o If "hCounter != 0": "confirm prepare(<hCounter, ballot.value>)"

 o If "cCounter != 0": "vote commit(<n, ballot.value>)" for every
 "cCounter <= n <= hCounter"

Barry, et al. Expires December 31, 2018 [Page 13]

Internet-Draft scp June 2018

 Note that to be valid, an "SCPPrepare" message must satisfy the
 following conditions:

 o If "prepared != NULL", then "prepared <= ballot",

 o If "preparedPrime != NULL", then "prepared != NULL" and
 "preparedPrime < prepared", and

 o "cCounter <= hCounter <= ballot.counter".

 Based on the federated vote messages received, each node keeps track
 of what ballots have been accepted and confirmed prepared. It uses
 these ballots to set the following fields of its own "SCPPrepare"
 messages as follows.

 ballot
 The current ballot that a node is attempting to prepare and
 commit. The rules for setting each field are detailed below.
 Note that the "value" is updated when and only when "counter"
 changes.

 ballot.counter
 The counter is set according to the following rules:

 * Upon entering the PREPARE phase, the "counter" field is
 initialized to 1.

 * When a node sees messages from a quorum to which it belongs
 such that each message's "ballot.counter" is greater than or
 equal to the local "ballot.counter", the node arms a timer to
 fire in a number of seconds equal to its "ballot.counter + 1"
 (so the timeout lengthens linearly as the counter increases).
 Note that for the purposes of determining whether a quorum has
 a particular "ballot.counter", a node considers "ballot" fields
 in "SCPPrepare" and "SCPCommit" messages. It also considers
 "SCPExternalize" messages to convey an implicit
 "ballot.counter" of "infinity".

 * If the timer fires, a node increments the ballot counter by 1.

 * If nodes forming a blocking threshold all have "ballot.counter"
 values greater than the local "ballot.counter", then the local
 node immediately cancels any pending timer, increases
 "ballot.counter" to the lowest value such that this is no
 longer the case, and if appropriate according to the rules
 above arms a new timer. Note that the blocking threshold may
 include ballots from "SCPCommit" messages as well as

Barry, et al. Expires December 31, 2018 [Page 14]

Internet-Draft scp June 2018

 "SCPExternalize" messages, which implicitly have an infinite
 ballot counter.

 * *Exception*: To avoid exhausting "ballot.counter", its value
 must always be less then 1,000 plus the number of seconds a
 node has been running SCP on the current slot. Should any of
 the above rules require increasing the counter beyond this
 value, a node either increases "ballot.counter" to the maximum
 permissible value, or, if it is already at this maximum, waits
 up to one second before increasing the value.

 ballot.value
 Each time the ballot counter is changed, the value is also
 recomputed as follows:

 * If any ballot has been confirmed prepared, then "ballot.value"
 is taken to to be "h.value" for the highest confirmed prepared
 ballot "h". (Note that once this is the case, the node can
 stop sending "SCPNominate" messages, as "h.value" supersedes
 any output of the nomination protocol.)

 * Otherwise (if no such "h" exists), if one or more values are
 confirmed nominated, then "ballot.value" is taken as the output
 of the deterministic combining function applied to all
 confirmed nominated values. Note that because the NOMINATE and
 PREPARE phases run concurrently, the set of confirmed nominated
 values may continue to grow during balloting, changing
 "ballot.value" even if no ballots are confirmed prepared.

 * Otherwise, if no ballot is confirmed prepared and no value is
 confirmed nominated, but the node has accepted a ballot
 prepared (because "prepare(b)" meets blocking threshold for
 some ballot "b"), then "ballot.value" is taken as the value of
 the highest such accepted prepared ballot.

 * Otherwise, if no value is confirmed nominated and no value is
 accepted prepared, then a node cannot yet send an "SCPPrepare"
 message and must continue sending only "SCPNominate" messages.

 prepared
 The highest accepted prepared ballot not exceeding the "ballot"
 field, or NULL if no ballot has been accepted prepared. Recall
 that ballots with equal counters are totally ordered by the value.
 Hence, if "ballot = <n, x>" and the highest prepared ballot is
 "<n, y>" where "x < y", then the "prepared" field in sent messages
 must be set to "<n-1, y>" instead of "<n, y>", as the latter would
 exceed "ballot". In the event that "n = 1", the prepared field
 may be set to "<0, y>", meaning 0 is a valid "prepared.counter"

Barry, et al. Expires December 31, 2018 [Page 15]

Internet-Draft scp June 2018

 even though it is not a valid "ballot.counter". It is possible to
 confirm "prepare(<0, y>)", in which case the next "ballot.value"
 is set to "y". However, it is not possible to vote to commit a
 ballot with counter 0.

 preparedPrime
 The highest accepted prepared ballot such that "preparedPrime <
 prepared" and "preparedPrime.value != prepared.value", or NULL if
 there is no such ballot. Note that together, "prepared" and
 "preparedPrime" concisely encode all "abort" statements (below
 "ballot") that the sender has accepted.

 hCounter
 If "h" is the highest confirmed prepared ballot and "h.value ==
 ballot.value", then this field is set to "h.counter". Otherwise,
 if no ballot is confirmed prepared or if "h.value !=
 ballot.value", then this field is 0. Note that by the rules
 above, if "h" exists, then "ballot.value" will be set to "h.value"
 the next time "ballot" is updated.

 cCounter
 The value "cCounter" is maintained based on an internally-
 maintained _commit ballot_ "c", initially "NULL". "cCounter" is 0
 while "c == NULL" or "hCounter == 0", and is "c.counter"
 otherwise. "c" is updated as follows:

 * If either "(prepared > c && prepared.value != c.value)" or
 "(preparedPrime > c && preparedPrime.value != c.value)", then
 reset "c = NULL".

 * If "c == NULL" and "hCounter == ballot.counter" (meaning
 "ballot" is confirmed prepared), then set "c" to "ballot".

 A node leaves the PREPARE phase and proceeds to the COMMIT phase when
 there is some ballot "b" for which the node confirms "prepare(b)" and
 accepts "commit(b)". (If nodes never changed quorum slice mid-
 protocol, it would suffice to accept "commit(b)". Also waiting to
 confirm "prepare(b)" makes it easier to recover from liveness
 failures by removing Byzantine faulty nodes from quorum slices.)

3.7. Commit message

 In the COMMIT phase, a node has accepted "commit(b)" for some ballot
 "b", and must confirm that statement to act on the value in
 "b.counter". A node sends the following message in this phase:

Barry, et al. Expires December 31, 2018 [Page 16]

Internet-Draft scp June 2018

 struct SCPCommit
 {
 SCPBallot ballot; // b
 uint32 preparedCounter; // prepared.counter
 uint32 hCounter; // h.counter
 uint32 cCounter; // c.counter
 };

 The message conveys the following federated vote messages, where
 "infinity" is 2^{32} (a value greater than any ballot counter
 representable in serialized form):

 o "accept commit(<n, ballot.value>)" for every "cCounter <= n <=
 hCounter"

 o "vote-or-accept prepare(<infinity, ballot.value>)"

 o "accept prepare(<preparedCounter, ballot.value>)"

 o "confirm prepare(<hCounter, ballot.value>)"

 o "vote commit(<n, ballot.value>)" for every "n >= cCounter"

 A node computes the fields in the "SCPCommit" messages it sends as
 follows:

 ballot
 This field is maintained identically to how it is maintained in
 the PREPARE phase, though "ballot.value" can no longer change,
 only "ballot.counter". Note that the value "ballot.counter" does
 not figure in any of the federated voting messages. The purpose
 of continuing to update and send this field is to assist other
 nodes still in the PREPARE phase in synchronizing their counters.

 preparedCounter
 This field is the counter of the highest accepted prepared
 ballot--maintained identically to the "prepared" field in the
 PREPARE phase. Since the "value" field will always be the same as
 "ballot", only the counter is sent in the COMMIT phase.

 cCounter
 The counter of the lowest ballot "c" for which the node has
 accepted "commit(c)". (No value is included in messages since
 "c.value == ballot.value".)

 hCounter

Barry, et al. Expires December 31, 2018 [Page 17]

Internet-Draft scp June 2018

 The counter of the highest ballot "h" for which the node has
 accepted "commit(h)". (No value is included in messages since
 "h.value == ballot.value".)

 As soon as a node confirms "commit(b)" for any ballot "b", it moves
 to the EXTERNALIZE phase.

3.8. Externalize message

 A node enters the EXTERNALIZE phase when it confirms "commit(b)" for
 any ballot "b". As soon as this happens, SCP outputs "b.value" as
 the value of the current slot. In order to help other nodes achieve
 consensus on the slot more quickly, a node reaching this phase also
 sends the following message:

 struct SCPExternalize
 {
 SCPBallot commit; // c
 uint32 hCounter; // h.counter
 };

 An "SCPExternalize" message conveys the following federated voting
 messages:

 o "accept commit(<n, commit.value>)" for every "n >= commit.counter"

 o "confirm commit(<n, commit.value>)" for every "commit.counter <= n
 <= hCounter"

 o "confirm prepare(<infinity, commit.value>)"

 The fields are set as follows:

 commit
 The lowest confirmed committed ballot.

 hCounter
 The counter of the highest confirmed committed ballot.

3.9. Summary of phases

 Table 1 summarizes the phases of SCP for each slot. The NOMINATE and
 PREPARE phases begin concurrently. However, a node initially does
 not send "SCPPrepare" messages but only listens for ballot messages
 in case "accept prepare(b)" reaches blocking threshold for some
 ballot "b". The COMMIT and EXTERNALIZE phases then run in turn after
 PREPARE ends. A node may externalize (act upon) a value as soon as
 it enters the EXTERNALIZE phase.

Barry, et al. Expires December 31, 2018 [Page 18]

Internet-Draft scp June 2018

 The point of "SCPExternalize" messages is to help straggling nodes
 catch up more quickly. As such, the EXTERNALIZE phase never ends.
 Rather, a node should archive an "SCPExternalize" message for as long
 as it retains slot state.

 +-------------+---------------------------------+-------------------+
 | Phase | Begin | End |
 +-------------+---------------------------------+-------------------+
NOMINATE	previous slot externalized and	some ballot is
	5 seconds have elapsed since	confirmed
	NOMINATE ended for that slot	prepared
PREPARE	begin with NOMINATE, but send	accept
	"SCPPrepare" only once some	"commit(b)" for
	value confirmed nominated or	some ballot "b"
	accept "prepare(b)" for some	
	ballot b	
COMMIT	accept "commit(b)" for some	confirm
	ballot "b"	"commit(b)" for
		some ballot "b"
EXTERNALIZE	confirm "commit(b)" for some	slot state
	ballot "b"	garbage-collected
 +-------------+---------------------------------+-------------------+

 Table 1: Phases of SCP for a slot

3.10. Message envelopes

 In order to provide full context for each signed message, all signed
 messages are part of an "SCPStatement" union type that includes the
 "slotIndex" naming the slot to which the message applies, as well as
 the "type" of the message. A signed message and its signature are
 packed together in an "SCPEnvelope" structure.

Barry, et al. Expires December 31, 2018 [Page 19]

Internet-Draft scp June 2018

 enum SCPStatementType
 {
 SCP_ST_PREPARE = 0,
 SCP_ST_COMMIT = 1,
 SCP_ST_EXTERNALIZE = 2,
 SCP_ST_NOMINATE = 3
 };

 struct SCPStatement
 {
 NodeID nodeID; // v (node signing message)
 uint64 slotIndex; // i
 Hash quorumSetHash; // hash of serialized SCPSlices

 union switch (SCPStatementType type)
 {
 case SCP_ST_PREPARE:
 SCPPrepare prepare;
 case SCP_ST_COMMIT:
 SCPCommit commit;
 case SCP_ST_EXTERNALIZE:
 SCPExternalize externalize;
 case SCP_ST_NOMINATE:
 SCPNominate nominate;
 }
 pledges;
 };

 struct SCPEnvelope
 {
 SCPStatement statement;
 Signature signature;
 };

4. Security considerations

 If nodes do not pick quorum slices well, the protocol will not be
 safe.

5. Acknowledgments

 The Stellar development foundation supported development of the
 protocol and produced the first production deployment of SCP. The
 IRTF DIN group including Dirk Kutscher, Sydney Li, Colin Man, Piers
 Powlesland, Melinda Shore, and Jean-Luc Watson helped with the
 framing and motivation for this specification. We also thank Bob
 Glickstein for finding bugs in drafts of this document and offering
 many useful suggestions.

Barry, et al. Expires December 31, 2018 [Page 20]

Internet-Draft scp June 2018

6. References

6.1. Normative References

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

6.2. Informative References

 [building-blocks]
 Song, Y., van Renesse, R., Schneider, F., and D. Dolev,
 "The Building Blocks of Consensus", 9th International
 Conference on Distributed Computing and Networking pp.
 54-72, 2008.

 [FLP] Fischer, M., Lynch, N., and M. Lynch, "Impossibility of
 Distributed Consensus with One Faulty Process", Journal of
 the ACM 32(2):374-382, 1985.

 [I-D.paillisse-sidrops-blockchain]
 Paillisse, J., Rodriguez-Natal, A., Ermagan, V., Maino,
 F., Vegoda, L., and A. Cabellos-Aparicio, "An analysis of
 the applicability of blockchain to secure IP addresses
 allocation, delegation and bindings.", draft-paillisse-

sidrops-blockchain-02 (work in progress), June 2018.

 [RFC6797] Hodges, J., Jackson, C., and A. Barth, "HTTP Strict
 Transport Security (HSTS)", RFC 6797,
 DOI 10.17487/RFC6797, November 2012,
 <https://www.rfc-editor.org/info/rfc6797>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

https://datatracker.ietf.org/doc/html/rfc4506
https://www.rfc-editor.org/info/rfc4506
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://datatracker.ietf.org/doc/html/draft-paillisse-sidrops-blockchain-02
https://datatracker.ietf.org/doc/html/draft-paillisse-sidrops-blockchain-02
https://datatracker.ietf.org/doc/html/rfc6797
https://www.rfc-editor.org/info/rfc6797
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962

Barry, et al. Expires December 31, 2018 [Page 21]

Internet-Draft scp June 2018

 [RFC7469] Evans, C., Palmer, C., and R. Sleevi, "Public Key Pinning
 Extension for HTTP", RFC 7469, DOI 10.17487/RFC7469, April
 2015, <https://www.rfc-editor.org/info/rfc7469>.

 [SCP] Mazieres, D., "The Stellar Consensus Protocol: A Federated
 Model for Internet-level Consensus", Stellar Development
 Foundation whitepaper , 2015,
 <https://www.stellar.org/papers/

stellar-consensus-protocol.pdf>.

Authors' Addresses

 Nicolas Barry
 Stellar Development Foundation
 170 Capp St., Suite A
 San Francisco, CA 94110
 US

 Email: nicolas@stellar.org

 Giuliano Losa
 UCLA
 3753 Keystone Avenue #10
 Los Angeles, CA 90034
 US

 Email: giuliano@cs.ucla.edu

 David Mazieres
 Stanford University
 353 Serra Mall, Room 290
 Stanford, CA 94305
 US

 Email: dm@uun.org

 Jed McCaleb
 Stellar Development Foundation
 170 Capp St., Suite A
 San Francisco, CA 94110
 US

 Email: jed@stellar.org

https://datatracker.ietf.org/doc/html/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf

Barry, et al. Expires December 31, 2018 [Page 22]

Internet-Draft scp June 2018

 Stanislas Polu
 Stripe Inc.
 185 Berry Street, Suite 550
 San Francisco, CA 94107
 US

 Email: stan@stripe.com

Barry, et al. Expires December 31, 2018 [Page 23]

