
Network Working Group M. Belshe
Internet-Draft Twist
Expires: August 4, 2012 R. Peon
 Google, Inc
 Feb 2012

SPDY Protocol
draft-mbelshe-httpbis-spdy-00

Abstract

 This document describes SPDY, a protocol designed for low-latency
 transport of content over the World Wide Web. SPDY introduces two
 layers of protocol. The lower layer is a general purpose framing
 layer which can be used atop a reliable transport (likely TCP) for
 multiplexed, prioritized, and compressed data communication of many
 concurrent streams. The upper layer of the protocol provides HTTP-
 like RFC2616 [RFC2616] semantics for compatibility with existing HTTP
 application servers.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 4, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Belshe & Peon Expires August 4, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft SPDY Feb 2012

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview . 4
1.1. Document Organization 4
1.2. Definitions . 5

2. SPDY Framing Layer . 6
2.1. Session (Connections) 6
2.2. Framing . 6
2.2.1. Control frames . 6
2.2.2. Data frames . 7

2.3. Streams . 8
2.3.1. Stream frames . 9
2.3.2. Stream creation 9
2.3.3. Stream priority 10
2.3.4. Stream headers . 10
2.3.5. Stream data exchange 10
2.3.6. Stream half-close 10
2.3.7. Stream close . 11

2.4. Error Handling . 11
2.4.1. Session Error Handling 11
2.4.2. Stream Error Handling 12

2.5. Data flow . 12
2.6. Control frame types 12
2.6.1. SYN_STREAM . 12
2.6.2. SYN_REPLY . 14
2.6.3. RST_STREAM . 15
2.6.4. SETTINGS . 16
2.6.5. PING . 19
2.6.6. GOAWAY . 20
2.6.7. HEADERS . 21
2.6.8. WINDOW_UPDATE . 22
2.6.9. CREDENTIAL . 24
2.6.10. Name/Value Header Block 26

3. HTTP Layering over SPDY 33
3.1. Connection Management 33
3.1.1. Use of GOAWAY . 33

3.2. HTTP Request/Response 34
3.2.1. Request . 34
3.2.2. Response . 35
3.2.3. Authentication . 36

3.3. Server Push Transactions 37
3.3.1. Server implementation 38

Belshe & Peon Expires August 4, 2012 [Page 2]

Internet-Draft SPDY Feb 2012

3.3.2. Client implementation 39
4. Design Rationale and Notes 40
4.1. Separation of Framing Layer and Application Layer 40
4.2. Error handling - Framing Layer 40
4.3. One Connection Per Domain 40
4.4. Fixed vs Variable Length Fields 41
4.5. Compression Context(s) 41
4.6. Unidirectional streams 42
4.7. Data Compression . 42
4.8. Server Push . 42

5. Security Considerations 43
5.1. Use of Same-origin constraints 43
5.2. HTTP Headers and SPDY Headers 43
5.3. Cross-Protocol Attacks 43
5.4. Server Push Implicit Headers 43

6. Privacy Considerations . 44
6.1. Long Lived Connections 44
6.2. SETTINGS frame . 44

7. Incompatibilities with SPDY draft #2 45
8. Requirements Notation . 46
9. Acknowledgements . 47
10. Normative References . 48
Appendix A. Changes . 50

 Authors' Addresses . 51

Belshe & Peon Expires August 4, 2012 [Page 3]

Internet-Draft SPDY Feb 2012

1. Overview

 One of the bottlenecks of HTTP implementations is that HTTP relies on
 multiple connections for concurrency. This causes several problems,
 including additional round trips for connection setup, slow-start
 delays, and connection rationing by the client, where it tries to
 avoid opening too many connections to any single server. HTTP
 pipelining helps some, but only achieves partial multiplexing. In
 addition, pipelining has proven non-deployable in existing browsers
 due to intermediary interference.

 SPDY adds a framing layer for multiplexing multiple, concurrent
 streams across a single TCP connection (or any reliable transport
 stream). The framing layer is optimized for HTTP-like request-
 response streams, such that applications which run over HTTP today
 can work over SPDY with little or no change on behalf of the web
 application writer.

 The SPDY session offers four improvements over HTTP:

 Multiplexed requests: There is no limit to the number of requests
 that can be issued concurrently over a single SPDY connection.

 Prioritized requests: Clients can request certain resources to be
 delivered first. This avoids the problem of congesting the
 network channel with non-critical resources when a high-priority
 request is pending.

 Compressed headers: Clients today send a significant amount of
 redundant data in the form of HTTP headers. Because a single web
 page may require 50 or 100 subrequests, this data is significant.

 Server pushed streams: Server Push enables content to be pushed
 from servers to clients without a request.

 SPDY attempts to preserve the existing semantics of HTTP. All
 features such as cookies, ETags, Vary headers, Content-Encoding
 negotiations, etc work as they do with HTTP; SPDY only replaces the
 way the data is written to the network.

1.1. Document Organization

 The SPDY Specification is split into two parts: a framing layer
 (Section 2), which multiplexes a TCP connection into independent,
 length-prefixed frames, and an HTTP layer (Section 3), which
 specifies the mechanism for overlaying HTTP request/response pairs on
 top of the framing layer. While some of the framing layer concepts
 are isolated from the HTTP layer, building a generic framing layer

Belshe & Peon Expires August 4, 2012 [Page 4]

Internet-Draft SPDY Feb 2012

 has not been a goal. The framing layer is tailored to the needs of
 the HTTP protocol and server push.

1.2. Definitions

 client: The endpoint initiating the SPDY session.

 connection: A transport-level connection between two endpoints.

 endpoint: Either the client or server of a connection.

 frame: A header-prefixed sequence of bytes sent over a SPDY
 session.

 server: The endpoint which did not initiate the SPDY session.

 session: A synonym for a connection.

 session error: An error on the SPDY session.

 stream: A bi-directional flow of bytes across a virtual channel
 within a SPDY session.

 stream error: An error on an individual SPDY stream.

Belshe & Peon Expires August 4, 2012 [Page 5]

Internet-Draft SPDY Feb 2012

2. SPDY Framing Layer

2.1. Session (Connections)

 The SPDY framing layer (or "session") runs atop a reliable transport
 layer such as TCP [RFC0793]. The client is the TCP connection
 initiator. SPDY connections are persistent connections.

 For best performance, it is expected that clients will not close open
 connections until the user navigates away from all web pages
 referencing a connection, or until the server closes the connection.
 Servers are encouraged to leave connections open for as long as
 possible, but can terminate idle connections if necessary. When
 either endpoint closes the transport-level connection, it MUST first
 send a GOAWAY (Section 2.6.6) frame so that the endpoints can
 reliably determine if requests finished before the close.

2.2. Framing

 Once the connection is established, clients and servers exchange
 framed messages. There are two types of frames: control frames
 (Section 2.2.1) and data frames (Section 2.2.2). Frames always have
 a common header which is 8 bytes in length.

 The first bit is a control bit indicating whether a frame is a
 control frame or data frame. Control frames carry a version number,
 a frame type, flags, and a length. Data frames contain the stream
 ID, flags, and the length for the payload carried after the common
 header. The simple header is designed to make reading and writing of
 frames easy.

 All integer values, including length, version, and type, are in
 network byte order. SPDY does not enforce alignment of types in
 dynamically sized frames.

2.2.1. Control frames

 +----------------------------------+
 |C| Version(15bits) | Type(16bits) |
 +----------------------------------+
 | Flags (8) | Length (24 bits) |
 +----------------------------------+
 | Data |
 +----------------------------------+

 Control bit: The 'C' bit is a single bit indicating if this is a
 control message. For control frames this value is always 1.

https://datatracker.ietf.org/doc/html/rfc0793

Belshe & Peon Expires August 4, 2012 [Page 6]

Internet-Draft SPDY Feb 2012

 Version: The version number of the SPDY protocol. This document
 describes SPDY version 3.

 Type: The type of control frame. See Control Frames for the complete
 list of control frames.

 Flags: Flags related to this frame. Flags for control frames and
 data frames are different.

 Length: An unsigned 24-bit value representing the number of bytes
 after the length field.

 Data: data associated with this control frame. The format and length
 of this data is controlled by the control frame type.

 Control frame processing requirements:

 Note that full length control frames (16MB) can be large for
 implementations running on resource-limited hardware. In such
 cases, implementations MAY limit the maximum length frame
 supported. However, all implementations MUST be able to receive
 control frames of at least 8192 octets in length.

2.2.2. Data frames

 +----------------------------------+
 |C| Stream-ID (31bits) |
 +----------------------------------+
 | Flags (8) | Length (24 bits) |
 +----------------------------------+
 | Data |
 +----------------------------------+

 Control bit: For data frames this value is always 0.

 Stream-ID: A 31-bit value identifying the stream.

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN - signifies that this frame represents the last
 frame to be transmitted on this stream. See Stream Close
 (Section 2.3.7) below.

 0x02 = FLAG_COMPRESS - indicates that the data in this frame has
 been compressed.

 Length: An unsigned 24-bit value representing the number of bytes
 after the length field. The total size of a data frame is 8 bytes +

Belshe & Peon Expires August 4, 2012 [Page 7]

Internet-Draft SPDY Feb 2012

 length. It is valid to have a zero-length data frame.

 Data: The variable-length data payload; the length was defined in the
 length field.

 Data frame processing requirements:

 If an endpoint receives a data frame for a stream-id which is not
 open and the endpoint has not sent a GOAWAY (Section 2.6.6) frame,
 it MUST send issue a stream error (Section 2.4.2) with the error
 code INVALID_STREAM for the stream-id.

 If the endpoint which created the stream receives a data frame
 before receiving a SYN_REPLY on that stream, it is a protocol
 error, and the recipient MUST issue a stream error (Section 2.4.2)
 with the status code PROTOCOL_ERROR for the stream-id.

 Implementors note: If an endpoint receives multiple data frames
 for invalid stream-ids, it MAY close the session.

 All SPDY endpoints MUST accept compressed data frames.
 Compression of data frames is always done using zlib compression.
 Each stream initializes and uses its own compression context
 dedicated to use within that stream. Endpoints are encouraged to
 use application level compression rather than SPDY stream level
 compression.

 Each SPDY stream sending compressed frames creates its own zlib
 context for that stream, and these compression contexts MUST be
 distinct from the compression contexts used with SYN_STREAM/
 SYN_REPLY/HEADER compression. (Thus, if both endpoints of a
 stream are compressing data on the stream, there will be two zlib
 contexts, one for sending and one for receiving).

2.3. Streams

 Streams are independent sequences of bi-directional data divided into
 frames with several properties:

 Streams may be created by either the client or server.

 Streams optionally carry a set of name/value header pairs.

 Streams can concurrently send data interleaved with other streams.

 Streams may be cancelled.

Belshe & Peon Expires August 4, 2012 [Page 8]

Internet-Draft SPDY Feb 2012

2.3.1. Stream frames

 SPDY defines 3 control frames to manage the lifecycle of a stream:

 SYN_STREAM - Open a new stream

 SYN_REPLY - Remote acknowledgement of a new, open stream

 RST_STREAM - Close a stream

2.3.2. Stream creation

 A stream is created by sending a control frame with the type set to
 SYN_STREAM (Section 2.6.1). If the server is initiating the stream,
 the Stream-ID must be even. If the client is initiating the stream,
 the Stream-ID must be odd. 0 is not a valid Stream-ID. Stream-IDs
 from each side of the connection must increase monotonically as new
 streams are created. E.g. Stream 2 may be created after stream 3,
 but stream 7 must not be created after stream 9. Stream IDs do not
 wrap: when a client or server cannot create a new stream id without
 exceeding a 31 bit value, it MUST NOT create a new stream.

 The stream-id MUST increase with each new stream. If an endpoint
 receives a SYN_STREAM with a stream id which is less than any
 previously received SYN_STREAM, it MUST issue a session error
 (Section 2.4.1) with the status PROTOCOL_ERROR.

 It is a protocol error to send two SYN_STREAMs with the same
 stream-id. If a recipient receives a second SYN_STREAM for the same
 stream, it MUST issue a stream error (Section 2.4.2) with the status
 code PROTOCOL_ERROR.

 Upon receipt of a SYN_STREAM, the recipient can reject the stream by
 sending a stream error (Section 2.4.2) with the error code
 REFUSED_STREAM. Note, however, that the creating endpoint may have
 already sent additional frames for that stream which cannot be
 immediately stopped.

 Once the stream is created, the creator may immediately send HEADERS
 or DATA frames for that stream, without needing to wait for the
 recipient to acknowledge.

2.3.2.1. Unidirectional streams

 When an endpoint creates a stream with the FLAG_UNIDIRECTIONAL flag
 set, it creates a unidirectional stream which the creating endpoint
 can use to send frames, but the receiving endpoint cannot. The
 receiving endpoint is implicitly already in the half-closed

Belshe & Peon Expires August 4, 2012 [Page 9]

Internet-Draft SPDY Feb 2012

 (Section 2.3.6) state.

2.3.2.2. Bidirectional streams

 SYN_STREAM frames which do not use the FLAG_UNIDIRECTIONAL flag are
 bidirectional streams. Both endpoints can send data on a bi-
 directional stream.

2.3.3. Stream priority

 The creator of a stream assigns a priority for that stream. Priority
 is represented as an integer from 0 to 7. 0 represents the highest
 priority and 7 represents the lowest priority.

 The sender and recipient SHOULD use best-effort to process streams in
 the order of highest priority to lowest priority.

2.3.4. Stream headers

 Streams carry optional sets of name/value pair headers which carry
 metadata about the stream. After the stream has been created, and as
 long as the sender is not closed (Section 2.3.7) or half-closed
 (Section 2.3.6), each side may send HEADERS frame(s) containing the
 header data. Header data can be sent in multiple HEADERS frames, and
 HEADERS frames may be interleaved with data frames.

2.3.5. Stream data exchange

 Once a stream is created, it can be used to send arbitrary amounts of
 data. Generally this means that a series of data frames will be sent
 on the stream until a frame containing the FLAG_FIN flag is set. The
 FLAG_FIN can be set on a SYN_STREAM (Section 2.6.1), SYN_REPLY
 (Section 2.6.2), HEADERS (Section 2.6.7) or a DATA (Section 2.2.2)
 frame. Once the FLAG_FIN has been sent, the stream is considered to
 be half-closed.

2.3.6. Stream half-close

 When one side of the stream sends a frame with the FLAG_FIN flag set,
 the stream is half-closed from that endpoint. The sender of the
 FLAG_FIN MUST NOT send further frames on that stream. When both
 sides have half-closed, the stream is closed.

 If an endpoint receives a data frame after the stream is half-closed
 from the sender (e.g. the endpoint has already received a prior frame
 for the stream with the FIN flag set), it MUST send a RST_STREAM to
 the sender with the status STREAM_ALREADY_CLOSED.

Belshe & Peon Expires August 4, 2012 [Page 10]

Internet-Draft SPDY Feb 2012

2.3.7. Stream close

 There are 3 ways that streams can be terminated:

 Normal termination: Normal stream termination occurs when both
 sender and recipient have half-closed the stream by sending a
 FLAG_FIN.

 Abrupt termination: Either the client or server can send a
 RST_STREAM control frame at any time. A RST_STREAM contains an
 error code to indicate the reason for failure. When a RST_STREAM
 is sent from the stream originator, it indicates a failure to
 complete the stream and that no further data will be sent on the
 stream. When a RST_STREAM is sent from the stream recipient, the
 sender, upon receipt, should stop sending any data on the stream.
 The stream recipient should be aware that there is a race between
 data already in transit from the sender and the time the
 RST_STREAM is received. See Stream Error Handling (Section 2.4.2)

 TCP connection teardown: If the TCP connection is torn down while
 un-closed streams exist, then the endpoint must assume that the
 stream was abnormally interrupted and may be incomplete.

 If an endpoint receives a data frame after the stream is closed, it
 must send a RST_STREAM to the sender with the status PROTOCOL_ERROR.

2.4. Error Handling

 The SPDY framing layer has only two types of errors, and they are
 always handled consistently. Any reference in this specification to
 "issue a session error" refers to Section 2.4.1. Any reference to
 "issue a stream error" refers to Section 2.4.2.

2.4.1. Session Error Handling

 A session error is any error which prevents further processing of the
 framing layer or which corrupts the session compression state. When
 a session error occurs, the endpoint encountering the error MUST
 first send a GOAWAY (Section 2.6.6) frame with the stream id of most
 recently received stream from the remote endpoint, and the error code
 for why the session is terminating. After sending the GOAWAY frame,
 the endpoint MUST close the TCP connection.

 Note that the session compression state is dependent upon both
 endpoints always processing all compressed data. If an endpoint
 partially processes a frame containing compressed data without
 updating compression state properly, future control frames which use
 compression will be always be errored. Implementations SHOULD always

Belshe & Peon Expires August 4, 2012 [Page 11]

Internet-Draft SPDY Feb 2012

 try to process compressed data so that errors which could be handled
 as stream errors do not become session errors.

 Note that because this GOAWAY is sent during a session error case, it
 is possible that the GOAWAY will not be reliably received by the
 receiving endpoint. It is a best-effort attempt to communicate with
 the remote about why the session is going down.

2.4.2. Stream Error Handling

 A stream error is an error related to a specific stream-id which does
 not affect processing of other streams at the framing layer. Upon a
 stream error, the endpoint MUST send a RST_STREAM (Section 2.6.3)
 frame which contains the stream id of the stream where the error
 occurred and the error status which caused the error. After sending
 the RST_STREAM, the stream is closed to the sending endpoint. After
 sending the RST_STREAM, if the sender receives any frames other than
 a RST_STREAM for that stream id, it will result in sending additional
 RST_STREAM frames. An endpoint MUST NOT send a RST_STREAM in
 response to an RST_STREAM, as doing so would lead to RST_STREAM
 loops. Sending a RST_STREAM does not cause the SPDY session to be
 closed.

 If an endpoint has multiple RST_STREAM frames to send in succession
 for the same stream-id and the same error code, it MAY coalesce them
 into a single RST_STREAM frame. (This can happen if a stream is
 closed, but the remote sends multiple data frames. There is no
 reason to send a RST_STREAM for each frame in succession).

2.5. Data flow

 Because TCP provides a single stream of data on which SPDY
 multiplexes multiple logical streams, clients and servers must
 intelligently interleave data messages for concurrent sessions.

2.6. Control frame types

2.6.1. SYN_STREAM

 The SYN_STREAM control frame allows the sender to asynchronously
 create a stream between the endpoints. See Stream Creation
 (Section 2.3.2)

Belshe & Peon Expires August 4, 2012 [Page 12]

Internet-Draft SPDY Feb 2012

+------------------------------------+
|1| version | 1 |
+------------------------------------+
| Flags (8) | Length (24 bits) |
+------------------------------------+
|X| Stream-ID (31bits) |
+------------------------------------+
|X| Associated-To-Stream-ID (31bits) |
+------------------------------------+
| Pri|Unused | Slot | |
+-------------------+ |
| Number of Name/Value pairs (int32) | <+
+------------------------------------+ |
| Length of name (int32) | | This section is the "Name/Value
+------------------------------------+ | Header Block", and is compressed.
| Name (string) | |
+------------------------------------+ |
| Length of value (int32) | |
+------------------------------------+ |
| Value (string) | |
+------------------------------------+ |
| (repeats) | <+

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN - marks this frame as the last frame to be
 transmitted on this stream and puts the sender in the half-closed
 (Section 2.3.6) state.

 0x02 = FLAG_UNIDIRECTIONAL - a stream created with this flag puts
 the recipient in the half-closed (Section 2.3.6) state.

 Length: The length is the number of bytes which follow the length
 field in the frame. For SYN_STREAM frames, this is 10 bytes plus the
 length of the compressed Name/Value block.

 Stream-ID: The 31-bit identifier for this stream. This stream-id
 will be used in frames which are part of this stream.

 Associated-To-Stream-ID: The 31-bit identifier for a stream which
 this stream is associated to. If this stream is independent of all
 other streams, it should be 0.

 Priority: A 3-bit priority (Section 2.3.3) field.

 Unused: 5 bits of unused space, reserved for future use.

 Slot: An 8 bit unsigned integer specifying the index in the server's

Belshe & Peon Expires August 4, 2012 [Page 13]

Internet-Draft SPDY Feb 2012

 CREDENTIAL vector of the client certificate to be used for this
 request. see CREDENTIAL frame (Section 2.6.9). The value 0 means no
 client certificate should be associated with this stream.

 Name/Value Header Block: A set of name/value pairs carried as part of
 the SYN_STREAM. see Name/Value Header Block (Section 2.6.10).

 If an endpoint receives a SYN_STREAM which is larger than the
 implementation supports, it MAY send a RST_STREAM with error code
 FRAME_TOO_LARGE. All implementations MUST support the minimum size
 limits defined in the Control Frames section (Section 2.2.1).

2.6.2. SYN_REPLY

 SYN_REPLY indicates the acceptance of a stream creation by the
 recipient of a SYN_STREAM frame.

+------------------------------------+
|1| version | 2 |
+------------------------------------+
| Flags (8) | Length (24 bits) |
+------------------------------------+
|X| Stream-ID (31bits) |
+------------------------------------+
| Number of Name/Value pairs (int32) | <+
+------------------------------------+ |
| Length of name (int32) | | This section is the "Name/Value
+------------------------------------+ | Header Block", and is compressed.
| Name (string) | |
+------------------------------------+ |
| Length of value (int32) | |
+------------------------------------+ |
| Value (string) | |
+------------------------------------+ |
| (repeats) | <+

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN - marks this frame as the last frame to be
 transmitted on this stream and puts the sender in the half-closed
 (Section 2.3.6) state.

 Length: The length is the number of bytes which follow the length
 field in the frame. For SYN_REPLY frames, this is 4 bytes plus the
 length of the compressed Name/Value block.

 Stream-ID: The 31-bit identifier for this stream.

Belshe & Peon Expires August 4, 2012 [Page 14]

Internet-Draft SPDY Feb 2012

 If an endpoint receives multiple SYN_REPLY frames for the same active
 stream ID, it MUST issue a stream error (Section 2.4.2) with the
 error code STREAM_IN_USE.

 Name/Value Header Block: A set of name/value pairs carried as part of
 the SYN_STREAM. see Name/Value Header Block (Section 2.6.10).

 If an endpoint receives a SYN_REPLY which is larger than the
 implementation supports, it MAY send a RST_STREAM with error code
 FRAME_TOO_LARGE. All implementations MUST support the minimum size
 limits defined in the Control Frames section (Section 2.2.1).

2.6.3. RST_STREAM

 The RST_STREAM frame allows for abnormal termination of a stream.
 When sent by the creator of a stream, it indicates the creator wishes
 to cancel the stream. When sent by the recipient of a stream, it
 indicates an error or that the recipient did not want to accept the
 stream, so the stream should be closed.

 +----------------------------------+
 |1| version | 3 |
 +----------------------------------+
 | Flags (8) | 8 |
 +----------------------------------+
 |X| Stream-ID (31bits) |
 +----------------------------------+
 | Status code |
 +----------------------------------+

 Flags: Flags related to this frame. RST_STREAM does not define any
 flags. This value must be 0.

 Length: An unsigned 24-bit value representing the number of bytes
 after the length field. For RST_STREAM control frames, this value is
 always 8.

 Stream-ID: The 31-bit identifier for this stream.

 Status code: (32 bits) An indicator for why the stream is being
 terminated.The following status codes are defined:

 1 - PROTOCOL_ERROR. This is a generic error, and should only be
 used if a more specific error is not available.

 2 - INVALID_STREAM. This is returned when a frame is received for
 a stream which is not active.

Belshe & Peon Expires August 4, 2012 [Page 15]

Internet-Draft SPDY Feb 2012

 3 - REFUSED_STREAM. Indicates that the stream was refused before
 any processing has been done on the stream.

 4 - UNSUPPORTED_VERSION. Indicates that the recipient of a stream
 does not support the SPDY version requested.

 5 - CANCEL. Used by the creator of a stream to indicate that the
 stream is no longer needed.

 6 - INTERNAL_ERROR. This is a generic error which can be used
 when the implementation has internally failed, not due to anything
 in the protocol.

 7 - FLOW_CONTROL_ERROR. The endpoint detected that its peer
 violated the flow control protocol.

 8 - STREAM_IN_USE. The endpoint received a SYN_REPLY for a stream
 already open.

 9 - STREAM_ALREADY_CLOSED. The endpoint received a data or
 SYN_REPLY frame for a stream which is half closed.

 10 - INVALID_CREDENTIALS. The server received a request for a
 resource whose origin does not have valid credentials in the
 client certificate vector.

 11 - FRAME_TOO_LARGE. The endpoint received a frame which this
 implementation could not support. If FRAME_TOO_LARGE is sent for
 a SYN_STREAM, HEADERS, or SYN_REPLY frame without fully processing
 the compressed portion of those frames, then the compression state
 will be out-of-sync with the other endpoint. In this case,
 senders of FRAME_TOO_LARGE MUST close the session.

 Note: 0 is not a valid status code for a RST_STREAM.

 After receiving a RST_STREAM on a stream, the recipient must not send
 additional frames for that stream, and the stream moves into the
 closed state.

2.6.4. SETTINGS

 A SETTINGS frame contains a set of id/value pairs for communicating
 configuration data about how the two endpoints may communicate.
 SETTINGS frames can be sent at any time by either endpoint, are
 optionally sent, and are fully asynchronous. When the server is the
 sender, the sender can request that configuration data be persisted
 by the client across SPDY sessions and returned to the server in
 future communications.

Belshe & Peon Expires August 4, 2012 [Page 16]

Internet-Draft SPDY Feb 2012

 Persistence of SETTINGS ID/Value pairs is done on a per origin/IP
 pair (the "origin" is the set of scheme, host, and port from the URI.
 See [RFC6454]). That is, when a client connects to a server, and the
 server persists settings within the client, the client SHOULD return
 the persisted settings on future connections to the same origin AND
 IP address and TCP port. Clients MUST NOT request servers to use the
 persistence features of the SETTINGS frames, and servers MUST ignore
 persistence related flags sent by a client.

 +----------------------------------+
 |1| version | 4 |
 +----------------------------------+
 | Flags (8) | Length (24 bits) |
 +----------------------------------+
 | Number of entries |
 +----------------------------------+
 | ID/Value Pairs |
 | ... |

 Control bit: The control bit is always 1 for this message.

 Version: The SPDY version number.

 Type: The message type for a SETTINGS message is 4.

 Flags: FLAG_SETTINGS_CLEAR_SETTINGS (0x1): When set, the client
 should clear any previously persisted SETTINGS ID/Value pairs. If
 this frame contains ID/Value pairs with the
 FLAG_SETTINGS_PERSIST_VALUE set, then the client will first clear its
 existing, persisted settings, and then persist the values with the
 flag set which are contained within this frame. Because persistence
 is only implemented on the client, this flag can only be used when
 the sender is the server.

 Length: An unsigned 24-bit value representing the number of bytes
 after the length field. The total size of a SETTINGS frame is 8
 bytes + length.

 Number of entries: A 32-bit value representing the number of ID/value
 pairs in this message.

 ID: A 32-bit ID number, comprised of 8 bits of flags and 24 bits of
 unique ID.

 ID.flags:

 FLAG_SETTINGS_PERSIST_VALUE (0x1): When set, the sender of this
 SETTINGS frame is requesting that the recipient persist the ID/

https://datatracker.ietf.org/doc/html/rfc6454

Belshe & Peon Expires August 4, 2012 [Page 17]

Internet-Draft SPDY Feb 2012

 Value and return it in future SETTINGS frames sent from the
 sender to this recipient. Because persistence is only
 implemented on the client, this flag is only sent by the
 server.

 FLAG_SETTINGS_PERSISTED (0x2): When set, the sender is
 notifying the recipient that this ID/Value pair was previously
 sent to the sender by the recipient with the
 FLAG_SETTINGS_PERSIST_VALUE, and the sender is returning it.
 Because persistence is only implemented on the client, this
 flag is only sent by the client.

 Defined IDs:

 1 - SETTINGS_UPLOAD_BANDWIDTH allows the sender to send its
 expected upload bandwidth on this channel. This number is an
 estimate. The value should be the integral number of kilobytes
 per second that the sender predicts as an expected maximum
 upload channel capacity.

 2 - SETTINGS_DOWNLOAD_BANDWIDTH allows the sender to send its
 expected download bandwidth on this channel. This number is an
 estimate. The value should be the integral number of kilobytes
 per second that the sender predicts as an expected maximum
 download channel capacity.

 3 - SETTINGS_ROUND_TRIP_TIME allows the sender to send its
 expected round-trip-time on this channel. The round trip time
 is defined as the minimum amount of time to send a control
 frame from this client to the remote and receive a response.
 The value is represented in milliseconds.

 4 - SETTINGS_MAX_CONCURRENT_STREAMS allows the sender to inform
 the remote endpoint the maximum number of concurrent streams
 which it will allow. By default there is no limit. For
 implementors it is recommended that this value be no smaller
 than 100.

 5 - SETTINGS_CURRENT_CWND allows the sender to inform the
 remote endpoint of the current TCP CWND value.

 6 - SETTINGS_DOWNLOAD_RETRANS_RATE allows the sender to inform
 the remote endpoint the retransmission rate (bytes
 retransmitted / total bytes transmitted).

 7 - SETTINGS_INITIAL_WINDOW_SIZE allows the sender to inform
 the remote endpoint the initial window size (in bytes) for new
 streams.

Belshe & Peon Expires August 4, 2012 [Page 18]

Internet-Draft SPDY Feb 2012

 8 - SETTINGS_CLIENT_CERTIFICATE_VECTOR_SIZE allows the server
 to inform the client if the new size of the client certificate
 vector.

 Value: A 32-bit value.

 The message is intentionally extensible for future information which
 may improve client-server communications. The sender does not need
 to send every type of ID/value. It must only send those for which it
 has accurate values to convey. When multiple ID/value pairs are
 sent, they should be sent in order of lowest id to highest id. A
 single SETTINGS frame MUST not contain multiple values for the same
 ID. If the recipient of a SETTINGS frame discovers multiple values
 for the same ID, it MUST ignore all values except the first one.

 A server may send multiple SETTINGS frames containing different ID/
 Value pairs. When the same ID/Value is sent twice, the most recent
 value overrides any previously sent values. If the server sends IDs
 1, 2, and 3 with the FLAG_SETTINGS_PERSIST_VALUE in a first SETTINGS
 frame, and then sends IDs 4 and 5 with the
 FLAG_SETTINGS_PERSIST_VALUE, when the client returns the persisted
 state on its next SETTINGS frame, it SHOULD send all 5 settings (1,
 2, 3, 4, and 5 in this example) to the server.

2.6.5. PING

 The PING control frame is a mechanism for measuring a minimal round-
 trip time from the sender. It can be sent from the client or the
 server. Recipients of a PING frame should send an identical frame to
 the sender as soon as possible (if there is other pending data
 waiting to be sent, PING should take highest priority). Each ping
 sent by a sender should use a unique ID.

 +----------------------------------+
 |1| version | 6 |
 +----------------------------------+
 | 0 (flags) | 4 (length) |
 +----------------------------------|
 | 32-bit ID |
 +----------------------------------+

 Control bit: The control bit is always 1 for this message.

 Version: The SPDY version number.

 Type: The message type for a PING message is 6.

 Length: This frame is always 4 bytes long.

Belshe & Peon Expires August 4, 2012 [Page 19]

Internet-Draft SPDY Feb 2012

 ID: A unique ID for this ping, represented as an unsigned 32 bit
 value. When the client initiates a ping, it must use an odd numbered
 ID. When the server initiates a ping, it must use an even numbered
 ping. Use of odd/even IDs is required in order to avoid accidental
 looping on PINGs (where each side initiates an identical PING at the
 same time).

 Note: If a sender uses all possible PING ids (e.g. has sent all 2^31
 possible IDs), it can wrap and start re-using IDs.

 If a server receives an even numbered PING which it did not initiate,
 it must ignore the PING. If a client receives an odd numbered PING
 which it did not initiate, it must ignore the PING.

2.6.6. GOAWAY

 The GOAWAY control frame is a mechanism to tell the remote side of
 the connection to stop creating streams on this session. It can be
 sent from the client or the server. Once sent, the sender will not
 respond to any new SYN_STREAMs on this session. Recipients of a
 GOAWAY frame must not send additional streams on this session,
 although a new session can be established for new streams. The
 purpose of this message is to allow an endpoint to gracefully stop
 accepting new streams (perhaps for a reboot or maintenance), while
 still finishing processing of previously established streams.

 There is an inherent race condition between an endpoint sending
 SYN_STREAMs and the remote sending a GOAWAY message. To deal with
 this case, the GOAWAY contains a last-stream-id indicating the
 stream-id of the last stream which was created on the sending
 endpoint in this session. If the receiver of the GOAWAY sent new
 SYN_STREAMs for sessions after this last-stream-id, they were not
 processed by the server and the receiver may treat the stream as
 though it had never been created at all (hence the receiver may want
 to re-create the stream later on a new session).

 Endpoints should always send a GOAWAY message before closing a
 connection so that the remote can know whether a stream has been
 partially processed or not. (For example, if an HTTP client sends a
 POST at the same time that a server closes a connection, the client
 cannot know if the server started to process that POST request if the
 server does not send a GOAWAY frame to indicate where it stopped
 working).

 After sending a GOAWAY message, the sender must ignore all SYN_STREAM
 frames for new streams.

Belshe & Peon Expires August 4, 2012 [Page 20]

Internet-Draft SPDY Feb 2012

 +----------------------------------+
 |1| version | 7 |
 +----------------------------------+
 | 0 (flags) | 8 (length) |
 +----------------------------------|
 |X| Last-good-stream-ID (31 bits) |
 +----------------------------------+
 | Status code |
 +----------------------------------+

 Control bit: The control bit is always 1 for this message.

 Version: The SPDY version number.

 Type: The message type for a GOAWAY message is 7.

 Length: This frame is always 8 bytes long.

 Last-good-stream-Id: The last stream id which was replied to (with
 either a SYN_REPLY or RST_STREAM) by the sender of the GOAWAY
 message. If no streams were replied to, this value MUST be 0.

 Status: The reason for closing the session.

 0 - OK. This is a normal session teardown.

 1 - PROTOCOL_ERROR. This is a generic error, and should only be
 used if a more specific error is not available.

 11 - INTERNAL_ERROR. This is a generic error which can be used
 when the implementation has internally failed, not due to anything
 in the protocol.

2.6.7. HEADERS

 The HEADERS frame augments a stream with additional headers. It may
 be optionally sent on an existing stream at any time. Specific
 application of the headers in this frame is application-dependent.
 The name/value header block within this frame is compressed.

Belshe & Peon Expires August 4, 2012 [Page 21]

Internet-Draft SPDY Feb 2012

+------------------------------------+
|1| version | 8 |
+------------------------------------+
| Flags (8) | Length (24 bits) |
+------------------------------------+
|X| Stream-ID (31bits) |
+------------------------------------+
| Number of Name/Value pairs (int32) | <+
+------------------------------------+ |
| Length of name (int32) | | This section is the "Name/Value
+------------------------------------+ | Header Block", and is compressed.
| Name (string) | |
+------------------------------------+ |
| Length of value (int32) | |
+------------------------------------+ |
| Value (string) | |
+------------------------------------+ |
| (repeats) | <+

 Flags: Flags related to this frame. Valid flags are:

 0x01 = FLAG_FIN - marks this frame as the last frame to be
 transmitted on this stream and puts the sender in the half-closed
 (Section 2.3.6) state.

 Length: An unsigned 24 bit value representing the number of bytes
 after the length field. The minimum length of the length field is 4
 (when the number of name value pairs is 0).

 Stream-ID: The stream this HEADERS block is associated with.

 Name/Value Header Block: A set of name/value pairs carried as part of
 the SYN_STREAM. see Name/Value Header Block (Section 2.6.10).

2.6.8. WINDOW_UPDATE

 The WINDOW_UPDATE control frame is used to implement per stream flow
 control in SPDY. Flow control in SPDY is per hop, that is, only
 between the two endpoints of a SPDY connection. If there are one or
 more intermediaries between the client and the origin server, flow
 control signals are not explicitly forwarded by the intermediaries.
 (However, throttling of data transfer by any recipient may have the
 effect of indirectly propagating flow control information upstream
 back to the original sender.) Flow control only applies to the data
 portion of data frames. Recipients must buffer all control frames.
 If a recipient fails to buffer an entire control frame, it MUST issue
 a stream error (Section 2.4.2) with the status code
 FLOW_CONTROL_ERROR for the stream.

Belshe & Peon Expires August 4, 2012 [Page 22]

Internet-Draft SPDY Feb 2012

 Flow control in SPDY is implemented by a data transfer window kept by
 the sender of each stream. The data transfer window is a simple
 uint32 that indicates how many bytes of data the sender can transmit.
 After a stream is created, but before any data frames have been
 transmitted, the sender begins with the initial window size. This
 window size is a measure of the buffering capability of the
 recipient. The sender must not send a data frame with data length
 greater than the transfer window size. After sending each data
 frame, the sender decrements its transfer window size by the amount
 of data transmitted. When the window size becomes less than or equal
 to 0, the sender must pause transmitting data frames. At the other
 end of the stream, the recipient sends a WINDOW_UPDATE control back
 to notify the sender that it has consumed some data and freed up
 buffer space to receive more data.

 +----------------------------------+
 |1| version | 9 |
 +----------------------------------+
 | 0 (flags) | 8 (length) |
 +----------------------------------+
 |X| Stream-ID (31-bits) |
 +----------------------------------+
 |X| Delta-Window-Size (31-bits) |
 +----------------------------------+

 Control bit: The control bit is always 1 for this message.

 Version: The SPDY version number.

 Type: The message type for a WINDOW_UPDATE message is 9.

 Length: The length field is always 8 for this frame (there are 8
 bytes after the length field).

 Stream-ID: The stream ID that this WINDOW_UPDATE control frame is
 for.

 Delta-Window-Size: The additional number of bytes that the sender can
 transmit in addition to existing remaining window size. The legal
 range for this field is 1 to 2^31 - 1 (0x7fffffff) bytes.

 The window size as kept by the sender must never exceed 2^31
 (although it can become negative in one special case). If a sender
 receives a WINDOW_UPDATE that causes the its window size to exceed
 this limit, it must send RST_STREAM with status code
 FLOW_CONTROL_ERROR to terminate the stream.

 When a SPDY connection is first established, the default initial

Belshe & Peon Expires August 4, 2012 [Page 23]

Internet-Draft SPDY Feb 2012

 window size for all streams is 64KB. An endpoint can use the
 SETTINGS control frame to adjust the initial window size for the
 connection. That is, its peer can start out using the 64KB default
 initial window size when sending data frames before receiving the
 SETTINGS. Because SETTINGS is asynchronous, there may be a race
 condition if the recipient wants to decrease the initial window size,
 but its peer immediately sends 64KB on the creation of a new
 connection, before waiting for the SETTINGS to arrive. This is one
 case where the window size kept by the sender will become negative.
 Once the sender detects this condition, it must stop sending data
 frames and wait for the recipient to catch up. The recipient has two
 choices:

 immediately send RST_STREAM with FLOW_CONTROL_ERROR status code.

 allow the head of line blocking (as there is only one stream for
 the session and the amount of data in flight is bounded by the
 default initial window size), and send WINDOW_UPDATE as it
 consumes data.

 In the case of option 2, both sides must compute the window size
 based on the initial window size in the SETTINGS. For example, if
 the recipient sets the initial window size to be 16KB, and the sender
 sends 64KB immediately on connection establishment, the sender will
 discover its window size is -48KB on receipt of the SETTINGS. As the
 recipient consumes the first 16KB, it must send a WINDOW_UPDATE of
 16KB back to the sender. This interaction continues until the
 sender's window size becomes positive again, and it can resume
 transmitting data frames.

 After the recipient reads in a data frame with FLAG_FIN that marks
 the end of the data stream, it should not send WINDOW_UPDATE frames
 as it consumes the last data frame. A sender should ignore all the
 WINDOW_UPDATE frames associated with the stream after it send the
 last frame for the stream.

 The data frames from the sender and the WINDOW_UPDATE frames from the
 recipient are completely asynchronous with respect to each other.
 This property allows a recipient to aggressively update the window
 size kept by the sender to prevent the stream from stalling.

2.6.9. CREDENTIAL

 The CREDENTIAL control frame is used by the client to send additional
 client certificates to the server. A SPDY client may decide to send
 requests for resources from different origins on the same SPDY
 session if it decides that that server handles both origins. For
 example if the IP address associated with both hostnames matches and

Belshe & Peon Expires August 4, 2012 [Page 24]

Internet-Draft SPDY Feb 2012

 the SSL server certificate presented in the initial handshake is
 valid for both hostnames. However, because the SSL connection can
 contain at most one client certificate, the client needs a mechanism
 to send additional client certificates to the server.

 The server is required to maintain a vector of client certificates
 associated with a SPDY session. When the client needs to send a
 client certificate to the server, it will send a CREDENTIAL frame
 that specifies the index of the slot in which to store the
 certificate as well as proof that the client posesses the
 corresponding private key. The initial size of this vector must be
 8. If the client provides a client certificate during the first TLS
 handshake, the contents of this certificate must be copied into the
 first slot (index 1) in the CREDENTIAL vector, though it may be
 overwritten by subsequent CREDENTIAL frames. The server must
 exclusively use the CREDNETIAL vector when evaluating the client
 certificates associated with an origin. The server may change the
 size of this vector by sending a SETTINGS frame with the setting
 SETTINGS_CLIENT_CERTIFICATE_VECTOR_SIZE value specified. In the
 event that the new size is smaller than the current size, truncation
 occurs preserving lower-index slots as possible.

 TLS renegotiation with client authentication is incompatible with
 SPDY given the multiplexed nature of SPDY. Specifically, imagine
 that the client has 2 requests outstanding to the server for two
 different pages (in different tabs). When the renegotiation + client
 certificate request comes in, the browser is unable to determine
 which resource triggered the client certificate request, in order to
 prompt the user accordingly.

 +----------------------------------+
 |1|000000000000001|0000000000001011|
 +----------------------------------+
 | flags (8) | Length (24 bits) |
 +----------------------------------+
 | Slot (16 bits) | |
 +-----------------+ |
 | Proof Length (32 bits) |
 +----------------------------------+
 | Proof |
 +----------------------------------+ <+
 | Certificate Length (32 bits) | |
 +----------------------------------+ | Repeated until end of frame
 | Certificate | |
 +----------------------------------+ <+

 Slot: The index in the server's client certificate vector where this
 certificate should be stored. If there is already a certificate

Belshe & Peon Expires August 4, 2012 [Page 25]

Internet-Draft SPDY Feb 2012

 stored at this index, it will be overwritten. The index is one
 based, not zero based; zero is an invalid slot index.

 Proof: Cryptographic proof that the client has possession of the
 private key associated with the certificate. The format is a TLS
 digitally-signed element
 (http://tools.ietf.org/html/rfc5246#section-4.7). The signature
 algorithm must be the same as that used in the CertificateVerify
 message. However, since the MD5+SHA1 signature type used in TLS 1.0
 connections can not be correctly encoded in a digitally-signed
 element, SHA1 must be used when MD5+SHA1 was used in the SSL
 connection. The signature is calculated over a 32 byte TLS extractor
 value (http://tools.ietf.org/html/rfc5705) with a label of "EXPORTER
 SPDY certificate proof" using the empty string as context. ForRSA
 certificates the signature would be a PKCS#1 v1.5 signature. For
 ECDSA, it would be an ECDSA-Sig-Value
 (http://tools.ietf.org/html/rfc5480#appendix-A). For a 1024-bit RSA
 key, the CREDENTIAL message would be ~500 bytes.

 Certificate: The certificate chain, starting with the leaf
 certificate. Each certificate must be encoded as a 32 bit length,
 followed by a DER encoded certificate. The certificate must be of
 the same type (RSA, ECDSA, etc) as the client certificate associated
 with the SSL connection.

 If the server receives a request for a resource with unacceptable
 credential (either missing or invalid), it must reply with a
 RST_STREAM frame with the status code INVALID_CREDENTIALS. Upon
 receipt of a RST_STREAM frame with INVALID_CREDENTIALS, the client
 should initiate a new stream directly to the requested origin and
 resend the request. Note, SPDY does not allow the server to request
 different client authentication for different resources in the same
 origin.

 If the server receives an invalid CREDENTIAL frame, it MUST respond
 with a GOAWAY frame and shutdown the session.

2.6.10. Name/Value Header Block

 The Name/Value Header Block is found in the SYN_STREAM, SYN_REPLY and
 HEADERS control frames, and shares a common format:

http://tools.ietf.org/html/rfc5246#section-4.7
http://tools.ietf.org/html/rfc5705
http://tools.ietf.org/html/rfc5480#appendix-A

Belshe & Peon Expires August 4, 2012 [Page 26]

Internet-Draft SPDY Feb 2012

 +------------------------------------+
 | Number of Name/Value pairs (int32) |
 +------------------------------------+
 | Length of name (int32) |
 +------------------------------------+
 | Name (string) |
 +------------------------------------+
 | Length of value (int32) |
 +------------------------------------+
 | Value (string) |
 +------------------------------------+
 | (repeats) |

 Number of Name/Value pairs: The number of repeating name/value pairs
 following this field.

 List of Name/Value pairs:

 Length of Name: a 32-bit value containing the number of octets in
 the name field. Note that in practice, this length must not
 exceed 2^24, as that is the maximum size of a SPDY frame.

 Name: 0 or more octets, 8-bit sequences of data, excluding 0.

 Length of Value: a 32-bit value containing the number of octets in
 the value field. Note that in practice, this length must not
 exceed 2^24, as that is the maximum size of a SPDY frame.

 Value: 0 or more octets, 8-bit sequences of data, excluding 0.

 Each header name must have at least one value. Header names are
 encoded using the US-ASCII character set [ASCII] and must be all
 lower case. The length of each name must be greater than zero. A
 recipient of a zero-length name MUST issue a stream error
 (Section 2.4.2) with the status code PROTOCOL_ERROR for the
 stream-id.

 Duplicate header names are not allowed. To send two identically
 named headers, send a header with two values, where the values are
 separated by a single NUL (0) byte. A header value can either be
 empty (e.g. the length is zero) or it can contain multiple, NUL-
 separated values, each with length greater than zero. The value
 never starts nor ends with a NUL character. Recipients of illegal
 value fields MUST issue a stream error (Section 2.4.2) with the
 status code PROTOCOL_ERROR for the stream-id.

Belshe & Peon Expires August 4, 2012 [Page 27]

Internet-Draft SPDY Feb 2012

2.6.10.1. Compression

 The Name/Value Header Block is a section of the SYN_STREAM,
 SYN_REPLY, and HEADERS frames used to carry header meta-data. This
 block is always compressed using zlib compression. Within this
 specification, any reference to 'zlib' is referring to the ZLIB
 Compressed Data Format Specification Version 3.3 as part of RFC1950.
 [RFC1950]

 For each HEADERS compression instance, the initial state is
 initialized using the following dictionary [UDELCOMPRESSION]:

 const unsigned char SPDY_dictionary_txt[] = {
 0x00, 0x00, 0x00, 0x07, 0x6f, 0x70, 0x74, 0x69, \\ - - - - o p t i
 0x6f, 0x6e, 0x73, 0x00, 0x00, 0x00, 0x04, 0x68, \\ o n s - - - - h
 0x65, 0x61, 0x64, 0x00, 0x00, 0x00, 0x04, 0x70, \\ e a d - - - - p
 0x6f, 0x73, 0x74, 0x00, 0x00, 0x00, 0x03, 0x70, \\ o s t - - - - p
 0x75, 0x74, 0x00, 0x00, 0x00, 0x06, 0x64, 0x65, \\ u t - - - - d e
 0x6c, 0x65, 0x74, 0x65, 0x00, 0x00, 0x00, 0x05, \\ l e t e - - - -
 0x74, 0x72, 0x61, 0x63, 0x65, 0x00, 0x00, 0x00, \\ t r a c e - - -
 0x06, 0x61, 0x63, 0x63, 0x65, 0x70, 0x74, 0x00, \\ - a c c e p t -
 0x00, 0x00, 0x0e, 0x61, 0x63, 0x63, 0x65, 0x70, \\ - - - a c c e p
 0x74, 0x2d, 0x63, 0x68, 0x61, 0x72, 0x73, 0x65, \\ t - c h a r s e
 0x74, 0x00, 0x00, 0x00, 0x0f, 0x61, 0x63, 0x63, \\ t - - - - a c c
 0x65, 0x70, 0x74, 0x2d, 0x65, 0x6e, 0x63, 0x6f, \\ e p t - e n c o
 0x64, 0x69, 0x6e, 0x67, 0x00, 0x00, 0x00, 0x0f, \\ d i n g - - - -
 0x61, 0x63, 0x63, 0x65, 0x70, 0x74, 0x2d, 0x6c, \\ a c c e p t - l
 0x61, 0x6e, 0x67, 0x75, 0x61, 0x67, 0x65, 0x00, \\ a n g u a g e -
 0x00, 0x00, 0x0d, 0x61, 0x63, 0x63, 0x65, 0x70, \\ - - - a c c e p
 0x74, 0x2d, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x73, \\ t - r a n g e s
 0x00, 0x00, 0x00, 0x03, 0x61, 0x67, 0x65, 0x00, \\ - - - - a g e -
 0x00, 0x00, 0x05, 0x61, 0x6c, 0x6c, 0x6f, 0x77, \\ - - - a l l o w
 0x00, 0x00, 0x00, 0x0d, 0x61, 0x75, 0x74, 0x68, \\ - - - - a u t h
 0x6f, 0x72, 0x69, 0x7a, 0x61, 0x74, 0x69, 0x6f, \\ o r i z a t i o
 0x6e, 0x00, 0x00, 0x00, 0x0d, 0x63, 0x61, 0x63, \\ n - - - - c a c
 0x68, 0x65, 0x2d, 0x63, 0x6f, 0x6e, 0x74, 0x72, \\ h e - c o n t r
 0x6f, 0x6c, 0x00, 0x00, 0x00, 0x0a, 0x63, 0x6f, \\ o l - - - - c o
 0x6e, 0x6e, 0x65, 0x63, 0x74, 0x69, 0x6f, 0x6e, \\ n n e c t i o n
 0x00, 0x00, 0x00, 0x0c, 0x63, 0x6f, 0x6e, 0x74, \\ - - - - c o n t
 0x65, 0x6e, 0x74, 0x2d, 0x62, 0x61, 0x73, 0x65, \\ e n t - b a s e
 0x00, 0x00, 0x00, 0x10, 0x63, 0x6f, 0x6e, 0x74, \\ - - - - c o n t
 0x65, 0x6e, 0x74, 0x2d, 0x65, 0x6e, 0x63, 0x6f, \\ e n t - e n c o
 0x64, 0x69, 0x6e, 0x67, 0x00, 0x00, 0x00, 0x10, \\ d i n g - - - -
 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, \\ c o n t e n t -
 0x6c, 0x61, 0x6e, 0x67, 0x75, 0x61, 0x67, 0x65, \\ l a n g u a g e
 0x00, 0x00, 0x00, 0x0e, 0x63, 0x6f, 0x6e, 0x74, \\ - - - - c o n t
 0x65, 0x6e, 0x74, 0x2d, 0x6c, 0x65, 0x6e, 0x67, \\ e n t - l e n g
 0x74, 0x68, 0x00, 0x00, 0x00, 0x10, 0x63, 0x6f, \\ t h - - - - c o

https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/rfc1950

Belshe & Peon Expires August 4, 2012 [Page 28]

Internet-Draft SPDY Feb 2012

 0x6e, 0x74, 0x65, 0x6e, 0x74, 0x2d, 0x6c, 0x6f, \\ n t e n t - l o
 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x00, 0x00, \\ c a t i o n - -
 0x00, 0x0b, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, \\ - - c o n t e n
 0x74, 0x2d, 0x6d, 0x64, 0x35, 0x00, 0x00, 0x00, \\ t - m d 5 - - -
 0x0d, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, 0x74, \\ - c o n t e n t
 0x2d, 0x72, 0x61, 0x6e, 0x67, 0x65, 0x00, 0x00, \\ - r a n g e - -
 0x00, 0x0c, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x6e, \\ - - c o n t e n
 0x74, 0x2d, 0x74, 0x79, 0x70, 0x65, 0x00, 0x00, \\ t - t y p e - -
 0x00, 0x04, 0x64, 0x61, 0x74, 0x65, 0x00, 0x00, \\ - - d a t e - -
 0x00, 0x04, 0x65, 0x74, 0x61, 0x67, 0x00, 0x00, \\ - - e t a g - -
 0x00, 0x06, 0x65, 0x78, 0x70, 0x65, 0x63, 0x74, \\ - - e x p e c t
 0x00, 0x00, 0x00, 0x07, 0x65, 0x78, 0x70, 0x69, \\ - - - - e x p i
 0x72, 0x65, 0x73, 0x00, 0x00, 0x00, 0x04, 0x66, \\ r e s - - - - f
 0x72, 0x6f, 0x6d, 0x00, 0x00, 0x00, 0x04, 0x68, \\ r o m - - - - h
 0x6f, 0x73, 0x74, 0x00, 0x00, 0x00, 0x08, 0x69, \\ o s t - - - - i
 0x66, 0x2d, 0x6d, 0x61, 0x74, 0x63, 0x68, 0x00, \\ f - m a t c h -
 0x00, 0x00, 0x11, 0x69, 0x66, 0x2d, 0x6d, 0x6f, \\ - - - i f - m o
 0x64, 0x69, 0x66, 0x69, 0x65, 0x64, 0x2d, 0x73, \\ d i f i e d - s
 0x69, 0x6e, 0x63, 0x65, 0x00, 0x00, 0x00, 0x0d, \\ i n c e - - - -
 0x69, 0x66, 0x2d, 0x6e, 0x6f, 0x6e, 0x65, 0x2d, \\ i f - n o n e -
 0x6d, 0x61, 0x74, 0x63, 0x68, 0x00, 0x00, 0x00, \\ m a t c h - - -
 0x08, 0x69, 0x66, 0x2d, 0x72, 0x61, 0x6e, 0x67, \\ - i f - r a n g
 0x65, 0x00, 0x00, 0x00, 0x13, 0x69, 0x66, 0x2d, \\ e - - - - i f -
 0x75, 0x6e, 0x6d, 0x6f, 0x64, 0x69, 0x66, 0x69, \\ u n m o d i f i
 0x65, 0x64, 0x2d, 0x73, 0x69, 0x6e, 0x63, 0x65, \\ e d - s i n c e
 0x00, 0x00, 0x00, 0x0d, 0x6c, 0x61, 0x73, 0x74, \\ - - - - l a s t
 0x2d, 0x6d, 0x6f, 0x64, 0x69, 0x66, 0x69, 0x65, \\ - m o d i f i e
 0x64, 0x00, 0x00, 0x00, 0x08, 0x6c, 0x6f, 0x63, \\ d - - - - l o c
 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x00, 0x00, 0x00, \\ a t i o n - - -
 0x0c, 0x6d, 0x61, 0x78, 0x2d, 0x66, 0x6f, 0x72, \\ - m a x - f o r
 0x77, 0x61, 0x72, 0x64, 0x73, 0x00, 0x00, 0x00, \\ w a r d s - - -
 0x06, 0x70, 0x72, 0x61, 0x67, 0x6d, 0x61, 0x00, \\ - p r a g m a -
 0x00, 0x00, 0x12, 0x70, 0x72, 0x6f, 0x78, 0x79, \\ - - - p r o x y
 0x2d, 0x61, 0x75, 0x74, 0x68, 0x65, 0x6e, 0x74, \\ - a u t h e n t
 0x69, 0x63, 0x61, 0x74, 0x65, 0x00, 0x00, 0x00, \\ i c a t e - - -
 0x13, 0x70, 0x72, 0x6f, 0x78, 0x79, 0x2d, 0x61, \\ - p r o x y - a
 0x75, 0x74, 0x68, 0x6f, 0x72, 0x69, 0x7a, 0x61, \\ u t h o r i z a
 0x74, 0x69, 0x6f, 0x6e, 0x00, 0x00, 0x00, 0x05, \\ t i o n - - - -
 0x72, 0x61, 0x6e, 0x67, 0x65, 0x00, 0x00, 0x00, \\ r a n g e - - -
 0x07, 0x72, 0x65, 0x66, 0x65, 0x72, 0x65, 0x72, \\ - r e f e r e r
 0x00, 0x00, 0x00, 0x0b, 0x72, 0x65, 0x74, 0x72, \\ - - - - r e t r
 0x79, 0x2d, 0x61, 0x66, 0x74, 0x65, 0x72, 0x00, \\ y - a f t e r -
 0x00, 0x00, 0x06, 0x73, 0x65, 0x72, 0x76, 0x65, \\ - - - s e r v e
 0x72, 0x00, 0x00, 0x00, 0x02, 0x74, 0x65, 0x00, \\ r - - - - t e -
 0x00, 0x00, 0x07, 0x74, 0x72, 0x61, 0x69, 0x6c, \\ - - - t r a i l
 0x65, 0x72, 0x00, 0x00, 0x00, 0x11, 0x74, 0x72, \\ e r - - - - t r
 0x61, 0x6e, 0x73, 0x66, 0x65, 0x72, 0x2d, 0x65, \\ a n s f e r - e
 0x6e, 0x63, 0x6f, 0x64, 0x69, 0x6e, 0x67, 0x00, \\ n c o d i n g -

Belshe & Peon Expires August 4, 2012 [Page 29]

Internet-Draft SPDY Feb 2012

 0x00, 0x00, 0x07, 0x75, 0x70, 0x67, 0x72, 0x61, \\ - - - u p g r a
 0x64, 0x65, 0x00, 0x00, 0x00, 0x0a, 0x75, 0x73, \\ d e - - - - u s
 0x65, 0x72, 0x2d, 0x61, 0x67, 0x65, 0x6e, 0x74, \\ e r - a g e n t
 0x00, 0x00, 0x00, 0x04, 0x76, 0x61, 0x72, 0x79, \\ - - - - v a r y
 0x00, 0x00, 0x00, 0x03, 0x76, 0x69, 0x61, 0x00, \\ - - - - v i a -
 0x00, 0x00, 0x07, 0x77, 0x61, 0x72, 0x6e, 0x69, \\ - - - w a r n i
 0x6e, 0x67, 0x00, 0x00, 0x00, 0x10, 0x77, 0x77, \\ n g - - - - w w
 0x77, 0x2d, 0x61, 0x75, 0x74, 0x68, 0x65, 0x6e, \\ w - a u t h e n
 0x74, 0x69, 0x63, 0x61, 0x74, 0x65, 0x00, 0x00, \\ t i c a t e - -
 0x00, 0x06, 0x6d, 0x65, 0x74, 0x68, 0x6f, 0x64, \\ - - m e t h o d
 0x00, 0x00, 0x00, 0x03, 0x67, 0x65, 0x74, 0x00, \\ - - - - g e t -
 0x00, 0x00, 0x06, 0x73, 0x74, 0x61, 0x74, 0x75, \\ - - - s t a t u
 0x73, 0x00, 0x00, 0x00, 0x06, 0x32, 0x30, 0x30, \\ s - - - - 2 0 0
 0x20, 0x4f, 0x4b, 0x00, 0x00, 0x00, 0x07, 0x76, \\ - O K - - - - v
 0x65, 0x72, 0x73, 0x69, 0x6f, 0x6e, 0x00, 0x00, \\ e r s i o n - -
 0x00, 0x08, 0x48, 0x54, 0x54, 0x50, 0x2f, 0x31, \\ - - H T T P - 1
 0x2e, 0x31, 0x00, 0x00, 0x00, 0x03, 0x75, 0x72, \\ - 1 - - - - u r
 0x6c, 0x00, 0x00, 0x00, 0x06, 0x70, 0x75, 0x62, \\ l - - - - p u b
 0x6c, 0x69, 0x63, 0x00, 0x00, 0x00, 0x0a, 0x73, \\ l i c - - - - s
 0x65, 0x74, 0x2d, 0x63, 0x6f, 0x6f, 0x6b, 0x69, \\ e t - c o o k i
 0x65, 0x00, 0x00, 0x00, 0x0a, 0x6b, 0x65, 0x65, \\ e - - - - k e e
 0x70, 0x2d, 0x61, 0x6c, 0x69, 0x76, 0x65, 0x00, \\ p - a l i v e -
 0x00, 0x00, 0x06, 0x6f, 0x72, 0x69, 0x67, 0x69, \\ - - - o r i g i
 0x6e, 0x31, 0x30, 0x30, 0x31, 0x30, 0x31, 0x32, \\ n 1 0 0 1 0 1 2
 0x30, 0x31, 0x32, 0x30, 0x32, 0x32, 0x30, 0x35, \\ 0 1 2 0 2 2 0 5
 0x32, 0x30, 0x36, 0x33, 0x30, 0x30, 0x33, 0x30, \\ 2 0 6 3 0 0 3 0
 0x32, 0x33, 0x30, 0x33, 0x33, 0x30, 0x34, 0x33, \\ 2 3 0 3 3 0 4 3
 0x30, 0x35, 0x33, 0x30, 0x36, 0x33, 0x30, 0x37, \\ 0 5 3 0 6 3 0 7
 0x34, 0x30, 0x32, 0x34, 0x30, 0x35, 0x34, 0x30, \\ 4 0 2 4 0 5 4 0
 0x36, 0x34, 0x30, 0x37, 0x34, 0x30, 0x38, 0x34, \\ 6 4 0 7 4 0 8 4
 0x30, 0x39, 0x34, 0x31, 0x30, 0x34, 0x31, 0x31, \\ 0 9 4 1 0 4 1 1
 0x34, 0x31, 0x32, 0x34, 0x31, 0x33, 0x34, 0x31, \\ 4 1 2 4 1 3 4 1
 0x34, 0x34, 0x31, 0x35, 0x34, 0x31, 0x36, 0x34, \\ 4 4 1 5 4 1 6 4
 0x31, 0x37, 0x35, 0x30, 0x32, 0x35, 0x30, 0x34, \\ 1 7 5 0 2 5 0 4
 0x35, 0x30, 0x35, 0x32, 0x30, 0x33, 0x20, 0x4e, \\ 5 0 5 2 0 3 - N
 0x6f, 0x6e, 0x2d, 0x41, 0x75, 0x74, 0x68, 0x6f, \\ o n - A u t h o
 0x72, 0x69, 0x74, 0x61, 0x74, 0x69, 0x76, 0x65, \\ r i t a t i v e
 0x20, 0x49, 0x6e, 0x66, 0x6f, 0x72, 0x6d, 0x61, \\ - I n f o r m a
 0x74, 0x69, 0x6f, 0x6e, 0x32, 0x30, 0x34, 0x20, \\ t i o n 2 0 4 -
 0x4e, 0x6f, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x65, \\ N o - C o n t e
 0x6e, 0x74, 0x33, 0x30, 0x31, 0x20, 0x4d, 0x6f, \\ n t 3 0 1 - M o
 0x76, 0x65, 0x64, 0x20, 0x50, 0x65, 0x72, 0x6d, \\ v e d - P e r m
 0x61, 0x6e, 0x65, 0x6e, 0x74, 0x6c, 0x79, 0x34, \\ a n e n t l y 4
 0x30, 0x30, 0x20, 0x42, 0x61, 0x64, 0x20, 0x52, \\ 0 0 - B a d - R
 0x65, 0x71, 0x75, 0x65, 0x73, 0x74, 0x34, 0x30, \\ e q u e s t 4 0
 0x31, 0x20, 0x55, 0x6e, 0x61, 0x75, 0x74, 0x68, \\ 1 - U n a u t h
 0x6f, 0x72, 0x69, 0x7a, 0x65, 0x64, 0x34, 0x30, \\ o r i z e d 4 0
 0x33, 0x20, 0x46, 0x6f, 0x72, 0x62, 0x69, 0x64, \\ 3 - F o r b i d

Belshe & Peon Expires August 4, 2012 [Page 30]

Internet-Draft SPDY Feb 2012

 0x64, 0x65, 0x6e, 0x34, 0x30, 0x34, 0x20, 0x4e, \\ d e n 4 0 4 - N
 0x6f, 0x74, 0x20, 0x46, 0x6f, 0x75, 0x6e, 0x64, \\ o t - F o u n d
 0x35, 0x30, 0x30, 0x20, 0x49, 0x6e, 0x74, 0x65, \\ 5 0 0 - I n t e
 0x72, 0x6e, 0x61, 0x6c, 0x20, 0x53, 0x65, 0x72, \\ r n a l - S e r
 0x76, 0x65, 0x72, 0x20, 0x45, 0x72, 0x72, 0x6f, \\ v e r - E r r o
 0x72, 0x35, 0x30, 0x31, 0x20, 0x4e, 0x6f, 0x74, \\ r 5 0 1 - N o t
 0x20, 0x49, 0x6d, 0x70, 0x6c, 0x65, 0x6d, 0x65, \\ - I m p l e m e
 0x6e, 0x74, 0x65, 0x64, 0x35, 0x30, 0x33, 0x20, \\ n t e d 5 0 3 -
 0x53, 0x65, 0x72, 0x76, 0x69, 0x63, 0x65, 0x20, \\ S e r v i c e -
 0x55, 0x6e, 0x61, 0x76, 0x61, 0x69, 0x6c, 0x61, \\ U n a v a i l a
 0x62, 0x6c, 0x65, 0x4a, 0x61, 0x6e, 0x20, 0x46, \\ b l e J a n - F
 0x65, 0x62, 0x20, 0x4d, 0x61, 0x72, 0x20, 0x41, \\ e b - M a r - A
 0x70, 0x72, 0x20, 0x4d, 0x61, 0x79, 0x20, 0x4a, \\ p r - M a y - J
 0x75, 0x6e, 0x20, 0x4a, 0x75, 0x6c, 0x20, 0x41, \\ u n - J u l - A
 0x75, 0x67, 0x20, 0x53, 0x65, 0x70, 0x74, 0x20, \\ u g - S e p t -
 0x4f, 0x63, 0x74, 0x20, 0x4e, 0x6f, 0x76, 0x20, \\ O c t - N o v -
 0x44, 0x65, 0x63, 0x20, 0x30, 0x30, 0x3a, 0x30, \\ D e c - 0 0 - 0
 0x30, 0x3a, 0x30, 0x30, 0x20, 0x4d, 0x6f, 0x6e, \\ 0 - 0 0 - M o n
 0x2c, 0x20, 0x54, 0x75, 0x65, 0x2c, 0x20, 0x57, \\ - - T u e - - W
 0x65, 0x64, 0x2c, 0x20, 0x54, 0x68, 0x75, 0x2c, \\ e d - - T h u -
 0x20, 0x46, 0x72, 0x69, 0x2c, 0x20, 0x53, 0x61, \\ - F r i - - S a
 0x74, 0x2c, 0x20, 0x53, 0x75, 0x6e, 0x2c, 0x20, \\ t - - S u n - -
 0x47, 0x4d, 0x54, 0x63, 0x68, 0x75, 0x6e, 0x6b, \\ G M T c h u n k
 0x65, 0x64, 0x2c, 0x74, 0x65, 0x78, 0x74, 0x2f, \\ e d - t e x t -
 0x68, 0x74, 0x6d, 0x6c, 0x2c, 0x69, 0x6d, 0x61, \\ h t m l - i m a
 0x67, 0x65, 0x2f, 0x70, 0x6e, 0x67, 0x2c, 0x69, \\ g e - p n g - i
 0x6d, 0x61, 0x67, 0x65, 0x2f, 0x6a, 0x70, 0x67, \\ m a g e - j p g
 0x2c, 0x69, 0x6d, 0x61, 0x67, 0x65, 0x2f, 0x67, \\ - i m a g e - g
 0x69, 0x66, 0x2c, 0x61, 0x70, 0x70, 0x6c, 0x69, \\ i f - a p p l i
 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x78, \\ c a t i o n - x
 0x6d, 0x6c, 0x2c, 0x61, 0x70, 0x70, 0x6c, 0x69, \\ m l - a p p l i
 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x2f, 0x78, \\ c a t i o n - x
 0x68, 0x74, 0x6d, 0x6c, 0x2b, 0x78, 0x6d, 0x6c, \\ h t m l - x m l
 0x2c, 0x74, 0x65, 0x78, 0x74, 0x2f, 0x70, 0x6c, \\ - t e x t - p l
 0x61, 0x69, 0x6e, 0x2c, 0x74, 0x65, 0x78, 0x74, \\ a i n - t e x t
 0x2f, 0x6a, 0x61, 0x76, 0x61, 0x73, 0x63, 0x72, \\ - j a v a s c r
 0x69, 0x70, 0x74, 0x2c, 0x70, 0x75, 0x62, 0x6c, \\ i p t - p u b l
 0x69, 0x63, 0x70, 0x72, 0x69, 0x76, 0x61, 0x74, \\ i c p r i v a t
 0x65, 0x6d, 0x61, 0x78, 0x2d, 0x61, 0x67, 0x65, \\ e m a x - a g e
 0x3d, 0x67, 0x7a, 0x69, 0x70, 0x2c, 0x64, 0x65, \\ - g z i p - d e
 0x66, 0x6c, 0x61, 0x74, 0x65, 0x2c, 0x73, 0x64, \\ f l a t e - s d
 0x63, 0x68, 0x63, 0x68, 0x61, 0x72, 0x73, 0x65, \\ c h c h a r s e
 0x74, 0x3d, 0x75, 0x74, 0x66, 0x2d, 0x38, 0x63, \\ t - u t f - 8 c
 0x68, 0x61, 0x72, 0x73, 0x65, 0x74, 0x3d, 0x69, \\ h a r s e t - i
 0x73, 0x6f, 0x2d, 0x38, 0x38, 0x35, 0x39, 0x2d, \\ s o - 8 8 5 9 -
 0x31, 0x2c, 0x75, 0x74, 0x66, 0x2d, 0x2c, 0x2a, \\ 1 - u t f - - -
 0x2c, 0x65, 0x6e, 0x71, 0x3d, 0x30, 0x2e \\ - e n q - 0 -
 };

Belshe & Peon Expires August 4, 2012 [Page 31]

Internet-Draft SPDY Feb 2012

 The entire contents of the name/value header block is compressed
 using zlib. There is a single zlib stream for all name value pairs
 in one direction on a connection. SPDY uses a SYNC_FLUSH between
 each compressed frame.

 Implementation notes: the compression engine can be tuned to favor
 speed or size. Optimizing for size increases memory use and CPU
 consumption. Because header blocks are generally small, implementors
 may want to reduce the window-size of the compression engine from the
 default 15bits (a 32KB window) to more like 11bits (a 2KB window).
 The exact setting is chosen by the compressor, the decompressor will
 work with any setting.

Belshe & Peon Expires August 4, 2012 [Page 32]

Internet-Draft SPDY Feb 2012

3. HTTP Layering over SPDY

 SPDY is intended to be as compatible as possible with current web-
 based applications. This means that, from the perspective of the
 server business logic or application API, the features of HTTP are
 unchanged. To achieve this, all of the application request and
 response header semantics are preserved, although the syntax of
 conveying those semantics has changed. Thus, the rules from the
 HTTP/1.1 specification in RFC2616 [RFC2616] apply with the changes in
 the sections below.

3.1. Connection Management

 Clients SHOULD NOT open more than one SPDY session to a given origin
 [RFC6454] concurrently.

 Note that it is possible for one SPDY session to be finishing (e.g. a
 GOAWAY message has been sent, but not all streams have finished),
 while another SPDY session is starting.

3.1.1. Use of GOAWAY

 SPDY provides a GOAWAY message which can be used when closing a
 connection from either the client or server. Without a server GOAWAY
 message, HTTP has a race condition where the client sends a request
 (a new SYN_STREAM) just as the server is closing the connection, and
 the client cannot know if the server received the stream or not. By
 using the last-stream-id in the GOAWAY, servers can indicate to the
 client if a request was processed or not.

 Note that some servers will choose to send the GOAWAY and immediately
 terminate the connection without waiting for active streams to
 finish. The client will be able to determine this because SPDY
 streams are determinstically closed. This abrupt termination will
 force the client to heuristically decide whether to retry the pending
 requests. Clients always need to be capable of dealing with this
 case because they must deal with accidental connection termination
 cases, which are the same as the server never having sent a GOAWAY.

 More sophisticated servers will use GOAWAY to implement a graceful
 teardown. They will send the GOAWAY and provide some time for the
 active streams to finish before terminating the connection.

 If a SPDY client closes the connection, it should also send a GOAWAY
 message. This allows the server to know if any server-push streams
 were received by the client.

 If the endpoint closing the connection has not received any

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc6454

Belshe & Peon Expires August 4, 2012 [Page 33]

Internet-Draft SPDY Feb 2012

 SYN_STREAMs from the remote, the GOAWAY will contain a last-stream-id
 of 0.

3.2. HTTP Request/Response

3.2.1. Request

 The client initiates a request by sending a SYN_STREAM frame. For
 requests which do not contain a body, the SYN_STREAM frame MUST set
 the FLAG_FIN, indicating that the client intends to send no further
 data on this stream. For requests which do contain a body, the
 SYN_STREAM will not contain the FLAG_FIN, and the body will follow
 the SYN_STREAM in a series of DATA frames. The last DATA frame will
 set the FLAG_FIN to indicate the end of the body.

 The SYN_STREAM Name/Value section will contain all of the HTTP
 headers which are associated with an HTTP request. The header block
 in SPDY is mostly unchanged from today's HTTP header block, with the
 following differences:

 The first line of the request is unfolded into name/value pairs
 like other HTTP headers and MUST be present:

 ":method" - the HTTP method for this request (e.g. "GET",
 "POST", "HEAD", etc)

 ":path" - the url-path for this url with "/" prefixed. (See
RFC1738 [RFC1738]). For example, for

 "http://www.google.com/search?q=dogs" the path would be
 "/search?q=dogs".

 ":version" - the HTTP version of this request (e.g.
 "HTTP/1.1")

 In addition, the following two name/value pairs must also be
 present in every request:

 ":host" - the hostport (See RFC1738 [RFC1738]) portion of the
 URL for this request (e.g. "www.google.com:1234"). This header
 is the same as the HTTP 'Host' header.

 ":scheme" - the scheme portion of the URL for this request
 (e.g. "https"))

 Header names are all lowercase.

 The Connection, Host, Keep-Alive, Proxy-Connection, and Transfer-
 Encoding headers are not valid and MUST not be sent.

https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1738

Belshe & Peon Expires August 4, 2012 [Page 34]

Internet-Draft SPDY Feb 2012

 User-agents MUST support gzip compression. Regardless of the
 Accept-Encoding sent by the user-agent, the server may always send
 content encoded with gzip or deflate encoding.

 If a server receives a request where the sum of the data frame
 payload lengths does not equal the size of the Content-Length
 header, the server MUST return a 400 (Bad Request) error.

 POST-specific changes:

 Although POSTs are inherently chunked, POST requests SHOULD
 also be accompanied by a Content-Length header. There are two
 reasons for this: First, it assists with upload progress meters
 for an improved user experience. But second, we know from
 early versions of SPDY that failure to send a content length
 header is incompatible with many existing HTTP server
 implementations. Existing user-agents do not omit the Content-
 Length header, and server implementations have come to depend
 upon this.

 The user-agent is free to prioritize requests as it sees fit. If the
 user-agent cannot make progress without receiving a resource, it
 should attempt to raise the priority of that resource. Resources
 such as images, SHOULD generally use the lowest priority.

 If a client sends a SYN_STREAM without all of the method, host, path,
 scheme, and version headers, the server MUST reply with a HTTP 400
 Bad Request reply.

3.2.2. Response

 The server responds to a client request with a SYN_REPLY frame.
 Symmetric to the client's upload stream, server will send data after
 the SYN_REPLY frame via a series of DATA frames, and the last data
 frame will contain the FLAG_FIN to indicate successful end-of-stream.
 If a response (like a 202 or 204 response) contains no body, the
 SYN_REPLY frame may contain the FLAG_FIN flag to indicate no further
 data will be sent on the stream.

 The response status line is unfolded into name/value pairs like
 other HTTP headers and must be present:

 ":status" - The HTTP response status code (e.g. "200" or "200
 OK")

 ":version" - The HTTP response version (e.g. "HTTP/1.1")

Belshe & Peon Expires August 4, 2012 [Page 35]

Internet-Draft SPDY Feb 2012

 All header names must be lowercase.

 The Connection, Keep-Alive, Proxy-Connection, and Transfer-
 Encoding headers are not valid and MUST not be sent.

 Responses MAY be accompanied by a Content-Length header for
 advisory purposes. (e.g. for UI progress meters)

 If a client receives a response where the sum of the data frame
 payload lengths does not equal the size of the Content-Length
 header, the client MUST ignore the content length header.

 If a client receives a SYN_REPLY without a status or without a
 version header, the client must reply with a RST_STREAM frame
 indicating a PROTOCOL ERROR.

3.2.3. Authentication

 When a client sends a request to an origin server that requires
 authentication, the server can reply with a "401 Unauthorized"
 response, and include a WWW-Authenticate challenge header that
 defines the authentication scheme to be used. The client then
 retries the request with an Authorization header appropriate to the
 specified authentication scheme.

 There are four options for proxy authentication, Basic, Digest, NTLM
 and Negotiate (SPNEGO). The first two options were defined in

RFC2617 [RFC2617], and are stateless. The second two options were
 developed by Microsoft and specified in RFC4559 [RFC4559], and are
 stateful; otherwise known as multi-round authentication, or
 connection authentication.

3.2.3.1. Stateless Authentication

 Stateless Authentication over SPDY is identical to how it is
 performed over HTTP. If multiple SPDY streams are concurrently sent
 to a single server, each will authenticate independently, similar to
 how two HTTP connections would independently authenticate to a proxy
 server.

3.2.3.2. Stateful Authentication

 Unfortunately, the stateful authentication mechanisms were
 implemented and defined in a such a way that directly violates

RFC2617 - they do not include a "realm" as part of the request. This
 is problematic in SPDY because it makes it impossible for a client to
 disambiguate two concurrent server authentication challenges.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc2617

Belshe & Peon Expires August 4, 2012 [Page 36]

Internet-Draft SPDY Feb 2012

 To deal with this case, SPDY servers using Stateful Authentication
 MUST implement one of two changes:

 Servers can add a "realm=<desired realm>" header so that the two
 authentication requests can be disambiguated and run concurrently.
 Unfortunately, given how these mechanisms work, this is probably
 not practical.

 Upon sending the first stateful challenge response, the server
 MUST buffer and defer all further frames which are not part of
 completing the challenge until the challenge has completed.
 Completing the authentication challenge may take multiple round
 trips. Once the client receives a "401 Authenticate" response for
 a stateful authentication type, it MUST stop sending new requests
 to the server until the authentication has completed by receiving
 a non-401 response on at least one stream.

3.3. Server Push Transactions

 SPDY enables a server to send multiple replies to a client for a
 single request. The rationale for this feature is that sometimes a
 server knows that it will need to send multiple resources in response
 to a single request. Without server push features, the client must
 first download the primary resource, then discover the secondary
 resource(s), and request them. Pushing of resources avoids the
 round-trip delay, but also creates a potential race where a server
 can be pushing content which a user-agent is in the process of
 requesting. The following mechanics attempt to prevent the race
 condition while enabling the performance benefit.

 Browsers receiving a pushed response MUST validate that the server is
 authorized to push the URL using the browser same-origin [RFC6454]
 policy. For example, a SPDY connection to www.foo.com is generally
 not permitted to push a response for www.evil.com.

 If the browser accepts a pushed response (e.g. it does not send a
 RST_STREAM), the browser MUST attempt to cache the pushed response in
 same way that it would cache any other response. This means
 validating the response headers and inserting into the disk cache.

 Because pushed responses have no request, they have no request
 headers associated with them. At the framing layer, SPDY pushed
 streams contain an "associated-stream-id" which indicates the
 requested stream for which the pushed stream is related. The pushed
 stream inherits all of the headers from the associated-stream-id with
 the exception of ":host", ":scheme", and ":path", which are provided
 as part of the pushed response stream headers. The browser MUST
 store these inherited and implied request headers with the cached

https://datatracker.ietf.org/doc/html/rfc6454

Belshe & Peon Expires August 4, 2012 [Page 37]

Internet-Draft SPDY Feb 2012

 resource.

 Implementation note: With server push, it is theoretically possible
 for servers to push unreasonable amounts of content or resources to
 the user-agent. Browsers MUST implement throttles to protect against
 unreasonable push attacks.

3.3.1. Server implementation

 When the server intends to push a resource to the user-agent, it
 opens a new stream by sending a unidirectional SYN_STREAM. The
 SYN_STREAM MUST include an Associated-To-Stream-ID, and MUST set the
 FLAG_UNIDIRECTIONAL flag. The SYN_STREAM MUST include headers for
 ":scheme", ":host", ":path", which represent the URL for the resource
 being pushed. Subsequent headers may follow in HEADERS frames. The
 purpose of the association is so that the user-agent can
 differentiate which request induced the pushed stream; without it, if
 the user-agent had two tabs open to the same page, each pushing
 unique content under a fixed URL, the user-agent would not be able to
 differentiate the requests.

 The Associated-To-Stream-ID must be the ID of an existing, open
 stream. The reason for this restriction is to have a clear endpoint
 for pushed content. If the user-agent requested a resource on stream
 11, the server replies on stream 11. It can push any number of
 additional streams to the client before sending a FLAG_FIN on stream
 11. However, once the originating stream is closed no further push
 streams may be associated with it. The pushed streams do not need to
 be closed (FIN set) before the originating stream is closed, they
 only need to be created before the originating stream closes.

 It is illegal for a server to push a resource with the Associated-To-
 Stream-ID of 0.

 To minimize race conditions with the client, the SYN_STREAM for the
 pushed resources MUST be sent prior to sending any content which
 could allow the client to discover the pushed resource and request
 it.

 The server MUST only push resources which would have been returned
 from a GET request.

 Note: If the server does not have all of the Name/Value Response
 headers available at the time it issues the HEADERS frame for the
 pushed resource, it may later use an additional HEADERS frame to
 augment the name/value pairs to be associated with the pushed stream.
 The subsequent HEADERS frame(s) must not contain a header for
 ':host', ':scheme', or ':path' (e.g. the server can't change the

Belshe & Peon Expires August 4, 2012 [Page 38]

Internet-Draft SPDY Feb 2012

 identity of the resource to be pushed). The HEADERS frame must not
 contain duplicate headers with a previously sent HEADERS frame. The
 server must send a HEADERS frame including the scheme/host/port
 headers before sending any data frames on the stream.

3.3.2. Client implementation

 When fetching a resource the client has 3 possibilities:

 the resource is not being pushed

 the resource is being pushed, but the data has not yet arrived

 the resource is being pushed, and the data has started to arrive

 When a SYN_STREAM and HEADERS frame which contains an Associated-To-
 Stream-ID is received, the client must not issue GET requests for the
 resource in the pushed stream, and instead wait for the pushed stream
 to arrive.

 If a client receives a server push stream with stream-id 0, it MUST
 issue a session error (Section 2.4.1) with the status code
 PROTOCOL_ERROR.

 When a client receives a SYN_STREAM from the server without a the
 ':host', ':scheme', and ':path' headers in the Name/Value section, it
 MUST reply with a RST_STREAM with error code HTTP_PROTOCOL_ERROR.

 To cancel individual server push streams, the client can issue a
 stream error (Section 2.4.2) with error code CANCEL. Upon receipt,
 the server MUST stop sending on this stream immediately (this is an
 Abrupt termination).

 To cancel all server push streams related to a request, the client
 may issue a stream error (Section 2.4.2) with error code CANCEL on
 the associated-stream-id. By cancelling that stream, the server MUST
 immediately stop sending frames for any streams with
 in-association-to for the original stream.

 If the server sends a HEADER frame containing duplicate headers with
 a previous HEADERS frame for the same stream, the client must issue a
 stream error (Section 2.4.2) with error code PROTOCOL ERROR.

 If the server sends a HEADERS frame after sending a data frame for
 the same stream, the client MAY ignore the HEADERS frame. Ignoring
 the HEADERS frame after a data frame prevents handling of HTTP's
 trailing headers
 (http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.40).

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.40

Belshe & Peon Expires August 4, 2012 [Page 39]

Internet-Draft SPDY Feb 2012

4. Design Rationale and Notes

 Authors' notes: The notes in this section have no bearing on the SPDY
 protocol as specified within this document, and none of these notes
 should be considered authoritative about how the protocol works.
 However, these notes may prove useful in future debates about how to
 resolve protocol ambiguities or how to evolve the protocol going
 forward. They may be removed before the final draft.

4.1. Separation of Framing Layer and Application Layer

 Readers may note that this specification sometimes blends the framing
 layer (Section 2) with requirements of a specific application - HTTP
 (Section 3). This is reflected in the request/response nature of the
 streams, the definition of the HEADERS and compression contexts which
 are very similar to HTTP, and other areas as well.

 This blending is intentional - the primary goal of this protocol is
 to create a low-latency protocol for use with HTTP. Isolating the
 two layers is convenient for description of the protocol and how it
 relates to existing HTTP implementations. However, the ability to
 reuse the SPDY framing layer is a non goal.

4.2. Error handling - Framing Layer

 Error handling at the SPDY layer splits errors into two groups: Those
 that affect an individual SPDY stream, and those that do not.

 When an error is confined to a single stream, but general framing is
 in tact, SPDY attempts to use the RST_STREAM as a mechanism to
 invalidate the stream but move forward without aborting the
 connection altogether.

 For errors occuring outside of a single stream context, SPDY assumes
 the entire session is hosed. In this case, the endpoint detecting
 the error should initiate a connection close.

4.3. One Connection Per Domain

 SPDY attempts to use fewer connections than other protocols have
 traditionally used. The rationale for this behavior is because it is
 very difficult to provide a consistent level of service (e.g. TCP
 slow-start), prioritization, or optimal compression when the client
 is connecting to the server through multiple channels.

 Through lab measurements, we have seen consistent latency benefits by
 using fewer connections from the client. The overall number of
 packets sent by SPDY can be as much as 40% less than HTTP. Handling

Belshe & Peon Expires August 4, 2012 [Page 40]

Internet-Draft SPDY Feb 2012

 large numbers of concurrent connections on the server also does
 become a scalability problem, and SPDY reduces this load.

 The use of multiple connections is not without benefit, however.
 Because SPDY multiplexes multiple, independent streams onto a single
 stream, it creates a potential for head-of-line blocking problems at
 the transport level. In tests so far, the negative effects of head-
 of-line blocking (especially in the presence of packet loss) is
 outweighed by the benefits of compression and prioritization.

4.4. Fixed vs Variable Length Fields

 SPDY favors use of fixed length 32bit fields in cases where smaller,
 variable length encodings could have been used. To some, this seems
 like a tragic waste of bandwidth. SPDY choses the simple encoding
 for speed and simplicity.

 The goal of SPDY is to reduce latency on the network. The overhead
 of SPDY frames is generally quite low. Each data frame is only an 8
 byte overhead for a 1452 byte payload (~0.6%). At the time of this
 writing, bandwidth is already plentiful, and there is a strong trend
 indicating that bandwidth will continue to increase. With an average
 worldwide bandwidth of 1Mbps, and assuming that a variable length
 encoding could reduce the overhead by 50%, the latency saved by using
 a variable length encoding would be less than 100 nanoseconds. More
 interesting are the effects when the larger encodings force a packet
 boundary, in which case a round-trip could be induced. However, by
 addressing other aspects of SPDY and TCP interactions, we believe
 this is completely mitigated.

4.5. Compression Context(s)

 When isolating the compression contexts used for communicating with
 multiple origins, we had a few choices to make. We could have
 maintained a map (or list) of compression contexts usable for each
 origin. The basic case is easy - each HEADERS frame would need to
 identify the context to use for that frame. However, compression
 contexts are not cheap, so the lifecycle of each context would need
 to be bounded. For proxy servers, where we could churn through many
 contexts, this would be a concern. We considered using a static set
 of contexts, say 16 of them, which would bound the memory use. We
 also considered dynamic contexts, which could be created on the fly,
 and would need to be subsequently destroyed. All of these are
 complicated, and ultimately we decided that such a mechanism creates
 too many problems to solve.

 Alternatively, we've chosen the simple approach, which is to simply
 provide a flag for resetting the compression context. For the common

Belshe & Peon Expires August 4, 2012 [Page 41]

Internet-Draft SPDY Feb 2012

 case (no proxy), this fine because most requests are to the same
 origin and we never need to reset the context. For cases where we
 are using two different origins over a single SPDY session, we simply
 reset the compression state between each transition.

4.6. Unidirectional streams

 Many readers notice that unidirectional streams are both a bit
 confusing in concept and also somewhat redundant. If the recipient
 of a stream doesn't wish to send data on a stream, it could simply
 send a SYN_REPLY with the FLAG_FIN bit set. The FLAG_UNIDIRECTIONAL
 is, therefore, not necessary.

 It is true that we don't need the UNIDIRECTIONAL markings. It is
 added because it avoids the recipient of pushed streams from needing
 to send a set of empty frames (e.g. the SYN_STREAM w/ FLAG_FIN) which
 otherwise serve no purpose.

4.7. Data Compression

 Generic compression of data portion of the streams (as opposed to
 compression of the headers) without knowing the content of the stream
 is redundant. There is no value in compressing a stream which is
 already compressed. Because of this, SPDY does allow data
 compression to be optional. We included it because study of existing
 websites shows that many sites are not using compression as they
 should, and users suffer because of it. We wanted a mechanism where,
 at the SPDY layer, site administrators could simply force compression
 - it is better to compress twice than to not compress.

 Overall, however, with this feature being optional and sometimes
 redundant, it is unclear if it is useful at all. We will likely
 remove it from the specification.

4.8. Server Push

 A subtle but important point is that server push streams must be
 declared before the associated stream is closed. The reason for this
 is so that proxies have a lifetime for which they can discard
 information about previous streams. If a pushed stream could
 associate itself with an already-closed stream, then endpoints would
 not have a specific lifecycle for when they could disavow knowledge
 of the streams which went before.

Belshe & Peon Expires August 4, 2012 [Page 42]

Internet-Draft SPDY Feb 2012

5. Security Considerations

5.1. Use of Same-origin constraints

 This specification uses the same-origin policy [RFC6454] in all cases
 where verification of content is required.

5.2. HTTP Headers and SPDY Headers

 At the application level, HTTP uses name/value pairs in its headers.
 Because SPDY merges the existing HTTP headers with SPDY headers,
 there is a possibility that some HTTP applications already use a
 particular header name. To avoid any conflicts, all headers
 introduced for layering HTTP over SPDY are prefixed with ":". ":" is
 not a valid sequence in HTTP header naming, preventing any possible
 conflict.

5.3. Cross-Protocol Attacks

 By utilizing TLS, we believe that SPDY introduces no new cross-
 protocol attacks. TLS encrypts the contents of all transmission
 (except the handshake itself), making it difficult for attackers to
 control the data which could be used in a cross-protocol attack.

5.4. Server Push Implicit Headers

 Pushed resources do not have an associated request. In order for
 existing HTTP cache control validations (such as the Vary header) to
 work, however, all cached resources must have a set of request
 headers. For this reason, browsers MUST be careful to inherit
 request headers from the associated stream for the push. This
 includes the 'Cookie' header.

https://datatracker.ietf.org/doc/html/rfc6454

Belshe & Peon Expires August 4, 2012 [Page 43]

Internet-Draft SPDY Feb 2012

6. Privacy Considerations

6.1. Long Lived Connections

 SPDY aims to keep connections open longer between clients and servers
 in order to reduce the latency when a user makes a request. The
 maintenance of these connections over time could be used to expose
 private information. For example, a user using a browser hours after
 the previous user stopped using that browser may be able to learn
 about what the previous user was doing. This is a problem with HTTP
 in its current form as well, however the short lived connections make
 it less of a risk.

6.2. SETTINGS frame

 The SPDY SETTINGS frame allows servers to store out-of-band
 transmitted information about the communication between client and
 server on the client. Although this is intended only to be used to
 reduce latency, renegade servers could use it as a mechanism to store
 identifying information about the client in future requests.

 Clients implementing privacy modes, such as Google Chrome's
 "incognito mode", may wish to disable client-persisted SETTINGS
 storage.

 Clients MUST clear persisted SETTINGS information when clearing the
 cookies.

 TODO: Put range maximums on each type of setting to limit
 inappropriate uses.

Belshe & Peon Expires August 4, 2012 [Page 44]

Internet-Draft SPDY Feb 2012

7. Incompatibilities with SPDY draft #2

 Here is a list of the major changes between this draft and draft #2.

 Addition of flow control

 Increased 16 bit length fields in SYN_STREAM and SYN_REPLY to 32
 bits.

 Changed definition of compression for DATA frames

 Updated compression dictionary

 Fixed off-by-one on the compression dictionary for headers

 Increased priority field from 2bits to 3bits.

 Removed NOOP frame

 Split the request "url" into "scheme", "host", and "path"

 Added the requirement that POSTs contain content-length.

 Removed wasted 16bits of unused space from the end of the
 SYN_REPLY and HEADERS frames.

 Fixed bug: Priorities were described backward (0 was lowest
 instead of highest).

 Fixed bug: Name/Value header counts were duplicated in both the
 Name Value header block and also the containing frame.

Belshe & Peon Expires August 4, 2012 [Page 45]

Internet-Draft SPDY Feb 2012

8. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

Belshe & Peon Expires August 4, 2012 [Page 46]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft SPDY Feb 2012

9. Acknowledgements

 Many individuals have contributed to the design and evolution of
 SPDY: Adam Langley, Wan-Teh Chang, Jim Morrison, Mark Nottingham,
 Alyssa Wilk, Costin Manolache, William Chan, Vitaliy Lvin, Joe Chan,
 Adam Barth, Ryan Hamilton, Gavin Peters, Kent Alstad, Kevin Lindsay,
 Paul Amer, Fan Yang, Jonathan Leighton

Belshe & Peon Expires August 4, 2012 [Page 47]

Internet-Draft SPDY Feb 2012

10. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
RFC 793, September 1981.

 [RFC1738] Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform
 Resource Locators (URL)", RFC 1738, December 1994.

 [RFC1950] Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data Format
 Specification version 3.3", RFC 1950, May 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2285] Mandeville, R., "Benchmarking Terminology for LAN
 Switching Devices", RFC 2285, February 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, June 2006.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 December 2011.

 [TLSNPN] Langley, A., "TLS Next Protocol Negotiation",
 <http://tools.ietf.org/html/

draft-agl-tls-nextprotoneg-01>.

 [ASCII] "US-ASCII. Coded Character Set - 7-Bit American Standard
 Code for Information Interchange. Standard ANSI X3.4-1986,
 ANSI, 1986.".

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1738
https://datatracker.ietf.org/doc/html/rfc1950
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2285
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6454
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg-01
http://tools.ietf.org/html/draft-agl-tls-nextprotoneg-01

Belshe & Peon Expires August 4, 2012 [Page 48]

Internet-Draft SPDY Feb 2012

 [UDELCOMPRESSION]
 Yang, F., Amer, P., and J. Leighton, "A Methodology to
 Derive SPDY's Initial Dictionary for Zlib Compression",
 <http://www.eecis.udel.edu/~amer/PEL/poc/pdf/

SPDY-Fan.pdf>.

Belshe & Peon Expires August 4, 2012 [Page 49]

http://www.eecis.udel.edu/~amer/PEL/poc/pdf/SPDY-Fan.pdf
http://www.eecis.udel.edu/~amer/PEL/poc/pdf/SPDY-Fan.pdf

Internet-Draft SPDY Feb 2012

Appendix A. Changes

 To be removed by RFC Editor before publication

Belshe & Peon Expires August 4, 2012 [Page 50]

Internet-Draft SPDY Feb 2012

Authors' Addresses

 Mike Belshe
 Twist

 Email: mbelshe@chromium.org

 Roberto Peon
 Google, Inc

 Email: fenix@google.com

Belshe & Peon Expires August 4, 2012 [Page 51]

