
N/A

Internet-Draft

Intended status: Informational

Expires: November 27, 2011

Matt Benjamin

Linux Box Corporation

April 27, 2011

AFS Byte-Range Locking

draft-mbenjamin-afs-file-locking-06

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet
Engineering Task Force (IETF), its areas, and its working
groups. Note that other groups may also distribute working
documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other
documents at any time. It is inappropriate to use
Internet-Drafts as reference material or to cite them other
than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

The list of Internet-Draft Shadow Directories can be accessed
at http://www.ietf.org/shadow.html

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with
respect to this document.

https://datatracker.ietf.org/doc/html/draft-mbenjamin-afs-file-locking-06
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Benjamin April 04, 2011 [Page 2]

Abstract

The AFS-3 protocol supports file locks, but only on whole
files, only in advisory mode. Efficient support for byte-range
file locking, together with the stronger semantics with which
they are associated, are required to improve the suitability of
AFS as a LAN file-sharing protocol for both Unix and Windows
clients. Applications on the Windows platform, in particular
(e.g., Microsoft Office), actually require byte-range locking
to function correctly. Emulation in the client has alleviated
most serious problems, albeit, with reduced semantics. We
propose protocol enhancements facilitating server-coordinated
byte-range locks, atomic lock up/down-grade support, improved
semantics for files under byte-range lock control, protocol
support for wait-on-lock with fairness, and mandatory lock
enforcement for clients on request. The delegation proposal,
included within this document in previous drafts, has been
split out into a separate proposal, based on feedback from
reviewers.

Table of Contents

Status of this Memo
Copyright Notice
Abstract
 1 Introduction
 2 Conventions Used in this Document
 3 Byte-Range Locking Interfaces
 3.1 Dependencies
 3.2 Backward Compatibility
 3.3 Concepts
 3.3.1 General
 3.3.2 Lock Management
 3.3.3 Share Reservations
 3.3.4 POSIX Conventions
 3.3.5 Deferred Locks
 3.3.6 Server Restarts
 3.4 Constants
 3.4.1 Lock Type
 3.4.2 Lock Flags
 AFSLock_Flag_Mand
 AFS_Lock_Flag_Wait
 AFSLock_Flag_TestLock
 AFS_Lock_Flag_EReturn
 3.4.3 Lock Flags for Share Reservation
 AFSLock_Flag_Share_Read
 AFSLock_Flag_Share_Write
 AFSLock_Flag_Share_Exclusive
 3.4.4 Lock Status
 AFSLock_Flag_Extend
 AFSLock_Flag_Discard

 3.4.5 Extended Callback Constants
 3.4.6 Extended Callback Extra Flags
 AFSCB_Lock_Flag_All
 AFSCB_Cancel_ExtendLocks
 AFSCB_Cancel_RevokeLocks
 AFSCB_Flag_ExtendLocks
 AFSCB_Flag_RevokeLocks
 3.5 Data Types
 3.5.1 AFSByteRangeLock
 Fid
 Type
 Owner
 Uniq
 Offset
 Length
 Expiration
 Txid
 Token
 3.5.2 AFSByteRangeLockSeq
 3.5.3 AFSByteRangeLockPointer
 3.5.4 AFSByteRangeLockPointerSeq
 3.5.5 AFSLockHostIdentifierSeq
 3.5.6 AFSCB_NotificationData Redefinition
 AFSCB_Data_Flock
 3.6 Procedures
 3.6.1 SetByteRangeLock
 Notes
 Async Lock Issue vs Polling
 POSIX Semantics
 Share Reservations
 Error Codes
 EACCES
 EAGAIN (EWOULDBLOCK)
 EDEADLK
 EINVAL
 ENAVAIL
 ENOLCK
 3.6.2 ReleaseByteRangeLock
 Notes
 POSIX Semantics
 Error Codes
 EINVAL
 3.6.3 UpgradeByteRangeLock
 Error Codes
 EINVAL
 EWOULBLOCK
 EDEADLK
 3.6.4 DowngradeByteRangeLock
 Notes
 Error Codes
 EINVAL

 3.6.5 AssertExtendLocks
 3.6.6 GetByteRangeLockStatus
 Error Codes
 EACCES
 3.6.7 CancelByteRangeLock
 3.6.8 CreateFileLocked
 Error Codes
 3.7 Windows File Locking Semantics
 3.7.1 Byte-Range Locking vs. Byte-Range Lock Emulation
 3.7.2 Atomic Lock Open
 3.8 Lock Enforcement
 3.8.1 Governing Ideas
 3.8.2 Enforcement Rules
 3.8.3 Implementation Note
 4 Security Considerations
 5 IANA Considerations
 6 Appendix A: XDR Grammar (afsint.xg)
 7 Appendix A: XDR Grammar (afscbint.xg)
 Author's Address

1 Introduction

While AFS-3 does support file locking, it permits locking of
whole-files only, and provides this support inefficiently. AFS
clients can take locks on any file object, with the granularity
of an entire file, using the RXAFS_SetLock procedure, and
release them with the RXAFS_ReleaseLock procedure. AFS uses a
poll-based locking model. AFS file locks, once issued, are
considered to persist only for 5 minutes, unless extended by
the requesting client using the RXAFS_ExtendLock procedure. The
OpenAFS file server implementaion, based on the original
Transarc AFS file server, tracks locks directly in its on-disk
volume structures. The disk package tracks lock type (LockRead
or LockWrite), numbers of clients holding locks, and a
timestamp. Lock ownership, which in many cases may be reliably
inferred, is not recorded. Hence, a broken or malicious client
might release locks it never set (i.e., locks set by other
clients). The AFS protocol also does not permit atomic lock
upgrades (or downgrades).

2 Conventions Used in this Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described
in RFC 2119.

Benjamin April 04, 2011 [Page 3]

https://datatracker.ietf.org/doc/html/rfc2119

3 Byte-Range Locking Interfaces

3.1 Dependencies

The byte-range lock feature depends on support for extended
callback notifications and extended host tracking support in
client and server.

3.2 Backward Compatibility

AFS clients and servers will indicate their support for
byte-range locking through new client and file server
capability flags:

const CLIENT_CAPABILITY_BYTE_RANGE_LOCK = 0x0008;

const VICED_CAPABILITY_BYTE_RANGE_LOCK = 0x0010;

Additionally, a client capability flag is provided to indicate
when a client is prepared to accept async lock issue
notifications, as a substitute for polling:

const VICED_CAPABILITY_ASYNC_LOCK_ISSUE = 0x0020;

3.3 Concepts

3.3.1 General

An AFS file server is responsible to coordinate byte-range
locking requests and, optionally, enforce mandatory locking
semantics relative to file operations, initiated at different
clients. By contrast with the traditional AFS file locking
protocol, the proposed byte-range locking protocol makes an
attempt to associate locks with a unique subject, specifically,
a ViceID and unique identifier which could correspond to a
unique session or process executing on the client machine.

Clients (cache-manager processes not co-located in memory)
request and release byte-range locks through a pair of
interfaces (RequestByteRangeLock, ReleaseByteRangeLock) similar
to those provided by the traditional AFS locking
implementation. Two base lock types (read and write, in general
regarded as "shared" or "exclusive") locks, plus a new share
reservation lock type, are defined. Additional arguments and
flags are provided to permit selection of desired lock ranges,
intention to "wait" on the lock (i.e., willing to accept a
deferred issue of the lock at such time as the file server can
grant the lock, if it cannot be granted immediately), and
desired special semantics--currently, the client may request
mandatory enforcement. Clients already holding a read or write
lock on a range may atomically upgrade or downgrade the lock to
the orthogonal type, i.e., they need not release a lock of one

type before requesting the other type, avoiding the race
condition present in the traditional AFS locking protocol.
Byte-range locks are permanently associated with an owner, the
client which requested the lock. A lock may not be released by
a client which never owned it.

Benjamin April 04, 2011 [Page 4]

A file server may revoke locks granted to any client, for any
reason. The file server may also request clients to re-assert
their interest in outstanding locks, at any time--in
particular, if a client holding locks has not been heard from
for a long period (e.g., 10 minutes). Provision is made for
re-establishment of state after server restarts or other
service interruptions.

Administrative users may under various circumstances have need
to identify the owner and state of locks on a locked file, and
to revoke file locks administratively. This proposal includes
RPCs allowing administrative users to perform these operations,
and suggests exposure through new AFS pioctls and the fs
command.

3.3.2 Lock Management

Lock management in the proposed interface is completely
redefined relative to the file locking in AFS-3. Concepts are
borrowed from AFS cache management, including the callback
concept. A byte-range lock may be regarded as a special-purpose
callback. A file server may use the ExtendedCallBack interface
to request re-assertion of existing locks or revoke (cancel)
locks completely. These indications re-use the existing
AFSCB_Event_Cancel extended callback notification, adding new
cancellation types defined below.

3.3.3 Share Reservations

To support platforms in which use mandatory locking and other
enhanced sharing semantics, in particular, to support Microsoft
Windows sharing semantics, a new share reservation mechanism is
proposed. AFS-3 share reservations serve a purpose similar to
the correspondingly named facility in NFSv4. Share reservations
provide a means by which clients can reserve, in advance of any
I/O or ordinary locking operations, a specific set of sharing
semantics. For example, a client would use a share reservation
to request mandatory enforcement semantics, or to request a
specific share mode. AFS-3 share reservations are locks
acquired and released by clients using the SetByteRangeLock and
ReleaseByteRangeLock procedures defined in this document, with
special meaning. A share reservation may be taken only at
whole-file granularity.

3.3.4 POSIX Conventions

In addition to having (as presently standardized) advisory
semantics, the application interfaces for file locking on
Unix-like platforms are not entirely uniform (cf. fcntl, flock,
lockf) and not uniformly compatible with those on Windows
operating systems. In particular, a POSIX file locking

implementation may consolidate adjacent lock ranges taken in
different lock requests. In addition, POSIX permits unlocking
of potentially non-overlapping locked ranges (including locks
of different types) in a range in a single operation and
permits splitting of a locked range by unlocking an intervening
range. A POSIX client may request a lock spanning any future
end-of-file by setting a lock length of 0. None of these
behaviors is permitted using Windows file locking interfaces.
Consolidation of adjacent locked ranges, in particular, would
be unexpected and incorrect behavior for a Windows file locking
client. ("Two adjacent regions of a file cannot be locked
separately and then unlocked using a single region that spans
both locked regions.") The listed behaviors are not visible to
other (possibly non-Unix) clients independently operating on
the same file, however, and each is bounded by the scope of a
specific operation (e.g., SetByteRangeLock or
ReleaseByteRangeLock). Hence a per-call flag is sufficient to
allow a cache manager to select appropriate semantics for its
platform. The present document attempts to provide a uniform
interface for a superset of POSIX file locking facilities. For
each operation where a choice of operational semantics is
available, the client may specify POSIX semantics, defined as
supporting the above-listed behaviors for both shared and
exclusive locks, using the AFSLock_Flag_Posix flag. The
unmarked semantics are those of the corresponding Windows file
locking operation.

Benjamin April 04, 2011 [Page 5]

3.3.5 Deferred Locks

Where possible, locks are granted immediately with the
completion of the SetByteRangeLock request. A file server MAY,
on explicit request and subject to client capability, agree to
prospectively issue a lock to an interested client at a future
time, when the requested lock becomes available. Such deferred
locks constitute a promise to issue the lock with best-effort
consideration of fairness. A new extended callback notification
(AFSCB_Event_Flock) is provided to effect asynchronous issue of
a deferred lock to a waiting client, for clients configured to
accept it. Clients not configured for async issue processing
must alternatively poll for desired locks. Deferred locks may
themselves be canceled.

3.3.6 Server Restarts

When a byte-range locking capable client receives one of the
InitCallBackState RPCs from a byte-range locking capable file
server, it must assume that any byte-range locks it held prior
to receipt must be re-asserted or bulk-released at the file
server, using the server's AssertExtendLocks RPC. A conformant
file server may, but need not, be prepared to validate locks
previously issued to clients, across server restarts. In future
revisions, the Token attribute of AFSByteRangeLock may allow
file servers to reliably recognize locks they issued in these
circumstances, using cryptographic or other mechanisms.

3.4 Constants

3.4.1 Lock Type

AFS-3 defines the following lock types:

%#define LockRead 0

%#define LockWrite 1

%#define LockExtend 2

%#define LockRelease 3

The current draft adds the following new lock type:

const LockShareReservation = 4;

3.4.2 Lock Flags

The following flag constants are defined for use in the Flags
member of the AFSByteRangeLock structure and equivalently in
the Flags argument of the SetByteRangeLock procedure, with the
same semantics:

Benjamin April 04, 2011 [Page 6]

const AFSLock_Flag_Mand = 0x0001; /* Request mandatory
enforcement */

const AFSLock_Flag_Wait = 0x0002; /* Request async wait on
lock */

const AFSLock_Flag_Posix = 0x0004; /* Request posix semantics
*/

const AFSLock_Flag_TestLock = 0x0100; /* test for conflicts
only */

const AFSLock_Flag_EReturn = 0x1000; /* error return flag */

 AFSLock_Flag_Mand

Requests mandatory enforcement when sent with a
SetByteRangeLock request or in a deferred AFSByteRangeLock
instance. Asserts mandatory enforcement in an AFSByteRangeLock
instance.

 AFS_Lock_Flag_Wait

Requests deferred lock if immediate lock cannot be granted when
sent with a SetByteRangeLock request. Indicates deferred lock
in an AFSByteRangeLock instance. The SetByteRangeLock procedure
may return locks in this state, subject to client capability
and if so requested in the Flags argument.

 AFSLock_Flag_TestLock

Requests that the current lock request be evalutated only for
conflict information.

 AFS_Lock_Flag_EReturn

When set on return from a lock request, coincides with an error
return and non-zero members in Lock describe a conflicting lock
which was in effect at the time of the request and obstructed
it.

3.4.3 Lock Flags for Share Reservation

The following flag constants are defined for use in the Flags
member of the AFSByteRangeLock structure and equivalently in
the Flags argument of the SetByteRangeLock procedure, and
specifcally, identify share reservations:

const AFSLock_Flag_Share_Read = 0x0008; /* Allow Share
mode READ (Share Reservation) */

Benjamin April 04, 2011 [Page 7]

const AFSLock_Flag_Share_Write = 0x0010; /* Allow Share
mode WRITE (Share Reservation) */

const AFSLock_Flag_Share_Exclusive = 0x0020; /* Assert
EXCLUSIVE sharing (Share Reservation) */

 AFSLock_Flag_Share_Read

Share reservation. Allow future clients to open this file for
reading. Opens for writing mode and requests for write locks
will fail unless the AFSLock_Flag_Share_Write flag is set.

 AFSLock_Flag_Share_Write

Share reservation. Allow future clients to open this file for
writing. Opens for reading mode and requests for read locks
will fail unless the AFSLock_Flag_Share_Read flag is set.

 AFSLock_Flag_Share_Exclusive

Share Reservation. Requests exclusive access to the file by the
requesting process at the requesting client.

3.4.4 Lock Status

The following flag constants are provided to coordinate
advanced lock-management operations:

const AFSLock_Flag_Extend = 4; /* request extension, or server
ack extended */

const AFSLock_Flag_Discard = 8; /* discard lock, or server ack
discarded */

 AFSLock_Flag_Extend

Sent with AssertExtendLocks indicates request to assert/extend
the corresponding lock. Returned from AssertExtendLocks in
OutStatus array, indicates lock confirmation.

 AFSLock_Flag_Discard

Sent with AssertExtendLocks indicates intention to discard the
corresponding lock. Returned from AssertExtendLocks in
OutStatus array, acknowleges lock discard.

3.4.5 Extended Callback Constants

The following extended callback cancellation types and flags
are provided, to facilitate lock management through the
ExtendedCallback interface:

Benjamin April 04, 2011 [Page 8]

const AFSCB_Cancel_ExtendLocks = 7; /* re-assert locks, or lose
them */

const AFSCB_Cancel_RevokeLocks = 8; /* locks on Fid revoked */

These cancellation types are intended to be sent with
notifications of the existing AFSCB_Event_Cancel type.

3.4.6 Extended Callback Extra Flags

 AFSCB_Lock_Flag_All

Sent as the value of ExtraFlags when the notification type is
AFSCB_Cancel_ExtendLocks or AFSCB_Cancel_RevokeLocks, the
notification shall apply to all eligible objects, in which a 0
value has also been set for one or more of Volume, Fid, Uniq in
the corresponding callback, with the following intepretation:

- If Volume is non-zero, and is published from the sending file
 server, while Fid and Uniq are 0, then all outstanding locks
 on files in the volume are requested to be re-asserted or
 revoked, depending on the value of the corresponding
 notification

 - If the notification type is AFSCB_Cancel_ExtendLocks, all
 corresponding locks are requested to be extended

 - If the notification type is AFSCB_Cancel_RevokeLocks, all
 corresponding locks are revoked

- If all of Volume, Fid, and Uniq are 0, then all outstanding
 locks on files published from this server are requested to be
 re-asserted or revoked, depending on the value of the
 corresponding notification

 - If the notification type is AFSCB_Cancel_ExtendLocks, all
 corresponding locks are requested to be extended

 - If the notification type is AFSCB_Cancel_RevokeLocks, all
 corresponding locks are revoked

 AFSCB_Cancel_ExtendLocks

When sent as the reason for cancellation in an ExtendedCallback
notification, indicates the server requires re-assertion of all
locks on FID using the file server's AssertExtendLocks
procedure. The client MUST execute the procedure for all locks
it asserts on FID prior to the Expiration in the callback, else
it MUST consider any locks it held on FID to be canceled.

Benjamin April 04, 2011 [Page 9]

 AFSCB_Cancel_RevokeLocks

When sent as the reason for cancellation in an ExtendedCallback
notification, indicates administrative cancellation of all
locks on FID.

const AFSCB_Flag_AssertLocks = 4; /* request ExtendLock */

const AFSCB_Flag_RevokeLocks = 8; /* locks cancelled */

 AFSCB_Flag_ExtendLocks

Has the same meaning and effect as AFSCB_Cancel_ExtendLocks,
but may be sent with an arbitrary extended callback message.

 AFSCB_Flag_RevokeLocks

Has the same meaning and effect as AFSCB_Cancel_RevokeLocks,
but may be sent with an arbitrary extended callback message.

3.5 Data Types

3.5.1 AFSByteRangeLock

The AFSByteRangeLock data type represents a byte-range lock
issued by an AFS file server:

struct AFSByteRangeLock {

 AFSFid Fid;

 afs_uint32 Type;

 afs_uint32 Owner;

 afs_uint64 Uniq;

 afs_uint32 Flags;

 afs_uint64 Offset;

 afs_uint64 Length;

 afs_uint64 Expiration;

 AFSOpaque Txid;

 AFSOpaque Token;

Benjamin April 04, 2011 [Page 10]

};

 Fid

The Fid on which the lock is held.

 Type

The type of lock requested, LockRead or LockWrite. A byte-range
read lock is a non-exclusive read assertion on the stated
range, which may be shared by any number of readers and no
writers. A byte-range lock is an exclusive write assertion on
the stated range.

 Owner

The ViceID in use by the client requesting the lock.

 Uniq

Value uniquely identifying a session or process context at the
client. The representation of Uniq is intended to be able to
uniquely represent the most relevant process or thread context
on modern platforms.

 Offset

The distance in bytes from beginning-of-file to the start of
the locked range.

 Length

Length in bytes of the locked range.

 Expiration

AFSByteRangeLock instances may be regarded as a special-purpose
callback. Instances persist until canceled, or until Expiration
is reached.

 Txid

An arbitrary counted bytestring originating at the client with
the original request granting a lock. Defined for this revision
of the specification to have a maximum length of 0.

 Token

An arbitrary counted bytestring originating at the server when
the lock is issued. Defined for this revision of the
specification to have a maximum length of 0. In future
revisions it may be used to store an "irrefutable"

cryptographic object which may be used to re-assert locks after
server restart, or similar scenarios.

Benjamin April 04, 2011 [Page 11]

3.5.2 AFSByteRangeLockSeq

A variable-length array of type AFSByteRangeLock used for bulk
calls for asserting and locks.

const AFSFLOCKMAX = 512;

typedef AFSByteRangeLock AFSByteRangeLockSeq<AFSFLOCKMAX>;

3.5.3 AFSByteRangeLockPointer

A convenience typedef for a pointer to an AFSByteRangeLock
object.

3.5.4 AFSByteRangeLockPointerSeq

An array of pointers to objects of type AFSByteRangeLock, used
by AssertExtendLocks to return locks with updated expiration
time.

typedef AFSByteRangeLockPointer
AFSByteRangeLockPointerSeq<AFSFLOCKMAX>;

3.5.5 AFSLockHostIdentifierSeq

typedef HostIdentifier AFSLockHostIdentifierSeq<AFSFLOCKMAX>;

An array of HostIdentifier structures used by the
GetByteRangeLockStatus procedure to report client machines
holding locks.

3.5.6 AFSCB_NotificationData Redefinition

The AFSCB_NotificationData union defined in the Callback
Extended Information draft is redefined (upward compatibly), as
the following:

const AFSCB_Event_Flock = 14;

ext-union AFSCB_NotificationData switch (afs_uint32 Event_Type)
{

 ...

Benjamin April 04, 2011 [Page 12]

 case AFSCB_Event_Flock:

 AFSCB_Data_Flock u_xlock;

 };

 AFSCB_Data_Flock

A struct AFSCB_Data_Flock is defined to be the type of
AFSCB_NotificationData at AFSCB_Event_Flock. The structure is
equivalent to an AFSByteRangeLock except it omits Fid.

struct AFSCB_Data_Flock {

 afs_uint32 Type;

 afs_uint32 Owner;

 afs_uint64 Uniq;

 afs_uint32 Flags;

 afs_uint64 Offset;

 afs_uint64 Length;

 afs_uint64 Expiration;

 AFSOpaque Txid;

 AFSOpaque Token;

};

3.6 Procedures

3.6.1 SetByteRangeLock<sub:SetByteRangeLock>

Requests a lock of type Lock.Type on Fid, on the range
[Lock.Offset, Lock.Offset+Lock.Length). Lock.Type must be one
of LockRead or LockWrite. Lock.Owner shall be set to the ViceID
corresponding to the requesting process or equivalent, or to 0
if this is not known. Lock.Uniq shall be set to a value
uniquely identifying the requesting process or equivalent. On
Unix-like systems, Lock.Uniq could be set to the PID of the
requesting process. Lock.Txid shall be a counted bytestring
corresponding to the AFSByteRangeLock attribute of the same
name. Lock.Txid is defined at this revision to have length 0.

Benjamin April 04, 2011 [Page 13]

proc SetByteRangeLock(

 IN AFSFid *Fid,

 INOUT AFSByteRangeLock *Lock

) = 65601;

 Notes

On successful return the file server has granted the requested
lock, and Lock points to the server's asserted AFSByteRangeLock
structure. If the client has requested and the server agrees to
issue a deferred lock, Lock points to the server's asserted
deferred AFSByteRangeLock structure. The client may safely
determine if it has been granted a deferred lock by inspecting
the value of Lock->Flags.

The returned Lock structure MAY differ from request with
respect to Flags. The returned Lock structure MUST NOT differ
from the request with respect to range, unless
AFSLock_Flag_EReturn is to be returned (below), or unless POSIX
semantics are in effect.

If a SetByteRange lock request would fail due to conflict, or
if AFSLock_Flag_Test is set in the request and the request
would have failed due to conflict, the server MAY provide
conflict information. To do so, the server returns EAGAIN,
setting flag AFSLock_Flag_EReturn. Non-zero members in the
returned Lock, less Expiration, describe a conflicting lock
which was in effect at the time of the request and obstructed
it. The returned value for Lock->Expiration indicates the
earliest time the client should resend the lock request (see
polling, below).

The value of the Flags argument may alter the semantics and/or
processing of the call:

- if (Flags & AFSLock_Flag_Mand), file server is requested to
 provide mandatory locking semantics as defined below--if the
 file server is willing to provide mandatory enforcement, it
 MAY set the corresponding flag in Lock, and if so MUST
 restrict writes on the asserted range to the holding client
 for the duration of the lock. It is expected that clients
 will request mandatory enforcement in a share reservation
 request.

- if (Flags & AFSLock_Flag_Wait), file server is requested to
 issue a deferred lock if the requested lock may not be
 immediately granted--the file server MAY grant a deferred
 lock in response to this request, indicating its agreement by
 setting the corresponding flag in Lock. Lock is in this

 instance an indicator only of the deferred lock promise

Benjamin April 04, 2011 [Page 14]

- if (Flags & AFSLock_Flag_Posix), POSIX lock semantics for
 byte range locks will be observed for the current request

 Async Lock Issue vs Polling

A file server MUST be prepared to support clients unable to use
the async lock issue mechanism. That is, it publishes the
VICED_CAPABILITY_BYTE_RANGE_LOCK capabilty, but not
VICED_CAPABILITY_ASYNC_LOCK_ISSUE. This situation may arise
when a client is operating in an unsecured environment and also
lacks a secured callback channel.

A file server MUST distingush clients not eligible for async
issue, and for these clients:

1. send the AFSCB_Event_ReleaseLock extended call back
 notification to such clients when the client would be
 eligible to acquire a lock it has previously requested, under
 specific conditions

2. notify clients selectively in the presence of contention, so
 as to achieve a best-effort degree of fairness

3. in consideration of read/write semantics, notify potentially
 multiple clients with compatible shared lock requests

To improve the efficiency of polling, clients are provided with
a lock expiration hinting mechanism, as follows:

1. when a client SetByteRangeLock (UpgradeByteRangeLock) cannot
 be granted, the value for Expiration in the returned Lock
 object indicates

 (a) the expiration time of the corresponding deferred lock

 i. if the client had sent AFSLock_Flag_Wait, and a deferred
 lock was successfully issued by the server, and the
 client has published the capability to accept
 AFSCB_Event_Flock (async lock issue) notifications

 (b) the minimum interval which the client MUST delay polling
 for the requested lock,

 i. if the client as not published the capability to accept
 AFSCB_Event_Flock (async lock issue) notifications

2. if a client is unable to to accept async lock issue
 notifications but expresses willingness to wait for a
 SetByteRangeLock (UpgradeByteRangeLock) to complete, the
 server MUST

Benjamin April 04, 2011 [Page 15]

 (a) send an AFSCB_Event_ReleaseLock notification when it
 believes the client would be eligible to receive the lock
 if such a condition arises prior to the Expiration it sent
 with the corresponding lock request, or

 (b) send an AFSCB_Event_Cancel notification for the
 corresponding Fid, to inform the client that its pending
 notification is cancelled

 POSIX Semantics

The following behaviors are specified only when POSIX file lock
semantics are in effect:

- If a process has existing locks on a file F and requests a
 new lock in a range overlapping existing locks and the type
 of each existing lock is LockRead or LockWrite, the type of
 the existing lock(s) shall be replaced by the new lock type

- If a process requests a lock adjacent to an existing lock of
 the same type it already holds, the locks SHOULD be
 consolidated into a single lock, this will be indicated in
 the returned structure

- If a process requests a lock with a length of 0, the lock, if
 granted, extends through any future end-of-file

 Share Reservations

A share reservation is a file lock which is logically and
operationally distinct from traditional read and write locks,
but interact with lock requests of these types according to the
following rules, (as noted, share reservations are only issued
at whole-file granularity):

- if a client holds an exclusive share reservation on a file F,
 the following assertions hold for the duration of the
 reservation:

 - no other client, nor the same client, may be granted a
 share reservation of any type on F

 - no other client may be granted a byte-range or whole-file
 lock of any type on F

 - the same client may be granted byte-range or whole-file
 locks on F, according to ordinary rules

- if a client holds a read share reservation (but no write
 share reservation) on a file F, we assert:

Benjamin April 04, 2011 [Page 16]

 - other clients may be granted a read share reservation on F

 - other clients may be granted byte-range or whole-file read
 locks on F, according to ordinary rules

 - no other client may be granted a byte-range or whole-file
 write lock on F

 - no other client may be granted an exclusive share
 reservation on F

 - no other client may be granted a write share reservation on
 F

 * the same client may be granted such a reservation,
 provided its read share reservation is the only existing
 on F

- if a client holds a write share reservation (but no read
 share reservation) on a file F, we assert:

 - other clients may be granted a write share reservation on F

 - other clients may be granted byte-range or whole-file write
 locks on F, according to ordinary rules

 - no other client may be granted a byte-range or whole-file
 read lock on F

 - no other client may be granted a read share reservation on
 F (but the same client may be granted such a reservation)

 - no other client may be granted an exclusive share
 reservation on F

- if a client holds a read and write (AFSLock_Share_Read |
 AFSLock_Share_Write) share reservation on a file F, we assert

 - other clients may be granted read or write or (read |
 write) share reservations on F

 - other clients may be granted read or write locks on F,
 according to ordinary rules

 - no other client may be granted an exclusive share
 reservation on F

- a client which holds a read or write byte-range or whole-file
 lock on F but holds no share reservation on F, may be
 following POSIX semantics (although such a client could also
 have requested a read and write share reservation)

Benjamin April 04, 2011 [Page 17]

 - in such a case, no other client may be granted a share
 reservation of any type on F

In addition, the AFSLock_Share_Mand flag may be included in a
share reservation to request mandatory enforcement of
byte-range locks, as described in this document. Clients which
prefer mandatory enforcement are expected to take a
corresponding share reservation to assert this preference
whenever appropriate. It is believed that the above rules
permit a correct client implementation to achieve Windows file
sharing semantics, by taking/releasing appropriate share
reservations when files are opened/closed by applications at
the client. As noted, the share reservation may be used by any
client implementation.

 Error Codes

 EACCES

The caller does not have the necessary rights.

 EAGAIN (EWOULDBLOCK)

The server is unable to grant the request due to conflicting
locks. If a deferred lock was requested, a Flags value of
AFSLock_Flag_Wait indicates the deferred lock is granted.

 EDEADLK

The server declines to grant the requested lock (or deferred
lock) because granting it would cause a deadlock.

 EINVAL

An illegal lock type was specified.

 ENAVAIL

The server unable to grant the request due to a conflicting
share reservation. If a deferred lock was requested, a Flags
value of AFSLock_Flag_Wait indicates a deferred lock is
granted.

 ENOLCK

The server has insufficient resources to grant the lock, or the
requesting client or file has too many locks outstanding. (No
specific limits are mandated or suggested by this document.)

Benjamin April 04, 2011 [Page 18]

3.6.2 ReleaseByteRangeLock

Releases the byte-range lock represented in Lock.

proc ReleaseByteRangeLock(

 IN AFSByteRangeLock *Lock

) = 65602;

 Notes

When an AFS client intends to release a byte-range write lock,
it MUST ensure that any changed data in the effected range has
been sent to the file server with the appropriate StoreData
RPC, and that the RPC completed successfully. This requirement
is based on an implied assertion that holding a lock on some
region of a file implies, invariantly, an up-to-date view on
the locked region.

The value of the Flags argument may alter the semantics and/or
processing of the call:

- if (Flags & AFSLock_Flag_Posix), POSIX lock semantics for
 byte range locks will be observed for the current request

 POSIX Semantics

The following behaviors are specified only when POSIX file lock
semantics are in effect:

- an arbitrary number of previously-locked ranges, of type
 LockRead or LockWrite, may be released with a single
 ReleaseByteRangeLock request

- if Lock.Length is 0, the released range extends to the
 current end-of-file

By contrast, when default file locking semantics are in effect,
the range is asserted to be held by the calling client with the
supplied lock type.

 Error Codes

 EINVAL

The caller does not own the corresponding lock.

3.6.3 UpgradeByteRangeLock

Benjamin April 04, 2011 [Page 19]

Upgrades the byte-range lock represented in Lock, asserted to
be held by the calling client, from its current type (which
should be LockRead) to LockWrite. The upgrade is executed
atomically (no opportunity exists for another client to set a
conflicting lock in the upgraded range while the upgrade is
being executed).

On unsuccessful return the file server MAY set flag
AFSLock_Flag_EReturn. In this case, non-zero members in Lock
describe a conflicting lock which was in effect at the time of
the request and obstructed it.

proc UpgradeByteRangeLock(

 IN AFSByteRangeLock *Lock,

 afs_uint32 Type

) = 65603;

 Error Codes

 EINVAL

The caller does not own the corresponding lock or it is not of
the correct type.

 EWOULBLOCK

The lock could not be granted due to conflicting locks.

 EDEADLK

The lock could not be granted because granting it would cause
deadlock.

3.6.4 DowngradeByteRangeLock

Downgrades the byte-range lock represented in Lock, asserted to
be held by the calling client, from its current type (which
should be LockWrite) to LockRead. The downgrade is executed
atomically (no opportunity exists for another client to set a
conflicting lock in the downgraded range while the downgrade is
being executed).

proc DowngradeByteRangeLock(

 IN AFSByteRangeLock *Lock,

Benjamin April 04, 2011 [Page 20]

 afs_uint32 Type

) = 65604;

 Notes

When an AFS client intends to downgrade a byte-range write
lock, it MUST ensure that any changed data in the effected
range has been sent to the file server with the appropriate
StoreData RPC, and that the RPC completed successfully. This
requirement is based on an implied assertion that holding a
lock on some region of a file implies, invariantly, an
up-to-date view on the locked region.

 Error Codes

 EINVAL

The caller does not own the corresponding lock or it is not of
the correct type.

3.6.5 AssertExtendLocks

A file server may, at any time, request a client to re-assert
its interest in oustanding locks, or revoke those locks
altogether. It is expected that clients not heard from for a
long period (e.g., 10 minutes) would be requested to re-assert
any outstanding locks they hold. To request re-assertion of
outstanding locks, the file server may send the client an
extended callback notification on the corresponding Fids of
type AFSCB_Cancel_ExtendLocks, or it may set the flag
AFSCB_Flag_ExtendLocks on a notification of another type it was
already intending to send.

On receipt of an AFSCB_Cancel_ExtendLocks or
AFSCB_Flag_ExtendLocks notification through the extended
callback interface, a client MUST either:

- return any locks it asserts in AssertedLocks_Array, the type
 of union AFSCB_ResultData for these calls

 - if the server rejects any locks asserted by the client, it
 will so notify client in a subsequent cancellation message

- set a result of AFSCB_Result_ResponseDeferred, and execute
 the AssertExtendLocks bulk call before the Expiration in the
 AFSExtendedCallback structure sent with the callback

Fid is the file for which locks are being extended. Flags
contains indication of special semantics (e.g., mandatory
enforcement) being asserted, if any. AssertedLocks_Array points
to a variable length array of AFSByteRangeLock structures the

client asserts to hold. At the completion of the call, the
parallel array OutResult indicates the server's confirmation
(or refusal) to extend each asserted lock--a value of (Flags &
AFSLock_Flag_Extend_Ok) indicates confirmation.

Benjamin April 04, 2011 [Page 21]

/* Assert locks on Fid, on request */

proc AssertExtendLocks (

 IN afs_uint32 Flags,

 AFSByteRangeLockSeq *AssertedLocks_Array,

 OUT AFSByteRangeLockPointerSeq *ConfirmedLocks_Array,

 AFSLockCodeRSeq *Result_Array

) = 65607;

3.6.6 GetByteRangeLockStatus

This is a diagnostic procedure provided to permit system
administrators to identify client machines and software running
on those clients that are currently holding locks on a file.
Fid is the file to report on. The call returns parallel
variable-length arrays of locks and their associated hosts. The
procedure may only be executed by the AFS super user or members
of the system:administrators group.

proc GetByteRangeLockStatus(

 IN AFSFid Fid,

 OUT AFSByteRangeLockSeq *AssertedLocks_Array,

 AFSLockHostIdentifierSeq *Clients_Array

) = 65605;

 Error Codes

 EACCES

The caller does not have the necessary rights.

3.6.7 CancelByteRangeLock

The CancelByteRangeLock procedure permits system administrators
to revoke active locks that may be obstructing normal
operations, perhaps due to a system or network problem. Fid is
the file on which to revoke locks. If successful, all locks in
range [Offset, Offset+Length) are canceled If a value of 0 is
given for Offset and Length the range is taken to span the
entire file. The procedure may only be executed by the AFS
super user or members of the system:administrators group.

Benjamin April 04, 2011 [Page 22]

proc CancelByteRangeLocks(

 IN AFSFid *Fid,

 afs_uint64 Offset,

 afs_uint64 Length

) = 65606;

3.6.8 CreateFileLocked

The CreateFileLocked procedure is to be regarded as if it
consisted of of two actions, an initial CreateFile action, and
a subsequent SetByteRangeLock action, taken atomically. The
CreateFile action is taken first, and if the request succeeds,
then the AFSByteRangeLock INOUT parameter (ignoring any
supplied value for Expiration, Txid, or Token) is evaluated by
the server as a byte-range lock request. The creating client is
assured that no other client can be granted a conflicting lock
on the file during the execution of the procedure. It is
expected that clients will typically request a lock of the
LockShareReservation type, and use a valid combination of
AFSLock_Share_Exclusive, AFSLock_Share_Read,
AFSLock_Share_Write, and AFSLock_Share_Mand flags to specify
desired sharing semantics. In particular, the CreateFileLocked
procedure provides a way to support Windows share mode opens
including atomic open and lock semantics assumed by the Windows
CreateFile() function. However, a client may request a lock of
any valid type and range.

proc CreateFileLocked(

 IN AFSFid *Fid,

 string Name<AFSNAMEMAX>,

 AFSStoreStatus *InStatus,

 OUT AFSFid *OutFid,

 AFSFetchStatus *OutFidStatus,

 AFSFetchStatus *OutDirStatus,

 AFSCallBack *CallBack,

 AFSVolSync *Sync,

Benjamin April 04, 2011 [Page 23]

 INOUT

 AFSByteRangeLock *Lock,

) = 65607;

 Error Codes

The CreateFileLocked procedure shall return error codes
corresponding to those of an equivalent CreateFile request. If
the CreateFile is successful, and if Lock->Fid != OutFid, then
Lock->Fid.Uniq is an error return for the requested lock
operation, and may be any valid return from SetByteRangeLock.
Otherwise OutFid is locked and Lock describes the lock.

3.7 Windows File Locking Semantics

Implementation of interoperable locking behavior presents
challenges for a distributed file system like AFS, which must
support clients on platforms which do not agree precisely on
the semantics desirable or possible to enforce.

3.7.1 Byte-Range Locking vs. Byte-Range Lock Emulation

As byte-range locking is effectively required for correct
behavior of Windows applications, the OpenAFS for Windows
client has been forced to implement a locally-enforced
byte-range locking mechanism. In the Windows client today,
local byte-range are shadowed by a whole-file lock in AFS. With
the introduction of server-coordinated byte-range locking, the
Windows client is expected to use server byte-range locks when
possible.

3.7.2 Atomic Lock Open

Windows provides applications with the ability to open and lock
a file in a single operation. As noted elsewhere in this
document, the correct use of share reservations and byte-range
(or whole-file) lock facilities at clients permits correct
implementation of this behavior. The CreateFileLocked procedure
is used by clients seeking to atomically create and lock a file
in a single operation.

3.8 Lock Enforcement

Mandatory enforcement of file locks is considered a requirement
for Windows interoperation. Lock enforcement on Unix-like
platforms generally is advisory. The rules proposed here
reflect some consideration and discussion of unique features in
AFS, and also compromises made in competing systems intended to
support mixed Windows and Unix clients, particularly NFSv4.

Benjamin April 04, 2011 [Page 24]

3.8.1 Governing Ideas

- Byte-range locks may be taken out on a file under the same
 circumstances under which a whole file might be taken out in
 traditional AFS

- The mechanism of lock enforcement is to fail the operation
 being attempted, a hint shall be sent in the return code of
 the reason for failure

- An operation which fails due to conflict with an existing
 lock fails completely

- When mandatory enforcement is in effect, attempts by other
 than owner to write within a range protected by a byte-range
 or whole-file lock, are asserted to fail

- When mandatory enforcement is in effect, attempts by other
 than owner to truncate a file such that the truncation
 overlaps a range protected by a byte-range or whole-file read
 or write lock, or by a read or exclusive share reservation,
 are asserted to fail

- Attempts to write outside any conflicting locked range on a
 file F with at least one mandatory locked range and not
 conflicting with any share reservation on F, considering the
 view of locks on the file at the fileserver when the write
 request is processed, are considered valid (this is the
 documented behavior on Windows platforms)

- Since applications exist, particularly for the command line
 (e.g., tar) which know nothing about locks, and may have
 legitimate reason to read (though not write) data protected
 by mandatory locks, relaxed semantics are enforced for reads
 by clients reading outside any range they have themselves
 locked--such reads never conflict with lock enforcement, nor
 with conflicting share reservations. The view of data
 provided to such a client shall be whatever is available,
 conforming to regular AFS semantics

- Mandatory enforcement of a read or write lock is asserted to
 govern only the StoreData operation (by other clients), and
 not, e.g., the various directory change operations or
 FetchData[footnote:
Mandatory read lock enforcement is silly, Eisler 2006. More
importantly, it causes difficulties for the AFS cache
consistency model.
]

3.8.2 Enforcement Rules

Benjamin April 04, 2011 [Page 25]

- If a client A has a mandatory lock of any type on a range R
 in a file F, then StoreData operations by any other client B
 which would alter data in any overlapping range or truncate F
 such as to reduce or eliminate R, the conflicting operation
 (initiated by B) fails

3.8.3 Implementation Note

An AFS implementation MAY provide mechanisms, in addition to
share reservations, by which administrators or users could
specify that files or groups of files in a volume require
mandatory enforcement semantics.

4 Security Considerations

Unless explicitly requested by a client, a sever implementation
MUST send AFSCB_Event_Flock notifications only over a secured
callback channel. By contrast, AFSCB_Event_Release Lock
notifications may be sent over any channel.

5 IANA Considerations

This document makes no request of the IANA.

6 Appendix A: XDR Grammar (afsint.xg)

const VICED_CAPABILITY_BYTE_RANGE_LOCK = 0x0010;

const VICED_CAPABILITY_ASYNC_LOCK_ISSUE = 0x0020;

const LockShareReservation = 4;

const AFSLock_Flag_None = 0x0000;

const AFSLock_Flag_Mand = 0x0001; /* request mandatory
enforcement */

const AFSLock_Flag_Wait = 0x0002; /* request wait on lock */

const AFSLock_Flag_Posix = 0x0004; /* request posix semantics
*/

const AFSLock_Flag_Share_Read = 0x0008; /* allow Share
mode READ (Share Reservation) */

Benjamin April 04, 2011 [Page 26]

const AFSLock_Flag_Share_Write = 0x0010; /* allow Share
mode WRITE (Share Reservation) */

const AFSLock_Flag_Share_Exclusive = 0x0020; /* assert
exclusive sharing (Share Reservation) */

const AFSLock_Flag_Assert_Read = 0x0040; /* assert intention to
READ */

const AFSLock_Flag_Assert_Write = 0x0080; /* assert intention
to WRITE */

const AFSLock_Flag_TestLock = 0x0100; /* test for conflicts
only */

const AFSLock_Flag_EReturn = 0x1000; /* error return
flag */

struct AFSByteRangeLock {

 AFSFid Fid;

 afs_uint32 Type;

 afs_uint32 Owner;

 afs_uint64 Uniq;

 afs_uint32 Flags;

 afs_uint64 Offset;

 afs_uint64 Length;

 afs_uint64 Expiration;

 AFSOpaque Txid;

 AFSOpaque Token;

};

Benjamin April 04, 2011 [Page 27]

/* Request byte-range file lock */

proc SetByteRangeLock(

 IN AFSFid *Fid,

 INOUT AFSByteRangeLock *Lock

) = 65601;

/* Release byte-range file lock */

proc ReleaseByteRangeLock(

 IN AFSByteRangeLock *Lock

) = 65602;

/* Upgrade byte-range file lock (i.e., from Read to Write) */

proc UpgradeByteRangeLock(

 IN AFSByteRangeLock *Lock,

 afs_uint32 Type

) = 65603;

/* Downgrade byte-range file lock (i.e., from Write to Read) */

proc DowngradeByteRangeLock(

 IN AFSByteRangeLock *Lock,

 afs_uint32 Type

) = 65604;

/* Request lock status report (system:administrators) */

proc GetByteRangeLockStatus(

Benjamin April 04, 2011 [Page 28]

 IN Fid,

 OUT AFSByteRangeLockSeq *AssertedLocks_Array,

 AFSLockHostIdentifierSeq *Clients_Array

) = 65605;

/* administratively cancel locks (system:administrators) */

proc CancelByteRangeLocks(

 IN Fid,

 afs_uint64 Offset,

 afs_uint64 Length

) = 65606;

const AFS_LOCK_SEQ_MAX = 10000;

typedef AFSByteRangeLock AFSByteRangeLockSeq
<AFS_LOCK_SEQ_MAX>;

typedef AFSLockFlagsSeq <AFS_LOCK_SEQ_MAX>;

const AFSLock_Flag_Extend = 4; /* client request extend, server
ack extended */

const AFSLock_Flag_Discard = 8; /* client request disard,
server ack discarded */

/* Assert locks on Fid, on request */

proc AssertExtendLocks (

 IN afs_uint32 Flags,

 AFSByteRangeLockSeq *AssertedLocks_Array,

Benjamin April 04, 2011 [Page 29]

 OUT AFSByteRangeLockPointerSeq *ConfirmedLocks_Array,

 AFSLockCodeRSeq *Result_Array

) = 65607;

7 Appendix A: XDR Grammar (afscbint.xg)

const CLIENT_CAPABILITY_BYTE_RANGE_LOCK = 0x0008;

const AFSCB_Result_ResponseDeferred = 2;

const AFSCB_Result_ReturnLocks = 3;

/* Byte-Range Locking Cancellation Types */

const AFSCB_Cancel_ExtendLocks = 7; /* re-assert locks, or lose
them */

const AFSCB_Cancel_RevokeLocks = 8; /* locks on Fid revoked */

/* Cancellation Flags */

const AFSCB_Flag_AssertLocks = 4; /* request ExtendLock */

const AFSCB_Flag_RevokeLocks = 8; /* locks cancelled, sorry */

const AFSCB_Flock_IssueLocks = 1; /* locks issued on Fid */

const AFSCB_Flock_RevokeLocks = 2; /* locks on Fid revoked */

const AFSCB_Flock_ExpireLocks = 3; /* locks expired */

/* confirm issue of deferred lock requests */

proc AssertExtendLocks (

 IN afs_uint32 Flags,

Benjamin April 04, 2011 [Page 30]

 AFSByteRangeLockSeq *AssertedLocks_Array,

 OUT AFSByteRangeLockPointerSeq *ConfirmedLocks_Array,

 AFSLockCodeRSeq *Result_Array

) = 65607;

 Author's Address

Matt Benjamin

Linux Box Corporation

206 S. Fifth Ave, Ste 150

Ann Arbor, MI 48104 USA

Phone: +1 734 761 4689

Email: matt@linuxbox.com

