
NFSv4 M. Benjamin
Internet-Draft CohortFS, LLC
Intended status: Standards Track Bodley
Expires: January 25, 2015 Emerson

 Ersani
 NetApp
 Honeyman
 July 24, 2014

pNFS Metadata Striping
draft-mbenjamin-nfsv4-pnfs-metastripe-03

Abstract

 This Internet-Draft describes a means to add metadata striping to
 pNFS. The text of this draft is substantially based on prior drafts
 by Eisler, M., with some departures. The current draft attempts to
 define a somewhat lighter-weight protocol, in particular, seeks to
 permit striping for "filehandle only" operations such as LOCK and
 OPEN + CLAIM_FH, without clients having to obtain metadata layouts on
 regular files. We gratefully acknowledge the primary contributions
 of Mike Eisler, Pranoop Ersani, and others.

Internet Draft Comments

 Comments regarding this draft are solicited.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 25, 2015.

Copyright Notice

Benjamin, et al. Expires January 25, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft pNFS Metastripe July 2014

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction and Motivation 4
2. Short List of Protocol Changes from Previous Drafts 4

 2.1. File-system wide Striping for Filehandle-Only
 Operations . 4

2.2. Uniform Filehandles 4
2.3. Simplified Multipath Device Model 4
2.4. Cookie Model . 5
2.5. LAYOUTCOMMIT . 5
2.6. Recommended Attributes 5
2.6.1. meta_stripe_deviceid (deviceid4) 5
2.6.2. meta_stripe_count (uint32_t) 5

2.7. PREADDIR (Operation) 5
3. Terminology . 6
4. Scope of Metadata Layouts 6
4.1. Filehandle Striping 7
4.2. Directory Striping . 7
4.2.1. Name-Based Operations 8
4.2.2. Directory Enumeration 8

5. The Metadata Striping Layout 9
5.1. Name . 9
5.2. Value . 9
5.3. Data Type Definitions 9
5.3.1. Layout Hint . 9
5.3.2. Devices . 9
5.3.3. Metadata Layout 10
5.3.4. Layoutupdate4 lou_body 11

5.4. Metadata Layout Semantics 11
5.4.1. LAYOUTGET Argument Conventions 11
5.4.2. Filehandle Striping Layouts 12
5.4.2.1. Filehandle Stripe Hints 12

5.4.3. Directory Striping Layouts 13
5.4.3.1. L-MDS Selection for Name-based Operations 13

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Benjamin, et al. Expires January 25, 2015 [Page 2]

Internet-Draft pNFS Metastripe July 2014

5.4.3.2. Directory Enumeration 15
5.5. LAYOUTCOMMIT . 16
5.6. Operation: PREADDIR - Parallel Read Directory 16
5.6.1. ARGUMENTS . 16
5.6.2. RESULTS . 16
5.6.3. DESCRIPTION . 16
5.6.4. IMPLEMENTATION . 16

6. Further Considerations . 16
6.1. Storage Access Protocols 17
6.2. Revocation of Layouts 17
6.3. Stateids . 17
6.4. Lease Terms . 18
6.5. Layout Operations Sent to an L-MDS 18
6.6. Filehandles in Metadata Layouts 18
6.7. Restriping . 19
6.7.1. Layout Recall Cases 19
6.7.2. Hint Invalidation 19

6.8. Recovery . 19
6.9. Failure and Restart of Client 19
6.10. Failure and Restart of Server 19

7. Negotiation . 20
8. Usage Examples . 20
8.1. open-lock-write-close 20
8.2. parallel create-layoutcommit 20
8.3. parallel directory listing 21

9. Operational Recommendation for Deployment 21
10. Acknowledgements . 21
11. Security Considerations 21
12. IANA Considerations . 22
13. References . 22
13.1. Normative References 22
13.2. Informative References 23

 Authors' Addresses . 23

Benjamin, et al. Expires January 25, 2015 [Page 3]

Internet-Draft pNFS Metastripe July 2014

1. Introduction and Motivation

 The NFSv4.1 specification describes pNFS [NFSv4.1]. pNFS distributes
 (stripes) file data across multiple storage devices. In NFSv4.1,
 parallel access is limited to the data contents of regular files.
 Metadata is not distributed or striped: the model presented in the
 NFSv4.1 specification is that of a single metadata server. This
 document describes a means to add metadata striping to pNFS, which
 includes the notion of multiple metadata servers. With metadata
 striping, multiple metadata servers may work together to provide a
 higher parallel performance.

 Two methods are described. The first, called filehandle striping,
 directs metadata operations associated with a file handle to a
 preferred metadata server. The second, called directory striping,
 distributes directory operations across a collection of metadata
 servers.

2. Short List of Protocol Changes from Previous Drafts

2.1. File-system wide Striping for Filehandle-Only Operations

 Stripe hints redirect clients to a preferred metadata server for
 filehandle-only operations (below), but are backed by a single layout
 per-file system, rather than per-file, as in [METASTRIPE]. The new
 model is lighter weight, but since it remains layout-based retains
 the advantages of pNFS device indirection and garbage collection.

2.2. Uniform Filehandles

 [METASTRIPE] offers implementations the option to propagate layout
 filehandles for all metadata layout types. Since it would be
 impossible to reasonably support this under the new proposed model
 for filehandle-only operations, we propose instead that L-MDS
 filehandles always be equivalent to I-MDS filehandles.

2.3. Simplified Multipath Device Model

 [METASTRIPE] defines two different methods for encoding metadata
 server locations, only the "simple" model uses the pNFS device
 mechanism. In this draft, we propose a single model based on pNFS
 devices, in which there is a one-to-one mapping between devices and
 L-MDS servers. This approach facilitates sharing device addresses
 across layouts which have servers in common and also minimizes the
 difficulty of reclaiming devices no longer in use by any metadata
 layout.

Benjamin, et al. Expires January 25, 2015 [Page 4]

Internet-Draft pNFS Metastripe July 2014

2.4. Cookie Model

 NFSv4 associates with each entry in a directory a unique value of
 type cookie4, a 64-bit integer. [METASTRIPE] involves cookies in
 stripe selection, and imposes specific requirements on cookie values.
 In the current proposal we treat cookies as opaque values except as
 specified in ordinary NFSv4.1. We concur with [METASTRIPE] that
 cookies MUST be unique within any logical directory regardless of the
 striping pattern. As in ordinary NFSv4.1, the behavior of READDIR
 (or PREADDIR, below) when cookie has a value previously returned to a
 client by the same server, but no longer associated with any
 directory entry, is not defined.

2.5. LAYOUTCOMMIT

 In this draft, we introduce layout-subtype specific data for the
 LAYOUTCOMMIT operation.

2.6. Recommended Attributes

 We propose two new recommended attributes.

 meta_stripe_deviceid (deviceid4)

 meta_stripe_count (uint32_t)

2.6.1. meta_stripe_deviceid (deviceid4)

 An attribute of type meta_stripe_deviceid represents a filehandle
 stripe hint. This attribute MUST NOT be offered to clients unless
 they hold a valid filehandle striping layout on the containing file
 system.

2.6.2. meta_stripe_count (uint32_t)

 The meta_stripe_count attribute represents, for directory objects,
 the directory's current stripe count, which may help the client
 decide if it will request a directory striping layout on the
 directory. This attribute MAY be offered only to clients which hold
 a filehandle striping layout on the containing file system.

2.7. PREADDIR (Operation)

 The NFSv4.1 READDIR operation has insufficient information to perform
 all possible enumerations required in the proposed directory striping
 model. We propose a new PREADDIR operation which takes, in addition
 to all the current READDIR operations, also a controlling metadata
 layout stateid and stripe number.

Benjamin, et al. Expires January 25, 2015 [Page 5]

Internet-Draft pNFS Metastripe July 2014

3. Terminology

 Initial Metadata Server (I-MDS). The I-MDS is the metadata server
 from which the client obtains a filehandle prior to acquiring any
 layout on the file.

 Layout Metadata Server (L-MDS). The L-MDS is the metadata server
 from which the client obtains a filehandle from after redirection
 from a layout.

 Regular file: An object of file type NF4REG or NF4NAMEDATTR.

 Filehandle striping. Hint-based indirection to a preferred MDS
 for filehandle-based operations, backed by a filesystem-wide
 metadata layout.

 Directory striping. Fine-grained, layout-based indirection for
 parallel operations on directories, using a striping pattern.

4. Scope of Metadata Layouts

 This proposal assumes a model where there are two or more servers
 capable of supporting NFSv4.1 operations. At least one server is an
 I-MDS, and the I-MDS should be thought of as a normal NFSv4.1 server,
 with the additional capability of granting metadata layouts on
 demand. The I-MDS might also be capable of granting non-metadata
 layouts, but this is orthogonal to the scope of metadata striping.

 The model also requires at least one additional server, an L-MDS,
 that is capable of supporting NFSv4.1 operations that are directed to
 the server by the I-MDS. It is permissible for an I-MDS to also be
 an L-MDS, and an L-MDS to also be an I-MDS. Indeed, a simple
 submodel is for every NFSv4.1 server in a set to be both an I-MDS and
 L-MDS.

 For convenience, we divide NFSv4.1 metadata operations into three
 classes:

 Filehandle-only. These are operations that take only filehandles
 as arguments, i.e. the current filehandle, or both the current
 filehandle and the saved filehandle, and no component names of
 files (e.g., LOCK, LAYOUTGET).

 Name-based. These are operations that take one or two filehandles
 (i.e. the current filehandle, or both the current file handle and
 the saved filehandle) and one or two component names of files
 (e.g., LINK, RENAME).

Benjamin, et al. Expires January 25, 2015 [Page 6]

Internet-Draft pNFS Metastripe July 2014

 Directory-enumeration. These are operations that take one
 filehandle and return the contents of a directory. Currently,
 NFSv4 has only one such operation, READDIR. This draft adds a
 section, PREADDIR.

 Metadata striping applies to all of the foregoing NFSv4.x operations,
 and is of two types:

 filehandle striping uses hints (attribute-based indications)
 backed by a filesystem-wide layout to direct clients to a
 preferred MDS on which to perform filehandle-only operations

 directory striping uses fine-grained metadata layouts on
 directories to support execution of name-based operations
 (directory enumeration, creates) on a set of MDS servers in
 parallel

4.1. Filehandle Striping

 To avoid an explosion of new client state, a coarse-grained hinting
 mechanism is used to direct filehandle-only operations to a preferred
 metadata server.

 As specified in 5.12.1 of [NFSv4.1], when a client encounters file
 system which supports LAYOUT4_METADATA, it can obtain a metadata
 layout of subtype LAYOUTMETA4_FILEHANDLE, whose scope is the entire
 file system, using the LAYOUTGET operation on any filehandle object
 in the file system which it is permitted to access.

 Then using ordinary READDIR and GETATTR requests, the client can
 obtain for any object in the file system a meta_stripe_deviceid
 attribute that indicates the preferred device to send filehandle-only
 or name-based operations for that object.

 For example, suppose that after obtaining an ordinary filehandle via
 OPEN, a LAYOUTMETA4_FILEHANDLE layout on the containing file system,
 and a meta_stripe_deviceid hint from a previous GETATTR, READDIR, or
 PREADDIR,, the client wants to get a byte range lock on the file.
 The client sends the LOCK request to the network address (pNFS
 device, L-MDS) indicated by the meta_stripe_deviceid attribute.

4.2. Directory Striping

 For name-based and directory enumeration operations, a more fine-
 grained, layout-based redirection mechanism is used.

 When a client obtains a filehandle for an object that is of type
 directory and wishes to take advantage of metadata striping, the

Benjamin, et al. Expires January 25, 2015 [Page 7]

Internet-Draft pNFS Metastripe July 2014

 client first obtains a metadata layout of subtype
 LAYOUTMETA4_DIRECTORY on the directory. The client is provided with
 a directory-specific list of network addresses (devices) to which to
 send requests specific to objects in that directory.

4.2.1. Name-Based Operations

 For name-based operations, the directory striping layout indicates
 the preferred destinations in the network to send name-based
 operations for that directory (e.g., CREATE). The preferred
 destinations MUST apply to the current filehandle that the operation
 uses. In other words, for LINK and RENAME, which take both the saved
 filehandle and the current filehandle as parameters, the pNFS client
 would use the stripe hint of the target directory (indicated in the
 current filehandle) for guidance where to send the operation. Note
 that if an L-MDS accepts a LINK or RENAME operation, the L-MDS MUST
 perform the operation atomically. If it cannot, then the L-MDS MUST
 return the error NFS4ERR_XDEV, and the client MUST send the operation
 to the I-MDS.

 The choice of destination is a function of the name the client is
 requesting. For example, after the client obtains the filehandle of
 a directory via LOOKUP and the metadata layout via LAYOUTGET, the
 client wants to open a regular file within the directory. As with
 the LAYOUT4_NFSV4_1_FILES layout type, the client has a list network
 addresses to which to send requests. With the LAYOUT4_NFSV4_1_FILES
 layout, the choice of the index in the list of network addresses was
 computed from the offset of the read or write request. With the
 metadata layout, the choice of the index is derived from the name (or
 some other method, such as the name and one or more attributes of the
 directory, such as the filehandle, fileid, as below.) passed to OPEN.

4.2.2. Directory Enumeration

 For directory-enumeration operations, the directory striping layout
 indicates the preferred destination in the network to send (P)READDIR
 operations for that directory. For example, after the client obtains
 the filehandle of a directory via LOOKUP and the metadata layout via
 LAYOUTGET, the client wants to read the directory. As with the
 LAYOUT4_NFSV4_1_FILES layout type, the client has a list network
 addresses to which to send requests. With the LAYOUT4_NFSV4_1_FILES
 layout, the choice of the index in list of network addresses was
 computed from the offset of the read or write request. For directory
 striping layouts, the index counts from 0 to the directory stripe
 count, less 1.

Benjamin, et al. Expires January 25, 2015 [Page 8]

Internet-Draft pNFS Metastripe July 2014

5. The Metadata Striping Layout

5.1. Name

 The name of the metadata striping layout type is LAYOUT4_METADATA.

5.2. Value

 The value of the metadata striping layout type is TBD1.

5.3. Data Type Definitions

5.3.1. Layout Hint

 /// %
 /// %/* Encoded in the loh_body field of type layouthint4: */
 /// %
 /// struct md_dirsize_layouthint4 {
 /// uint64_t *mdlh_min_est;
 /// uint64_t *mdlh_avg_est;
 /// uint64_t *mdlh_max_est;
 /// uint32_t *mdlh_stripe_count;
 /// uint32_t *mdlh_stripe_modulus;
 /// };

 Figure 1

 The layout-type specific layouthint4 content for the LAYOUT4_METDATA
 layout type is composed of five fields, each optional. Using some
 combination of the mdlh_min_est, mdlh_avg_est, and mdlh_max_est
 fields, the client is enabled to give an indication of the directory
 workload it expects for a new directory. The client also may suggest
 an explicit stripe count or modulus preference in mdlh_stripe_count
 or mdlh_stripe_modulus, which SHOULD be congruent if specified
 together.

5.3.2. Devices

 /// % /*
 /// % * Encoded in the da_addr_body field of data type
 /// % * device_addr4:
 /// % */
 /// struct md_layout_addr4 {
 /// multipath_list4 mdla_multipath_list<>;
 /// };

 Figure 2

Benjamin, et al. Expires January 25, 2015 [Page 9]

Internet-Draft pNFS Metastripe July 2014

5.3.3. Metadata Layout

 /// enum md_layout_subtype4 {
 /// LAYOUTMETA4_FILEHANDLE = 0,
 /// LAYOUTMETA4_DIRECTORY
 /// };

 ///
 /// enum md_namebased_alg4 {
 /// MDN_ALG_CITYHASH64 = 0,
 /// MDN_ALG_CEPHFRAG = 1,
 /// /* XXX TBD2 */
 /// };
 ///

 /// typedef uint32_t cephfrag4;
 ///
 /// struct cephfragsplit4 {
 /// cephfrag4 frag;
 /// uint32_t bits;
 /// };
 ///
 /// enum cephhash4 {
 /// MDC_HASH_LINUX_DCACHE = 0,
 /// MDC_HASH_RJENKINS = 1,
 /// MDC_HASH_CITYHASH32 = 2,
 /// };
 ///
 /// struct md_namebased_alg_cephfrag4 {
 /// enum cephhash4 hash;
 /// cephfragsplit4 fragtree<>;
 /// };

 /// struct md_layout_directory {
 /// switch(enum md_namebased_alg4 mdln_namebased_alg) {
 /// case MDN_ALG_CITYHASH64:
 /// uint32_t mdln_cityhash_seed;
 /// case MDN_ALG_CEPHFRAG:
 /// md_namebased_alg_cephfrag4 mdln_cephfrag;
 /// };
 ///
 /// deviceid4 mdln_devicelist<>;
 /// uint32_t mdln_stripe_pattern<>;
 /// };

 /// struct md_layout4 {
 /// union md_layout_type
 /// switch (enum md_layout_subtype4 subtype) {

Benjamin, et al. Expires January 25, 2015 [Page 10]

Internet-Draft pNFS Metastripe July 2014

 /// case LAYOUTMETA4_FILEHANDLE:
 /// void;
 /// case LAYOUTMETA4_DIRECTORY:
 /// md_layout_directory mdl_layout;
 /// };
 /// };

 Figure 3

5.3.4. Layoutupdate4 lou_body

///
/// struct md_directory_layoutupdate4 {
/// int32_t mdlu_entries_added;
/// int32_t mdlu_entries_removed;
/// nfstime4 mdlu_last_update;
/// };
///
/// % /*
/// % * Encoded in the lou_body field of data type
/// % * layoutupdate4:
/// % */
/// struct md_layout_update4 {
/// union md_layout_type switch (enum md_layout_subtype4 subtype) {
/// case LAYOUTMETA4_FILEHANDLE:
/// void;
/// case LAYOUTMETA4_DIRECTORY:
/// md_directory_layoutupdate4 mlu_directory;
/// };
/// };

 layoutupdate4 lou_body

 Figure 4

5.4. Metadata Layout Semantics

 The reply to a successful LAYOUTGET request MUST contain exactly one
 element in logr_layout. The element contains the metadata layout.

5.4.1. LAYOUTGET Argument Conventions

 When a client requests a layout of type LAYOUT4_METADATA, it
 specifies the desired subtype, which MUST be one of
 LAYOUTMETA4_FILEHANDLE or LAYOUTMETA4_DIRECTORY, as the value of the
 LAYOUTGET loga_iomode argument. Server implementations should reject
 LAYOUTGET requests with other values for loga_iomode.

Benjamin, et al. Expires January 25, 2015 [Page 11]

Internet-Draft pNFS Metastripe July 2014

 The value provided for loga_stateid may be any valid stateid for the
 related file or directory, or else the anonymous stateid.

 The values provided for loga_offset, loga_length, and loga_minlength
 are not defined for metastripe layouts, and server implementations
 MUST NOT intepret these values.

5.4.2. Filehandle Striping Layouts

 If the requested layout is of subtype LAYOUTMETA4_FILEHANDLE, the
 value of the layout is void. The filehandle redirection information
 issued under auspices of the layout will be entirely in the form of
 filehandle striping attribute hints.

 As noted in Section 4, the scope of filehandle striping layouts is an
 entire file system. The client can acquire the (singleton)
 filehandle striping layout for a given file system using any
 corresponding file handle which it happens to hold, and whose object
 the client is permitted to access. For example, the client could use
 the file handle of the first directory it traverses on a given file
 system, provided the file server is an NFSv4.x file server that
 supports layouts of type LAYOUT4_METADATA.

5.4.2.1. Filehandle Stripe Hints

 Filehandle stripe hints are objects of type deviceid4, and are the
 value of a new recommended, get-only attribute meta_stripe_deviceid.

 A client may successfully obtain the meta_stripe_deviceid attribute
 on any file object if and only if it has successfully obtained a
 filehandle striping layout on the containing file system. Since the
 meta_stripe_deviceid hint is an ordinary NFSv4 attribute, the client
 may acquire it from a GETATTR, READDIR, or PREADDIR request. A
 server implementation SHOULD interpret a PREADDIR operation (which
 has a controlling metadata layout stateid) as a request for just
 those attributes that are appropriate for the layout stateid that has
 been presented.

 At all events, when a client holds a filehandle stripe hint for a
 file object, it uses the GETDEVICEINFO operation to map the hint
 value to a to a device address of data type md_layout_addr4 in the
 ordinary pNFS manner.

 The server ensures that each such device remains accessible
 (unrecalled) for at least as long as any filehandle striping layout
 exists for which the device has been named in a hint.

Benjamin, et al. Expires January 25, 2015 [Page 12]

Internet-Draft pNFS Metastripe July 2014

5.4.3. Directory Striping Layouts

 If the requested layout is of subtype LAYOUTMETA4_DIRECTORY, then the
 layout contains a <device list, striping pattern, algorithm> triple
 enabling the client to perform both parallel directory enumeration
 operations and stripe-aware name-based operations, as outlined in

Section 4.

 When the layout subtype is LAYOUTMETA4_DIRECTORY, the layout content
 provides an integer identifying a hashing algorithm, a list of
 deviceids, and a striping pattern. Then mdln_namebased_alg
 identifies an algorithm that maps a name, as a component4, to an
 integer. Each entry in the mdln_devicelist specifies a set of
 metadata servers that may be treated as equally valid for metadata
 requests to the same block in the partitioned namespace. Each entry
 in the stripe pattern is an index into the device list.

 To perform a name based operation, the client maps the name to a
 number with the name based algorithm, looks that number up in the
 stripe pattern (modulo the length of the stripe pattern), yielding a
 device id that may be interpreted with GETDEVICEINFO, in the ordinary
 pNFS manner. After resolving the device id as a device address of
 data type md_layout_addr4, the client sends the request to any of the
 devices specified in the corresponding entry in the device list.

5.4.3.1. L-MDS Selection for Name-based Operations

 Clients with layouts of type LAYOUTMETA4_DIRECTORY may use the
 algorithm supplied in field mdln_namebased_alg of the layout content
 to compute a preferred L-MDS to use when performing name-based
 operations, as follows:

Let F be the function specified in mdln_namebased_alg;

Let X = (x1, x2, x3, ...) some set of inputs for function F, such
that x1 SHOULD be the component name of the file, and x2, x3, ... any
additional parameters required for the chosen F, their arguments
asserted to be values available to the client.

Let stripe_unit_number = F(X);
Let stripe_count = number of elements in mdl_layout.mdln_stripe_pattern;
Let idx =
 mdl_layout.mdln_stripe_pattern(stripe_unit_number % stripe_count);
Let deviceid = mdl_layout.mdln_devicelist[idx];

 pseudocode

 Figure 5

Benjamin, et al. Expires January 25, 2015 [Page 13]

Internet-Draft pNFS Metastripe July 2014

 The client then selects an L-MDS indicated by the deviceid (using
 GETDEVICEINFO in the normal manner), and sends the name-based
 operation to that server.

5.4.3.1.1. MDN_ALG_CITYHASH64

 A layout with MDN_ALG_CITYHASH64 as the mdln_namebased_alg indicates
 the use of the 64-bit CityHash non-cryptographic hashing function
 [CITY] for directory placement, with x1 the desired component name,
 and x2 the 32-bit seed value returned in the layout.

5.4.3.1.2. MDN_ALG_CEPHFRAG

 A layout with MDN_ALG_CEPHFRAG as the mdln_namebased_alg indicates
 the use of Ceph's directory fragmentation algorithm for directory
 placement.

 Ceph uses a recursive algorithm to partition the hash space of a
 directory into fragments, which are represented by an an ordered list
 of splits called the fragtree. Fragments are split into powers of
 two, so each split stores this exponent in the field 'bits'.

 Similarly, the cephfrag4 encodes in its high 8 bits the total number
 of bits 'n' it has split from the root fragment. In the next highest
 'n' bits, it encodes its position in the hash space. If a given hash
 value 'v' matches these 'n' bits, the fragment is said to contain
 'v'.

 For example, starting with the root fragment root=0x00000000 and
 splitting by 2 bits, we generate the four fragments f1=0x02000000,
 f2=0x02400000, f3=0x02800000 and f4=0x02C00000. Further splitting f3
 by 1 bit, we generate two new fragments g1=0x03800000 and
 g2=0x03A00000. The resulting fragtree for this structure would be {
 {0x00000000, 2}, {0x02800000, 1} }.

 To place a given filename, calculate its hash value 'v' using the
 hash function indicated by the 'hash' enum. Then, starting with the
 root fragment f=0x00000000, follow these step recursively: * Search
 for a split in the fragtree matching frag=f. If no split is found,
 place the file in fragment f. * Given a split of 'n' bits, find which
 of the 2^n child fragments contains the hash value 'v'. Assign this
 child fragment to 'f' and continue.

5.4.3.1.2.1. MDC_HASH_LINUX_DCACHE

 Specifies the use of the Linux dentry cache (needs reference) hashing
 function.

Benjamin, et al. Expires January 25, 2015 [Page 14]

Internet-Draft pNFS Metastripe July 2014

5.4.3.1.2.2. MDC_HASH_RJENKINS

 Specifies the use of Robert Jenkins' [JENKINS] hashing function.

5.4.3.1.2.3. MDC_HASH_CITYHASH32

 Specifies the use of the 32-bit CityHash [CITY] hashing function.

5.4.3.2. Directory Enumeration

 Clients with layouts of type LAYOUTMETA4_DIRECTORY may use the
 following algorithm to perform enumeration of striped directories
 preferred metadata servers, in parallel:

 For stripe_number in 0 .. length(mdl_layout.mdln_stripe_pattern) -1
 do
 Let stripe =
 mdl_layout.mdln_stripe_pattern[stripe_number];
 Let device = mdl_layout.mdln_devicelist[stripe];
 <PREADDIR at device, layout_stateid, stripe_number>

 pseudocode

 Figure 6

 That is, for each logical stripe in the directory, the client notes
 stripe number (merely the stripe's offset in the sequence), and
 derives from it the corresponding index into mdln_devicelist by
 indirection on mdln_stripe_pattern. The object at
 mdln_devicelist[stripe_number] is a device id, which the client maps
 to an L-MDS using GETDEVICEINFO, and performs a sequence of PREADDIR
 operations on that server. The PREADDIR operation behaves exactly as
 described in section 18.23.3 of [NFSv4.1], but takes in addition to
 the arguments of READDIR, a metadata layout stateid and stripe
 number.

 As in ordinary NFSv4.1, to perform a full enumeration of the
 directory entries at each component L-MDS, the client commences
 iteration by sending a cookie argument of zero for the first PREADDIR
 operation in the current stripe, and continues performing PREADDIR
 operations supplying for the cookie argument the value of last cookie
 value returned in the prior PREADDIR operation in the same logical
 (L-MDS) enumeration only, until a PREADDIR operation indicates that
 no further entries are available. The client and server behavior for
 subsequent re-traversals of a previously-enumerated logical directory
 are exactly as in ordinary NFSv4.1, except with respect to entry and
 cookie partitioning as described here. The client SHOULD present to
 a component L-MDS only cookie values previously returned to that

Benjamin, et al. Expires January 25, 2015 [Page 15]

Internet-Draft pNFS Metastripe July 2014

 client by that same L-MDS, or 0 to commence iteration. An L-MDS MAY
 reject with NFS4ERR_BADCOOKIE PREADDIR operations using cookie values
 that are valid cookies for the logical directory, but which are local
 to another L-MDS segment.

5.5. LAYOUTCOMMIT

 As filehandle striping layouts are effectively read-only, clients
 SHOULD NOT attempt commits on filehandle striping layouts. If a
 server implementation receives a LAYOUTCOMMIT for a valid filehandle
 striping layout, it SHOULD return NFS4ERR_OK.

 For metastripe layouts of subtype LAYOUTMETA4_DIRECTORY, the layout
 specific data for LAYOUTCOMMIT contains the signed count of items
 added to and removed from the directory since the last LAYOUTCOMMIT
 operation.

5.6. Operation: PREADDIR - Parallel Read Directory

5.6.1. ARGUMENTS

 /// struct READDIR4args {
 /// /* CURRENT_FH: directory */
 /// nfs_cookie4 cookie;
 /// verifier4 cookieverf;
 /// count4 dircount;
 /// count4 maxcount;
 /// bitmap4 attr_request;
 /// stateid4 layout_stateid;
 /// uint32_t stripe_number;
 /// };

 Figure 7

5.6.2. RESULTS

 /// typedef struct READDIR4res PREADDIR4res;

 Figure 8

5.6.3. DESCRIPTION

5.6.4. IMPLEMENTATION

6. Further Considerations

Benjamin, et al. Expires January 25, 2015 [Page 16]

Internet-Draft pNFS Metastripe July 2014

6.1. Storage Access Protocols

 The LAYOUT4_METADATA layout type uses NFSv4.1 operations (and
 potentially, operations of higher minor versions of NFSv4, subject to
 the definition of a minor version of NFSv4) to access striped
 metadata. The LAYOUT4_METADATA does not affect access to storage
 devices, and indeed, in the protocol described here, layouts of type
 LAYOUT4_METADATA and ordinary pNFS layouts for parallel data access
 (e.g., LAYOUT4_NFSV4_1_FILES, LAYOUT4_OSD2_OBJECTS, or
 LAYOUT4_BLOCK_VOLUME, or a future flexible files layout), are
 orthogonal.

6.2. Revocation of Layouts

 Servers MAY revoke layouts of type LAYOUT4_METADATA. A client
 detects if layout has been revoked if the operation is rejected with
 NFS4ERR_PNFS_NO_LAYOUT. In NFSv4.1, the error NFS4ERR_PNFS_NO_LAYOUT
 could be returned only by READ and WRITE. When the server returns a
 layout of type LAYOUT4_METADATA, the set of operations that can
 return NFS4ERR_PNFS_NO_LAYOUT is: ACCESS, CLOSE, COMMIT, CREATE,
 DELEGRETURN, GETATTR, LINK, LOCK, LOCKT, LOCKU, LOOKUP, LOOKUPP,
 NVERIFY, OPEN, OPENATTR, OPEN_DOWNGRADE, PREADDIR, READ, READDIR,
 READLINK, REMOVE, RENAME, SECINFO, SETATTR, VERIFY, WRITE,
 GET_DIR_DELEGATION, SECINFO, SECINFO_NO_NAME, and WANT_DELEGATION.

6.3. Stateids

 The pNFS specification for LAYOUT4_NFSV4_1_FILES states data servers
 MUST be aware of the stateids granted by MDS so that the stateids
 passed to READ and WRITE can be properly validated. Similarly, in
 layouts of type LAYOUT4_METADATA, the L-MDS MUST be aware of layout
 stateids issued by the controlling I-MDS in the corresponding layout.

 In addition, the L-MDS MUST be aware of any non-layout stateids
 granted by the I-MDS, if and only if the client is in contact the
 L-MDS under direction of a metadata layout returned by the I-MDS, and
 the I-MDS has not recalled or revoked that layout. In addition,
 because an L-MDS can accept operations like OPEN and LOCK that create
 or modify stateids, the I-MDS MUST be aware of stateids that an L-MDS
 has returned to a client, if and only if the I-MDS granted the client
 a metadata layout that directed the client to the L-MDS.

 In some cases, one L-MDS MUST be aware of a stateid generated by
 another L-MDS. For example a client can obtain a stateid from the
 L-MDS serving as the destination of name-based operations, which
 includes OPEN. However, operations that use the stateid will be
 filehandle-only operations, and the L-MDS the OPEN operation is sent
 to might differ from the L-MDS the LOCK operation for the same target

Benjamin, et al. Expires January 25, 2015 [Page 17]

Internet-Draft pNFS Metastripe July 2014

 file is sent to.

 When a client obtains a non-layout stateid from an L-MDS, for
 example, as the result of an OPEN operation, the stateid is asserted
 to be valid at the issuing L-MDS, and also the assocated I-MDS, as
 noted above. In addition, if the client holds a filehandle striping
 layout on the current file system, it SHOULD request the associated
 stripe hint on the object, ideally in the same COMPOUND.

 When responding to client LAYOUTGET requests, server implementations
 MUST accept the anonymous stateid as a valid stateid for both
 LAYOUTMETA4_FILEHANDLE and LAYOUTMETA4_DIRECTORY layouts, but MAY
 return NFS4ERR_BADSTATEID for other stateids, when appropriate.

6.4. Lease Terms

 Any state the client obtains from an I-MDS or L-MDS is guaranteed to
 last for an interval lasting as long as the maximum of the lease_time
 attribute of the the I-MDS, and any L-MDS the client is directed to
 as the result of a metadata layout. The client has a lease for each
 client ID it has with an I-MDS or L-MDS, and each lease MUST be
 renewed separately for each client ID.

6.5. Layout Operations Sent to an L-MDS

 An L-MDS MAY allow a LAYOUTGET operation of type LAYOUT4_METADATA.
 One reason the L-MDS might allow such a LAYOUTGET operation is to
 allow hierarchical striping. For example, for name-based operations,
 the pNFS server might use a radix tree, (which the field
 mdln_namebased_alg would indicate). The first four bytes of the
 component name would be combined to form a 32-bit stripe_unit_number.
 Once the client contacted the L-MDS, it would repeat the algorithm on
 the second four bytes of the component, and so on until the component
 name was exhausted.

 More typically, an L-MDS MAY allow a LAYOUTGET operation of type
 LAYOUT4_NFSV4_1_FILES, LAYOUT4_OSD2_OBJECTS, or LAYOUT4_BLOCK_VOLUME.
 Naturally, a reason to allow this would be for increased pNFS MDS
 scalability.

 Once an L-MDS grants a layout, the client MUST use only the L-MDS
 that granted the layout to send LAYOUTUPDATE, LAYOUTCOMMIT, and
 LAYOUTRETURN.

6.6. Filehandles in Metadata Layouts

 Metadata layouts do not present filehandles.

Benjamin, et al. Expires January 25, 2015 [Page 18]

Internet-Draft pNFS Metastripe July 2014

6.7. Restriping

6.7.1. Layout Recall Cases

 When a server implementation intends to perform restriping, it MUST
 ensure that it has successfully recalled any metadata layout which
 would be invalidated by the restriping.

 If the implementation wishes to restripe a directory on which there
 are outstanding layouts of type LAYOUTMETA4_DIRECTORY, it must first
 successfully recall these layouts at their controlling I-MDS servers,
 as described in [NFSv4.1].

 If the implementation wishes to perform filehandle restriping which
 would invalidate any filehandle stripe hint which it has issued to
 clients, it MUST successfully recall all controlling layouts of type
 LAYOUTMETA4_FILEHANDLE which would conflict with the restriping.

 Naturally, if a client requests an L-MDS to perform any operation
 under the auspices of a metadata layout which is no longer valid, the
 L-MDS is not required to perform it. The L-MDS SHOULD fail the
 operation with NFS4ERR_PNFS_NO_LAYOUT.

6.7.2. Hint Invalidation

 When an implementation wishes to perform filehandle restriping that
 would invalidate an ilehandle stripe hint or hints it has issued to
 clients, it can use ordinary NFSv4.1 invalidation to reclaim the
 hints. Since filehandle stripe hints are recommended attributes, the
 controlling I-MDS or L-MDS does this by updating the change attribute
 on the file being updated, as it would for any other file update.

6.8. Recovery

 [[Comment.1: it is likely this section will follow that of the files
 layout type specified in the NFSv4.1 specification.]]

6.9. Failure and Restart of Client

 TBD

6.10. Failure and Restart of Server

 TBD

Benjamin, et al. Expires January 25, 2015 [Page 19]

Internet-Draft pNFS Metastripe July 2014

7. Negotiation

 The NFSv4.x client sends a GETATTR operation for attribute
 fs_layout_type. If the reply contains the metadata layout type, then
 either or both of filehandle or directory striping are supported,
 subject to further verification by subsequent LAYOUTGET operations.
 If not, the client cannot use metadata striping.

8. Usage Examples

 This section contains illustrative examples of the protocol.

8.1. open-lock-write-close

 I-MDS: LAYOUTGET for filehandle layout -> fh_stateid
 I-MDS: OPEN('foo') -> open_stateid
 I-MDS: GETATTR(meta_stripe_deviceid) -> in_deviceid
 I-MDS: GETDEVICEINFO(in_deviceid) -> [L-MDS]

 L-MDS: LOCK(open_stateid) -> lock_stateid
 L-MDS: WRITE(lock_stateid)
 I-MDS: CLOSE(open_stateid)
 I-MDS: LAYOUTRETURN(fh_stateid)

 Figure 9

8.2. parallel create-layoutcommit

 I-MDS: LAYOUTGET for filehandle layout -> fh_stateid
 I-MDS: LAYOUTGET(dir) for directory layout
 -> {dir_stateid, dir_deviceid, dir_placement}
 I-MDS: GETDEVICEINFO(dir_deviceid)
 -> [L-MDS1, L-MDS2, L-MDS3]

 dir_placement('foo') -> L-MDS1
 L-MDS1: CREATE(dir, 'foo')

 dir_placement('bar') -> L-MDS2
 L-MDS2: CREATE(dir, 'bar')

 dir_placement('baz') -> L-MDS3
 L-MDS3: CREATE(dir, 'baz')

 I-MDS: LAYOUTCOMMIT(dir_stateid, +3)
 I-MDS: LAYOUTRETURN(dn_stateid)
 I-MDS: LAYOUTRETURN(fh_stateid)

Benjamin, et al. Expires January 25, 2015 [Page 20]

Internet-Draft pNFS Metastripe July 2014

 Figure 10

8.3. parallel directory listing

 I-MDS: LAYOUTGET for filehandle layout -> fh_stateid
 I-MDS: LAYOUTGET(dir) for directory layout
 -> dn_stateid, dn_deviceid
 I-MDS: GETDEVICEINFO(dn_deviceid)
 -> [L-MDS1, L-MDS2, L-MDS3]

 L-MDS1: PREADDIR(dn_stateid, stripe=0, cookie=0)
 -> [a, b, c]
 L-MDS2: PREADDIR(dn_stateid, stripe=1, cookie=0)
 -> [d, e, f]
 L-MDS3: PREADDIR(dn_stateid, stripe=2, cookie=0)
 -> [g, h, i]

 I-MDS: LAYOUTRETURN(dn_stateid)
 I-MDS: LAYOUTRETURN(fh_stateid)

 Figure 11

9. Operational Recommendation for Deployment

 Deploy the metadata striping layout when it is anticipated that the
 workload will involve a high fraction of non-I/O operations on
 filehandles.

10. Acknowledgements

 We gratefully acknowledge the primary contributions of Mike Eisler,
 Pranoop Ersani, and others, in [METASTRIPE].

 From prior drafts, Brent Welch had the idea of returning a separate
 device ID for filehandle-only operations in the metadata layout.
 Pranoop Erasani, Dave Noveck, and Richard Jernigan provided valuable
 feedback.

11. Security Considerations

 The security considerations of Section 13.12 of [NFSv4.1] which are
 specific to data servers apply to l-MDSes. In addition, each l-MDS
 server and client are, respectively, a complete NFSv4.1 server and
 client, and so the security considerations of [NFSv4.1] apply to any
 client or server using the metadata layout type.

Benjamin, et al. Expires January 25, 2015 [Page 21]

Internet-Draft pNFS Metastripe July 2014

12. IANA Considerations

 This specification requires an addition to the Layout Types registry
 described in Section 22.4 of [NFSv4.1]. The five fields added to the
 registy are:

 1. Name of layout type: LAYOUT4_METADATA.

 2. Value of layout type: TBD1.

 3. Standards Track RFC that describes this layout: RFCTBD2, which
 would be the RFC of this document.

 4. How the RFC Introduces the specification: minor revision (we
 believe).

 5. Minor versions of NFSv4 that can use the layout type: [TBD].

 This specification requires the creation of a registry of hash
 algorithms for supporting the field mdln_namebased_alg. Additional
 details TBD.

 This specification introduces two new recommended attributes
 (meta_stripe_deviceid and meta_stripe_count).

 This specification introduces a new operation (PREADDIR).

13. References

13.1. Normative References

 [CITY] Pike and Alakuijala, "Introducing CityHash", April 2011, <
http://google-opensource.blogspot.com/2011/04/
introducing-cityhash.html>.

 [JENKINS] Jenkins, "Hash Functions for Hash Table Lookup",
 <http://burtleburtle.net/bob/hash/evahash.html>.

 [METASTRIPE]
 Eisler, "Metadata Striping for pNFS", October 2010, <http:
 //tools.ietf.org/html/

draft-eisler-nfsv4-pnfs-metastripe-03>.

 [NFSv4.1] Shepler, Eisler, and Noveck, "Network File System (NFS)
 Version 4 Minor Version 1 Protocol", January 2010,
 <http://tools.ietf.org/html/rfc5661>.

http://google-opensource.blogspot.com/2011/04/introducing-cityhash
http://google-opensource.blogspot.com/2011/04/introducing-cityhash
http://burtleburtle.net/bob/hash/evahash.html
https://datatracker.ietf.org/doc/html/draft-eisler-nfsv4-pnfs-metastripe-03
http://tools.ietf.org/html/rfc5661

Benjamin, et al. Expires January 25, 2015 [Page 22]

Internet-Draft pNFS Metastripe July 2014

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

13.2. Informative References

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

Authors' Addresses

 Matt Benjamin
 CohortFS, LLC
 206 S. Fifth Ave, Suite 150
 Ann Arbor, MI 48104
 USA

 Phone: +1 734 761 4689
 Email: matt@cohortfs.com

 Casey Bodley

 Email: casey@cohortfs.com

 Adam C. Emerson

 Email: aemerson@cohortfs.com

 Pranoop Ersani
 NetApp

 Email: Pranoop.Erasani@netapp.com

 Peter Honeyman

 Email: peter.honeyman@gmail.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4506

Benjamin, et al. Expires January 25, 2015 [Page 23]

