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Abstract

   This draft describes a protocol to be used for signaling QoS
   reservations in the Internet. It is compatible with the framework and
   requirements for such signaling protocols developed within NSIS; in
   conjunction with the NSIS Transport solution, it provides
   functionality comparable to RSVP: it is independent of the details of
   QoS specification, and adds support for a greater variety of
   reservation models, but is simplified by the elimination of support
   for multicast flows.
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   This draft includes a model of reservation operation and a
   description of the individual protocol mechanisms, and discusses
   interactions of the reservation protocol with other protocols and
   mechanisms. It also includes an outline functional specification and
   example message flows.
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1. Introduction

1.1 Scope and Background

   This document defines a Quality of Service (QoS) NSIS Signaling Layer
   Protocol (NSLP), henceforth referred to as the "QoS-NSLP". This
   protocol establishes and maintains state at nodes along the path of a
   data flow for the purpose of providing some forwarding resources for
   that flow. It is intended to satisfy the QoS-related requirements of
   [1]. This QoS-NSLP is part of a larger suite of signaling protocols,
   whose structure is outlined in [2]; this defines a common NSIS
   Transport Layer Protocol (NTLP) which QoS-NSLP uses to carry out many
   aspects of signaling message delivery.

   The design of QoS-NSLP is conceptually similar to RSVP [3], and uses
   soft-state peer-peer refresh messages as the primary state management
   mechanism. However, there is no backwards compatibility at the
   protocol level, although interworking would be possible in some
   circumstances. QoS-NSLP extends the set of reservation mechanisms to
   meet the requirements of [1], in particular support of sender or
   receiver initiated reservations, as well as a type of bidirectional
   reservation. Note that 'sender' and 'receiver' initiation refers to
   the direction of reservation messages relative to the data flow; the
   actual signaling entities can be anywhere along the data path, not
   just at the endpoints. On the other hand, there is no support for IP
   multicast.

   QoS-NSLP does not mandate any specific 'QoS Model', i.e. a language
   for QoS objects or any architecture for provisioning it within a
   network or any particular node; this is similar to (but stronger
   than) the decoupling between RSVP and the IntServ architecture [4].
   It should be able to carry QoS objects of various different types;
   the specification of Integrated Services for use with RSVP given in
   [5] could form the basis of one QoS model.

1.2 Model of Operation

   This section presents a logical model for the operation of the
   QoS-NSLP and associated provisioning mechanisms within a single node.
   It is adapted from the discussion in section 1 of [3]. The model is
   shown in Figure 1.
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                                      +---------------+
                                      |     Local     |
                                      |Applications or|
                                      |Management (e.g|
                                      |for aggregates)|
                                      +---------------+
                                              ^
                                              ^
                                              V
                                              V
               +----------+             +----------+      +---------+
               | QoS-NSLP |             | Resource |      | Policy  |
               |Processing|<<<<<<>>>>>>>|Management|<<<>>>| Control |
               +----------+             +----------+      +---------+
                 |  ^   |              .      ^
                 |  ^   |             .       ^
                 |  V   |            .        ^
                 |  V   |           .         ^
               +----------+        .          ^
               |   NTLP   |       .           ^
               |Processing|       .           V
               +----------+       .           V
                 |      |         .           V
   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
                 |      |         .           V
                 |      |         .     .............................
                 |      |         .     .   Traffic Control         .
                 |      |         .     .                +---------+.
                 |      |         .     .                |Admission|.
                 |      |         .     .                | Control |.
       +----------+    +------------+   .                +---------+.
   ----|  Input   |    | Outgoing   |-----------------------------------
       |  Packet  |    | Interface  |   .+----------+    +---------+.
   ====|Processing|====| Selection  |===.|  Packet  |====| Packet  |.==>
       |          |    |(Forwarding)|   .|Classifier|     Scheduler|.
       +----------+    +------------+   .+----------+    +---------+.
                                        .............................

        ------ = signaling flow
        =====> = data flow (sender -->receiver)
        <<<>>> = control and configuration operations
        ...... = routing table manipulation

                      Figure 1: QoS-NSLP in a Node

   The main features of the model are as follows:
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   From the perspective of a single node, the request for QoS may result
   from a local application request, or from processing an incoming
   QoS-NSLP message.

   o  The 'local application' case includes not only user applications
      (e.g. a multimedia application), but also network management (e.g.
      initiating a tunnel to handle an aggregate, or interworking with
      some other reservation protocol - such as RSVP). In this sense,
      the model does not distinguish between hosts and routers.

   o  The 'incoming message' case requires NSIS messages to be captured
      during input packet processing and handled by the NTLP. Only
      messages related to QoS are passed to the QoS-NSLP. The NTLP may
      also generate triggers to the QoS-NSLP (e.g. indications that a
      route change has occurred).

   The QoS request is handled by a local 'resource management' function,
   which coordinates the activities required to grant and configure the
   resource.

   o  The grant processing involves two local decision modules, 'policy
      control' and 'admission control'. Policy control determines
      whether the user has administrative permission to make the
      reservation. Admission control determines whether the node has
      sufficient available resources to supply the requested QoS.

   o  If both checks succeed, parameters are set in the packet
      classifier and in the link layer interface (e.g., in the packet
      scheduler) to obtain the desired QoS. Error notifications are
      passed back to the request originator. The resource management
      function may also manipulate the forwarding tables at this stage,
      to select (or at least pin) a route; this must be done before
      interface-dependent actions are carried out (including forwarding
      outgoing messages over any new route), and is in any case
      invisible to the operation of the protocol.

   Policy control is expected to make use of a AAA service external to
   the node itself. Some discussion can be found in [13] and [17]. More
   generally, the processing of policy and resource management functions
   may be outsourced to an external node leaving only 'stubs' co-located
   with the NSLP; however, this is not visible to the protocol
   operation.

   The group of user plane functions which implement QoS for a flow
   (admission control, packet classification, and scheduling) is
   sometimes known as 'traffic control'.

   Admission control, packet scheduling, and any part of policy control
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   beyond simple authentication have to be implemented using specific
   definitions for types and levels of QoS; we refer to this as a QoS
   model. Our assumption is that the QoS-NSLP is independent of the QoS
   model, that is, QoS parameters (e.g. IntServ service elements) are
   interpreted only by the resource management and associated functions,
   and are opaque to the QoS-NSLP itself. QoS Models are discussed
   further in Section 3.1.

   The final stage of processing for a resource request is to indicate
   to the QoS-NSLP protocol processing that the required resources have
   been configured. The QoS-NSLP may generate an acknowledgement message
   in one direction, and may propagate the resource request forwards in
   the other. Message routing is (by default) carried out by the NTLP
   module. Note that while the figure shows a unidirectional data flow,
   the signaling messages can pass in both directions through the node,
   depending on the particular message and orientation of the
   reservation.

1.3 Terminology

   The terminology defined in [2] applies to this draft. In addition,
   the following terms are used:

   o  QNE - an NSIS Entity (NE) which supports the QoS-NSLP.

   o  QNI - a QoS NSLP node acting as an NSIS Initiator (NI), the first
      node in the sequence of QNEs that issues a reservation request.

   o  QNR - a QoS NSLP node acting as an NSIS Responder (NR), the last
      node in the sequence of QNEs that receives a reservation request.

   o  QNF - a QoS NSLP node acting as an NSIS Forwarder (NF).

   In the document, where the phrase "message source" is used it
   generally refers to the adjacent QNE. Where it means one of the
   endpoints of the signalling session, this is highlighted by using the
   terms QNI or QNR.

2. Protocol Mechanisms

   This section describes the conceptual building blocks of the
   QoS-NSLP, in order to explain the overall structure of the protocol.
   The message set of QoS-NSLP is deliberately designed to be simple, to
   ease future analysis of routing and mobility interactions and other
   extensions: there are just 5 messages, namely a RESERVE/RESPONSE pair
   (idempotent messages controlling all aspects of state management) and
   3 stateless informational messages to handle queries and
   notifications. The default mode of operation delegates all message
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   routing responsibility to the NTLP.

2.1 State Management

   The QoS-NSLP uses one message, the RESERVE message, for reservation
   state management at QNEs. The RESERVE message is idempotent, i.e. any
   given message has the same effect however many times it is repeated;
   whether a RESERVE is installing new state or refreshing, modifying or
   tearing down already established state is determined independently at
   each QNE, depending on the existence of related state at that QNE.
   The RESERVE messages being sent at different points along the path
   are conceptually independent so far as the protocol is concerned,
   each being sent by one QNE and received by its next peer.

   The RESERVE message is used to support a similar function to the RSVP
   reserve, reservation refresh and teardown as all of these manipulate
   what is conceptually the same reservation state.  Which of these
   three functions the message causes depends on the QoS objects and
   flow/session identifier it carries. For example, reservation state is
   created in QNEs by a RESERVE message with unknown flow/session ID and
   the topmost QoS object describing non-zero resources.

   Reservation state is soft state and needs to be refreshed
   periodically.  Refresh (and modify) is achieved by sending a RESERVE
   message with known flow/session identifier. Finally, a teardown is
   really a special case of a modify message, with the modification
   being that resources should be zero.

   Any RESERVE may be replied to by a 'local' RESPONSE message (i.e. one
   sent directly back by the next QNE along the path); this happens when
   the reservation installed does not match the reservation requested
   (generally, when an error condition occurs), or if the QNE sending
   the RESERVE explicitly requests it. Any QNE can also create a RESERVE
   message tagged so it causes messages to be sent further along the
   path towards the QNR and RESPONSE messages sent all the way back.

2.2 Informational Messages

   The QoS-NSLP uses three messages which do not affect the resource
   management state at all (are 'impotent') at QNEs. These are the
   QUERY, QUERY-REPLY and NOTIFY messages.

   QUERY messages are used to support a similar function to the AdSpec
   Class in RSVP. A QUERY can be used to determine what kind of QoS
   services are available along the path, as well as any
   service-specific attributes and the amount of QoS resources
   available.
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   The QUERY message payloads can be extended or modified as the message
   is propagated; when it reaches the end of the path it is changed into
   a QUERY-REPLY message which carries the same data but in the reverse
   direction. QUERY messages can also be used purely between adjacent
   peers.

   NOTIFY messages are not sent in direct response to other signaling
   messages. They do not directly modify network state, or require a
   signaling message in response. They can be sent asynchronously by any
   node in the path and are commonly used to indicate that a change has
   occurred in the network. Examples include: change of a reservation
   caused by a network event (e.g. where rerouting means that a
   reservation can no longer be supported), or when a reservation is no
   longer being honoured due to pre-emption.

   QUERY, QUERY-REPLY and NOTIFY messages are forwarded along the path
   (they may go upstream or downstream, provided that the NTLP has the
   necessary path state).

2.3 Initiation and Termination

2.3.1 Initiating QoS Signaling

   The simplest case is clearly where the sender initiates the
   reservation. It can do this simply by sending its first RESERVE
   message. The sender then becomes also the QoS-NSLP Initiator (QNI)
   for the reservation.

   A node further along the data path may also carry out this role (for
   example, because the sender does not not support the QoS NSLP itself,
   or because QoS signaling is already done by the sender using some
   other mechanism.) This node must know the attributes of the flow,
   including the flow-id, and the QoS properties required. How this is
   done is not considered part of this protocol specification; options
   include the node taking part in the application's own signaling, or
   translating another QoS signaling protocol being used between itself
   and the sender. So far as the rest of the reservation processing is
   concerned at other nodes, this case is indistinguishable from the
   first, except that the QNI address (if visible in any messages) does
   not match the source address in the flow-id.

   A receiver initiated QoS NSLP signaling session is essentially
   identical, except that it requires the QNI to be able to construct
   the flow identifier (including knowing the encapsulation or other
   marking used for data packets) and that NTLP reverse-path state
   should exist. Both of these may require coordination with the sender,
   which has to be done with end-to-end signaling outside the scope of
   the QoS-NSLP. If end-to-end reverse path state is created in the
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   NTLP, this should be signaled to the QoS-NSLP at the QNR to allow it
   to begin the signaling application.

2.3.2 Finding the Terminating Node

   For a sender initiated case where the receiver supports the QoS NSLP,
   there is no difficulty in finding the terminating node. The receiver
   knows that it is the endpoint for the data flow, and so also knows to
   terminate the QoS signaling, and becomes the QNR for the session.

   Similarly, a node on the path may decide to act as the QNR and
   terminate the signaling. This is needed in particular where the QoS
   NSLP signaling reaches a QNE after which there are no more nodes
   supporting the QoS NSLP before the receiver. This situation cannot be
   detected by the NSLP on its own, and requires support from the NTLP.
   This is easily detected and reported by the local NTLP if there are
   no further NSIS-aware nodes at all; if there are further NSIS-aware
   nodes but which don't support the QoS-NSLP, this condition must be
   forwarded back to the last QNE as an error at the NTLP level.

   In the example shown in Figure 2, NQ is the 'last' node supporting
   the QoS-NSLP. N1 can simply forward the RESERVE message (treating it
   as an NTLP message with an 'unknown' payload). At N2 the next peer
   discovery fails, and it generates an error message which is passed in
   the reverse direction.

             NQ         N1         N2         D
             |          |          |          |
    RESERVE  |          |          |          |
   --------->|          |          |          |
             | RESERVE  |          |          |
             +--------->|          |          |
             |          | RESERVE  |          |
             |          +--------->|          |
             |          |          |          |
             |          |      NTLP Peer      |
             |          |      Discovery      |
             |          |       Failure       |
             |          |          |          |
             |          | NTLP Err |          |
             |          |<---------+          |
             | NTLP Err |          |          |
             |<---------+          |          |
             |          |          |          |

            Figure 2: Terminating a Sender Initiated Session

   In the corresponding receiver initiated scenario, the signaling will
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   reach a node with no 'previous hop'. If this is the sender then the
   signaling can be terminated immediately, the sender becoming the QNR.
   In other cases the node has to determine whether it is indeed the
   last node on the path, or simply lacking the relevant NTLP path
   state.

   This situation may occur, for example, at the time of the initial
   reservation when reverse path state is available at the QNI (data
   flow receiver) because of a constrained topology (e.g. only one
   ingress router), but not further upstream.  Therefore, when the
   receiver initiates a reservation, it has a valid route to the
   upstream peer, but this peer has no valid state to forward the
   message further. If the upstream peer wishes to propagate the
   signaling further, it has to generate a notification towards the QNI
   requesting an end to end (application layer) exchange which can
   trigger building the reverse path state. The QNI would also have to
   tag RESERVE messages to indicate that this installation of reverse
   path forwarding state has already been attempted (or is not
   possible), in which case the reservation could in general be
   propagated except in constrained network topologies.

2.4 State Source and Generation Identification

   There are several circumstances where it is necessary for a QNE to
   identify the adjacent QNE peer which is the source of a signaling
   application message; for example, it may be to apply the policy that
   "state can only be modified by messages from the node that created
   it".

   We rely on the NTLP to provide this functionality. By default, all
   outgoing QoS-NSLP messages are tagged like this at the NTLP layer,
   and this is propagated to the next QNE, where it can be used as an
   opaque identifier for the state associated with the message; we call
   this the Source Identification Information (SII). The SII is
   logically similar to the RSVP_HOP object of [3]; however, any IP (and
   possibly higher level) addressing information is not interpreted in
   the QoS-NSLP. Indeed, the intermediate NTLP nodes could enforce
   topology hiding by masking the content of the SII (provided this is
   done in a stable way).

   Reservation messages contain a sequence number allocated by the peer
   QNE which is the source of the message. Sequence numbers are
   allocated in ascending order and unique within the context of a given
   SII. Sequence numbers are used for a number of functions, including
   identification of the newest RESERVE message, simplifying the
   identification of RESERVE messages as being refreshes, and tying a
   RESPONSE back to a RESERVE message. Note that the sequence number may
   be different at different locations along the path; this is because
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   intermediate nodes may generate reservation updates autonomously
   while the reservation is in place.

2.5 QoS-NSLP Message Routing

2.5.1 Default Operation

   The default mode of operation for the QoS-NSLP is that signaling
   messages are transported along the path currently taken by a data
   flow by the NTLP. The necessary information is held in the flow-id,
   which is used as flow-routing information by the NTLP. All that the
   QoS-NSLP needs to do is provide the flow-id and a tag to indicate
   whether the message should be sent upstream (towards the flow sender)
   or downstream (towards the flow receiver), and the NTLP will deliver
   it to the next QoS-NSLP-aware node or return an error condition (such
   as "no next node" or "no routing state available to reach next
   node"). Whether another message is sent beyond the next node is
   controlled by the QoS-NSLP at that node, and depends on the message
   in question.

2.5.2 Explicit Routing

   There are circumstances where it is necessary to address state in an
   explicitly identified NSIS node, which isn't necessarily on the path
   associated with a particular (active or inactive) flow. Examples are
   tearing down state on the 'old' path after a route change, and
   sending a message which was only meaningful in the context of a
   previous message (such as a refresh which doesn't include the full
   reservation data).

   The first case could be handled by depending on timeout of
   soft-state; this would lead to temporary waste of resource in those
   areas. The second could be handled by returning an error in the
   QoS-NSLP, since the message receiver can determine that the message
   sender is 'unknown' by checking the SII. An alternative approach, an
   extension to support explicit routing for such messages, is described
   in Appendix A.

2.5.3 Skip-Stop Routing

   There may be cases where it is desirable to route a message directly
   to a QoS-NSLP peer (e.g. to send a confirmation directly to the
   initiator), rather than sending it via using NTLP. The motivation for
   doing this is to reduce the burden on the NTLP (especially NTLP-only
   intermediate nodes), both in message processing and the necessity to
   maintain reverse-path routing state for the associated flow.

   The basic technique for doing this is that a subset of QNEs on the
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   path directly store some QNE IP address within the QoS-NSLP. These
   can send directly to their peer. However, this has to be done in a
   way which does not invalidate the services provided by the NTLP
   (error handling, security, congestion control, routing reactions and
   so on). There are several possible solutions to this problem; one is
   outlined in Appendix B.

2.6 Resource Description Objects

   Each of the QoS-NSLP message types can carry QoS descriptions in
   Resource Description Objects (RDOs).  The definitions of the possible
   RDO contents for each message together form a QoS Model. Multiple QoS
   Models can be defined for use with the QoS-NSLP; the general
   requirements on a QoS Model are discussed in Section 3.1, but which
   one is used does not affect the general operation of the QoS-NSLP
   itself.

   In order to allow some local selection of which QoS Model to use
   without destroying all end-to-end aspects of the signaling, QoS-NSLP
   allows a kind of nesting of QoS Models by 'stacking' more than one
   RDO within a message. The mechanism for the RESERVE message is as
   follows; similar rules can be defined for the other QoS-NSLP message
   types.  The QNI places an end-to-end RDO the RESERVE message.
   However, each QNF may add a further so-called local RDO in the
   RESERVE message that it forwards. The RDO on top of the stack is the
   one currently valid, and the others need not be parsed. This
   procedure allows mapping the QoS described in the end-to-end RDO onto
   local QoS paradigms. For example, a bandwidth and application type in
   the end-to-end RDO may be mapped onto a discrete set of available
   bandwidths and a particular traffic class in the local RDO. If a QNE
   does not understand the topmost (local) RDO, it generates an error
   RESPONSE which is sent backwards along the data path. The error
   message must be terminated and recovered by the last QNE which added
   it.

   In general, local RDOs must contain scoping information such as
   "valid only in a particular domain A". In this case, all edge nodes
   of domain A must be QNEs and be configured to pop the topmost RDO on
   egress; they can then add a new one valid only on the inter-domain
   link, or fall back to the next lower one which may or may not be the
   end-to-end RDO. This is conceptually similar to the Aggregation
   Region concept of [9], where one option is that Deaggregators (which
   correspond to the last QNE in scope) are pre-configured to act in
   these roles. In general, it is up to Network Management to make QNFs
   knowledgeable about what scope they are in and what QoS Models they
   should use.
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3. External Interactions

3.1 QoS Models

   A QoS Model gathers together the set of ways of describing packet
   flow behavior (as RDOs), and describes how these RDOs can be used in
   particular QoS-NSLP transactions. The scope of a QoS model
   encompasses the tspec/rspec/adspec concepts of RSVP [3]; however the
   way they describe QoS can be different, and the QoS-NSLP
   specification leaves the details of how the RDOs in each message
   should be processed to the QoS Model description. For example, basic
   RSVP/IntServ [5] functionality would include the fact that RESERVE
   messages should contain a 'rspec' and QUERY messages an 'rspec' and
   optionally an 'adspec', and would also describe the parametrisation
   of those contents.

   More generalised resource reservation signaling patterns are expected
   to be encoded in the QoS Model description, without changing the
   basic operation of the QoS-NSLP itself. For example, it may indicate
   that a partial reservation, successful only at some nodes, would be
   acceptable. In order to reduce the number of reservation message
   exchanges, the RDO in a RESERVE might also include a resource range,
   containing an upper and a lower bound. QNEs would attempt to reserve
   the highest amount of resources below the maximum and update the
   amount accordingly; the QoS Model would also define the possible
   contents of the RESPONSE if the maximum could not be reserved.

   Another possibility is of advanced reservations, including a 2-stage
   reserve/commit mechanism. The intention here is that a QNI can
   request a firm guarantee that resources will be available at some
   future time, without actually needing the physical resources to be
   set aside at the time the request is made. Since this process does
   actually involve manipulating state in the other QNEs it can be
   described within a QoS Model as a particular type of reservation,
   where the initial RDO is processed by admission and policy control
   but not the packet scheduler. 'Activation' of the reservation takes
   place simply by sending another RESERVE with an updated RDO.

   It is not clear whether there is a need for a standardised 'default'
   QoS Model that can be interpreted by all QNEs. This would naturally
   be used for the end-to-end RDOs which are handled by the QNI and QNR.
   Some applications may wish (and are able to) to detail a token
   bucket, peak rate etc, whereas others just provide the information
   "this is a delay-sensitive flow of such average bandwidth". The
   default QoS Model could provide fields for all these values, however
   not all of them need to be filled in by the application. It would
   seem that such a default model would be most useful at the network
   'edge', and quite possibly inappropriate for core network or
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   inter-provider use. In addition, there would seem to be a need for
   some common elements to all QoS Models (such as the value 'No QoS' to
   be used when tearing down a reservation or reporting complete
   resource unavailability).

   A local QoS Model in contrast is specific to the QoS mechanism used
   in a particular scoping region. For example, its RDOs may include
   full RSVP flowspec information. For some popular QoS mechanisms, an
   official standard may exist for the local QoS Model. However, private
   ('enterprise') QoS Models could also exist where all QNEs in a
   scoping region have to be configured specifically to understand it.
   It is also possible for a QNI to include definitions from a local QoS
   Model as well as a default one, for example in the case of a mobile
   node describing desired L2 properties on the air interface.

   An IANA registry of well-known QoS Models would be required.

   It is currently an open question whether policy related information,
   such as accounting and charging information or authorization tokens
   should be included as part of the QoS Model, or whether it should be
   defined separately. There is clearly coupling between the two types
   of information, since it is only possible to make a meaningful policy
   decision if the QoS description is understood; however, the way the
   policy information is given may itself be independent of that. This
   question depends on how AAA issues in general are to be handled in
   the QoS-NSLP [13] [17]

3.2 Implications for NTLP Functionality

   The QoS-NSLP requires that a some particular features be available in
   the NTLP messages or be provided as triggers by the NTLP module
   (either locally or in a distributed fashion).

   The features currently suggested in this document include:

   o  Last node detection: This trigger is provided by the NTLP to the
      QoS-NSLP when it determines that this is the last NE on the path
      which supports the QoS-NSLP. It requires the NTLP to have an error
      message indicating that no more NSLPs of a particular type are
      available on the path. (See also Section 2.3.2).

   o  Rerouting detection: This trigger is provided when the NTLP
      detects that the route taken by a flow (which the QoS-NSLP has
      issued signaling messages for) has changed.

   o  Reverse path state established: This trigger is provided at the
      QNI for receiver initiated reservations when the NTLP detects that
      a path-establishing message has been received from the flow
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      sender. This trigger is needed only when the path-establishing
      message is not itself a QoS-NSLP message (such as a QUERY). (See
      also Section 2.3.1.)

   o  Source Identification Information (SII): This information needs to
      be provided at the NTLP level to identify the QNE which a
      particular message came from. It needs to be stable across
      rerouting events which do not change QoS-NSLP adjacencies (but
      might, for example, change outgoing interfaces). (See also Section

2.4.)

   o  Explicit Routing: This facility might be needed to send messages
      explicitly to a known QNE, in which case the NTLP has to provide
      topologically correct routing information in a form which can be
      cached by the QoS-NSLP. (See also Appendix A.)

   o  Stateless Forwarding: This facility might be provided to enable
      the NTLP to operate in a mode where reverse path state is not kept
      in some region, analogous to the processing in [9]. Doing this
      robustly appears to be possible with a pair of additional flags at
      the NTLP level. (See the description in Appendix B.)

   o  Path length determination: In order to count the number of
      QoS-NSLP-aware/unaware hops, support from the NTLP is needed to
      provide the IP hop count between adjacent QNEs. This could be
      provided by the NTLP by default, if such a facility is felt to be
      generally useful.

   Although these requirements are identified here in the context of a
   Quality of Service NSLP, some of them may also be applicable to other
   NSLP types. Also, it should be noted that the QoS-NSLP makes fairly
   cautious assumptions about the level of the transport service
   provided by the NTLP, for example regarding re-ordering protection
   across multiple hops or over route changes. A more sophisticated NTLP
   might allow us to remove QoS-NSLP functionality such as sequence
   numbering, or tagging state with source identification. However, it
   isn't clear how generic across other NSLPs such functionality can be
   made.

4. Outline Functional Specification

4.1 QoS NSLP Messages

   The QoS-NSLP defines five message types:

   o  RESERVE

   o  RESPONSE
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   o  QUERY

   o  QUERY-REPLY

   o  NOTIFY

   The first two are idempotent (the resultant state in traffic control
   is the same however many times an identical message is repeated), and
   the remainder do not change traffic control state at all (although
   NOTIFY might indirectly trigger a state-changing action in the
   receiver).

   Messages are normally passed from the NSLP to the NTLP via an API
   which also specifies the signaling application (as QoS-NSLP), the
   flow/session identifier, and an indication of the intended
   destination, which is one of 'next hop', or 'previous hop'. On
   reception, the NTLP provides the same information to the QoS-NSLP
   along with the source identification. Possible additional features
   are described in Appendix A and Appendix B.

   The rest of the message is opaque to the NTLP. QoS-NSLP messages have
   a common header providing protocol version, message type, and flags
   associated with protocol extensibility issues (rules about ignoring
   or rejecting unknown messages); these details are not described here.

4.1.1 RESERVE Message

   RESERVE messages are idempotent. They manipulate reservation state in
   QNEs by creating, refreshing, modifying and deleting it. Each RESERVE
   message triggers three actions:

   o  Install, refresh, modify or delete reservation state

   o  Possibly send a RESPONSE

   o  Possibly create a modified message (e.g. adding or removing
      objects) and pass it to the NTLP

   The RESERVE message format can be summarised as follows:

   <Reserve Message> ::= <Common Header>
                         <RESERVATION_SEQUENCE_NUMBER>
                         <RDO_LIST>
                         <RESERVATION_LIFETIME>
                         [<RESPONSE_REQUESTED>]
                         [<POLICY_INFORMATION>]
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4.1.1.1 Reserving resources

   To reserve resources, the QNI sends a RESERVE message. A RESERVE
   message with unknown flow/session ID creates reservation state at
   each QNE, which is used by the local resource management function to
   grant and configure resources as described in Section 1.2. A RESERVE
   message carries at least one RDO describing the QoS desired and a
   lifetime for it. QNEs may add local RDOs, providing nesting of QoS
   information as in Section 2.6.

   A RESERVE message carries a sequence number, which is increased for
   each new RESERVE message pertinent to the same flow/session ID. This
   allows for identifying the latest state that is being requested.
   Optionally, it may contain an object to control whether a local and/
   or end-to-end RESPONSE should be generated. A RESERVE message may
   additionally carry other local or global objects, such as accounting
   and charging information and so on.

4.1.1.2 Refreshing

   In general, the NSIS protocol suite takes a soft state approach to
   managing reservation state in NEs. Note that although both NTLP and
   QoS-NSLP have soft state, it is managed independently to avoid
   interlayer coupling.

   For NSLP, the state is created by the RESERVE message and must be
   periodically refreshed. Reservation state is deleted if no new
   RESERVE messages arrive before the expiration of the "reservation
   lifetime" interval specified as part of the reservation state. State
   can also be deleted by explicit teardown described in Section

4.1.1.3. At the expiration of a "refresh timeout" period, each QNE
   independently scans its state and sends a corresponding refreshing
   RESERVE message to the next QNE peer where it is absorbed. This
   peer-to-peer refreshing (as opposed to the QNI initiating a refresh
   which travels all the way to the QNR) allows QNEs to choose refresh
   intervals as appropriate in their environment. For example, it is
   conceivable that refreshing intervals in the backbone, where
   reservations are relatively stable, are much larger than in an access
   network. The "refresh timeout" is calculated within the QNE and is
   not part of the protocol; however, it must be chosen to be compatible
   with the reservation lifetime that is advertised, and an assessment
   of the reliability of message delivery. The details of timer
   management and timer changes (slew handling and so on) should be
   similar to those of RSVP [3].

   As well as a 'traditional' soft-refresh (simply repeating the
   original messages), a summary refresh can be sent if a RESPONSE has
   been received for the reservation. This is achieved by sending a
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   RESERVE message only containing a pointer to the corresponding
   reservation (flow/session ID and Sequence number of the RESPONSE),
   not the reservation information itself in order to speed up
   processing [7].

   Reservations can be refreshed "as is". If reservation state needs to
   be modified, a RESERVE message containing explicit QoS information
   (new RDOs) is sent, with a strictly higher
   RESERVATION_SEQUENCE_NUMBER. If, for example, because of route
   changes, a QNE receives a refreshing RESERVE message, containing only
   a pointer which it does not understand (e.g. from an unknown source),
   it replies with an error RESPONSE message back to the originating
   (peer) QNE. This QNE replies with a full updated RESERVE message
   including corresponding RDOs. This way, failures can be repaired
   quickly locally. This is another advantage of peer-to-peer
   refreshing.

   Regarding RFC 2961-style bundling of Refresh messages, there are two
   design options. Either a QNE may bundle refresh messages before
   handing them down to NTLP, or NTLP is solely responsible for
   bundling. The advantage of the former is there is only one NSLP
   header per bundle. On the other hand, NTLP is best placed to do
   bundling efficiently because it knows more about path properties
   (e.g. MTU, packetisation, latency) and whether messages should even
   follow the same path at the NTLP level. We therefore opt for the
   latter. NTLP may decide to bundle this bundle with refresh messages
   from other NSLPs and / or to synchronize and piggyback its own
   refreshes with QoS-NSLP refresh messages in order to save overhead.
   Details of this however are clearly out of scope of this document.

4.1.1.3 Teardown

   A RESERVE message with 'zero' RDO removes reservation state of the
   corresponding flow/session ID immediately. Although because of soft
   state it is not necessary to explicitly tear down an old reservation,
   we recommend that QNIs send a teardown request as soon as a
   reservation is no longer needed. A teardown deletes reservation state
   and travels towards the QNR from its point of initiation. A Teardown
   message may be initiated either by an application in an QNI or by a
   QNF along the route as the result of a state timeout or service
   preemption. Once initiated, a Teardown message must be forwarded QNE
   peer - to - QNE peer without delay.

4.1.2 RESPONSE Message

   RESPONSE messages are any messages sent in reply to a RESERVE
   message. They are idempotent. Their semantics include error reports,
   simple acknowledgements, and so on. RESPONSE messages may be sent

https://datatracker.ietf.org/doc/html/rfc2961
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   with a scope of a single QoS-NSLP 'hop' or be sent further along the
   path towards a QNE which explicitly requested it. By default, they
   are sent within the NTLP and may require reverse-routing state to
   exist (in the case of a sender initiated reservation).

   The RESPONSE message format can be summarized as:

   <Response Message> ::= <Common Header>
                          <RESERVATION_SEQUENCE_NUMBER>
                          <CONFIRMATION_OR_ERROR_TYPE>
                          [<RDO_LIST>]
                          [<RESPONSE_REQUESTED>]
                          [<POLICY_INFORMATION>]

4.1.2.1 Error

   An error RESPONSE message indicates a reservation has failed. It
   includes the sequence number of the failed RESERVE message. In
   addition, the SII of the QNE where the RESERVE failed is provided by
   the NTLP. It is interpreted first by the QNE which sent the RESERVE,
   which must either attempt corrective action, or tear the reservation
   down and propagate the error condition further backwards.

4.1.2.2 Confirmation

   To request a confirmation for a reservation request, a QNE includes
   in the RESERVE message a confirmation-request object containing an
   identifier supplied by the QNE. If a confirmation-request has already
   been added by another QNE a second one need not be added, since this
   QNE will see the RESPONSE anyway.

   The RESPONSE (whether an error or success indication) echoes back the
   confirmation-request object. If a RESPONSE contains a
   confirmation-request object not added by this QNE then it MUST
   forward the RESPONSE, until it reaches the QNE which provided the
   original request (matched by the identifier).

   A confirmation must be issued when the reservation installed does not
   match the reservation requested, i.e. when - within a range possibly
   provided in the RESERVE - less resources have been reserved starting
   from a particular QNF_i towards the QNR. This allows the QNI to issue
   a new RESERVE in order to adapt resources up to QNF_i.

   The confirm RESPONSE message may be sent by the QNR simply confirming
   the RESERVE was successful as requested, or it may be issued by a QNF
   to confirm it modified a Reservation (partial reservation or - within
   the bandwidth range - decreased reservation). The Confirm message
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   contains the sequence number of the RESERVE it is in response to.

4.1.3 QUERY and QUERY-REPLY Messages

   QUERY messages do not change the NSLP state at any of the nodes that
   process them (though, like any NSIS message, they may cause NTLP path
   state to be created or modified). When the QUERY reaches the end of
   the path, the message is changed from a QUERY to a QUERY-REPLY and
   then sent back in the opposite direction.

   One application of the QUERY message is similar to the use of an
   AdSpec object in a PATH message for RSVP. The QUERY message can carry
   parts specific to particular QoS Models, similar to the Guaranteed
   Service and Controlled-Load Service Fragments of the RSVP ADSPEC
   message [5]. These will be specified in documents defining particular
   QoS Models.

   These may be used to determine what resources are present along the
   path (e.g. estimating the path bandwidth or minimum path latency).
   However, they do not guarantee the availability of resources for a
   subsequent RESERVE request.

   The QUERY message format is as follows (the QUERY-REPLY is
   essentially identical):

   <Query Message> ::= <Common Header>
                       <QUERY_IDENTIFIER>
                       <QOS_NSLP_COUNT>
                       [<qos model query list>]

   <qos model query list> ::= <empty> |
                       <qos model query list> <QOS_MODEL_QUERY>

   The QUERY_IDENTIFIER is an unstructured numerical identifier for the
   query, used for matching responses. The value of the identifier is
   otherwise not significant.

   The QOS_NSLP_COUNT is initially zero, and is incremented by one at
   each QNE on the path. It counts the QoS-NSLP aware nodes along the
   path, and can be used (along with the total path length) to derive
   the number of non-QoS-NSLP hops, a generalisation of the way RSVP
   counts the number of non-IntServ hops. It can also accumulate the IP
   hop length of the path, if this information is provided by the NTLP.

   A QOS_MODEL_QUERY object can be used to query information that is
   specific to the type of QoS Model being used.
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4.1.4 NOTIFY Message

   NOTIFY messages only provide information to an NE, they do not cause
   a change in state directly themselves.

   They main difference between RESPONSE messages and NOTIFY messages is
   that RESPONSE messages are sent on receipt of a RESERVE message,
   whereas NOTIFY messages can be sent asynchronously, and in either
   direction relative to the RESERVE.

   The message may contain information relating to particular QoS
   models. These can be used to provide more information when the
   notification is due to a change in the reservation.

   The NOTIFY message format is as follows:

   <Notify Message> ::= <Common Header> <NOTIFICATION_CODE>
                        [<qos model notification list>]

   <qos model notification list> ::= <empty> |
                     <qos model notification list> <QOS_MODEL_NOTIFY>

   The QOS_MODEL_NOTIFY contains any QoS Model specific information that
   needs to be carried as part of the QUERY, e.g. the reservation now
   being used after a reservation change.

4.2 Rerouting and Local Repair

   The detection of rerouting can take place in multiple ways.

   It can be done at the NTLP (including by the NTLP interacting with
   routing protocols or by path length monitoring and so on, as
   described in [18]). Rerouting detected by the NTLP may then be
   delivered as trigger information to the QoS-NSLP (at one or more
   locations along the signaling path).

   Rerouting can also be detected at the QoS-NSLP itself, if a RESERVE
   arrives refreshing existing state but coming over a new interface;
   or, if a RESERVE claims to refresh state that does not exist at all.
   (Similar facts can be deduced from mis-delivered RESPONSE messages.)
   In either case, we assume for now that any necessary reverse-routing
   state already exists in the NTLP; actions to stimulate this state
   being set up will be considered in a later version of this document.

   In either case, the QoS-NSLP needs to filter the event to avoid
   flapping a reservation in synchronization with flapping a route, and
   then carry out local repair actions to ensure that the reservation is
   set up on the new path and if possible torn down on the old. A
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   high-level outline of the necessary processing is as follows:

   1. The QNE detecting the re-route issues a new RESERVE with a
   doubly-incremented sequence number, including a request to receive a
   confirmation from further down the path. The RESERVE should be given
   the same SII as previous reservations for the same flow, to avoid
   disrupting reservations in the case where the next QNE on the path is
   actually the same.

   1a. At QNEs on the new part of the path, the RESERVE installs new
   reservation state, and is immediately propagated further to the QNR.

   1b. At the QNE where the old and new paths merge, the QOS-NSLP should
   generate a RESPONSE which is returned to the QNE initiating the route
   change. The state already existing at that QNE is re-labelled with
   the SII of the new QNE which requested it.

   At this stage, the reservation is essentially installed on the new
   path. Further reservation messaging might take place to adjust the
   QoS parameters along the path if the new path has very different
   characteristics from the old; this takes place (if at all) as a
   background activity.

   2. If explicit routing (Appendix A) is supported, the QNE detecting
   the route change can now issue another new RESERVE with a null QoS
   request (i.e. a teardown) and lower sequence number than used in (1),
   and explicitly route it along the old path.

   2a. A QNE not on the new path will tear down the reservation state
   and forward it further if it can.

   2b. At the QNE where the old and new paths merge, the teardown will
   be ignored, either because it has a lower sequence number than the
   newly installed reservation, or because it is attempting to remove
   state installed under a different SII.

   Note that, with the exception of the explicit routing, this method of
   re-routing support is purely an implementation issue at the QNE
   detecting the route change, it does not require any other
   rerouting-specific protocol features.

4.3 Mobility and Multihoming

   There are several circumstances where it is desirable to associate
   together two reservations with different flow-ids (typically,
   different addresses) but which are conceptually for the same packet
   stream. One case is mobility with a change of address; a related
   example is of multihoming, where a node sets up reservations for its
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   flows on a new interface in preparation for handing them over. A
   third case is call waiting. In all cases, the wish is for resources
   to be shared (singly-booked) over the network region where the flows
   share a path. This is comparable to a restricted use of the
   Shared-Explicit filter style of [3], in a non-multicast context.

   The NSIS protocol suite provides the session id for this purpose:
   resources are shared based on having a common session id, even though
   their flow ids are different. A later version of this draft will
   discuss the modifications to the protocol to support this
   functionality, mainly in terms of what identifiers are used to match
   state and messages. It should be noted that secure use of the session
   id is non-trivial; this problem is discussed in [16].

5. Example Message Flows

   A number of message flows (at NSLP level) are shown here as examples
   of the QoS NSLP signaling process.

Section 5.1 below shows a sender initiated NSLP signaling flow; the
   RESPONSE messages have been generated from the QNR because of the
   RESPONSE REQUESTED object inserted by the QNI.

5.1 Basic Sender/Receiver Initiated Example

     S         NF1        NF2         R
     |          |          |          |
     | RESERVE  |          |          |
     +--------->|          |          |
     |          | RESERVE  |          |
     |          +--------->|          |
     |          |          | RESERVE  |
     |          |          +--------->|
     |          |          |          |
     |          |          | RESPONSE |
     |          |          |<---------+
     |          | RESPONSE |          |
     |          |<---------+          |
     | RESPONSE |          |          |
     |<---------+          |          |
     |          |          |          |
     |          |          |          |

   The receiver initiated case is essentially identical, with the
   difference that the leftmost node in Section 5.1 is now 'R' (the data
   receiver) and the rightmost node is now 'S' (the data sender). In
   order to perform the reservation, reverse path state needs to be
   installed. Some discussion of how this can be done is given in
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Section 2.3.1.

5.2 Reservation Collision Example

   This example shows an exchange, with a 'reservation collision'
   causing the new reservation to fail. A reservation collision occurs
   when the two endpoints of a data flow (or signaling proxies on the
   data path but not at the flow endpoints) fail to agree on who should
   make the reservation for a flow, leading to a QNE seeing RESERVE
   messages from both directions.

   In this example (Figure 8), we assume that the QNE detecting the
   condition has adopted a 'sender wins' policy: the sender initiated
   reservation is accepted (or maintained), and the receiver initiated
   one is rejected (or torn down). It isn't clear whether this policy is
   reasonable; however, it does appear that some sort of default policy
   must be standardised. A slight increase in sophistication would be to
   include information in a RESERVE about whether it should be preferred
   over reservations in the opposite direction. Clearly, there are also
   interactions with AAA issues here.

    QNI1                                        QNR1
    QNR2                                        QNI2
     S         QNF1       QNF2       QNF3        R
     |          |          |          |          |
     | RESERVE1 |          |          |          |
     +--------->| RESERVE1 |          | RESERVE2 |
     |          +--------->| RESERVE2 |<---------+
     |          |          |<---------+          |
     |          |          |          |          |
     |          |          |  Error2  |          |
     |          |          +--------->|  Error2  |
     |          |          |          +--------->|
     |          |          | RESERVE1 |          |
     |          |          +--------->| RESERVE1 |
     |          |          |          +--------->|
     |          |          |          |          |

                    Figure 8: Reservation Collision

   QNF2 detects the collision on receipt of RESERVE2. The reservation
   created by RESERVE2 is rejected with the appropriate error condition
   as RESERVE1 is propagated onwards towards the receiver.

   Any RESPONSE message processing for RESERVE1 is performed in the
   normal way.
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5.3 Bidirectional Reservation Example

   A bidirectional reservation is actually a sender initiated
   reservation (for an outbound flow) and a receiver initiated
   reservation (for the corresponding inbound flow of a bi-directional
   flow) combined together and issued by a single QNI. It is implemented
   through the use of NTLP bundling, with the NSLP providing the two
   reservations together to the NTLP as an indication that they should
   if possible be delivered together.

   The diagram below shows a bidirectional reservation. RESPONSE
   messages can be provided in the normal manner.

     A         NF1        NF2         B
     |          |          |          |
     | RESERVE  |          |          |
     +-x-x-x-x->|          |          |
     |          | RESERVE  |          |
     |          +-x-x-x-x->|          |
     |          |          | RESERVE  |
     |          |          +-x-x-x-x->|
     |          |          |          |

   ---> = Reservation for A->B direction
   xxx> = Reservation for B->A direction
   -x-> = Bundled reservation (A->B and B->A)

   The NTLP path state for reverse path routing from A to B (for the
   B->A flow) must be set up before the reservation can be performed,
   otherwise the receiver initiated half of the reservation will fail.

   If the routing is asymmetric then the reservation will be split into
   two where the paths diverge. The diagram below shows a network within
   an asymmetric route for a bidirectional flow between A and B.

                         ----------->

                            +----+
                         /--|QNF2|--\
                        /   +----+   \
   +-------+  +----+   /              \   +----+  +-------+
   |A (QNI)|--|QNF1|--+                +--|QNF4|--|B (QNR)|
   +-------+  +----+   \              /   +----+  +-------+
                        \   +----+   /
                         \--|QNF3|--/
                            +----+



McDonald, et al.       Expires December 22, 2003               [Page 25]



Internet-Draft                  QoS NSLP                       June 2003

                         <-----------

   The diagram below shows a bidirectional reservation across this
   network. RESPONSE messages can be provided in the normal manner.

     A         NF1        NF2        NF3        NF4         B
     |          |          |          |          |          |
     | RESERVE  |          |          |          |          |
     +-x-x-x-x->|          |          |          |          |
     |          | RESERVE  |          |          |          |
     |          +--------->|          |          |          |
     |          +xxxxxxxxxxxxxxxxxxxx>|          |          |
     |          |          | RESERVE  |          |          |
     |          |          +-------------------->| RESERVE  |
     |          |          |          |          +--------->|
     |          |          |          +xxxxxxxxx>|          |
     |          |          |          |          +xxxxxxxxx>|
     |          |          |          |          |          |
     |          |          |          |          |          |

   ---> = Reservation for A->B direction
   xxx> = Reservation for B->A direction
   -x-> = Bundled reservation (A->B and B->A)

   At QNF1 the 'next hop' for the A to B flow is different to the
   'previous hop' for the B to A flow, so the reservation bundle must be
   split. It then operates as two separate reservations - one sender
   initiated, the other receiver initiated.

   Even if messages do not arrive bundled (as at QNF4 in the example),
   the QoS-NSLP is allowed to merge the state for the flow internally
   and use it to issue bundled refresh messages to neighboring QNEs.

5.4 Tunnels and Aggregation

   QoS NSLP as defined above also allows dynamically aggregating
   reservations such that core network nodes are alleviated from keeping
   per-microflow state. Reservations for aggregate flows can be
   triggered by individual (per-microflow) reservations, or can be set
   up independently. The general advantages in terms of resource
   management, particularly in the context of DiffServ networks, are
   described in section 4.2.1 of [8].

   Management must have configured QNEs, typically at the boundary of a
   domain, to act as aggregating and deaggregating QNEs. The
   configuration depends on the aggregation method being used. The two
   choices are:
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   o  Tunnel-based, where traffic is encapsulated in an IP tunnel (using
      GRE, IP-in-IP tunnel, IPsec, and so on). The aggregating QNE
      initiates the tunnel and chooses the endpoint as one of the
      deaggregating QNEs at the domain edge.

   o  DiffServ-based, where normal routing is used within the domain,
      but the aggregating QNE marks the aggregated traffic with an
      appropriate DSCP.

5.4.1 Sender Initiated Tunnel Aggregation

   Here we describe a sender-initiated example for aggregate reservation
   set-up. With receiver-initiated aggregate reservations other issues
   may arise which need to be investigated in future versions of this
   draft, if it is felt that receiver orientation is useful for
   reservations in this context.

   Apart from the receiver/sender distinction, the method chosen here is
   conceptually similar to that of [6]. The tunnel is used as a single
   virtual link, in that the 'end-to-end' NSIS signaling for the data
   flows is tunneled between the same endpoints so as to be invisible to
   the routers between them, and a second signaling session is applied
   purely between the tunnel endpoints.

   The aggregating QNE (which will be the QNI for the aggregate
   reservation) does the following:

   o  it tunnels 'forwards-path' NSIS messages referring to flows within
      the aggregate by adding an IP header addressing the deaggregating
      QNE. The aggregator also decapsulates 'reverse-path' NSIS messages
      tunneled from the deaggregator.

   o  whether or not these signaling messages are part of the aggregate
      reservation or use a distinct tunnel encapsulation is up to
      management; using a distinct encapsulation prevents the signaling
      and traffic having to share resources.

   o  it initiates a RESERVE towards the deaggregator describing
      resources to be reserved for the aggregate flow. The algorithm
      used to determine aggregate resources is a management and policy
      issue. They may e.g. exactly fit the resources needed currently,
      or - avoiding frequent reconfigurations - be based on an estimate
      of resources needed now and in the near future. Note that the
      aggregator will be able to see both directions of QoS-NSLP
      messages for all the flows within the aggregate, in particular
      RESERVE messages, and these can be used as the input to the
      calculation for the aggregate resource requirement. Therefore,
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      this technique is applicable regardless of whether the end-to-end
      signaling is sender or receiver initiated (or indeed a mixture of
      the two).

   o  depending on how aggregate flow and resources are described in the
      RESERVE, and depending on the local QoS mechanism, it tunnels data
      packets by appending an IP header fitting the aggregate flow ID
      and addressing the deaggregating QNE.

   The deaggregating QNE (aka QNR for the aggregate reservation) does
   the following:

   o  it terminates the RESERVE for the aggregate and is the QNR for it.

   o  it receives and decapsulates the tunneled data packets.

   o  it receives and decapsulates tunneled QoS NSLP signaling packets
      and processes them just as any other signaling packet received in
      an ordinary fashion. If these are forwards path messages, the NTLP
      should be able to use them to install reverse routing state back
      up the virtual link (in exactly the same way it can install
      reverse routing state back up a real link), given that the other
      end of the link is also a QNE.

   QNFs on the data path between aggregating and deaggregating QNEs do
   not know they are processing an aggregate reservation. Therefore they
   don't need any special information, nor do they perform special
   packet treatment. Indeed, it is clear from the above descriptions
   that aggregations can be nested by just re-applying the above steps.

5.4.2 Receiver Initiated DiffServ Aggregation

   An alternative aggregation method is based on the DiffServ
   architecture rather than relying on the use of tunnels. It has some
   similarities with the description of RSVP aggregation in [9]; in
   particular, we assume a 'simple' routing infrastructure where a
   shortest path that includes two points (the aggregator and
   deaggregator) is also the shortest path between those two points
   themselves. We also assume that all DiffServ marked traffic within
   the region will be included in aggregate reservations.

   The following description depends on the skip-stop routing extension
   described in Appendix B. The combination of the stateless mode of the
   NTLP and the storage of the ingress QNE identifier in the QoS-NSLP
   messages corresponds to the use of the special RSVP-E2E-IGNORE
   protocol number in [9]: state is (eventually) not stored in the
   interior of the network, and the egress QNE learns the address of the
   ingress QNE from the signaling messages. The method works as follows:
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   o  End-to-end QoS-NSLP messages for the individual flows are sent
      using skip-stop routing. They must not be interpreted by the
      QoS-NSLP within the network; this could be done by giving them a
      different QoS Model from that used in the network interior.

   o  The egress QNE can determine which flows come from which ingress
      QNE, and also track the reservation requests for those flows. This
      allows it to build up a picture of what aggregate reservations are
      needed between it and each ingress QNE. The algorithm that assigns
      flows to aggregates (DSCPs) is the responsibility of network
      management.

   o  The egress QNE requests the ingress QNE for an aggregate to set up
      reverse path state in the network. The request can be sent as a
      special NOTIFY message sent outside the NTLP; the state can be set
      up with a QUERY sent from ingress to egress via the NTLP. (This is
      where the assumption that simple shortest path routing is being
      used.)

   o  Once the reverse path state is available, the egress QNE sets up a
      receiver initiated reservation for the DSCP along that path. Note
      that the classifier will be purely the DSCP, on the assumption
      that on any interface, all the traffic for any DSCP will be
      covered by some reservation (it doesn't matter which). This
      reservation can be maintained and modified by the egress QNE as it
      tracks the flow ingress point (and possibly DSCP) as derived from
      the end-to-end signaling.

5.5 Layered Reservations

   The combination of end-to-end and local RDOs together with
   reservation aggregation as described in the last section can be used
   to perform layered reservations in the style described in [19] and
   [20].  Particularly, in [20], a framework (RMD) is proposed for
   resource management and reservation in DiffServ networks. The RMD
   proposes using two protocols, a Per Hop Reservation (PHR) protocol,
   and a Per Domain Reservation (PDR) protocol.

   According to [20], "The PHR protocol is used within a DiffServ domain
   on a per-hop basis to augment the DiffServ Per Hop Behavior (PHB)
   with resource reservation. It is implemented in all nodes in a
   DiffServ domain. On the other hand, the PDR protocol manages the
   resource reservation per DiffServ domain, relying on the PHR resource
   reservation status in all nodes. The PDR is only implemented at the
   boundary of a domain (at the edge nodes)."

   In [19], this framework is complemented by an end-to-end signaling
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   protocol, which transports per-flow QoS information to the edge
   nodes. This end-to-end protocol is invisible inside the DiffServ
   domain.

   Tasks of PDR particularly are mapping of end-to-end signaled
   parameters on domain specific RMD parameters, specifically DSCPs.
   This information must be transmitted from the ingress to the egress
   QNF. Furthermore, [20] lists tasks such as admission control,
   resource reservation in edge nodes, congestion handling (refusing
   admission of new flows). However we believe that all of the latter
   are not protocol features but functionalities of the edge nodes
   (using information received via the protocols) with which we do not
   deal in this ID. They correspond to external interactions with the
   components shown in Figure 1.

   There are currently two flavors of PHR. One flavor is
   reservation-based PHR. Here, the PHR protocol transports aggregate
   per-PHB resource requirements to each interior node. These nodes
   install corresponding reservation state. The other flavor is
   measurement-based PHB. Here, each interior node measures current
   load, and determines, based on these measurements, whether a new
   resource request arriving via PHB can be accommodated. The advantage
   of the latter is that interior nodes do not need to store reservation
   state. Furthermore, PHR issues congestion control notifications. As
   with PDR, we believe further PHR features such as per-interior node
   admission control etc. are functionalities of the interior nodes,
   independent of the protocol.

   Following the discussion in Section 5.4 above, it is straightforward
   to implement the layered RMD signaling using QoS-NSLP. The edge nodes
   are (de)aggregating QNEs. They aggregate and tunnel the end-to-end
   (per-microflow) signaling. PDR signaling functionality is achieved by
   either stacking a local RDO onto end-to-end signaling messages,
   informing the deaggregating QNE about DSCP mapping, or by the
   aggregating QNE initiating an extra RESERVE towards the deaggregating
   QNE which is tunneled through the aggregate region. PHR signaling
   functionality is achieved by signaling for the aggregate initiated by
   the aggregating QNE. Reservation-based PHR signaling is equivalent to
   simply sending a RESERVE for each PHB, which installs reservation
   state at each QNF in the aggregation region. Measurement-based PHB
   always (also in [19] and [20]) depends on special configurations of
   the interior nodes - they are stateless and can measure their traffic
   load. Measurement-based PHB functionality can be realized by sending
   a QUERY (querying whether sufficient resources are available). For
   processing the QUERY, QNFs in this case do not consult their
   reservation-state database as they would normally, but perform
   traffic load measurements. However, from a protocol perspective, this
   is conformant message processing.
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   We do not discuss congestion handling in this version of the ID as it
   is still debated whether this functionality resides in NSLP or NTLP.

6. Open Issues

   This section summarises some of the open issues that have arisen
   during the preparation of this Internet Draft. Needless to say,
   almost all of the proposals and assumptions made here can be
   questioned and alternatives proposed; we list here only the ones we
   have had most enjoyment and mental stimulation from discussing.

   1.   Do we need to have a standardised, well known, mandatory QoS
        Model?

   2.   Are the mechanisms for adapting to local QoS Models the most
        appropriate and useful? Do we need to include protocol support
        for discovering and agreeing these models?

   3.   Do we need explicit routing (Appendix A) or skip-stop routing
        (Appendix B), and should it be possible to extend the latter to
        multiple hierarchical levels?

   4.   How should message scoping be handled? Is it purely a matter of
        network management, or is some protocol support for it necessary
        or useful?

   5.   Is the messaging to set up reverse routing state (for the
        receiver initiated case) something that should be built into
        each application, or should there be out-of-NTLP QoS-NSLP
        messages to enable this?

   6.   Is 'sender wins' an appropriate default policy to handle the
        reservation collision problem?

   7.   Is it interesting for the QoS-NSLP to know the overall path
        length and how many nodes on it are QoS-NSLP aware?

   8.   How should the mobility/multihoming details look? In particular,
        how are session id and flow id matching rules modified?

   9.   Is it possible to send more than one RESPONSE for a RESERVE,
        e.g. to handle an error condition discovered after the original
        RESPONSE?

   10.  In particular, how should pre-emption within the network be
        signaled back towards the initiator of the reservation - by a
        modified RESPONSE or a NOTIFY?
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   11.  Is there a notion of a QoS-NSLP proxy? Or are all QoS-NSLP nodes
        effectively proxies anyway?

   12.  Should we consider packet classifiers which are more (or less)
        granular than the flow id, and what effect does this have on the
        state matching rules (i.e. is the relevant matching really
        against packet classifier rather than flow id)? What should be
        done about overlapping packet classifiers in this case?

   13.  How are AAA issues really handled?

7. Security Considerations

   To evaluate the security of the NSLP layer some assumptions regarding
   the security mechanism provided at the NTLP layer have to be taken
   into considerations.

   To address the security threats described in Section 2.1, 2.3, 2.5,
   2.6 of [15] it is assumed that an authentication and key exchange
   protocol is used to establish a security association between
   neighboring NTLP peers. Between neighboring administrative domains it
   is very likely that both peers are also NSLP nodes. By choosing an
   authentication and key exchange protocol which is resistant to denial
   of service attacks, man-in-the-middle attacks and provides strong
   authentication the described threats can be addressed. Details need
   to be analysed after choosing a specific authentication and key
   exchange protocol for the NTLP itself.

   As a result the NTLP and therefore also NSLP messages can be
   authenticated, integrity, confidentiality and replay protected.
   Replay protection ensure that the threat described in Section 2.3 of
   [15] is prevented. Confidentiality protection prevents threats
   described in Section 2.2 of [15]. This is necessary when additional
   policy objects need to be exchanged or to protect the session
   identifier (or other payloads used for the same reason) as described
   in [16].

   By fetching the authenticated identity used during the NTLP
   authentication it is possible to realize the two party authorization
   model described in Figure 1 of [17]. To realize either one of the two
   third party models shown in Figure 2 and Figure 3 of [17] additional
   security mechanisms are required at the NSLP to protect the
   authorization tokens and similar. This threat is also described in
   Section 2.4 of [15]. Non-repudiation seems to make sense only in the
   combination of authorization. The corresponding threat is described
   in Section 2.7 of [15].
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   Furthermore it might be necessary to protect NSLP message payloads in
   an end-to-middle, middle-to-middle or end-to-end fashion (an example
   for end-to-end protection is given in [13]). An association between
   non peer-to-peer protection and the above-described three party
   authorization is to stand to reason. A typical candidate for such a
   protection is CMS [12] or a modified Policy Object [10]. By modified
   we refer to enhanced functionality and possibly changed
   functionality.

   Denial of service attacks (see Section 2.9 of [15]) are best
   prevented by separating the protocol functionality such as
   authentication and key exchange, signaling message delivery and
   discovery etc. This allows protocol functionalities from each
   protocol to be chosen in such a way that DoS attacks are prevented to
   the best possible extent. Some of these issues are therefore also
   applicable to the design of the NTLP - impacts can, however, also be
   seen at the NSLP. The authorization procedure itself is, to some
   extent, also vulnerable to DoS attacks since computing an
   authorization decision might require other entities (or even other
   networks) to be contacted. Specific authorization procedures need
   therefore be evaluated carefully against the vulnerability to
   introduce DoS attacks.

   Security implications introduced by the session identifier are
   discussed in [16] but are applicable to this NSLP.

   The security property of network topology hiding is controversial
   since to some extent it introduces security, however, on the other
   hand it makes debugging more difficult. QUERY messages, messages
   performing a record route, etc. are affected. It is left for future
   discussions whether this feature should be introduced. Based on
   previous work it seems that it is fairly simple to introduce network
   topology hiding (from a technical point of view).

   The deployment threats addressed in Section 2.14 of [15] need to be
   addressed separately in the context of the [13] and [17] discussion.

   Once certain mechanisms have been selected the issue of security
   parameter exchange and negotiation needs to be evaluated.

   This section has to be re-evaluated once the NTLP design is finished
   and agreement exists on the security mechanisms.
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Appendix A. Explicit Routing

   There can be some cases where the QoS-NSLP interacts explicitly with
   the routing of messages by the NTLP. Examples are:

   1.  To tear down state in a node which is no longer on the path
       because of a mobility or rerouting event. Left to its own
       devices, the NTLP would send the teardown to the new node (which
       is presumably not what is wanted). The QoS-NSLP has to ensure
       that the message has to go to a specific physical node.

   2.  To send a message which depends on state previously established
       in the node, e.g. to send a message within a particular security
       association (see the 'next peer' problem of [14]), or to send a
       'summary' refresh referring to an existing acknowledged
       reservation without including the full reservation data.

   Both of these can be implemented by re-using the source
   identification information (SII) described in Section 2.4; the
   originator QoS-NSLP uses the SII provided in the messages in the
   reverse direction.
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   1.  The tear message includes the SII; the NTLP is instructed to
       route the message based on the SII, rather than the flow
       identification. (This would include the NTLP unwinding topology
       hiding processing at intermediate nodes.) Once the message has
       left the originating node along the correct 'old' path, it can
       probably be routed normally by the NTLP.

   2.  The message is sent accompanied by the SII; the NTLP still routes
       the message on the flow identification, but as soon as it detects
       that the message would diverge from reaching the node given by
       the SII, it can generate a route change notification. (This might
       be done only at the receiving QoS-NSLP node.)

   Using the SII in this way is somewhat analogous to the Explicit
   Routing Object (ERO) of [11]. It requires additional capabilities in
   the NTLP to make message routing SII-aware (as opposed to just
   transporting the SII as an identification tag). Note that some
   aspects of SII support (described in Section 4.2) may prevent it
   always being topologically correct for explicit reverse routing; in
   that case, it may be preferable to use an independent object for
   reverse routing - this can be seen as yet another case of the
   desirability of separation of routing and identifiers.

Appendix B. Skip-Stop Routing

   This is an extension whereby 'interior' NSIS nodes are relieved of
   storing some per-flow state (e.g. reverse path routing state) and
   processing some message types, by allowing the routing of messages
   directly to a QoS-NSLP node (e.g. to send a confirmation directly to
   the initiator), rather than sending only using NTLP.

   Difficulties of this are that the services provided by the NTLP (in
   terms of security, NAT traversal, and other message transport
   functions) are lost, because the NTLP only operates between adjacent
   on-path peers. Special consideration needs to be given to avoiding
   message loops. And the approach should be robust against the
   non-existence of a QoS-NSLP-aware downstream node - if no such node
   exists, lower layer errors (including the fact that no such node
   exists) cannot be forwarded upstream.

   The following outlines one potential design supporting this
   functionality in a fairly robust way. It requires two additional
   NTLP-layer flags.

   1.  A edge node prepared to shield downstream nodes from processing/
       state storage requirements inserts addressing information for
       itself in downstream messages sent via the NTLP, and additionally
       sets a 'stateless proposal' (SP) flag. The sending edge node must



McDonald, et al.       Expires December 22, 2003               [Page 37]



Internet-Draft                  QoS NSLP                       June 2003

       be prepared to receive messages outside the NTLP (i.e. unsecured)
       at this address, and must also be able to route messages upstream
       itself (otherwise loops would form).

   2.  Intermediate nodes (including NSLP-unaware ones) can clear the SP
       flag if they wish (e.g. they are on an addressing or security
       boundary), but otherwise forward it. In the meantime, error
       messages can also be sent upstream.

   3.  A node wishing to act as the 'receiving edge' echoes the value of
       SP in the message it sends upstream, otherwise leaves it unset.
       If SP is set, the message may be sent directly to the sending
       edge node.

   4.  When the sending edge node receives messages with SP set, it sets
       a 'stateless requested' (SR) flag in downstream messages.
       Intermediate nodes can use this as a signal to flush per-flow
       routing state. Any reservation state is not deleted (typically,
       in circumstances where this technique is useful, only per-class
       reservation state is being stored anyway.) If the sending edge
       node stops receiving SP after some timeout, it must clear SR on
       the messages it sends.

   5.  An intermediate node that wishes to generate an upstream message
       - typically an error message - encapsulates this in a special
       payload and sends it downstream; it may also decide to clear SP.
       The receiving edge node can then send it back upstream.

   In order not to violate assumptions about reliability and congestion
   management being managed by the NTLP, only a subset of QoS-NSLP
   messages can be sent 'out of band' in this way, namely RESPONSE
   messages (clocked by the rate of reservation messages) or vice versa,
   and notifications.

   This functionality seems quite complex, but the state save seems
   non-trivial also. The consequent tradeoff should be carefully
   evaluated. Given that a significant amount of the complexity is
   caused by NTLP interactions (including the need to cope with error
   cases) it might be worth considering if this functionality should be
   built into the NTLP itself.
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