
Network Working Group A. McDonald
Internet-Draft R. Hancock
Expires: December 22, 2003 Siemens/Roke Manor Research
 H. Tschofenig
 C. Kappler
 Siemens AG
 June 23, 2003

A Quality of Service NSLP for NSIS
<draft-mcdonald-nsis-qos-nslp-00.txt>

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 22, 2003.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 This draft describes a protocol to be used for signaling QoS
 reservations in the Internet. It is compatible with the framework and
 requirements for such signaling protocols developed within NSIS; in
 conjunction with the NSIS Transport solution, it provides
 functionality comparable to RSVP: it is independent of the details of
 QoS specification, and adds support for a greater variety of
 reservation models, but is simplified by the elimination of support
 for multicast flows.

https://datatracker.ietf.org/doc/html/draft-mcdonald-nsis-qos-nslp-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

McDonald, et al. Expires December 22, 2003 [Page 1]

Internet-Draft QoS NSLP June 2003

 This draft includes a model of reservation operation and a
 description of the individual protocol mechanisms, and discusses
 interactions of the reservation protocol with other protocols and
 mechanisms. It also includes an outline functional specification and
 example message flows.

Table of Contents

1. Introduction . 3
1.1 Scope and Background . 3
1.2 Model of Operation . 3
1.3 Terminology . 6
2. Protocol Mechanisms . 6
2.1 State Management . 7
2.2 Informational Messages . 7
2.3 Initiation and Termination 8
2.4 State Source and Generation Identification 10
2.5 QoS-NSLP Message Routing 11
2.6 Resource Description Objects 12
3. External Interactions . 13
3.1 QoS Models . 13
3.2 Implications for NTLP Functionality 14
4. Outline Functional Specification 15
4.1 QoS NSLP Messages . 15
4.2 Rerouting and Local Repair 21
4.3 Mobility and Multihoming 22
5. Example Message Flows . 23
5.1 Basic Sender/Receiver Initiated Example 23
5.2 Reservation Collision Example 24
5.3 Bidirectional Reservation Example 25
5.4 Tunnels and Aggregation 26
5.5 Layered Reservations . 29
6. Open Issues . 31
7. Security Considerations 32
8. Acknowledgements . 33

 References . 34
 Authors' Addresses . 35

A. Explicit Routing . 36
B. Skip-Stop Routing . 37

 Full Copyright Statement 39

McDonald, et al. Expires December 22, 2003 [Page 2]

Internet-Draft QoS NSLP June 2003

1. Introduction

1.1 Scope and Background

 This document defines a Quality of Service (QoS) NSIS Signaling Layer
 Protocol (NSLP), henceforth referred to as the "QoS-NSLP". This
 protocol establishes and maintains state at nodes along the path of a
 data flow for the purpose of providing some forwarding resources for
 that flow. It is intended to satisfy the QoS-related requirements of
 [1]. This QoS-NSLP is part of a larger suite of signaling protocols,
 whose structure is outlined in [2]; this defines a common NSIS
 Transport Layer Protocol (NTLP) which QoS-NSLP uses to carry out many
 aspects of signaling message delivery.

 The design of QoS-NSLP is conceptually similar to RSVP [3], and uses
 soft-state peer-peer refresh messages as the primary state management
 mechanism. However, there is no backwards compatibility at the
 protocol level, although interworking would be possible in some
 circumstances. QoS-NSLP extends the set of reservation mechanisms to
 meet the requirements of [1], in particular support of sender or
 receiver initiated reservations, as well as a type of bidirectional
 reservation. Note that 'sender' and 'receiver' initiation refers to
 the direction of reservation messages relative to the data flow; the
 actual signaling entities can be anywhere along the data path, not
 just at the endpoints. On the other hand, there is no support for IP
 multicast.

 QoS-NSLP does not mandate any specific 'QoS Model', i.e. a language
 for QoS objects or any architecture for provisioning it within a
 network or any particular node; this is similar to (but stronger
 than) the decoupling between RSVP and the IntServ architecture [4].
 It should be able to carry QoS objects of various different types;
 the specification of Integrated Services for use with RSVP given in
 [5] could form the basis of one QoS model.

1.2 Model of Operation

 This section presents a logical model for the operation of the
 QoS-NSLP and associated provisioning mechanisms within a single node.
 It is adapted from the discussion in section 1 of [3]. The model is
 shown in Figure 1.

McDonald, et al. Expires December 22, 2003 [Page 3]

Internet-Draft QoS NSLP June 2003

 +---------------+
 | Local |
 |Applications or|
 |Management (e.g|
 |for aggregates)|
 +---------------+
 ^
 ^
 V
 V
 +----------+ +----------+ +---------+
 | QoS-NSLP | | Resource | | Policy |
 |Processing|<<<<<<>>>>>>>|Management|<<<>>>| Control |
 +----------+ +----------+ +---------+
 | ^ | . ^
 | ^ | . ^
 | V | . ^
 | V | . ^
 +----------+ . ^
 | NTLP | . ^
 |Processing| . V
 +----------+ . V
 | | . V
 +++
 | | . V
 | |
 | | . . Traffic Control .
 | | . . +---------+.
 | | . . |Admission|.
 | | . . | Control |.
 +----------+ +------------+ . +---------+.
 ----| Input | | Outgoing |-----------------------------------
 | Packet | | Interface | .+----------+ +---------+.
 ====|Processing|====| Selection |===.| Packet |====| Packet |.==>
 | | |(Forwarding)| .|Classifier| Scheduler|.
 +----------+ +------------+ .+----------+ +---------+.

 ------ = signaling flow
 =====> = data flow (sender -->receiver)
 <<<>>> = control and configuration operations
 = routing table manipulation

 Figure 1: QoS-NSLP in a Node

 The main features of the model are as follows:

McDonald, et al. Expires December 22, 2003 [Page 4]

Internet-Draft QoS NSLP June 2003

 From the perspective of a single node, the request for QoS may result
 from a local application request, or from processing an incoming
 QoS-NSLP message.

 o The 'local application' case includes not only user applications
 (e.g. a multimedia application), but also network management (e.g.
 initiating a tunnel to handle an aggregate, or interworking with
 some other reservation protocol - such as RSVP). In this sense,
 the model does not distinguish between hosts and routers.

 o The 'incoming message' case requires NSIS messages to be captured
 during input packet processing and handled by the NTLP. Only
 messages related to QoS are passed to the QoS-NSLP. The NTLP may
 also generate triggers to the QoS-NSLP (e.g. indications that a
 route change has occurred).

 The QoS request is handled by a local 'resource management' function,
 which coordinates the activities required to grant and configure the
 resource.

 o The grant processing involves two local decision modules, 'policy
 control' and 'admission control'. Policy control determines
 whether the user has administrative permission to make the
 reservation. Admission control determines whether the node has
 sufficient available resources to supply the requested QoS.

 o If both checks succeed, parameters are set in the packet
 classifier and in the link layer interface (e.g., in the packet
 scheduler) to obtain the desired QoS. Error notifications are
 passed back to the request originator. The resource management
 function may also manipulate the forwarding tables at this stage,
 to select (or at least pin) a route; this must be done before
 interface-dependent actions are carried out (including forwarding
 outgoing messages over any new route), and is in any case
 invisible to the operation of the protocol.

 Policy control is expected to make use of a AAA service external to
 the node itself. Some discussion can be found in [13] and [17]. More
 generally, the processing of policy and resource management functions
 may be outsourced to an external node leaving only 'stubs' co-located
 with the NSLP; however, this is not visible to the protocol
 operation.

 The group of user plane functions which implement QoS for a flow
 (admission control, packet classification, and scheduling) is
 sometimes known as 'traffic control'.

 Admission control, packet scheduling, and any part of policy control

McDonald, et al. Expires December 22, 2003 [Page 5]

Internet-Draft QoS NSLP June 2003

 beyond simple authentication have to be implemented using specific
 definitions for types and levels of QoS; we refer to this as a QoS
 model. Our assumption is that the QoS-NSLP is independent of the QoS
 model, that is, QoS parameters (e.g. IntServ service elements) are
 interpreted only by the resource management and associated functions,
 and are opaque to the QoS-NSLP itself. QoS Models are discussed
 further in Section 3.1.

 The final stage of processing for a resource request is to indicate
 to the QoS-NSLP protocol processing that the required resources have
 been configured. The QoS-NSLP may generate an acknowledgement message
 in one direction, and may propagate the resource request forwards in
 the other. Message routing is (by default) carried out by the NTLP
 module. Note that while the figure shows a unidirectional data flow,
 the signaling messages can pass in both directions through the node,
 depending on the particular message and orientation of the
 reservation.

1.3 Terminology

 The terminology defined in [2] applies to this draft. In addition,
 the following terms are used:

 o QNE - an NSIS Entity (NE) which supports the QoS-NSLP.

 o QNI - a QoS NSLP node acting as an NSIS Initiator (NI), the first
 node in the sequence of QNEs that issues a reservation request.

 o QNR - a QoS NSLP node acting as an NSIS Responder (NR), the last
 node in the sequence of QNEs that receives a reservation request.

 o QNF - a QoS NSLP node acting as an NSIS Forwarder (NF).

 In the document, where the phrase "message source" is used it
 generally refers to the adjacent QNE. Where it means one of the
 endpoints of the signalling session, this is highlighted by using the
 terms QNI or QNR.

2. Protocol Mechanisms

 This section describes the conceptual building blocks of the
 QoS-NSLP, in order to explain the overall structure of the protocol.
 The message set of QoS-NSLP is deliberately designed to be simple, to
 ease future analysis of routing and mobility interactions and other
 extensions: there are just 5 messages, namely a RESERVE/RESPONSE pair
 (idempotent messages controlling all aspects of state management) and
 3 stateless informational messages to handle queries and
 notifications. The default mode of operation delegates all message

McDonald, et al. Expires December 22, 2003 [Page 6]

Internet-Draft QoS NSLP June 2003

 routing responsibility to the NTLP.

2.1 State Management

 The QoS-NSLP uses one message, the RESERVE message, for reservation
 state management at QNEs. The RESERVE message is idempotent, i.e. any
 given message has the same effect however many times it is repeated;
 whether a RESERVE is installing new state or refreshing, modifying or
 tearing down already established state is determined independently at
 each QNE, depending on the existence of related state at that QNE.
 The RESERVE messages being sent at different points along the path
 are conceptually independent so far as the protocol is concerned,
 each being sent by one QNE and received by its next peer.

 The RESERVE message is used to support a similar function to the RSVP
 reserve, reservation refresh and teardown as all of these manipulate
 what is conceptually the same reservation state. Which of these
 three functions the message causes depends on the QoS objects and
 flow/session identifier it carries. For example, reservation state is
 created in QNEs by a RESERVE message with unknown flow/session ID and
 the topmost QoS object describing non-zero resources.

 Reservation state is soft state and needs to be refreshed
 periodically. Refresh (and modify) is achieved by sending a RESERVE
 message with known flow/session identifier. Finally, a teardown is
 really a special case of a modify message, with the modification
 being that resources should be zero.

 Any RESERVE may be replied to by a 'local' RESPONSE message (i.e. one
 sent directly back by the next QNE along the path); this happens when
 the reservation installed does not match the reservation requested
 (generally, when an error condition occurs), or if the QNE sending
 the RESERVE explicitly requests it. Any QNE can also create a RESERVE
 message tagged so it causes messages to be sent further along the
 path towards the QNR and RESPONSE messages sent all the way back.

2.2 Informational Messages

 The QoS-NSLP uses three messages which do not affect the resource
 management state at all (are 'impotent') at QNEs. These are the
 QUERY, QUERY-REPLY and NOTIFY messages.

 QUERY messages are used to support a similar function to the AdSpec
 Class in RSVP. A QUERY can be used to determine what kind of QoS
 services are available along the path, as well as any
 service-specific attributes and the amount of QoS resources
 available.

McDonald, et al. Expires December 22, 2003 [Page 7]

Internet-Draft QoS NSLP June 2003

 The QUERY message payloads can be extended or modified as the message
 is propagated; when it reaches the end of the path it is changed into
 a QUERY-REPLY message which carries the same data but in the reverse
 direction. QUERY messages can also be used purely between adjacent
 peers.

 NOTIFY messages are not sent in direct response to other signaling
 messages. They do not directly modify network state, or require a
 signaling message in response. They can be sent asynchronously by any
 node in the path and are commonly used to indicate that a change has
 occurred in the network. Examples include: change of a reservation
 caused by a network event (e.g. where rerouting means that a
 reservation can no longer be supported), or when a reservation is no
 longer being honoured due to pre-emption.

 QUERY, QUERY-REPLY and NOTIFY messages are forwarded along the path
 (they may go upstream or downstream, provided that the NTLP has the
 necessary path state).

2.3 Initiation and Termination

2.3.1 Initiating QoS Signaling

 The simplest case is clearly where the sender initiates the
 reservation. It can do this simply by sending its first RESERVE
 message. The sender then becomes also the QoS-NSLP Initiator (QNI)
 for the reservation.

 A node further along the data path may also carry out this role (for
 example, because the sender does not not support the QoS NSLP itself,
 or because QoS signaling is already done by the sender using some
 other mechanism.) This node must know the attributes of the flow,
 including the flow-id, and the QoS properties required. How this is
 done is not considered part of this protocol specification; options
 include the node taking part in the application's own signaling, or
 translating another QoS signaling protocol being used between itself
 and the sender. So far as the rest of the reservation processing is
 concerned at other nodes, this case is indistinguishable from the
 first, except that the QNI address (if visible in any messages) does
 not match the source address in the flow-id.

 A receiver initiated QoS NSLP signaling session is essentially
 identical, except that it requires the QNI to be able to construct
 the flow identifier (including knowing the encapsulation or other
 marking used for data packets) and that NTLP reverse-path state
 should exist. Both of these may require coordination with the sender,
 which has to be done with end-to-end signaling outside the scope of
 the QoS-NSLP. If end-to-end reverse path state is created in the

McDonald, et al. Expires December 22, 2003 [Page 8]

Internet-Draft QoS NSLP June 2003

 NTLP, this should be signaled to the QoS-NSLP at the QNR to allow it
 to begin the signaling application.

2.3.2 Finding the Terminating Node

 For a sender initiated case where the receiver supports the QoS NSLP,
 there is no difficulty in finding the terminating node. The receiver
 knows that it is the endpoint for the data flow, and so also knows to
 terminate the QoS signaling, and becomes the QNR for the session.

 Similarly, a node on the path may decide to act as the QNR and
 terminate the signaling. This is needed in particular where the QoS
 NSLP signaling reaches a QNE after which there are no more nodes
 supporting the QoS NSLP before the receiver. This situation cannot be
 detected by the NSLP on its own, and requires support from the NTLP.
 This is easily detected and reported by the local NTLP if there are
 no further NSIS-aware nodes at all; if there are further NSIS-aware
 nodes but which don't support the QoS-NSLP, this condition must be
 forwarded back to the last QNE as an error at the NTLP level.

 In the example shown in Figure 2, NQ is the 'last' node supporting
 the QoS-NSLP. N1 can simply forward the RESERVE message (treating it
 as an NTLP message with an 'unknown' payload). At N2 the next peer
 discovery fails, and it generates an error message which is passed in
 the reverse direction.

 NQ N1 N2 D
 | | | |
 RESERVE | | | |
 --------->| | | |
 | RESERVE | | |
 +--------->| | |
 | | RESERVE | |
 | +--------->| |
 | | | |
 | | NTLP Peer |
 | | Discovery |
 | | Failure |
 | | | |
 | | NTLP Err | |
 | |<---------+ |
 | NTLP Err | | |
 |<---------+ | |
 | | | |

 Figure 2: Terminating a Sender Initiated Session

 In the corresponding receiver initiated scenario, the signaling will

McDonald, et al. Expires December 22, 2003 [Page 9]

Internet-Draft QoS NSLP June 2003

 reach a node with no 'previous hop'. If this is the sender then the
 signaling can be terminated immediately, the sender becoming the QNR.
 In other cases the node has to determine whether it is indeed the
 last node on the path, or simply lacking the relevant NTLP path
 state.

 This situation may occur, for example, at the time of the initial
 reservation when reverse path state is available at the QNI (data
 flow receiver) because of a constrained topology (e.g. only one
 ingress router), but not further upstream. Therefore, when the
 receiver initiates a reservation, it has a valid route to the
 upstream peer, but this peer has no valid state to forward the
 message further. If the upstream peer wishes to propagate the
 signaling further, it has to generate a notification towards the QNI
 requesting an end to end (application layer) exchange which can
 trigger building the reverse path state. The QNI would also have to
 tag RESERVE messages to indicate that this installation of reverse
 path forwarding state has already been attempted (or is not
 possible), in which case the reservation could in general be
 propagated except in constrained network topologies.

2.4 State Source and Generation Identification

 There are several circumstances where it is necessary for a QNE to
 identify the adjacent QNE peer which is the source of a signaling
 application message; for example, it may be to apply the policy that
 "state can only be modified by messages from the node that created
 it".

 We rely on the NTLP to provide this functionality. By default, all
 outgoing QoS-NSLP messages are tagged like this at the NTLP layer,
 and this is propagated to the next QNE, where it can be used as an
 opaque identifier for the state associated with the message; we call
 this the Source Identification Information (SII). The SII is
 logically similar to the RSVP_HOP object of [3]; however, any IP (and
 possibly higher level) addressing information is not interpreted in
 the QoS-NSLP. Indeed, the intermediate NTLP nodes could enforce
 topology hiding by masking the content of the SII (provided this is
 done in a stable way).

 Reservation messages contain a sequence number allocated by the peer
 QNE which is the source of the message. Sequence numbers are
 allocated in ascending order and unique within the context of a given
 SII. Sequence numbers are used for a number of functions, including
 identification of the newest RESERVE message, simplifying the
 identification of RESERVE messages as being refreshes, and tying a
 RESPONSE back to a RESERVE message. Note that the sequence number may
 be different at different locations along the path; this is because

McDonald, et al. Expires December 22, 2003 [Page 10]

Internet-Draft QoS NSLP June 2003

 intermediate nodes may generate reservation updates autonomously
 while the reservation is in place.

2.5 QoS-NSLP Message Routing

2.5.1 Default Operation

 The default mode of operation for the QoS-NSLP is that signaling
 messages are transported along the path currently taken by a data
 flow by the NTLP. The necessary information is held in the flow-id,
 which is used as flow-routing information by the NTLP. All that the
 QoS-NSLP needs to do is provide the flow-id and a tag to indicate
 whether the message should be sent upstream (towards the flow sender)
 or downstream (towards the flow receiver), and the NTLP will deliver
 it to the next QoS-NSLP-aware node or return an error condition (such
 as "no next node" or "no routing state available to reach next
 node"). Whether another message is sent beyond the next node is
 controlled by the QoS-NSLP at that node, and depends on the message
 in question.

2.5.2 Explicit Routing

 There are circumstances where it is necessary to address state in an
 explicitly identified NSIS node, which isn't necessarily on the path
 associated with a particular (active or inactive) flow. Examples are
 tearing down state on the 'old' path after a route change, and
 sending a message which was only meaningful in the context of a
 previous message (such as a refresh which doesn't include the full
 reservation data).

 The first case could be handled by depending on timeout of
 soft-state; this would lead to temporary waste of resource in those
 areas. The second could be handled by returning an error in the
 QoS-NSLP, since the message receiver can determine that the message
 sender is 'unknown' by checking the SII. An alternative approach, an
 extension to support explicit routing for such messages, is described
 in Appendix A.

2.5.3 Skip-Stop Routing

 There may be cases where it is desirable to route a message directly
 to a QoS-NSLP peer (e.g. to send a confirmation directly to the
 initiator), rather than sending it via using NTLP. The motivation for
 doing this is to reduce the burden on the NTLP (especially NTLP-only
 intermediate nodes), both in message processing and the necessity to
 maintain reverse-path routing state for the associated flow.

 The basic technique for doing this is that a subset of QNEs on the

McDonald, et al. Expires December 22, 2003 [Page 11]

Internet-Draft QoS NSLP June 2003

 path directly store some QNE IP address within the QoS-NSLP. These
 can send directly to their peer. However, this has to be done in a
 way which does not invalidate the services provided by the NTLP
 (error handling, security, congestion control, routing reactions and
 so on). There are several possible solutions to this problem; one is
 outlined in Appendix B.

2.6 Resource Description Objects

 Each of the QoS-NSLP message types can carry QoS descriptions in
 Resource Description Objects (RDOs). The definitions of the possible
 RDO contents for each message together form a QoS Model. Multiple QoS
 Models can be defined for use with the QoS-NSLP; the general
 requirements on a QoS Model are discussed in Section 3.1, but which
 one is used does not affect the general operation of the QoS-NSLP
 itself.

 In order to allow some local selection of which QoS Model to use
 without destroying all end-to-end aspects of the signaling, QoS-NSLP
 allows a kind of nesting of QoS Models by 'stacking' more than one
 RDO within a message. The mechanism for the RESERVE message is as
 follows; similar rules can be defined for the other QoS-NSLP message
 types. The QNI places an end-to-end RDO the RESERVE message.
 However, each QNF may add a further so-called local RDO in the
 RESERVE message that it forwards. The RDO on top of the stack is the
 one currently valid, and the others need not be parsed. This
 procedure allows mapping the QoS described in the end-to-end RDO onto
 local QoS paradigms. For example, a bandwidth and application type in
 the end-to-end RDO may be mapped onto a discrete set of available
 bandwidths and a particular traffic class in the local RDO. If a QNE
 does not understand the topmost (local) RDO, it generates an error
 RESPONSE which is sent backwards along the data path. The error
 message must be terminated and recovered by the last QNE which added
 it.

 In general, local RDOs must contain scoping information such as
 "valid only in a particular domain A". In this case, all edge nodes
 of domain A must be QNEs and be configured to pop the topmost RDO on
 egress; they can then add a new one valid only on the inter-domain
 link, or fall back to the next lower one which may or may not be the
 end-to-end RDO. This is conceptually similar to the Aggregation
 Region concept of [9], where one option is that Deaggregators (which
 correspond to the last QNE in scope) are pre-configured to act in
 these roles. In general, it is up to Network Management to make QNFs
 knowledgeable about what scope they are in and what QoS Models they
 should use.

McDonald, et al. Expires December 22, 2003 [Page 12]

Internet-Draft QoS NSLP June 2003

3. External Interactions

3.1 QoS Models

 A QoS Model gathers together the set of ways of describing packet
 flow behavior (as RDOs), and describes how these RDOs can be used in
 particular QoS-NSLP transactions. The scope of a QoS model
 encompasses the tspec/rspec/adspec concepts of RSVP [3]; however the
 way they describe QoS can be different, and the QoS-NSLP
 specification leaves the details of how the RDOs in each message
 should be processed to the QoS Model description. For example, basic
 RSVP/IntServ [5] functionality would include the fact that RESERVE
 messages should contain a 'rspec' and QUERY messages an 'rspec' and
 optionally an 'adspec', and would also describe the parametrisation
 of those contents.

 More generalised resource reservation signaling patterns are expected
 to be encoded in the QoS Model description, without changing the
 basic operation of the QoS-NSLP itself. For example, it may indicate
 that a partial reservation, successful only at some nodes, would be
 acceptable. In order to reduce the number of reservation message
 exchanges, the RDO in a RESERVE might also include a resource range,
 containing an upper and a lower bound. QNEs would attempt to reserve
 the highest amount of resources below the maximum and update the
 amount accordingly; the QoS Model would also define the possible
 contents of the RESPONSE if the maximum could not be reserved.

 Another possibility is of advanced reservations, including a 2-stage
 reserve/commit mechanism. The intention here is that a QNI can
 request a firm guarantee that resources will be available at some
 future time, without actually needing the physical resources to be
 set aside at the time the request is made. Since this process does
 actually involve manipulating state in the other QNEs it can be
 described within a QoS Model as a particular type of reservation,
 where the initial RDO is processed by admission and policy control
 but not the packet scheduler. 'Activation' of the reservation takes
 place simply by sending another RESERVE with an updated RDO.

 It is not clear whether there is a need for a standardised 'default'
 QoS Model that can be interpreted by all QNEs. This would naturally
 be used for the end-to-end RDOs which are handled by the QNI and QNR.
 Some applications may wish (and are able to) to detail a token
 bucket, peak rate etc, whereas others just provide the information
 "this is a delay-sensitive flow of such average bandwidth". The
 default QoS Model could provide fields for all these values, however
 not all of them need to be filled in by the application. It would
 seem that such a default model would be most useful at the network
 'edge', and quite possibly inappropriate for core network or

McDonald, et al. Expires December 22, 2003 [Page 13]

Internet-Draft QoS NSLP June 2003

 inter-provider use. In addition, there would seem to be a need for
 some common elements to all QoS Models (such as the value 'No QoS' to
 be used when tearing down a reservation or reporting complete
 resource unavailability).

 A local QoS Model in contrast is specific to the QoS mechanism used
 in a particular scoping region. For example, its RDOs may include
 full RSVP flowspec information. For some popular QoS mechanisms, an
 official standard may exist for the local QoS Model. However, private
 ('enterprise') QoS Models could also exist where all QNEs in a
 scoping region have to be configured specifically to understand it.
 It is also possible for a QNI to include definitions from a local QoS
 Model as well as a default one, for example in the case of a mobile
 node describing desired L2 properties on the air interface.

 An IANA registry of well-known QoS Models would be required.

 It is currently an open question whether policy related information,
 such as accounting and charging information or authorization tokens
 should be included as part of the QoS Model, or whether it should be
 defined separately. There is clearly coupling between the two types
 of information, since it is only possible to make a meaningful policy
 decision if the QoS description is understood; however, the way the
 policy information is given may itself be independent of that. This
 question depends on how AAA issues in general are to be handled in
 the QoS-NSLP [13] [17]

3.2 Implications for NTLP Functionality

 The QoS-NSLP requires that a some particular features be available in
 the NTLP messages or be provided as triggers by the NTLP module
 (either locally or in a distributed fashion).

 The features currently suggested in this document include:

 o Last node detection: This trigger is provided by the NTLP to the
 QoS-NSLP when it determines that this is the last NE on the path
 which supports the QoS-NSLP. It requires the NTLP to have an error
 message indicating that no more NSLPs of a particular type are
 available on the path. (See also Section 2.3.2).

 o Rerouting detection: This trigger is provided when the NTLP
 detects that the route taken by a flow (which the QoS-NSLP has
 issued signaling messages for) has changed.

 o Reverse path state established: This trigger is provided at the
 QNI for receiver initiated reservations when the NTLP detects that
 a path-establishing message has been received from the flow

McDonald, et al. Expires December 22, 2003 [Page 14]

Internet-Draft QoS NSLP June 2003

 sender. This trigger is needed only when the path-establishing
 message is not itself a QoS-NSLP message (such as a QUERY). (See
 also Section 2.3.1.)

 o Source Identification Information (SII): This information needs to
 be provided at the NTLP level to identify the QNE which a
 particular message came from. It needs to be stable across
 rerouting events which do not change QoS-NSLP adjacencies (but
 might, for example, change outgoing interfaces). (See also Section

2.4.)

 o Explicit Routing: This facility might be needed to send messages
 explicitly to a known QNE, in which case the NTLP has to provide
 topologically correct routing information in a form which can be
 cached by the QoS-NSLP. (See also Appendix A.)

 o Stateless Forwarding: This facility might be provided to enable
 the NTLP to operate in a mode where reverse path state is not kept
 in some region, analogous to the processing in [9]. Doing this
 robustly appears to be possible with a pair of additional flags at
 the NTLP level. (See the description in Appendix B.)

 o Path length determination: In order to count the number of
 QoS-NSLP-aware/unaware hops, support from the NTLP is needed to
 provide the IP hop count between adjacent QNEs. This could be
 provided by the NTLP by default, if such a facility is felt to be
 generally useful.

 Although these requirements are identified here in the context of a
 Quality of Service NSLP, some of them may also be applicable to other
 NSLP types. Also, it should be noted that the QoS-NSLP makes fairly
 cautious assumptions about the level of the transport service
 provided by the NTLP, for example regarding re-ordering protection
 across multiple hops or over route changes. A more sophisticated NTLP
 might allow us to remove QoS-NSLP functionality such as sequence
 numbering, or tagging state with source identification. However, it
 isn't clear how generic across other NSLPs such functionality can be
 made.

4. Outline Functional Specification

4.1 QoS NSLP Messages

 The QoS-NSLP defines five message types:

 o RESERVE

 o RESPONSE

McDonald, et al. Expires December 22, 2003 [Page 15]

Internet-Draft QoS NSLP June 2003

 o QUERY

 o QUERY-REPLY

 o NOTIFY

 The first two are idempotent (the resultant state in traffic control
 is the same however many times an identical message is repeated), and
 the remainder do not change traffic control state at all (although
 NOTIFY might indirectly trigger a state-changing action in the
 receiver).

 Messages are normally passed from the NSLP to the NTLP via an API
 which also specifies the signaling application (as QoS-NSLP), the
 flow/session identifier, and an indication of the intended
 destination, which is one of 'next hop', or 'previous hop'. On
 reception, the NTLP provides the same information to the QoS-NSLP
 along with the source identification. Possible additional features
 are described in Appendix A and Appendix B.

 The rest of the message is opaque to the NTLP. QoS-NSLP messages have
 a common header providing protocol version, message type, and flags
 associated with protocol extensibility issues (rules about ignoring
 or rejecting unknown messages); these details are not described here.

4.1.1 RESERVE Message

 RESERVE messages are idempotent. They manipulate reservation state in
 QNEs by creating, refreshing, modifying and deleting it. Each RESERVE
 message triggers three actions:

 o Install, refresh, modify or delete reservation state

 o Possibly send a RESPONSE

 o Possibly create a modified message (e.g. adding or removing
 objects) and pass it to the NTLP

 The RESERVE message format can be summarised as follows:

 <Reserve Message> ::= <Common Header>
 <RESERVATION_SEQUENCE_NUMBER>
 <RDO_LIST>
 <RESERVATION_LIFETIME>
 [<RESPONSE_REQUESTED>]
 [<POLICY_INFORMATION>]

McDonald, et al. Expires December 22, 2003 [Page 16]

Internet-Draft QoS NSLP June 2003

4.1.1.1 Reserving resources

 To reserve resources, the QNI sends a RESERVE message. A RESERVE
 message with unknown flow/session ID creates reservation state at
 each QNE, which is used by the local resource management function to
 grant and configure resources as described in Section 1.2. A RESERVE
 message carries at least one RDO describing the QoS desired and a
 lifetime for it. QNEs may add local RDOs, providing nesting of QoS
 information as in Section 2.6.

 A RESERVE message carries a sequence number, which is increased for
 each new RESERVE message pertinent to the same flow/session ID. This
 allows for identifying the latest state that is being requested.
 Optionally, it may contain an object to control whether a local and/
 or end-to-end RESPONSE should be generated. A RESERVE message may
 additionally carry other local or global objects, such as accounting
 and charging information and so on.

4.1.1.2 Refreshing

 In general, the NSIS protocol suite takes a soft state approach to
 managing reservation state in NEs. Note that although both NTLP and
 QoS-NSLP have soft state, it is managed independently to avoid
 interlayer coupling.

 For NSLP, the state is created by the RESERVE message and must be
 periodically refreshed. Reservation state is deleted if no new
 RESERVE messages arrive before the expiration of the "reservation
 lifetime" interval specified as part of the reservation state. State
 can also be deleted by explicit teardown described in Section

4.1.1.3. At the expiration of a "refresh timeout" period, each QNE
 independently scans its state and sends a corresponding refreshing
 RESERVE message to the next QNE peer where it is absorbed. This
 peer-to-peer refreshing (as opposed to the QNI initiating a refresh
 which travels all the way to the QNR) allows QNEs to choose refresh
 intervals as appropriate in their environment. For example, it is
 conceivable that refreshing intervals in the backbone, where
 reservations are relatively stable, are much larger than in an access
 network. The "refresh timeout" is calculated within the QNE and is
 not part of the protocol; however, it must be chosen to be compatible
 with the reservation lifetime that is advertised, and an assessment
 of the reliability of message delivery. The details of timer
 management and timer changes (slew handling and so on) should be
 similar to those of RSVP [3].

 As well as a 'traditional' soft-refresh (simply repeating the
 original messages), a summary refresh can be sent if a RESPONSE has
 been received for the reservation. This is achieved by sending a

McDonald, et al. Expires December 22, 2003 [Page 17]

Internet-Draft QoS NSLP June 2003

 RESERVE message only containing a pointer to the corresponding
 reservation (flow/session ID and Sequence number of the RESPONSE),
 not the reservation information itself in order to speed up
 processing [7].

 Reservations can be refreshed "as is". If reservation state needs to
 be modified, a RESERVE message containing explicit QoS information
 (new RDOs) is sent, with a strictly higher
 RESERVATION_SEQUENCE_NUMBER. If, for example, because of route
 changes, a QNE receives a refreshing RESERVE message, containing only
 a pointer which it does not understand (e.g. from an unknown source),
 it replies with an error RESPONSE message back to the originating
 (peer) QNE. This QNE replies with a full updated RESERVE message
 including corresponding RDOs. This way, failures can be repaired
 quickly locally. This is another advantage of peer-to-peer
 refreshing.

 Regarding RFC 2961-style bundling of Refresh messages, there are two
 design options. Either a QNE may bundle refresh messages before
 handing them down to NTLP, or NTLP is solely responsible for
 bundling. The advantage of the former is there is only one NSLP
 header per bundle. On the other hand, NTLP is best placed to do
 bundling efficiently because it knows more about path properties
 (e.g. MTU, packetisation, latency) and whether messages should even
 follow the same path at the NTLP level. We therefore opt for the
 latter. NTLP may decide to bundle this bundle with refresh messages
 from other NSLPs and / or to synchronize and piggyback its own
 refreshes with QoS-NSLP refresh messages in order to save overhead.
 Details of this however are clearly out of scope of this document.

4.1.1.3 Teardown

 A RESERVE message with 'zero' RDO removes reservation state of the
 corresponding flow/session ID immediately. Although because of soft
 state it is not necessary to explicitly tear down an old reservation,
 we recommend that QNIs send a teardown request as soon as a
 reservation is no longer needed. A teardown deletes reservation state
 and travels towards the QNR from its point of initiation. A Teardown
 message may be initiated either by an application in an QNI or by a
 QNF along the route as the result of a state timeout or service
 preemption. Once initiated, a Teardown message must be forwarded QNE
 peer - to - QNE peer without delay.

4.1.2 RESPONSE Message

 RESPONSE messages are any messages sent in reply to a RESERVE
 message. They are idempotent. Their semantics include error reports,
 simple acknowledgements, and so on. RESPONSE messages may be sent

https://datatracker.ietf.org/doc/html/rfc2961

McDonald, et al. Expires December 22, 2003 [Page 18]

Internet-Draft QoS NSLP June 2003

 with a scope of a single QoS-NSLP 'hop' or be sent further along the
 path towards a QNE which explicitly requested it. By default, they
 are sent within the NTLP and may require reverse-routing state to
 exist (in the case of a sender initiated reservation).

 The RESPONSE message format can be summarized as:

 <Response Message> ::= <Common Header>
 <RESERVATION_SEQUENCE_NUMBER>
 <CONFIRMATION_OR_ERROR_TYPE>
 [<RDO_LIST>]
 [<RESPONSE_REQUESTED>]
 [<POLICY_INFORMATION>]

4.1.2.1 Error

 An error RESPONSE message indicates a reservation has failed. It
 includes the sequence number of the failed RESERVE message. In
 addition, the SII of the QNE where the RESERVE failed is provided by
 the NTLP. It is interpreted first by the QNE which sent the RESERVE,
 which must either attempt corrective action, or tear the reservation
 down and propagate the error condition further backwards.

4.1.2.2 Confirmation

 To request a confirmation for a reservation request, a QNE includes
 in the RESERVE message a confirmation-request object containing an
 identifier supplied by the QNE. If a confirmation-request has already
 been added by another QNE a second one need not be added, since this
 QNE will see the RESPONSE anyway.

 The RESPONSE (whether an error or success indication) echoes back the
 confirmation-request object. If a RESPONSE contains a
 confirmation-request object not added by this QNE then it MUST
 forward the RESPONSE, until it reaches the QNE which provided the
 original request (matched by the identifier).

 A confirmation must be issued when the reservation installed does not
 match the reservation requested, i.e. when - within a range possibly
 provided in the RESERVE - less resources have been reserved starting
 from a particular QNF_i towards the QNR. This allows the QNI to issue
 a new RESERVE in order to adapt resources up to QNF_i.

 The confirm RESPONSE message may be sent by the QNR simply confirming
 the RESERVE was successful as requested, or it may be issued by a QNF
 to confirm it modified a Reservation (partial reservation or - within
 the bandwidth range - decreased reservation). The Confirm message

McDonald, et al. Expires December 22, 2003 [Page 19]

Internet-Draft QoS NSLP June 2003

 contains the sequence number of the RESERVE it is in response to.

4.1.3 QUERY and QUERY-REPLY Messages

 QUERY messages do not change the NSLP state at any of the nodes that
 process them (though, like any NSIS message, they may cause NTLP path
 state to be created or modified). When the QUERY reaches the end of
 the path, the message is changed from a QUERY to a QUERY-REPLY and
 then sent back in the opposite direction.

 One application of the QUERY message is similar to the use of an
 AdSpec object in a PATH message for RSVP. The QUERY message can carry
 parts specific to particular QoS Models, similar to the Guaranteed
 Service and Controlled-Load Service Fragments of the RSVP ADSPEC
 message [5]. These will be specified in documents defining particular
 QoS Models.

 These may be used to determine what resources are present along the
 path (e.g. estimating the path bandwidth or minimum path latency).
 However, they do not guarantee the availability of resources for a
 subsequent RESERVE request.

 The QUERY message format is as follows (the QUERY-REPLY is
 essentially identical):

 <Query Message> ::= <Common Header>
 <QUERY_IDENTIFIER>
 <QOS_NSLP_COUNT>
 [<qos model query list>]

 <qos model query list> ::= <empty> |
 <qos model query list> <QOS_MODEL_QUERY>

 The QUERY_IDENTIFIER is an unstructured numerical identifier for the
 query, used for matching responses. The value of the identifier is
 otherwise not significant.

 The QOS_NSLP_COUNT is initially zero, and is incremented by one at
 each QNE on the path. It counts the QoS-NSLP aware nodes along the
 path, and can be used (along with the total path length) to derive
 the number of non-QoS-NSLP hops, a generalisation of the way RSVP
 counts the number of non-IntServ hops. It can also accumulate the IP
 hop length of the path, if this information is provided by the NTLP.

 A QOS_MODEL_QUERY object can be used to query information that is
 specific to the type of QoS Model being used.

McDonald, et al. Expires December 22, 2003 [Page 20]

Internet-Draft QoS NSLP June 2003

4.1.4 NOTIFY Message

 NOTIFY messages only provide information to an NE, they do not cause
 a change in state directly themselves.

 They main difference between RESPONSE messages and NOTIFY messages is
 that RESPONSE messages are sent on receipt of a RESERVE message,
 whereas NOTIFY messages can be sent asynchronously, and in either
 direction relative to the RESERVE.

 The message may contain information relating to particular QoS
 models. These can be used to provide more information when the
 notification is due to a change in the reservation.

 The NOTIFY message format is as follows:

 <Notify Message> ::= <Common Header> <NOTIFICATION_CODE>
 [<qos model notification list>]

 <qos model notification list> ::= <empty> |
 <qos model notification list> <QOS_MODEL_NOTIFY>

 The QOS_MODEL_NOTIFY contains any QoS Model specific information that
 needs to be carried as part of the QUERY, e.g. the reservation now
 being used after a reservation change.

4.2 Rerouting and Local Repair

 The detection of rerouting can take place in multiple ways.

 It can be done at the NTLP (including by the NTLP interacting with
 routing protocols or by path length monitoring and so on, as
 described in [18]). Rerouting detected by the NTLP may then be
 delivered as trigger information to the QoS-NSLP (at one or more
 locations along the signaling path).

 Rerouting can also be detected at the QoS-NSLP itself, if a RESERVE
 arrives refreshing existing state but coming over a new interface;
 or, if a RESERVE claims to refresh state that does not exist at all.
 (Similar facts can be deduced from mis-delivered RESPONSE messages.)
 In either case, we assume for now that any necessary reverse-routing
 state already exists in the NTLP; actions to stimulate this state
 being set up will be considered in a later version of this document.

 In either case, the QoS-NSLP needs to filter the event to avoid
 flapping a reservation in synchronization with flapping a route, and
 then carry out local repair actions to ensure that the reservation is
 set up on the new path and if possible torn down on the old. A

McDonald, et al. Expires December 22, 2003 [Page 21]

Internet-Draft QoS NSLP June 2003

 high-level outline of the necessary processing is as follows:

 1. The QNE detecting the re-route issues a new RESERVE with a
 doubly-incremented sequence number, including a request to receive a
 confirmation from further down the path. The RESERVE should be given
 the same SII as previous reservations for the same flow, to avoid
 disrupting reservations in the case where the next QNE on the path is
 actually the same.

 1a. At QNEs on the new part of the path, the RESERVE installs new
 reservation state, and is immediately propagated further to the QNR.

 1b. At the QNE where the old and new paths merge, the QOS-NSLP should
 generate a RESPONSE which is returned to the QNE initiating the route
 change. The state already existing at that QNE is re-labelled with
 the SII of the new QNE which requested it.

 At this stage, the reservation is essentially installed on the new
 path. Further reservation messaging might take place to adjust the
 QoS parameters along the path if the new path has very different
 characteristics from the old; this takes place (if at all) as a
 background activity.

 2. If explicit routing (Appendix A) is supported, the QNE detecting
 the route change can now issue another new RESERVE with a null QoS
 request (i.e. a teardown) and lower sequence number than used in (1),
 and explicitly route it along the old path.

 2a. A QNE not on the new path will tear down the reservation state
 and forward it further if it can.

 2b. At the QNE where the old and new paths merge, the teardown will
 be ignored, either because it has a lower sequence number than the
 newly installed reservation, or because it is attempting to remove
 state installed under a different SII.

 Note that, with the exception of the explicit routing, this method of
 re-routing support is purely an implementation issue at the QNE
 detecting the route change, it does not require any other
 rerouting-specific protocol features.

4.3 Mobility and Multihoming

 There are several circumstances where it is desirable to associate
 together two reservations with different flow-ids (typically,
 different addresses) but which are conceptually for the same packet
 stream. One case is mobility with a change of address; a related
 example is of multihoming, where a node sets up reservations for its

McDonald, et al. Expires December 22, 2003 [Page 22]

Internet-Draft QoS NSLP June 2003

 flows on a new interface in preparation for handing them over. A
 third case is call waiting. In all cases, the wish is for resources
 to be shared (singly-booked) over the network region where the flows
 share a path. This is comparable to a restricted use of the
 Shared-Explicit filter style of [3], in a non-multicast context.

 The NSIS protocol suite provides the session id for this purpose:
 resources are shared based on having a common session id, even though
 their flow ids are different. A later version of this draft will
 discuss the modifications to the protocol to support this
 functionality, mainly in terms of what identifiers are used to match
 state and messages. It should be noted that secure use of the session
 id is non-trivial; this problem is discussed in [16].

5. Example Message Flows

 A number of message flows (at NSLP level) are shown here as examples
 of the QoS NSLP signaling process.

Section 5.1 below shows a sender initiated NSLP signaling flow; the
 RESPONSE messages have been generated from the QNR because of the
 RESPONSE REQUESTED object inserted by the QNI.

5.1 Basic Sender/Receiver Initiated Example

 S NF1 NF2 R
 | | | |
 | RESERVE | | |
 +--------->| | |
 | | RESERVE | |
 | +--------->| |
 | | | RESERVE |
 | | +--------->|
 | | | |
 | | | RESPONSE |
 | | |<---------+
 | | RESPONSE | |
 | |<---------+ |
 | RESPONSE | | |
 |<---------+ | |
 | | | |
 | | | |

 The receiver initiated case is essentially identical, with the
 difference that the leftmost node in Section 5.1 is now 'R' (the data
 receiver) and the rightmost node is now 'S' (the data sender). In
 order to perform the reservation, reverse path state needs to be
 installed. Some discussion of how this can be done is given in

McDonald, et al. Expires December 22, 2003 [Page 23]

Internet-Draft QoS NSLP June 2003

Section 2.3.1.

5.2 Reservation Collision Example

 This example shows an exchange, with a 'reservation collision'
 causing the new reservation to fail. A reservation collision occurs
 when the two endpoints of a data flow (or signaling proxies on the
 data path but not at the flow endpoints) fail to agree on who should
 make the reservation for a flow, leading to a QNE seeing RESERVE
 messages from both directions.

 In this example (Figure 8), we assume that the QNE detecting the
 condition has adopted a 'sender wins' policy: the sender initiated
 reservation is accepted (or maintained), and the receiver initiated
 one is rejected (or torn down). It isn't clear whether this policy is
 reasonable; however, it does appear that some sort of default policy
 must be standardised. A slight increase in sophistication would be to
 include information in a RESERVE about whether it should be preferred
 over reservations in the opposite direction. Clearly, there are also
 interactions with AAA issues here.

 QNI1 QNR1
 QNR2 QNI2
 S QNF1 QNF2 QNF3 R
 | | | | |
 | RESERVE1 | | | |
 +--------->| RESERVE1 | | RESERVE2 |
 | +--------->| RESERVE2 |<---------+
 | | |<---------+ | |
 | | | | |
 | | | Error2 | |
 | | +--------->| Error2 |
 | | | +--------->|
 | | | RESERVE1 | |
 | | +--------->| RESERVE1 |
 | | | +--------->|
 | | | | |

 Figure 8: Reservation Collision

 QNF2 detects the collision on receipt of RESERVE2. The reservation
 created by RESERVE2 is rejected with the appropriate error condition
 as RESERVE1 is propagated onwards towards the receiver.

 Any RESPONSE message processing for RESERVE1 is performed in the
 normal way.

McDonald, et al. Expires December 22, 2003 [Page 24]

Internet-Draft QoS NSLP June 2003

5.3 Bidirectional Reservation Example

 A bidirectional reservation is actually a sender initiated
 reservation (for an outbound flow) and a receiver initiated
 reservation (for the corresponding inbound flow of a bi-directional
 flow) combined together and issued by a single QNI. It is implemented
 through the use of NTLP bundling, with the NSLP providing the two
 reservations together to the NTLP as an indication that they should
 if possible be delivered together.

 The diagram below shows a bidirectional reservation. RESPONSE
 messages can be provided in the normal manner.

 A NF1 NF2 B
 | | | |
 | RESERVE | | |
 +-x-x-x-x->| | |
 | | RESERVE | |
 | +-x-x-x-x->| |
 | | | RESERVE |
 | | +-x-x-x-x->|
 | | | |

 ---> = Reservation for A->B direction
 xxx> = Reservation for B->A direction
 -x-> = Bundled reservation (A->B and B->A)

 The NTLP path state for reverse path routing from A to B (for the
 B->A flow) must be set up before the reservation can be performed,
 otherwise the receiver initiated half of the reservation will fail.

 If the routing is asymmetric then the reservation will be split into
 two where the paths diverge. The diagram below shows a network within
 an asymmetric route for a bidirectional flow between A and B.

 ----------->

 +----+
 /--|QNF2|--\
 / +----+ \
 +-------+ +----+ / \ +----+ +-------+
 |A (QNI)|--|QNF1|--+ +--|QNF4|--|B (QNR)|
 +-------+ +----+ \ / +----+ +-------+
 \ +----+ /
 \--|QNF3|--/
 +----+

McDonald, et al. Expires December 22, 2003 [Page 25]

Internet-Draft QoS NSLP June 2003

 <-----------

 The diagram below shows a bidirectional reservation across this
 network. RESPONSE messages can be provided in the normal manner.

 A NF1 NF2 NF3 NF4 B
 | | | | | |
 | RESERVE | | | | |
 +-x-x-x-x->| | | | |
 | | RESERVE | | | |
 | +--------->| | | |
 | +xxxxxxxxxxxxxxxxxxxx>| | |
 | | | RESERVE | | |
 | | +-------------------->| RESERVE |
 | | | | +--------->|
 | | | +xxxxxxxxx>| |
 | | | | +xxxxxxxxx>|
 | | | | | |
 | | | | | |

 ---> = Reservation for A->B direction
 xxx> = Reservation for B->A direction
 -x-> = Bundled reservation (A->B and B->A)

 At QNF1 the 'next hop' for the A to B flow is different to the
 'previous hop' for the B to A flow, so the reservation bundle must be
 split. It then operates as two separate reservations - one sender
 initiated, the other receiver initiated.

 Even if messages do not arrive bundled (as at QNF4 in the example),
 the QoS-NSLP is allowed to merge the state for the flow internally
 and use it to issue bundled refresh messages to neighboring QNEs.

5.4 Tunnels and Aggregation

 QoS NSLP as defined above also allows dynamically aggregating
 reservations such that core network nodes are alleviated from keeping
 per-microflow state. Reservations for aggregate flows can be
 triggered by individual (per-microflow) reservations, or can be set
 up independently. The general advantages in terms of resource
 management, particularly in the context of DiffServ networks, are
 described in section 4.2.1 of [8].

 Management must have configured QNEs, typically at the boundary of a
 domain, to act as aggregating and deaggregating QNEs. The
 configuration depends on the aggregation method being used. The two
 choices are:

McDonald, et al. Expires December 22, 2003 [Page 26]

Internet-Draft QoS NSLP June 2003

 o Tunnel-based, where traffic is encapsulated in an IP tunnel (using
 GRE, IP-in-IP tunnel, IPsec, and so on). The aggregating QNE
 initiates the tunnel and chooses the endpoint as one of the
 deaggregating QNEs at the domain edge.

 o DiffServ-based, where normal routing is used within the domain,
 but the aggregating QNE marks the aggregated traffic with an
 appropriate DSCP.

5.4.1 Sender Initiated Tunnel Aggregation

 Here we describe a sender-initiated example for aggregate reservation
 set-up. With receiver-initiated aggregate reservations other issues
 may arise which need to be investigated in future versions of this
 draft, if it is felt that receiver orientation is useful for
 reservations in this context.

 Apart from the receiver/sender distinction, the method chosen here is
 conceptually similar to that of [6]. The tunnel is used as a single
 virtual link, in that the 'end-to-end' NSIS signaling for the data
 flows is tunneled between the same endpoints so as to be invisible to
 the routers between them, and a second signaling session is applied
 purely between the tunnel endpoints.

 The aggregating QNE (which will be the QNI for the aggregate
 reservation) does the following:

 o it tunnels 'forwards-path' NSIS messages referring to flows within
 the aggregate by adding an IP header addressing the deaggregating
 QNE. The aggregator also decapsulates 'reverse-path' NSIS messages
 tunneled from the deaggregator.

 o whether or not these signaling messages are part of the aggregate
 reservation or use a distinct tunnel encapsulation is up to
 management; using a distinct encapsulation prevents the signaling
 and traffic having to share resources.

 o it initiates a RESERVE towards the deaggregator describing
 resources to be reserved for the aggregate flow. The algorithm
 used to determine aggregate resources is a management and policy
 issue. They may e.g. exactly fit the resources needed currently,
 or - avoiding frequent reconfigurations - be based on an estimate
 of resources needed now and in the near future. Note that the
 aggregator will be able to see both directions of QoS-NSLP
 messages for all the flows within the aggregate, in particular
 RESERVE messages, and these can be used as the input to the
 calculation for the aggregate resource requirement. Therefore,

McDonald, et al. Expires December 22, 2003 [Page 27]

Internet-Draft QoS NSLP June 2003

 this technique is applicable regardless of whether the end-to-end
 signaling is sender or receiver initiated (or indeed a mixture of
 the two).

 o depending on how aggregate flow and resources are described in the
 RESERVE, and depending on the local QoS mechanism, it tunnels data
 packets by appending an IP header fitting the aggregate flow ID
 and addressing the deaggregating QNE.

 The deaggregating QNE (aka QNR for the aggregate reservation) does
 the following:

 o it terminates the RESERVE for the aggregate and is the QNR for it.

 o it receives and decapsulates the tunneled data packets.

 o it receives and decapsulates tunneled QoS NSLP signaling packets
 and processes them just as any other signaling packet received in
 an ordinary fashion. If these are forwards path messages, the NTLP
 should be able to use them to install reverse routing state back
 up the virtual link (in exactly the same way it can install
 reverse routing state back up a real link), given that the other
 end of the link is also a QNE.

 QNFs on the data path between aggregating and deaggregating QNEs do
 not know they are processing an aggregate reservation. Therefore they
 don't need any special information, nor do they perform special
 packet treatment. Indeed, it is clear from the above descriptions
 that aggregations can be nested by just re-applying the above steps.

5.4.2 Receiver Initiated DiffServ Aggregation

 An alternative aggregation method is based on the DiffServ
 architecture rather than relying on the use of tunnels. It has some
 similarities with the description of RSVP aggregation in [9]; in
 particular, we assume a 'simple' routing infrastructure where a
 shortest path that includes two points (the aggregator and
 deaggregator) is also the shortest path between those two points
 themselves. We also assume that all DiffServ marked traffic within
 the region will be included in aggregate reservations.

 The following description depends on the skip-stop routing extension
 described in Appendix B. The combination of the stateless mode of the
 NTLP and the storage of the ingress QNE identifier in the QoS-NSLP
 messages corresponds to the use of the special RSVP-E2E-IGNORE
 protocol number in [9]: state is (eventually) not stored in the
 interior of the network, and the egress QNE learns the address of the
 ingress QNE from the signaling messages. The method works as follows:

McDonald, et al. Expires December 22, 2003 [Page 28]

Internet-Draft QoS NSLP June 2003

 o End-to-end QoS-NSLP messages for the individual flows are sent
 using skip-stop routing. They must not be interpreted by the
 QoS-NSLP within the network; this could be done by giving them a
 different QoS Model from that used in the network interior.

 o The egress QNE can determine which flows come from which ingress
 QNE, and also track the reservation requests for those flows. This
 allows it to build up a picture of what aggregate reservations are
 needed between it and each ingress QNE. The algorithm that assigns
 flows to aggregates (DSCPs) is the responsibility of network
 management.

 o The egress QNE requests the ingress QNE for an aggregate to set up
 reverse path state in the network. The request can be sent as a
 special NOTIFY message sent outside the NTLP; the state can be set
 up with a QUERY sent from ingress to egress via the NTLP. (This is
 where the assumption that simple shortest path routing is being
 used.)

 o Once the reverse path state is available, the egress QNE sets up a
 receiver initiated reservation for the DSCP along that path. Note
 that the classifier will be purely the DSCP, on the assumption
 that on any interface, all the traffic for any DSCP will be
 covered by some reservation (it doesn't matter which). This
 reservation can be maintained and modified by the egress QNE as it
 tracks the flow ingress point (and possibly DSCP) as derived from
 the end-to-end signaling.

5.5 Layered Reservations

 The combination of end-to-end and local RDOs together with
 reservation aggregation as described in the last section can be used
 to perform layered reservations in the style described in [19] and
 [20]. Particularly, in [20], a framework (RMD) is proposed for
 resource management and reservation in DiffServ networks. The RMD
 proposes using two protocols, a Per Hop Reservation (PHR) protocol,
 and a Per Domain Reservation (PDR) protocol.

 According to [20], "The PHR protocol is used within a DiffServ domain
 on a per-hop basis to augment the DiffServ Per Hop Behavior (PHB)
 with resource reservation. It is implemented in all nodes in a
 DiffServ domain. On the other hand, the PDR protocol manages the
 resource reservation per DiffServ domain, relying on the PHR resource
 reservation status in all nodes. The PDR is only implemented at the
 boundary of a domain (at the edge nodes)."

 In [19], this framework is complemented by an end-to-end signaling

McDonald, et al. Expires December 22, 2003 [Page 29]

Internet-Draft QoS NSLP June 2003

 protocol, which transports per-flow QoS information to the edge
 nodes. This end-to-end protocol is invisible inside the DiffServ
 domain.

 Tasks of PDR particularly are mapping of end-to-end signaled
 parameters on domain specific RMD parameters, specifically DSCPs.
 This information must be transmitted from the ingress to the egress
 QNF. Furthermore, [20] lists tasks such as admission control,
 resource reservation in edge nodes, congestion handling (refusing
 admission of new flows). However we believe that all of the latter
 are not protocol features but functionalities of the edge nodes
 (using information received via the protocols) with which we do not
 deal in this ID. They correspond to external interactions with the
 components shown in Figure 1.

 There are currently two flavors of PHR. One flavor is
 reservation-based PHR. Here, the PHR protocol transports aggregate
 per-PHB resource requirements to each interior node. These nodes
 install corresponding reservation state. The other flavor is
 measurement-based PHB. Here, each interior node measures current
 load, and determines, based on these measurements, whether a new
 resource request arriving via PHB can be accommodated. The advantage
 of the latter is that interior nodes do not need to store reservation
 state. Furthermore, PHR issues congestion control notifications. As
 with PDR, we believe further PHR features such as per-interior node
 admission control etc. are functionalities of the interior nodes,
 independent of the protocol.

 Following the discussion in Section 5.4 above, it is straightforward
 to implement the layered RMD signaling using QoS-NSLP. The edge nodes
 are (de)aggregating QNEs. They aggregate and tunnel the end-to-end
 (per-microflow) signaling. PDR signaling functionality is achieved by
 either stacking a local RDO onto end-to-end signaling messages,
 informing the deaggregating QNE about DSCP mapping, or by the
 aggregating QNE initiating an extra RESERVE towards the deaggregating
 QNE which is tunneled through the aggregate region. PHR signaling
 functionality is achieved by signaling for the aggregate initiated by
 the aggregating QNE. Reservation-based PHR signaling is equivalent to
 simply sending a RESERVE for each PHB, which installs reservation
 state at each QNF in the aggregation region. Measurement-based PHB
 always (also in [19] and [20]) depends on special configurations of
 the interior nodes - they are stateless and can measure their traffic
 load. Measurement-based PHB functionality can be realized by sending
 a QUERY (querying whether sufficient resources are available). For
 processing the QUERY, QNFs in this case do not consult their
 reservation-state database as they would normally, but perform
 traffic load measurements. However, from a protocol perspective, this
 is conformant message processing.

McDonald, et al. Expires December 22, 2003 [Page 30]

Internet-Draft QoS NSLP June 2003

 We do not discuss congestion handling in this version of the ID as it
 is still debated whether this functionality resides in NSLP or NTLP.

6. Open Issues

 This section summarises some of the open issues that have arisen
 during the preparation of this Internet Draft. Needless to say,
 almost all of the proposals and assumptions made here can be
 questioned and alternatives proposed; we list here only the ones we
 have had most enjoyment and mental stimulation from discussing.

 1. Do we need to have a standardised, well known, mandatory QoS
 Model?

 2. Are the mechanisms for adapting to local QoS Models the most
 appropriate and useful? Do we need to include protocol support
 for discovering and agreeing these models?

 3. Do we need explicit routing (Appendix A) or skip-stop routing
 (Appendix B), and should it be possible to extend the latter to
 multiple hierarchical levels?

 4. How should message scoping be handled? Is it purely a matter of
 network management, or is some protocol support for it necessary
 or useful?

 5. Is the messaging to set up reverse routing state (for the
 receiver initiated case) something that should be built into
 each application, or should there be out-of-NTLP QoS-NSLP
 messages to enable this?

 6. Is 'sender wins' an appropriate default policy to handle the
 reservation collision problem?

 7. Is it interesting for the QoS-NSLP to know the overall path
 length and how many nodes on it are QoS-NSLP aware?

 8. How should the mobility/multihoming details look? In particular,
 how are session id and flow id matching rules modified?

 9. Is it possible to send more than one RESPONSE for a RESERVE,
 e.g. to handle an error condition discovered after the original
 RESPONSE?

 10. In particular, how should pre-emption within the network be
 signaled back towards the initiator of the reservation - by a
 modified RESPONSE or a NOTIFY?

McDonald, et al. Expires December 22, 2003 [Page 31]

Internet-Draft QoS NSLP June 2003

 11. Is there a notion of a QoS-NSLP proxy? Or are all QoS-NSLP nodes
 effectively proxies anyway?

 12. Should we consider packet classifiers which are more (or less)
 granular than the flow id, and what effect does this have on the
 state matching rules (i.e. is the relevant matching really
 against packet classifier rather than flow id)? What should be
 done about overlapping packet classifiers in this case?

 13. How are AAA issues really handled?

7. Security Considerations

 To evaluate the security of the NSLP layer some assumptions regarding
 the security mechanism provided at the NTLP layer have to be taken
 into considerations.

 To address the security threats described in Section 2.1, 2.3, 2.5,
 2.6 of [15] it is assumed that an authentication and key exchange
 protocol is used to establish a security association between
 neighboring NTLP peers. Between neighboring administrative domains it
 is very likely that both peers are also NSLP nodes. By choosing an
 authentication and key exchange protocol which is resistant to denial
 of service attacks, man-in-the-middle attacks and provides strong
 authentication the described threats can be addressed. Details need
 to be analysed after choosing a specific authentication and key
 exchange protocol for the NTLP itself.

 As a result the NTLP and therefore also NSLP messages can be
 authenticated, integrity, confidentiality and replay protected.
 Replay protection ensure that the threat described in Section 2.3 of
 [15] is prevented. Confidentiality protection prevents threats
 described in Section 2.2 of [15]. This is necessary when additional
 policy objects need to be exchanged or to protect the session
 identifier (or other payloads used for the same reason) as described
 in [16].

 By fetching the authenticated identity used during the NTLP
 authentication it is possible to realize the two party authorization
 model described in Figure 1 of [17]. To realize either one of the two
 third party models shown in Figure 2 and Figure 3 of [17] additional
 security mechanisms are required at the NSLP to protect the
 authorization tokens and similar. This threat is also described in
 Section 2.4 of [15]. Non-repudiation seems to make sense only in the
 combination of authorization. The corresponding threat is described
 in Section 2.7 of [15].

McDonald, et al. Expires December 22, 2003 [Page 32]

Internet-Draft QoS NSLP June 2003

 Furthermore it might be necessary to protect NSLP message payloads in
 an end-to-middle, middle-to-middle or end-to-end fashion (an example
 for end-to-end protection is given in [13]). An association between
 non peer-to-peer protection and the above-described three party
 authorization is to stand to reason. A typical candidate for such a
 protection is CMS [12] or a modified Policy Object [10]. By modified
 we refer to enhanced functionality and possibly changed
 functionality.

 Denial of service attacks (see Section 2.9 of [15]) are best
 prevented by separating the protocol functionality such as
 authentication and key exchange, signaling message delivery and
 discovery etc. This allows protocol functionalities from each
 protocol to be chosen in such a way that DoS attacks are prevented to
 the best possible extent. Some of these issues are therefore also
 applicable to the design of the NTLP - impacts can, however, also be
 seen at the NSLP. The authorization procedure itself is, to some
 extent, also vulnerable to DoS attacks since computing an
 authorization decision might require other entities (or even other
 networks) to be contacted. Specific authorization procedures need
 therefore be evaluated carefully against the vulnerability to
 introduce DoS attacks.

 Security implications introduced by the session identifier are
 discussed in [16] but are applicable to this NSLP.

 The security property of network topology hiding is controversial
 since to some extent it introduces security, however, on the other
 hand it makes debugging more difficult. QUERY messages, messages
 performing a record route, etc. are affected. It is left for future
 discussions whether this feature should be introduced. Based on
 previous work it seems that it is fairly simple to introduce network
 topology hiding (from a technical point of view).

 The deployment threats addressed in Section 2.14 of [15] need to be
 addressed separately in the context of the [13] and [17] discussion.

 Once certain mechanisms have been selected the issue of security
 parameter exchange and negotiation needs to be evaluated.

 This section has to be re-evaluated once the NTLP design is finished
 and agreement exists on the security mechanisms.

8. Acknowledgements

 This draft draws significant inspiration from RSVP (RFC2205).

 The authors would like to express particular thanks to Henning

https://datatracker.ietf.org/doc/html/rfc2205

McDonald, et al. Expires December 22, 2003 [Page 33]

Internet-Draft QoS NSLP June 2003

 Schulzrinne.

 This Internet Draft is built on previous discussions and inputs from
 Marcus Brunner, Jorge Cuellar, Jochen Eisl, Mehmet Ersue, Xiaoming
 Fu, Eleanor Hepworth, Holger Karl and Andreas Kassler.

References

 [1] Brunner, M., "Requirements for Signaling Protocols",
draft-ietf-nsis-req-08 (work in progress), June 2003.

 [2] Hancock, R., "Next Steps in Signaling: Framework",
draft-ietf-nsis-fw-02 (work in progress), March 2003.

 [3] Braden, B., Zhang, L., Berson, S., Herzog, S. and S. Jamin,
 "Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
 Specification", RFC 2205, September 1997.

 [4] Braden, B., Clark, D. and S. Shenker, "Integrated Services in
 the Internet Architecture: an Overview", RFC 1633, June 1994.

 [5] Wroclawski, J., "The Use of RSVP with IETF Integrated
 Services", RFC 2210, September 1997.

 [6] Terzis, A., Krawczyk, J., Wroclawski, J. and L. Zhang, "RSVP
 Operation Over IP Tunnels", RFC 2746, January 2000.

 [7] Berger, L., Gan, D., Swallow, G., Pan, P., Tommasi, F. and S.
 Molendini, "RSVP Refresh Overhead Reduction Extensions", RFC

2961, April 2001.

 [8] Bernet, Y., Ford, P., Yavatkar, R., Baker, F., Zhang, L.,
 Speer, M., Braden, R., Davie, B., Wroclawski, J. and E.
 Felstaine, "A Framework for Integrated Services Operation over
 Diffserv Networks", RFC 2998, November 2000.

 [9] Baker, F., Iturralde, C., Le Faucheur, F. and B. Davie,
 "Aggregation of RSVP for IPv4 and IPv6 Reservations", RFC 3175,
 September 2001.

 [10] Yadav, S., Yavatkar, R., Pabbati, R., Ford, P., Moore, T.,
 Herzog, S. and R. Hess, "Identity Representation for RSVP", RFC

3182, October 2001.

 [11] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V. and G.
 Swallow, "RSVP-TE: Extensions to RSVP for LSP Tunnels", RFC

3209, December 2001.

https://datatracker.ietf.org/doc/html/draft-ietf-nsis-req-08
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-fw-02
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc2210
https://datatracker.ietf.org/doc/html/rfc2746
https://datatracker.ietf.org/doc/html/rfc2961
https://datatracker.ietf.org/doc/html/rfc2961
https://datatracker.ietf.org/doc/html/rfc2998
https://datatracker.ietf.org/doc/html/rfc3175
https://datatracker.ietf.org/doc/html/rfc3182
https://datatracker.ietf.org/doc/html/rfc3182
https://datatracker.ietf.org/doc/html/rfc3209
https://datatracker.ietf.org/doc/html/rfc3209

McDonald, et al. Expires December 22, 2003 [Page 34]

Internet-Draft QoS NSLP June 2003

 [12] Housley, R., "Cryptographic Message Syntax (CMS)", RFC 3369,
 August 2002.

 [13] Tschofenig, H., "NSIS Authentication, Authorization and
 Accounting Issues", draft-tschofenig-nsis-aaa-issues-01 (work
 in progress), March 2003.

 [14] Tschofenig, H., "RSVP Security Properties",
draft-ietf-nsis-rsvp-sec-properties-01 (work in progress),

 March 2003.

 [15] Kroeselberg, D. and H. Tschofenig, "Security Threats for NSIS",
draft-ietf-nsis-threats-01 (work in progress), January 2003.

 [16] Tschofenig, H., Schulzrinne, H., Hancock, R., McDonald, A. and
 X. Fu, "Security Implications of the Session Identifier",

draft-tschofenig-nsis-sid-00 (work in progress), June 2003.

 [17] Tschofenig, H., Buechli, M., Van den Bosch, S. and H.
 Schulzrinne, "QoS NSLP Authorization Issues",

draft-tschofenig-nsis-qos-authz-issues-00 (work in progress),
 June 2003.

 [18] Hancock, R., Hepworth, E. and A. McDonald, "Design
 Considerations for an NSIS Transport Layer Protocol",

draft-mcdonald-nsis-ntlp-considerations-00 (work in progress),
 January 2003.

 [19] Westberg, L., "A Proposal for RSVPv2-NSLP",
draft-westberg-proposal-for-rsvpv2-nslp-00 (work in progress),

 April 2003.

 [20] Westberg, L., "Resource Management in Diffserv (RMD)
 Framework", draft-westberg-rmd-framework-03 (work in progress),
 May 2003.

Authors' Addresses

 Andrew McDonald
 Siemens/Roke Manor Research
 Old Salisbury Lane
 Romsey, Hampshire SO51 0ZN
 United Kingdom

 EMail: andrew.mcdonald@roke.co.uk

https://datatracker.ietf.org/doc/html/rfc3369
https://datatracker.ietf.org/doc/html/draft-tschofenig-nsis-aaa-issues-01
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-rsvp-sec-properties-01
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-threats-01
https://datatracker.ietf.org/doc/html/draft-tschofenig-nsis-sid-00
https://datatracker.ietf.org/doc/html/draft-tschofenig-nsis-qos-authz-issues-00
https://datatracker.ietf.org/doc/html/draft-mcdonald-nsis-ntlp-considerations-00
https://datatracker.ietf.org/doc/html/draft-westberg-proposal-for-rsvpv2-nslp-00
https://datatracker.ietf.org/doc/html/draft-westberg-rmd-framework-03

McDonald, et al. Expires December 22, 2003 [Page 35]

Internet-Draft QoS NSLP June 2003

 Robert Hancock
 Siemens/Roke Manor Research
 Old Salisbury Lane
 Romsey, Hampshire SO51 0ZN
 United Kingdom

 EMail: robert.hancock@roke.co.uk

 Hannes Tschofenig
 Siemens AG
 Otto-Hahn-Ring 6
 Munich 81739
 Germany

 EMail: hannes.tschofenig@siemens.com

 Cornelia Kappler
 Siemens AG
 Siemensdamm 62
 Berlin 13627
 Germany

 EMail: cornelia.kappler@siemens.com

Appendix A. Explicit Routing

 There can be some cases where the QoS-NSLP interacts explicitly with
 the routing of messages by the NTLP. Examples are:

 1. To tear down state in a node which is no longer on the path
 because of a mobility or rerouting event. Left to its own
 devices, the NTLP would send the teardown to the new node (which
 is presumably not what is wanted). The QoS-NSLP has to ensure
 that the message has to go to a specific physical node.

 2. To send a message which depends on state previously established
 in the node, e.g. to send a message within a particular security
 association (see the 'next peer' problem of [14]), or to send a
 'summary' refresh referring to an existing acknowledged
 reservation without including the full reservation data.

 Both of these can be implemented by re-using the source
 identification information (SII) described in Section 2.4; the
 originator QoS-NSLP uses the SII provided in the messages in the
 reverse direction.

McDonald, et al. Expires December 22, 2003 [Page 36]

Internet-Draft QoS NSLP June 2003

 1. The tear message includes the SII; the NTLP is instructed to
 route the message based on the SII, rather than the flow
 identification. (This would include the NTLP unwinding topology
 hiding processing at intermediate nodes.) Once the message has
 left the originating node along the correct 'old' path, it can
 probably be routed normally by the NTLP.

 2. The message is sent accompanied by the SII; the NTLP still routes
 the message on the flow identification, but as soon as it detects
 that the message would diverge from reaching the node given by
 the SII, it can generate a route change notification. (This might
 be done only at the receiving QoS-NSLP node.)

 Using the SII in this way is somewhat analogous to the Explicit
 Routing Object (ERO) of [11]. It requires additional capabilities in
 the NTLP to make message routing SII-aware (as opposed to just
 transporting the SII as an identification tag). Note that some
 aspects of SII support (described in Section 4.2) may prevent it
 always being topologically correct for explicit reverse routing; in
 that case, it may be preferable to use an independent object for
 reverse routing - this can be seen as yet another case of the
 desirability of separation of routing and identifiers.

Appendix B. Skip-Stop Routing

 This is an extension whereby 'interior' NSIS nodes are relieved of
 storing some per-flow state (e.g. reverse path routing state) and
 processing some message types, by allowing the routing of messages
 directly to a QoS-NSLP node (e.g. to send a confirmation directly to
 the initiator), rather than sending only using NTLP.

 Difficulties of this are that the services provided by the NTLP (in
 terms of security, NAT traversal, and other message transport
 functions) are lost, because the NTLP only operates between adjacent
 on-path peers. Special consideration needs to be given to avoiding
 message loops. And the approach should be robust against the
 non-existence of a QoS-NSLP-aware downstream node - if no such node
 exists, lower layer errors (including the fact that no such node
 exists) cannot be forwarded upstream.

 The following outlines one potential design supporting this
 functionality in a fairly robust way. It requires two additional
 NTLP-layer flags.

 1. A edge node prepared to shield downstream nodes from processing/
 state storage requirements inserts addressing information for
 itself in downstream messages sent via the NTLP, and additionally
 sets a 'stateless proposal' (SP) flag. The sending edge node must

McDonald, et al. Expires December 22, 2003 [Page 37]

Internet-Draft QoS NSLP June 2003

 be prepared to receive messages outside the NTLP (i.e. unsecured)
 at this address, and must also be able to route messages upstream
 itself (otherwise loops would form).

 2. Intermediate nodes (including NSLP-unaware ones) can clear the SP
 flag if they wish (e.g. they are on an addressing or security
 boundary), but otherwise forward it. In the meantime, error
 messages can also be sent upstream.

 3. A node wishing to act as the 'receiving edge' echoes the value of
 SP in the message it sends upstream, otherwise leaves it unset.
 If SP is set, the message may be sent directly to the sending
 edge node.

 4. When the sending edge node receives messages with SP set, it sets
 a 'stateless requested' (SR) flag in downstream messages.
 Intermediate nodes can use this as a signal to flush per-flow
 routing state. Any reservation state is not deleted (typically,
 in circumstances where this technique is useful, only per-class
 reservation state is being stored anyway.) If the sending edge
 node stops receiving SP after some timeout, it must clear SR on
 the messages it sends.

 5. An intermediate node that wishes to generate an upstream message
 - typically an error message - encapsulates this in a special
 payload and sends it downstream; it may also decide to clear SP.
 The receiving edge node can then send it back upstream.

 In order not to violate assumptions about reliability and congestion
 management being managed by the NTLP, only a subset of QoS-NSLP
 messages can be sent 'out of band' in this way, namely RESPONSE
 messages (clocked by the rate of reservation messages) or vice versa,
 and notifications.

 This functionality seems quite complex, but the state save seems
 non-trivial also. The consequent tradeoff should be carefully
 evaluated. Given that a significant amount of the complexity is
 caused by NTLP interactions (including the need to cope with error
 cases) it might be worth considering if this functionality should be
 built into the NTLP itself.

McDonald, et al. Expires December 22, 2003 [Page 38]

Internet-Draft QoS NSLP June 2003

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

McDonald, et al. Expires December 22, 2003 [Page 39]

