
Network Working Group D. L. McDonald
Internet Draft C. W. Metz
draft-mcdonald-pf-key-v2-05.txt B. G. Phan
 28 February 1998

PF_KEY Key Management API, Version 2

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents.

 Internet Drafts are draft documents valid for a maximum of 6
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as "work in
 progress".

 This draft will be submitted to the RFC Editor for publication as
 an Informational document.

Abstract

 A generic key management API that can be used not only for IP
 Security [Atk95a] [Atk95b] [Atk95c] but also for other network
 security services is presented in this document. Version 1 of this
 API was implemented inside 4.4-Lite BSD as part of the U. S. Naval
 Research Laboratory's freely distributable and usable IPv6 and IPsec
 implementation[AMPMC96]. It is documented here for the benefit of
 others who might also adopt and use the API, thus providing increased
 portability of key management applications (e.g. a manual keying
 application, an ISAKMP daemon, a GKMP daemon [HM97a,HM97b], a
 Photuris daemon, or a SKIP certificate discovery protocol daemon).

McDonald, Metz, and Phan Expires in 6 months [Page 1]

https://datatracker.ietf.org/doc/html/draft-mcdonald-pf-key-v2-05.txt

Internet Draft PF_KEY, Version 2 28 February 1998

Table of Contents
1 Introduction ... 4
1.1 Terminology .. 4
1.2 Conceptual Model ... 6
1.3 PF_KEY Socket Definition 8
1.4 Overview of PF_KEY Messaging Behavior 9
1.5 Common PF_KEY Operations 10
1.6 Differences Between PF_KEY and PF_ROUTE 11
1.7 Name Space ... 11
1.8 On Manual Keying ..12
2 PF_KEY Message Format 13
2.1 Base Message Header Format 13
2.2 Alignment of Headers and Extension Headers 15
2.3 Additional Message Fields 15
2.3.1 Association Extension 16
2.3.2 Lifetime Extension 18
2.3.3 Address Extension .. 19
2.3.4 Key Extension .. 20
2.3.5 Identity Extension 21
2.3.6 Sensitivity Extension 22
2.3.7 Proposal Extension 23
2.3.8 Supported Algorithms Extension 25
2.3.9 SPI Range Extension 26
2.4 Illustration of Message Layout 27
3 Symbolic Names ... 31
3.1 Message Types .. 31
3.1.1 SADB_GETSPI .. 33
3.1.2 SADB_UPDATE .. 34
3.1.3 SADB_ADD ... 35
3.1.4 SADB_DELETE .. 36
3.1.5 SADB_GET ... 37
3.1.6 SADB_ACQUIRE ... 37
3.1.7 SADB_REGISTER .. 39
3.1.8 SADB_EXPIRE .. 39
3.1.9 SADB_FLUSH ... 40
3.1.10 SADB_DUMP .. 41
3.2 Security Association Flags 41
3.3 Security Association States 42
3.4 Security Association Types 42
3.5 Algorithm Types .. 43
3.6 Extension Header Values 44
3.7 Identity Extension Values 44
3.8 Sensitivity Extension Values 45
3.9 Proposal Extension Values 45
4 Future Directions .. 46
5 Examples ... 47
5.1 Simple IP Security Example 47
5.2 Proxy IP Security Example 49

McDonald, Metz, and Phan Expires in 6 months [Page 2]

Internet Draft PF_KEY, Version 2 28 February 1998

5.3 OSPF Security Example 51
5.4 Miscellaneous .. 51
6 Security Considerations 53

 Acknowledgments,............................. 54
 References ... 55
 Disclaimer ... 57
 Authors' Addresses 57

A Promiscuous Send/Receive Extension 58
B Passive Change Message Extension 60
C Sample Header File 61
D Change Log ... 66

McDonald, Metz, and Phan Expires in 6 months [Page 3]

Internet Draft PF_KEY, Version 2 28 February 1998

1 Introduction

 PF_KEY is a new socket protocol family used by trusted privileged
 key management applications to communicate with an operating system's
 key management internals (referred to here as the "Key Engine" or the
 SADB). The Key Engine and its structures incorporate the required
 security attributes for a session and are instances of the "Security
 Association" concept described in [Atk95a]. The names PF_KEY and Key
 Engine thus refer to more than cryptographic keys and are retained
 for consistency with the traditional phrase, "Key Management".

 PF_KEY is derived in part from the BSD routing socket, PF_ROUTE.
 [Skl91] This document describes Version 2 of PF_KEY. Version 1 was
 implemented in the first three alpha test versions of the NRL
 IPv6+IPsec Software Distribution for 4.4-Lite BSD UNIX and the Cisco
 ISAKMP/Oakley key management daemon. Version 2 extends and refines
 this interface. Theoretically, the messages defined in this document
 could be used in a non-socket context (e.g. between two directly
 communicating user-level processes), but this document will not
 discuss in detail such possibilities.

 Security policy is deliberately omitted from this interface. PF_KEY
 is not a mechanism for tuning systemwide security policy, nor is it
 intended to enforce any sort of key management policy. The developers
 of PF_KEY believed that it was important to separate security
 mechanisms (such as PF_KEY) from security policies. This permits a
 single mechanism to more easily support multiple policies.

1.1 Terminology

 Even though this document is not intended to be an actual Internet
 standard, the words that are used to define the significance of
 particular features of this interface are usually capitalized. These
 words are:

 - MUST

 This word or the adjective "REQUIRED" means that the item is an
 absolute requirement of the specification.

 - SHOULD

 This word or the adjective "RECOMMENDED" means that there might
 exist valid reasons in particular circumstances to ignore this item,
 but the full implications should be understood and the case carefully
 weighed before taking a different course.

 - MAY

McDonald, Metz, and Phan Expires in 6 months [Page 4]

Internet Draft PF_KEY, Version 2 28 February 1998

 This word or the adjective "OPTIONAL" means that this item is truly
 optional. One vendor might choose to include the item because a
 particular marketplace requires it or because it enhances the
 product, for example; another vendor may omit the same item.

 - CONFORMANCE and COMPLIANCE

 Conformance to this specification has the same meaning as
 compliance to this specification. In either case, the mandatory-to-
 implement, or MUST, items MUST be fully implemented as specified
 here. If any mandatory item is not implemented as specified here,
 that implementation is not conforming and not compliant with this
 specification.

 This specification also uses many terms that are commonly used in
 the context of network security. Other documents provide more
 definitions and background information on these [VK83, HA94, Atk95a].
 A few terms deserve special mention:

 (Encryption/Authentication) Algorithm
 For PF_KEY purposes, an algorithm, whether encryption or
 authentication, is the set of operations performed on a packet to
 complete authentication or encryption as indicated by the SA type.
 A PF_KEY algorithm MAY consist of more than one cryptographic
 algorithm. Another possibility is that the same basic cryptographic
 algorithm may be applied with different modes of operation or some
 other implementation difference. These differences, henceforth
 called _algorithm differentiators_, distinguish between different
 PF_KEY algorithms, and options to the same algorithm. Algorithm
 differentiators will often cause fundamentally different security
 properties.

 For example, both DES and 3DES use the same cryptographic
 algorithm, but they are used differently and have different
 security properties. The triple-application of DES is considered an
 algorithm differentiator. There are therefore two different PF_KEY
 algorithms for DES and 3DES. Keyed-MD5 and HMAC-MD5 use the same
 hash function, but construct their message authentication codes
 differently. The use of HMAC is an algorithm differentiator.
 DES-ECB and DES-CBC are the same cryptographic algorithm, but use a
 different mode. Mode (e.g., chaining vs. code-book) is an algorithm
 differentiator. Blowfish with a 128-bit key, however, is similar to
 Blowfish with a 384-bit key, because the algorithm's workings are
 otherwise the same and therefore the key length is not an algorithm
 differentiator.

 In terms of IP Security, a general rule of thumb is that whatever
 might be labeled the "encryption" part of an ESP transform is

McDonald, Metz, and Phan Expires in 6 months [Page 5]

Internet Draft PF_KEY, Version 2 28 February 1998

 probably a PF_KEY encryption algorithm. Whatever might be labelled
 the "authentication" part of an AH or ESP transform is probably a
 PF_KEY authentication algorithm.

1.2 Conceptual Model

 This section describes the conceptual model of an operating system
 that implements the PF_KEY key management application programming
 interface. This section is intended to provide background material
 useful to understand the rest of this document. Presentation of this
 conceptual model does not constrain a PF_KEY implementation to
 strictly adhere to the conceptual components discussed in this
 subsection.

 Key management is most commonly implemented in whole or part at the
 application layer. For example, the ISAKMP/Oakley, GKMP, and
 Photuris proposals for IPsec key management are all application-layer
 protocols. Manual keying is also done at the application layer.
 Even parts of the SKIP IP-layer keying proposal can be implemented at
 the application layer. Figure 1 shows the relationship between a Key
 Management daemon and PF_KEY, which it uses to communicate with the
 Key Engine, and PF_INET (or PF_INET6 in the case of IPv6), which it
 uses to communicate via the network with a remote key management
 entity.

 The "Key Engine" or "Security Association Database (SADB)" is a
 logical entity in the kernel that stores, updates, and deletes
 Security Association data for various security protocols. There are
 logical interfaces within the kernel (e.g. getassocbyspi(),
 getassocbysocket()) that security protocols inside the kernel (e.g.
 IP Security, aka IPsec) use to request and obtain Security
 Associations.

 In the case of IPsec, if by policy a particular outbound packet
 needs processing, then the IPsec implementation requests an
 appropriate Security Association from the Key Engine via the kernel-
 internal interface. If the Key Engine has an appropriate SA, it
 allocates the SA to this session (marking it as used) and returns the
 SA to the IPsec implementation for use. If the Key Engine has no
 such SA but a key management application has previously indicated
 (via a PF_KEY SADB_REGISTER message) that it can obtain such SAs,
 then the Key Engine requests that such an SA be created (via a PF_KEY
 SADB_ACQUIRE message). When the key management daemon creates a new
 SA, it places it into the Key Engine for future use.

McDonald, Metz, and Phan Expires in 6 months [Page 6]

Internet Draft PF_KEY, Version 2 28 February 1998

 +---------------+
 |Key Mgmt Daemon|
 +---------------+
 | |
 | |
 | | Applications
 ======[PF_KEY]====[PF_INET]==========================
 | | OS Kernel
 +------------+ +-----------------+
 | Key Engine | | TCP/IP, |
 | or SADB |---| including IPsec |
 +------------+ | |
 +-----------------+
 |
 +-----------+
 | Network |
 | Interface |
 +-----------+

 Figure 1: Relationship of Key Mgmt to PF_KEY

 For performance reasons, some security protocols (e.g. IP Security)
 are usually implemented inside the operating system kernel. Other
 security protocols (e.g. OSPFv2 Cryptographic Authentication) are
 implemented in trusted privileged applications outside the kernel.
 Figure 2 shows a trusted, privileged routing daemon using PF_INET to
 communicate routing information with a remote routing daemon and
 using PF_KEY to request, obtain, and delete Security Associations
 used with a routing protocol.

McDonald, Metz, and Phan Expires in 6 months [Page 7]

Internet Draft PF_KEY, Version 2 28 February 1998

 +---------------+
 |Routing Daemon|
 +---------------+
 | |
 | |
 | | Applications
 ======[PF_KEY]====[PF_INET]==========================
 | | OS Kernel
 +------------+ +---------+
 | Key Engine | | TCP/IP |
 | or SADB |---| |
 +------------+ +---------+
 |
 +-----------+
 | Network |
 | Interface |
 +-----------+

 Figure 2: Relationship of Trusted Application to PF_KEY

 When a trusted privileged application is using the Key Engine but
 implements the security protocol within itself, then operation varies
 slightly. In this case, the application needing an SA sends a PF_KEY
 SADB_ACQUIRE message down to the Key Engine, which then either
 returns an error or sends a similar SADB_ACQUIRE message up to one or
 more key management applications capable of creating such SAs. As
 before, the key management daemon stores the SA into the Key Engine.
 Then, the trusted privileged application uses a SADB_GET message to
 obtain the SA from the Key Engine.

 In some implementations, policy may be implemented in user-space,
 even though the actual cryptographic processing takes place in the
 kernel. Such policy communication between the kernel mechanisms and
 the user-space policy MAY be implemented by PF_KEY extensions, or
 other such mechanism. This document does not specify such
 extensions.

 Untrusted clients, for example a user's web browser or telnet
 client, do not need to use PF_KEY. Mechanisms not specified here are
 used by such untrusted client applications to request security
 services (e.g. IPsec) from an operating system. For security
 reasons, only trusted, privileged applications are permitted to open
 a PF_KEY socket.

1.3 PF_KEY Socket Definition

 The PF_KEY protocol family (PF_KEY) symbol is defined in
 <sys/socket.h> in the same manner that other protocol families are

McDonald, Metz, and Phan Expires in 6 months [Page 8]

Internet Draft PF_KEY, Version 2 28 February 1998

 defined. PF_KEY does not use any socket addresses. Applications
 using PF_KEY MUST NOT depend on the availability of a symbol named
 AF_KEY, but kernel implementations are encouraged to define that
 symbol for completeness.

 The key management socket is created as follows:

 #include <net/pfkeyv2.h>

 int s;
 s = socket(PF_KEY, SOCK_RAW, PF_KEY_V2);

 The PF_KEY domain currently supports only the SOCK_RAW socket type.
 The protocol field MUST be set to PF_KEY_V2, or else EPROTONOSUPPORT
 will be returned. Only a trusted, privileged process can create a
 PF_KEY socket. On conventional UNIX systems, a privileged process is
 a process with an effective userid of zero. On non-MLS proprietary
 operating systems, the notion of a "privileged process" is
 implementation-defined. On Compartmented Mode Workstations (CMWs) or
 other systems that claim to provide Multi-Level Security (MLS), a
 process MUST have the "key management privilege" in order to open a
 PF_KEY socket[DIA]. MLS systems that don't currently have such a
 specific privilege MUST add that special privilege and enforce it
 with PF_KEY in order to comply and conform with this specification.
 Some systems, most notably some popular personal computers, do not
 have the concept of an unprivileged user. These systems SHOULD take
 steps to restrict the programs allowed to access the PF_KEY API.

1.4 Overview of PF_KEY Messaging Behavior

 A process interacts with the key engine by sending and receiving
 messages using the PF_KEY socket. Security association information
 can be inserted into and retrieved from the kernel's security
 association table using a set of predefined messages. In the normal
 case, all properly-formed messages sent to the kernel are returned to
 all open PF_KEY sockets, including the sender. Improperly formed
 messages will result in errors, and an implementation MUST check for
 a properly formed message before returning it to the appropriate
 listeners. Unlike the routing socket, most errors are sent in reply
 messages, not the errno field when write() or send() fails. PF_KEY
 message delivery is not guaranteed, especially in cases where kernel
 or socket buffers are exhausted and messages are dropped.

 Some messages are generated by the operating system to indicate
 that actions need to be taken, and are not necessarily in response to
 any message sent down by the user. Such messages are not received by
 all PF_KEY sockets, but by sockets which have indicated that kernel-
 originated messages are to be received. These messages are special

McDonald, Metz, and Phan Expires in 6 months [Page 9]

Internet Draft PF_KEY, Version 2 28 February 1998

 because of the expected frequency at which they will occur. Also, an
 implementation may further wish to restrict return message from the
 kernel, in cases where not all PF_KEY sockets are in the same trust
 domain.

 Many of the normal BSD socket calls have undefined behavior on
 PF_KEY sockets. These include: bind(), connect(), socketpair(),
 accept(), getpeername(), getsockname(), ioctl(), and listen().

1.5 Common PF_KEY Operations

 There are two basic ways to add a new Security Association into the
 kernel. The simplest is to send a single SADB_ADD message,
 containing all of the SA information, from the application into the
 kernel's Key Engine. This approach works particularly well with
 manual key management, which is required for IPsec, and other
 security protocols.

 The second approach to add a new Security Association into the
 kernel is for the application to first request an SPI value from the
 kernel using the SADB_GETSPI message and then send a SADB_UPDATE
 message with the complete Security Association data. This second
 approach works well with key management daemons when the SPI values
 need to be known before the entire Security Association data is known
 (e.g. so the SPI value can be indicated to the remote end of the key
 management session).

 An individual Security Association can be deleted using the
 SADB_DELETE message. Categories of SAs or the entire kernel SA table
 can be deleted using the SADB_FLUSH message.

 The SADB_GET message is used by a trusted application-layer process
 (e.g. routed(8) or gated(8)) to retrieve an SA (e.g. RIP SA or OSPF
 SA) from the kernel's Key Engine.

 The kernel or an application-layer can use the SADB_ACQUIRE message
 to request that a Security Association be created by some
 application-layer key management process that has registered with the
 kernel via a SADB_REGISTER message. This ACQUIRE message will have a
 sequence number associated with it. This sequence number MUST be
 used by followup SADB_GETSPI, SADB_UPDATE, and SADB_ADD messages, in
 order to keep track of which request gets its keying material. The
 sequence number (described below) is analogous to a transaction ID in
 a remote procedure call.

 The SADB_EXPIRE message is sent from the kernel to key management
 applications when the "soft lifetime" or "hard lifetime" of a
 Security Association has expired. Key management applications should

McDonald, Metz, and Phan Expires in 6 months [Page 10]

Internet Draft PF_KEY, Version 2 28 February 1998

 use receipt of a soft lifetime SADB_EXPIRE message as a hint to
 negotiate a replacement SA so the replacement SA will be ready and in
 the kernel before it is needed.

 A SADB_DUMP message is also defined, but this is primarily intended
 for PF_KEY implementor debugging and is not used in ordinary
 operation of PF_KEY.

1.6 Differences Between PF_KEY and PF_ROUTE

 The following bullets are points of difference between the routing
 socket and PF_KEY. Programmers who are used to the routing socket
 semantics will find some differences in PF_KEY.

 * PF_KEY message errors are usually returned in PF_KEY messages
 instead of causing write() operations to fail and returning the
 error number in errno. This means that other listeners on a
 PF_KEY socket can be aware that requests from another process
 failed, which can be useful for auditing purposes. This also
 means that applications that fail to read PF_KEY messages
 cannot do error checking.

 An implementation MAY return the errors EINVAL, ENOMEM, and
 ENOBUFS by causing write() operations to fail and returning the
 error number in errno. This is an optimization for common error
 cases in which it does not make sense for any other process to
 receive the error. An application MUST NOT depend on such errors
 being set by the write() call, but can save itself time by checking
 for such errors.

 * The entire message isn't always reflected in the reply. A SADB_ADD
 message is an example of this.

 * The PID is not set by the kernel. The process that originates the
 message MUST set the sadb_msg_pid to its own PID. If the kernel
 ORIGINATES a message, it MUST set the sadb_msg_pid to 0. A reply
 to an original message SHOULD have the pid of the original message.
 (E.g. The kernel's response to an SADB_ADD SHOULD have its pid set
 to the pid value of the original SADB_ADD message.)

1.7 Name Space

 All PF_KEYv2 preprocessor symbols and structure definitions are
 defined as a result of including the header file <net/pfkeyv2.h>.
 There is exactly one exception to this rule: the symbol "PF_KEY",
 which is defined as a result of including the header file
 <sys/socket.h>. All PF_KEYv2 preprocessor symbols start with the

McDonald, Metz, and Phan Expires in 6 months [Page 11]

Internet Draft PF_KEY, Version 2 28 February 1998

 prefix "SADB_" and all structure names start with "sadb_". There are
 exactly two exceptions to this rule: the symbol "PF_KEY_V2" and the
 symbol "PFKEYV2_REVISION".

 The symbol "PFKEYV2_REVISION" is a date-encoded value not unlike
 certain values defined by POSIX and X/Open. The current value for
 PFKEYV2_REVISION is 199802L, where 1998 is the year and 02 is the
 month.

 Inclusion of the file <net/pfkeyv2.h> MUST NOT define symbols or
 structures in the PF_KEYv2 name space that are not described in this
 document without the explicit prior permission of the authors. Any
 symbols or structures in the PF_KEYv2 name space that are not
 described in this document MUST start with "SADB_X_" or "sadb_x_". An
 implementation that fails to obey these rules IS NOT COMPLIANT WITH
 THIS SPECIFICATION and MUST NOT make any claim to be. These rules
 also apply to any files that might be included as a result of
 including the file <net/pfkeyv2.h>. This rule provides implementors
 with some assurance that they will not encounter namespace-related
 surprises.

1.8 On Manual Keying

 Not unlike the 4.4-Lite BSD PF_ROUTE socket, this interface allows
 an application full-reign over the security associations in a kernel
 that implements PF_KEY. A PF_KEY implementation MUST have some sort
 of manual interface to PF_KEY, which SHOULD allow all of the
 functionality of the programmatic interface described here.

McDonald, Metz, and Phan Expires in 6 months [Page 12]

Internet Draft PF_KEY, Version 2 28 February 1998

2 PF_KEY Message Format

 PF_KEY messages consist of a base header followed by additional
 data fields, some of which may be optional. The format of the
 additional data is dependent on the type of message.

 PF_KEY messages currently do not mandate any specific ordering for
 non-network multi-octet fields. Fields that may go across the wire
 (e.g. SPI) MUST be in network byte order.

2.1 Base Message Header Format

 PF_KEY messages consist of the base message header followed by
 security association specific data whose types and lengths are
 specified by a generic type-length encoding.

 This base header is shown below, using POSIX types. The fields are
 arranged primarily for alignment, and where possible, for reasons of
 clarity.

 struct sadb_msg {
 uint8_t sadb_msg_version;
 uint8_t sadb_msg_type;
 uint8_t sadb_msg_errno;
 uint8_t sadb_msg_satype;
 uint16_t sadb_msg_len;
 uint16_t sadb_msg_reserved;
 uint32_t sadb_msg_seq;
 uint32_t sadb_msg_pid;
 };
 /* sizeof(struct sadb_msg) == 16 */

 sadb_msg_version
 The version field of this PF_KEY message. This MUST
 be set to PF_KEY_V2. If this is not set to PF_KEY_V2,
 the write() call MAY fail and return EINVAL.
 Otherwise, the behavior is undetermined, given that
 the application might not understand the formatting
 of the messages arriving from the kernel.

 sadb_msg_type Identifies the type of message. The valid message
 types are described later in this document.

McDonald, Metz, and Phan Expires in 6 months [Page 13]

Internet Draft PF_KEY, Version 2 28 February 1998

 sadb_msg_errno Should be set to zero by the sender. The responder
 stores the error code in this field if an error has
 occurred. This includes the case where the responder
 is in user space. (e.g. user-space negotiation
 fails, an errno can be returned.)

 sadb_msg_satype Indicates the type of security association(s). Valid
 Security Association types are declared in the file
 <net/pfkeyv2.h>. The current set of Security
 Association types are enumerated later in this
 document.

 sadb_msg_len Contains the total length, in 64-bit words, of all
 data in the PF_KEY message including the base header
 length and additional data after the base header, if
 any. This length includes any padding or extra space
 that might exist. Unless otherwise stated, all other
 length fields are also measured in 64-bit words.

 On user to kernel messages, this field MUST be
 verified against the length of the inbound message.
 EMSGSIZE MUST be returned if the verification fails.
 On kernel to user messages, a size mismatch is most
 likely the result of the user not providing a large
 enough buffer for the message. In these cases, the
 user application SHOULD drop the message, but it MAY
 try and extract what information it can out of the
 message.

 sadb_msg_reserved
 Reserved value. It MUST be zeroed by the sender. All
 fields labeled reserved later in the document have
 the same semantics as this field.

 sadb_msg_seq Contains the sequence number of this message. This
 field, along with sadb_msg_pid, MUST be used to
 uniquely identify requests to a process. The sender
 is responsible for filling in this field. This
 responsibility also includes matching the
 sadb_msg_seq of a request (e.g. SADB_ACQUIRE).

 This field is analogous to a transaction ID in a
 remote procedure call implementation.

McDonald, Metz, and Phan Expires in 6 months [Page 14]

Internet Draft PF_KEY, Version 2 28 February 1998

 sadb_msg_pid Identifies the process which originated this message,
 or which process a message is bound for. For example,
 if process id 2112 sends a SADB_UPDATE message to the
 kernel, the process MUST set this field to 2112 and
 the kernel will set this field to 2112 in its reply
 to that SADB_UPDATE message. This field, along with
 sadb_msg_seq, can be used to uniquely identify
 requests to a process.

 It is currently assumed that a 32-bit quantity will
 hold an operating system's process ID space.

2.2 Alignment of Headers and Extension Headers

 The base message header is a multiple of 64 bits and fields after
 it in memory will be 64 bit aligned if the base itself is 64 bit
 aligned. Some of the subsequent extension headers have 64 bit fields
 in them, and as a consequence need to be 64 bit aligned in an
 environment where 64 bit quantities need to be 64 bit aligned.

 The basic unit of alignment and length in PF_KEY Version 2 is 64
 bits. Therefore:

 * All extension headers, inclusive of the sadb_ext overlay fields,
 MUST be a multiple of 64 bits long.
 * All variable length data MUST be padded appropriately such that
 its length in a message is a multiple of 64 bits.
 * All length fields are, unless otherwise specified, in units of
 64 bits.
 * Implementations may safely access quantities of between 8 and 64
 bits directly within a message without risk of alignment faults.

 All PF_KEYv2 structures are packed and already have all intended
 padding. Implementations MUST NOT insert any extra fields, including
 hidden padding, into any structure in this document. This forbids
 implementations from "extending" or "enhancing" existing headers
 without changing the extension header type. As a guard against such
 insertion of silent padding, each structure in this document is
 labeled with its size in bytes. The size of these structures in an
 implementation MUST match the size listed.

2.3 Additional Message Fields

 The additional data following the base header consists of various
 length-type-values fields. The first 32-bits are of a constant form:

 struct sadb_ext {

McDonald, Metz, and Phan Expires in 6 months [Page 15]

Internet Draft PF_KEY, Version 2 28 February 1998

 uint16_t sadb_ext_len;
 uint16_t sadb_ext_type;
 };
 /* sizeof(struct sadb_ext) == 4 */

 sadb_ext_len Length of the extension header in 64 bit words,
 inclusive.

 sadb_ext_type The type of extension header that follows. Values for
 this field are detailed later. The value zero is
 reserved.

 Types of extensions headers include: Association, Lifetime(s),
 Address(s), Key(s), Identity(ies), Sensitivity, Proposal, and
 Supported. There MUST be only one instance of a extension type in a
 message. (e.g. Base, Key, Lifetime, Key is forbidden), an EINVAL will
 be returned if there are duplicate extensions within a message.
 Implementations MAY enforce ordering of extensions in the order
 presented in the EXTENSION HEADER VALUES section.

 If an unknown extension type is encountered, it MUST be ignored.
 Applications using extension headers not specified in this document
 MUST be prepared to work around other system components not
 processing those headers. Likewise, if an application encounters an
 unknown extension from the kernel, it must be prepared to work around
 it. Also, a kernel that generates extra extension header types MUST
 NOT _depend_ on applications also understanding extra extension
 header types.

 All extension definitions include these two fields (len and
 exttype) because they are instances of a generic extension (not
 unlike sockaddr_in and sockaddr_in6 are instances of a generic
 sockaddr). The sadb_ext header MUST NOT ever be present in a message
 without at least four bytes of extension header data following it,
 and, therefore, there is no problem with it being only four bytes
 long.

 All extensions documented in this section MUST be implemented by a
 PF_KEY implementation.

2.3.1 Association Extension

 The Association extension specifies data specific to a single
 security association. The only times this extension is not present is
 when control messages (e.g. SADB_FLUSH or SADB_REGISTER) are being
 passed and on the SADB_ACQUIRE message.

McDonald, Metz, and Phan Expires in 6 months [Page 16]

Internet Draft PF_KEY, Version 2 28 February 1998

 struct sadb_sa {
 uint16_t sadb_sa_len;
 uint16_t sadb_sa_exttype;
 uint32_t sadb_sa_spi;
 uint8_t sadb_sa_replay;
 uint8_t sadb_sa_state;
 uint8_t sadb_sa_auth;
 uint8_t sadb_sa_encrypt;
 uint32_t sadb_sa_flags;
 };
 /* sizeof(struct sadb_sa) == 16 */

 sadb_sa_spi The Security Parameters Index value for the security
 association. Although this is a 32-bit field, some
 types of security associations might have a SPI or
 key identifier that is less than 32-bits long. In
 this case, the smaller value shall be stored in the
 least significant bits of this field and the unneeded
 bits shall be zero. This field MUST be in network
 byte order.

 sadb_sa_replay The size of the replay window, if not zero. If zero,
 then no replay window is in use.

 sadb_sa_state The state of the security association. The currently
 defined states are described later in this document.

 sadb_sa_auth The authentication algorithm to be used with this
 security association. The valid authentication
 algorithms are described later in this document. A
 value of zero means that no authentication is used
 for this security association.

 sadb_sa_encrypt The encryption algorithm to be used with this
 security association. The valid encryption algorithms
 are described later in this document. A value of zero
 means that no encryption is used for this security
 association.

 sadb_sa_flags A bitmap of options defined for the security
 association. The currently defined flags are
 described later in this document.

 The kernel MUST check these values where appropriate. For example,
 IPsec AH with no authentication algorithm is probably an error.

 When used with some messages, the values in some fields in this
 header should be ignored.

McDonald, Metz, and Phan Expires in 6 months [Page 17]

Internet Draft PF_KEY, Version 2 28 February 1998

2.3.2 Lifetime Extension

 The Lifetime extension specifies one or more lifetime variants for
 this security association. If no Lifetime extension is present the
 association has an infinite lifetime. An association SHOULD have a
 lifetime of some sort associated with it. Lifetime variants come in
 three varieties, HARD - indicating the hard-limit expiration, SOFT -
 indicating the soft-limit expiration, and CURRENT - indicating the
 current state of a given security association. The Lifetime
 extension looks like:

 struct sadb_lifetime {
 uint16_t sadb_lifetime_len;
 uint16_t sadb_lifetime_exttype;
 uint32_t sadb_lifetime_allocations;
 uint64_t sadb_lifetime_bytes;
 uint64_t sadb_lifetime_addtime;
 uint64_t sadb_lifetime_usetime;
 };
 /* sizeof(struct sadb_lifetime) == 32 */

 sadb_lifetime_allocations
 For CURRENT, the number of different connections,
 endpoints, or flows that the association has been
 allocated towards. For HARD and SOFT, the number of
 these the association may be allocated towards
 before it expires. The concept of a connection,
 flow, or endpoint is system specific.

 sadb_lifetime_bytes
 For CURRENT, how many bytes have been processed
 using this security association. For HARD and SOFT,
 the number of bytes that may be processed using
 this security association before it expires.

 sadb_lifetime_addtime
 For CURRENT, the time, in seconds, when the
 association was created. For HARD and SOFT, the
 number of seconds after the creation of the
 association until it expires.

 For such time fields, it is assumed that 64-bits is
 sufficiently large to hold the POSIX time_t value.
 If this assumption is wrong, this field will have to
 be revisited.

McDonald, Metz, and Phan Expires in 6 months [Page 18]

Internet Draft PF_KEY, Version 2 28 February 1998

 sadb_lifetime_usetime
 For CURRENT, the time, in seconds, when association
 was first used. For HARD and SOFT, the number of
 seconds after the first use of the association until
 it expires.

 The semantics of lifetimes are inclusive-OR, first-to-expire. This
 means that if values for bytes and time, or multiple times, are
 passed in, the first of these values to be reached will cause a
 lifetime expiration.

2.3.3 Address Extension

 The Address extension specifies one or more addresses that are
 associated with a security association. Address extensions for both
 source and destination MUST be present when an Association extension
 is present. The format of an Address extension is:

 struct sadb_address {
 uint16_t sadb_address_len;
 uint16_t sadb_address_exttype;
 uint8_t sadb_address_proto;
 uint8_t sadb_address_prefixlen;
 uint16_t sadb_address_reserved;
 };
 /* sizeof(struct sadb_address) == 8 */

 /* followed by some form of struct sockaddr */

 The sockaddr structure SHOULD conform to the sockaddr structure of
 the system implementing PF_KEY. If the system has an sa_len field, so
 SHOULD the sockaddrs in the message. If the system has NO sa_len
 field, the sockaddrs SHOULD NOT have an sa_len field. All non-address
 information in the sockaddrs, such as sin_zero for AF_INET sockaddrs,
 and sin6_flowinfo for AF_INET6 sockaddrs, MUST be zeroed out. The
 zeroing of ports (e.g. sin_port and sin6_port) MUST be done for all
 messages except for originating SADB_ACQUIRE messages, which SHOULD
 fill them in with ports from the relevant TCP or UDP session which
 generates the ACQUIRE message. If the ports are non-zero, then the
 sadb_address_proto field, normally zero, MUST be filled in with the
 transport protocol's number. If the sadb_address_prefixlen is non-
 zero, then the address has a prefix (often used in KM access control
 decisions), with length specified in sadb_address_prefixlen. These
 additional fields may be useful to KM applications.

 The SRC and DST addresses for a security association MUST be in the
 same protocol family and MUST always be present or absent together in
 a message. The PROXY address MAY be in a different protocol family,

McDonald, Metz, and Phan Expires in 6 months [Page 19]

Internet Draft PF_KEY, Version 2 28 February 1998

 and represents an actual originator of a packet. (For example, the
 inner-packets's source address in a tunnel.)

 The SRC address MUST be a unicast or unspecified (e.g., INADDR_ANY)
 address. The DST address MUST be a unicast or multicast address. The
 PROXY address MUST be a unicast address.

2.3.4 Key Extension

 The Key extension specifies one or more keys that are associated
 with a security association. A Key extension will not always be
 present with messages, because of security risks. The format of a
 Key extension is:

 struct sadb_key {
 uint16_t sadb_key_len;
 uint16_t sadb_key_exttype;
 uint16_t sadb_key_bits;
 uint16_t sadb_key_reserved;
 };
 /* sizeof(struct sadb_key) == 8 */

 /* followed by the key data */

 sadb_key_bits The length of the valid key data, in bits. A value of
 zero in sadb_key_bits MUST cause an error.

 The key extension comes in two varieties. The AUTH version is used
 with authentication keys (e.g. IPsec AH, OSPF MD5) and the ENCRYPT
 version is used with encryption keys (e.g. IPsec ESP). PF_KEY deals
 only with fully formed cryptographic keys, not with "raw key
 material". For example, when ISAKMP/Oakley is in use, the key
 management daemon is always responsible for transforming the result
 of the Diffie-Hellman computation into distinct fully formed keys
 PRIOR to sending those keys into the kernel via PF_KEY. This rule is
 made because PF_KEY is designed to support multiple security
 protocols (not just IP Security) and also multiple key management
 schemes including manual keying, which does not have the concept of
 "raw key material". A clean, protocol-independent interface is
 important for portability to different operating systems as well as
 for portability to different security protocols.

 If an algorithm defines its key to include parity bits (e.g. DES)
 then the key used with PF_KEY MUST also include those parity bits.
 For example, this means that a single DES key is always a 64-bit
 quantity.

 When a particular security protocol only requires one

McDonald, Metz, and Phan Expires in 6 months [Page 20]

Internet Draft PF_KEY, Version 2 28 February 1998

 authentication and/or one encryption key, the fully formed key is
 transmitted using the appropriate key extension. When a particular
 security protocol requires more than one key for the same function
 (e.g. Triple-DES using 2 or 3 keys, and asymmetric algorithms), then
 those two fully formed keys concatenated together in the order used
 for outbound packet processing. In the case of multiple keys, the
 algorithm MUST be able to determine the lengths of the individual
 keys based on the information provided. The total key length (when
 combined with knowledge of the algorithm in use) usually provides
 sufficient information to make this determination.

 Keys are always passed through the PF_KEY interface in the order
 that they are used for outbound packet processing. For inbound
 processing, the correct order that keys are used might be different
 from this canonical concatenation order used with the PF_KEY
 interface. It is the responsibility of the implementation to use the
 keys in the correct order for both inbound and outbound processing.

 For example, consider a pair of nodes communicating unicast using
 an ESP three-key Triple-DES Security Association. Both the outbound
 SA on the sender node, and the inbound SA on the receiver node will
 contain key-A, followed by key-B, followed by key-C in their
 respective ENCRYPT key extensions. The outbound SA will use key-A
 first, followed by key-B, then key-C when encrypting. The inbound SA
 will use key-C, followed by key-B, then key-A when decrypting.
 (NOTE: We are aware that 3DES is actually encrypt-decrypt-encrypt.)
 The canonical ordering of key-A, key-B, key-C is used for 3DES, and
 should be documented. The order of "encryption" is the canonical
 order for this example. [DMS97]

 The key data bits are arranged most-significant to least
 significant. For example, a 22-bit key would take up three octets,
 with the least significant two bits not containing key material. Five
 additional octets would then be used for padding to the next 64-bit
 boundary.

 While not directly related to PF_KEY, there is a user interface
 issue regarding odd-digit hexadecimal representation of keys.
 Consider the example of the 16-bit number:

 0x123

 That will require two octets of storage. In the absence of other
 information, however, unclear whether the value shown is stored as:

 01 23 OR 12 30

 It is the opinion of the authors that the former (0x123 == 0x0123) is

McDonald, Metz, and Phan Expires in 6 months [Page 21]

Internet Draft PF_KEY, Version 2 28 February 1998

 the better way to interpret this ambiguity. Extra information (for
 example, specifying 0x0123 or 0x1230, or specifying that this is only
 a twelve-bit number) would solve this problem.

2.3.5 Identity Extension

 The Identity extension contains endpoint identities. This
 information is used by key management to select the identity
 certificate that is used in negotiations. This information may also
 be provided by a kernel to network security aware applications to
 identify the remote entity, possibly for access control purposes. If
 this extension is not present, key management MUST assume that the
 addresses in the Address extension are the only identities for this
 Security Association. The Identity extension looks like:

 struct sadb_ident {
 uint16_t sadb_ident_len;
 uint16_t sadb_ident_exttype;
 uint16_t sadb_ident_type;
 uint16_t sadb_ident_reserved;
 uint64_t sadb_ident_id;
 };
 /* sizeof(struct sadb_ident) == 16 */

 /* followed by the identity string, if present */

 sadb_ident_type The type of identity information that follows.
 Currently defined identity types are described later
 in this document.

 sadb_ident_id An identifier used to aid in the construction of an
 identity string if none is present. A POSIX user id
 value is one such identifier that will be used in this
 field. Use of this field is described later in this
 document.

 A C string containing a textual representation of the identity
 information optionally follows the sadb_ident extension. The format
 of this string is determined by the value in sadb_ident_type, and is
 described later in this document.

2.3.6 Sensitivity Extension

 The Sensitivity extension contains security labeling information
 for a security association. If this extension is not present, no
 sensitivity-related data can be obtained from this security
 association. If this extension is present, then the need for
 explicit security labeling on the packet is obviated.

McDonald, Metz, and Phan Expires in 6 months [Page 22]

Internet Draft PF_KEY, Version 2 28 February 1998

 struct sadb_sens {
 uint16_t sadb_sens_len;
 uint16_t sadb_sens_exttype;
 uint32_t sadb_sens_dpd;
 uint8_t sadb_sens_sens_level;
 uint8_t sadb_sens_sens_len;
 uint8_t sadb_sens_integ_level;
 uint8_t sadb_sens_integ_len;
 uint32_t sadb_sens_reserved;
 };
 /* sizeof(struct sadb_sens) == 16 */

 /* followed by:
 uint64_t sadb_sens_bitmap[sens_len];
 uint64_t sadb_integ_bitmap[integ_len]; */

 sadb_sens_dpd Describes the protection domain, which allows
 interpretation of the levels and compartment
 bitmaps.
 sadb_sens_sens_level
 The sensitivity level.
 sadb_sens_sens_len
 The length, in 64 bit words, of the sensitivity
 bitmap.
 sadb_sens_integ_level
 The integrity level.
 sadb_sens_integ_len
 The length, in 64 bit words, of the integrity
 bitmap.

 This sensitivity extension is designed to support the Bell-LaPadula
 [BL74] security model used in compartmented-mode or multi-level
 secure systems, the Clark-Wilson [CW87] commercial security model,
 and/or the Biba integrity model [Biba77]. These formal models can be
 used to implement a wide variety of security policies. The definition
 of a particular security policy is outside the scope of this
 document.

2.3.7 Proposal Extension

 The Proposal extension contains a "proposed situation" of algorithm
 preferences. It looks like:

 struct sadb_prop {
 uint16_t sadb_prop_len;
 uint16_t sadb_prop_exttype;
 uint8_t sadb_prop_replay;
 uint8_t sadb_prop_reserved[3];

McDonald, Metz, and Phan Expires in 6 months [Page 23]

Internet Draft PF_KEY, Version 2 28 February 1998

 };
 /* sizeof(struct sadb_prop) == 8 */

 /* followed by:
 struct sadb_comb sadb_combs[(sadb_prop_len *
 sizeof(uint64_t) - sizeof(struct sadb_prop)) /
 sizeof(struct sadb_comb)]; */

 Following the header are a list of proposed parameter combinations in
 preferential order. The values in these fields have the same
 definition as the fields those values will move into if the
 combination is chosen. These combinations look like:

 struct sadb_comb {
 uint8_t sadb_comb_auth;
 uint8_t sadb_comb_encrypt;
 uint16_t sadb_comb_flags;
 uint16_t sadb_comb_auth_minbits;
 uint16_t sadb_comb_auth_maxbits;
 uint16_t sadb_comb_encrypt_minbits;
 uint16_t sadb_comb_encrypt_maxbits;
 uint32_t sadb_comb_reserved;
 uint32_t sadb_comb_soft_allocations;
 uint32_t sadb_comb_hard_allocations;
 uint64_t sadb_comb_soft_bytes;
 uint64_t sadb_comb_hard_bytes;
 uint64_t sadb_comb_soft_addtime;
 uint64_t sadb_comb_hard_addtime;
 uint64_t sadb_comb_soft_usetime;
 uint64_t sadb_comb_hard_usetime;
 };
 /* sizeof(struct sadb_comb) == 72 */

 sadb_comb_auth If this combination is accepted, this will be the
 value of sadb_sa_auth.

 sadb_comb_encrypt
 If this combination is accepted, this will be the
 value of sadb_sa_encrypt.

 sadb_comb_auth_minbits;
 sadb_comb_auth_maxbits;
 The minimum and maximum acceptable authentication
 key lengths, respectably, in bits. If sadb_comb_auth
 is zero, both of these values MUST be zero. If
 sadb_comb_auth is nonzero, both of these values MUST
 be nonzero. If this combination is accepted, a value
 between these (inclusive) will be stored in the

McDonald, Metz, and Phan Expires in 6 months [Page 24]

Internet Draft PF_KEY, Version 2 28 February 1998

 sadb_key_bits field of KEY_AUTH. The minimum MUST
 NOT be greater than the maximum.

 sadb_comb_encrypt_minbits;
 sadb_comb_encrypt_maxbits;
 The minimum and maximum acceptable encryption key
 lengths, respectably, in bits. If sadb_comb_encrypt
 is zero, both of these values MUST be zero. If
 sadb_comb_encrypt is nonzero, both of these values
 MUST be nonzero. If this combination is accepted, a
 value between these (inclusive) will be stored in
 the sadb_key_bits field of KEY_ENCRYPT. The minimum
 MUST NOT be greater than the maximum.

 sadb_comb_soft_allocations
 sadb_comb_hard_allocations
 If this combination is accepted, these are proposed
 values of sadb_lifetime_allocations in the SOFT and
 HARD lifetimes, respectively.

 sadb_comb_soft_bytes
 sadb_comb_hard_bytes
 If this combination is accepted, these are proposed
 values of sadb_lifetime_bytes in the SOFT and HARD
 lifetimes, respectively.

 sadb_comb_soft_addtime
 sadb_comb_hard_addtime
 If this combination is accepted, these are proposed
 values of sadb_lifetime_addtime in the SOFT and HARD
 lifetimes, respectively.

 sadb_comb_soft_usetime
 sadb_comb_hard_usetime
 If this combination is accepted, these are proposed
 values of sadb_lifetime_usetime in the SOFT and HARD
 lifetimes, respectively.

 Each combination has an authentication and encryption algorithm,
 which may be 0, indicating none. A combination's flags are the same
 as the flags in the Association extension. The minimum and maximum
 key lengths (which are in bits) are derived from possible a priori
 policy decisions, along with basic properties of the algorithm.
 Lifetime attributes are also included in a combination, as some
 algorithms may know something about their lifetimes and can suggest
 lifetime limits.

McDonald, Metz, and Phan Expires in 6 months [Page 25]

Internet Draft PF_KEY, Version 2 28 February 1998

2.3.8 Supported Algorithms Extension

 The Supported Algorithms extension contains a list of all
 algorithms supported by the system. This tells key management what
 algorithms it can negotiate. Available authentication algorithms are
 listed in the SUPPORTED_AUTH extension and available encryption
 algorithms are listed in the SUPPORTED_ENCRYPT extension. The format
 of these extensions is:

 struct sadb_supported {
 uint16_t sadb_supported_len;
 uint16_t sadb_supported_exttype;
 uint32_t sadb_supported_reserved;
 };
 /* sizeof(struct sadb_supported) == 8 */

 /* followed by:
 struct sadb_alg sadb_algs[(sadb_supported_len *
 sizeof(uint64_t) - sizeof(struct sadb_supported)) /
 sizeof(struct sadb_alg)]; */

 This header is followed by one or more algorithm descriptions. An
 algorithm description looks like:

 struct sadb_alg {
 uint8_t sadb_alg_id;
 uint8_t sadb_alg_ivlen;
 uint16_t sadb_alg_minbits;
 uint16_t sadb_alg_maxbits;
 uint16_t sadb_alg_reserved;
 };
 /* sizeof(struct sadb_alg) == 8 */

 sadb_alg_id The algorithm identification value for this
 algorithm. This is the value that is stored in
 sadb_sa_auth or sadb_sa_encrypt if this algorithm is
 selected.

 sadb_alg_ivlen The length of the initialization vector to be used
 for the algorithm. If an IV is not needed, this
 value MUST be set to zero.

 sadb_alg_minbits
 The minimum acceptable key length, in bits. A value
 of zero is invalid.

 sadb_alg_maxbits
 The maximum acceptable key length, in bits. A value

McDonald, Metz, and Phan Expires in 6 months [Page 26]

Internet Draft PF_KEY, Version 2 28 February 1998

 of zero is invalid. The minimum MUST NOT be greater
 than the maximum.

2.3.9 SPI Range Extension

 One PF_KEY message, SADB_GETSPI, might need a range of acceptable SPI
 values. This extension performs such a function.

 struct sadb_spirange {
 uint16_t sadb_spirange_len;
 uint16_t sadb_spirange_exttype;
 uint32_t sadb_spirange_min;
 uint32_t sadb_spirange_max;
 uint32_t sadb_spirange_reserved;
 };
 /* sizeof(struct sadb_spirange) == 16 */

 sadb_spirange_min
 The minimum acceptable SPI value.

 sadb_spirange_max
 The maximum acceptable SPI value. The maximum MUST
 be greater than or equal to the minimum.

2.4 Illustration of Message Layout

 The following shows how the octets are laid out in a PF_KEY message.
 Optional fields are indicated as such.

 The base header is as follows:

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 +---------------+---------------+---------------+---------------+
 | ...version | sadb_msg_type | sadb_msg_errno| ...msg_satype |
 +---------------+---------------+---------------+---------------+
 | sadb_msg_len | sadb_msg_reserved |
 +---------------+---------------+---------------+---------------+
 | sadb_msg_seq |
 +---------------+---------------+---------------+---------------+
 | sadb_msg_pid |
 +---------------+---------------+---------------+---------------+

 The base header may be followed by one or more of the following
 extension fields, depending on the values of various base header
 fields. The following fields are ordered such that if they appear,
 they SHOULD appear in the order presented below.

McDonald, Metz, and Phan Expires in 6 months [Page 27]

Internet Draft PF_KEY, Version 2 28 February 1998

 An extension field MUST not be repeated. If there is a situation
 where an extension MUST be repeated, it should be brought to the
 attention of the authors.

McDonald, Metz, and Phan Expires in 6 months [Page 28]

Internet Draft PF_KEY, Version 2 28 February 1998

 The Association extension

 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 +---------------+---------------+---------------+---------------+
 | sadb_sa_len | sadb_sa_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_sa_spi |
 +---------------+---------------+---------------+---------------+
 | ...replay | sadb_sa_state | sadb_sa_auth |sadb_sa_encrypt|
 +---------------+---------------+---------------+---------------+
 | sadb_sa_flags |
 +---------------+---------------+---------------+---------------+

 The Lifetime extension

 +---------------+---------------+---------------+---------------+
 | sadb_lifetime_len | sadb_lifetime_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_lifetime_allocations |
 +---------------+---------------+---------------+---------------+
 | sadb_lifetime_bytes |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_lifetime_addtime |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_lifetime_usetime |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+

 The Address extension

 +---------------+---------------+---------------+---------------+
 | sadb_address_len | sadb_address_exttype |
 +---------------+---------------+---------------+---------------+
 | _address_proto| ..._prefixlen | sadb_address_reserved |
 +---------------+---------------+---------------+---------------+
 > Some form of 64-bit aligned struct sockaddr goes here. <
 +---------------+---------------+---------------+---------------+

McDonald, Metz, and Phan Expires in 6 months [Page 29]

Internet Draft PF_KEY, Version 2 28 February 1998

 The Key extension

 +---------------+---------------+---------------+---------------+
 | sadb_key_len | sadb_key_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_key_bits | sadb_key_reserved |
 +---------------+---------------+---------------+---------------+
 > A key, padded to 64-bits, most significant bits to least. >
 +---------------+---------------+---------------+---------------+

 The Identity extension

 +---------------+---------------+---------------+---------------+
 | sadb_ident_len | sadb_ident_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_ident_type | sadb_ident_reserved |
 +---------------+---------------+---------------+---------------+
 | sadb_ident_id |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 > A null-terminated C-string which MUST be padded out for >
 < 64-bit alignment. <
 +---------------+---------------+---------------+---------------+

 The Sensitivity extension

 +---------------+---------------+---------------+---------------+
 | sadb_sens_len | sadb_sens_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_sens_dpd |
 +---------------+---------------+---------------+---------------+
 | ...sens_level | ...sens_len |..._integ_level| ..integ_len |
 +---------------+---------------+---------------+---------------+
 | sadb_sens_reserved |
 +---------------+---------------+---------------+---------------+
 > The sensitivity bitmap, followed immediately by the <
 < integrity bitmap, each is an array of uint64_t. >
 +---------------+---------------+---------------+---------------+

McDonald, Metz, and Phan Expires in 6 months [Page 30]

Internet Draft PF_KEY, Version 2 28 February 1998

 The Proposal extension

 +---------------+---------------+---------------+---------------+
 | sadb_prop_len | sadb_prop_exttype |
 +---------------+---------------+---------------+---------------+
 |...prop_replay | sadb_prop_reserved |
 +---------------+---------------+---------------+---------------+
 > One or more combinations, specified as follows... <
 +---------------+---------------+---------------+---------------+

 Combination
 +---------------+---------------+---------------+---------------+
 |sadb_comb_auth |sadb_comb_encr | sadb_comb_flags |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_auth_minbits | sadb_comb_auth_maxbits |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_encrypt_minbits | sadb_comb_encrypt_maxbits |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_reserved |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_soft_allocations |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_hard_allocations |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_soft_bytes |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_hard_bytes |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_soft_addtime |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_hard_addtime |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_soft_usetime |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+
 | sadb_comb_hard_usetime |
 | (64 bits) |
 +---------------+---------------+---------------+---------------+

McDonald, Metz, and Phan Expires in 6 months [Page 31]

Internet Draft PF_KEY, Version 2 28 February 1998

 The Supported Algorithms extension

 +---------------+---------------+---------------+---------------+
 | sadb_supported_len | sadb_supported_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_supported_reserved |
 +---------------+---------------+---------------+---------------+

 Followed by one or more Algorithm Descriptors

 +---------------+---------------+---------------+---------------+
 | sadb_alg_id | sadb_alg_ivlen| sadb_alg_minbits |
 +---------------+---------------+---------------+---------------+
 | sadb_alg_maxbits | sadb_alg_reserved |
 +---------------+---------------+---------------+---------------+

 The SPI Range extension

 +---------------+---------------+---------------+---------------+
 | sadb_spirange_len | sadb_spirange_exttype |
 +---------------+---------------+---------------+---------------+
 | sadb_spirange_min |
 +---------------+---------------+---------------+---------------+
 | sadb_spirange_max |
 +---------------+---------------+---------------+---------------+
 | sadb_spirange_reserved |
 +---------------+---------------+---------------+---------------+

3 Symbolic Names

 This section defines various symbols used with PF_KEY and the
 semantics associated with each symbol. Applications MUST use the
 symbolic names in order to be portable. The numeric definitions
 shown are for illustrative purposes, unless explicitly stated
 otherwise. The numeric definition MAY vary on other systems. The
 symbolic name MUST be kept the same for all conforming
 implementations.

3.1 Message Types

 The following message types are used with PF_KEY. These are
 defined in the file <net/pfkeyv2.h>.

McDonald, Metz, and Phan Expires in 6 months [Page 32]

Internet Draft PF_KEY, Version 2 28 February 1998

 #define SADB_RESERVED 0
 #define SADB_GETSPI 1
 #define SADB_UPDATE 2
 #define SADB_ADD 3
 #define SADB_DELETE 4
 #define SADB_GET 5
 #define SADB_ACQUIRE 6
 #define SADB_REGISTER 7
 #define SADB_EXPIRE 8
 #define SADB_FLUSH 9

 #define SADB_DUMP 10 /* not used normally */

 #define SADB_MAX 10

 Each message has a behavior. A behavior is defined as where the
 initial message travels (e.g. user to kernel), and what subsequent
 actions are expected to take place. Contents of messages are
 illustrated as:

 <base, REQUIRED EXTENSION, REQ., (OPTIONAL EXT.,) (OPT)>

 The SA extension is sometimes used only for its SPI field. If all
 other fields MUST be ignored, this is represented by "SA(*)".

 The lifetime extensions are represented with one to three letters
 after the word "lifetime," representing (H)ARD, (S)OFT, and
 (C)URRENT.

 The address extensions are represented with one to three letters
 after the word "address," representing (S)RC, (D)ST, (P)ROXY.
 NOTE: Some security association types do not use a source
 address for SA identification, where others do. This
 may cause EEXIST errors for some SA types where others
 do not report collisions. It is expected that
 application authors know enough about the underlying
 security association types to understand these
 differences.

 The key extensions are represented with one or two letters after the
 word "key," representing (A)UTH and (E)NCRYPT.

 The identity extensions are represented with one or two letters after
 the word "identity," representing (S)RC and (D)ST.

 In the case of an error, only the base header is returned.

 Note that any standard error could be returned for any message.

McDonald, Metz, and Phan Expires in 6 months [Page 33]

Internet Draft PF_KEY, Version 2 28 February 1998

 Typically, they will be either one of the errors specifically listed
 in the description for a message or one of the following:

 EINVAL Various message improprieties, including SPI ranges
 that are malformed.
 ENOMEM Needed memory was not available.
 ENOBUFS Needed memory was not available.
 EMSGSIZ The message exceeds the maximum length allowed.

3.1.1 SADB_GETSPI

 The SADB_GETSPI message allows a process to obtain a unique SPI
 value for given security association type, source address, and
 destination address. This message followed by a SADB_UPDATE is one
 way to create a security association (SADB_ADD is the other method).
 The process specifies the type in the base header, the source and
 destination address in address extension. If the SADB_GETSPI message
 is in response to a kernel-generated SADB_ACQUIRE, the sadb_msg_seq
 MUST be the same as the SADB_ACQUIRE message. The application may
 also specify the SPI. This is done by having the kernel select
 within a range of SPI values by using the SPI range extension. To
 specify a single SPI value to be verified, the application sets the
 high and low values to be equal. Permitting range specification is
 important because the kernel can allocate an SPI value based on what
 it knows about SPI values already in use. The kernel returns the
 same message with the allocated SPI value stored in the spi field of
 an association extension. An SADB_UPDATE message can later be used
 to add an entry with the requested SPI value.

 The message behavior of the SADB_GETSPI message is:

 Send a SADB_GETSPI message from a user process to the kernel.

 <base, address, SPI range>

 The kernel returns the SADB_GETSPI message to all listening
 processes.

 <base, SA(*), address(SD)>

 Errors:

 EEXIST Requested SPI or SPI range is not available or already
 used.

3.1.2 SADB_UPDATE Message

 The SADB_UPDATE message allows a process to update the information

McDonald, Metz, and Phan Expires in 6 months [Page 34]

Internet Draft PF_KEY, Version 2 28 February 1998

 in an existing Security Association. Since SADB_GETSPI does not
 allow setting of certain parameters, this message is needed to fully
 form the SADB_SASTATE_LARVAL security association created with
 SADB_GETSPI. The format of the update message is a base header,
 followed by an association header and possibly by several extension
 headers. The kernel searches for the security association with the
 same type, spi, source address and destination address specified in
 the message and updates the Security Association information using
 the content of the SADB_UPDATE message.

 The kernel MAY disallow SADB_UPDATE to succeed unless the message
 is issued from the same socket that created the security association.
 Such enforcement significantly reduces the chance of accidental
 changes to an in-use security associations. Malicious trusted
 parties could still issue a SADB_FLUSH or SADB_DELETE message, but
 deletion of associations is more easily detected and less likely to
 occur accidentally than an erroneous SADB_UPDATE. The counter
 argument to supporting this behavior involves the case where a user-
 space key management application fails and is restarted. The new
 instance of the application will not have the same socket as the
 creator of the security association.

 The kernel MUST sanity check all significant values submitted in a
 SADB_UPDATE message before changing the SA in its database and MUST
 return EINVAL if any of the values are invalid. Examples of checks
 that should be performed are DES key parity bit, key length checking,
 checks for keys known to be weak for the specified algorithm, and
 checks for flags or parameters known to be incompatible with the
 specified algorithm.

 Only SADB_SASTATE_MATURE SAs may be submitted in a SADB_UPDATE
 message. If the original SA is a SADB_SASTATE_LARVAL SA, then any
 value in the SA may be changed except for the source address,
 destination address, and SPI. If the original SA is a
 SADB_SASTATE_DEAD SA, any attempt to perform an SADB_UPDATE on the SA
 MUST return EINVAL. It is not valid for established keying or
 algorithm information to change without the SPI changing, which would
 require creation of a new SA rather than a change to an existing SA.
 Once keying and algorithm information is negotiated, address and
 identity information is fixed for the SA. Therefore, if the original
 SA is a SADB_SASTATE_MATURE or DYING SA, only the sadb_sa_state field
 in the SA header and lifetimes (hard, soft, and current) may be
 changed and any attempt to change other values MUST result in an
 error return of EINVAL.

 The message behavior of the SADB_UPDATE message is:

 Send a SADB_UPDATE message from a user process to the kernel.

McDonald, Metz, and Phan Expires in 6 months [Page 35]

Internet Draft PF_KEY, Version 2 28 February 1998

 <base, SA, (lifetime(HSC),) address(SD), (address(P),)
 key(AE), (identity(SD),) (sensitivity)>

 The kernel returns the SADB_UPDATE message to all listening
 processes.

 <base, SA, (lifetime(HSC),) address(SD), (address(P),)
 (identity(SD),) (sensitivity)>

 The keying material is not returned on the message from the kernel
 to listening sockets because listeners might not have the privileges
 to see such keying material.

 Errors:
 ESRCH The security association to be updated was not found.
 EINVAL In addition to other possible causes, this error is
 returned if sanity checking on the SA values (such
 as the keys) fails.
 EACCES Insufficient privilege to update entry. The socket
 issuing the SADB_UPDATE is not creator of the entry
 to be updated.

3.1.3 SADB_ADD

 The SADB_ADD message is nearly identical to the SADB_UPDATE
 message, except that it does not require a previous call to
 SADB_GETSPI. The SADB_ADD message is used in manual keying
 applications, and in other cases where the uniqueness of the SPI is
 known immediately.

 An SADB_ADD message is also used when negotiation is finished, and
 the second of a pair of associations is added. The SPI for this
 association was determined by the peer machine. The sadb_msg_seq
 MUST be set to the value set in a kernel-generated SADB_ACQUIRE so
 that both associations in a pair are bound to the same ACQUIRE
 request.

 The kernel MUST sanity check all used fields in the SA submitted in
 a SADB_ADD message before adding the SA to its database and MUST
 return EINVAL if any of the values are invalid.

 Only SADB_SASTATE_MATURE SAs may be submitted in a SADB_ADD
 message. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is
 not sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
 Therefore, the sadb_sa_state field of all submitted SAs MUST be
 SADB_SASTATE_MATURE and the kernel MUST return an error if this is

McDonald, Metz, and Phan Expires in 6 months [Page 36]

Internet Draft PF_KEY, Version 2 28 February 1998

 not true.

 The message behavior of the SADB_ADD message is:

 Send a SADB_ADD message from a user process to the kernel.

 <base, SA, (lifetime(HS),) address(SD), (address(P),)
 key(AE), (identity(SD),) (sensitivity)>

 The kernel returns the SADB_ADD message to all listening
 processes.

 <base, SA, (lifetime(HS),) address(SD), (identity(SD),)
 (sensitivity)>

 The keying material is not returned on the message from the kernel to
 listening sockets because listeners may not have the privileges to see
 such keying material.

 Errors:

 EEXIST The security association that was to be added already
 exists.
 EINVAL In addition to other possible causes, this error is
 returned if sanity checking on the SA values (such
 as the keys) fails.

3.1.4 SADB_DELETE

 The SADB_DELETE message causes the kernel to delete a Security
 Association from the key table. The delete message consists of the
 base header followed by the association, and the source and
 destination sockaddrs in the address extension. The kernel deletes
 the security association matching the type, spi, source address, and
 destination address in the message.

 The message behavior for SADB_DELETE is as follows:

 Send a SADB_DELETE message from a user process to the kernel.

 <base, SA(*), address(SD)>

 The kernel returns the SADB_DELETE message to all listening
 processes.

 <base, SA(*), address(SD)>

McDonald, Metz, and Phan Expires in 6 months [Page 37]

Internet Draft PF_KEY, Version 2 28 February 1998

3.1.5 SADB_GET

 The SADB_GET message allows a process to retrieve a copy of a
 Security Association from the kernel's key table. The get message
 consists of the base header follows by the relevant extension fields.
 The Security Association matching the type, spi, source address, and
 destination address is returned.

 The message behavior of the SADB_GET message is:

 Send a SADB_GET message from a user process to the kernel.

 <base, SA(*), address(SD)>

 The kernel returns the SADB_GET message to the socket that sent
 the SADB_GET message.

 <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
 (identity(SD),) (sensitivity)>

 Errors:
 ESRCH The sought security association was not found.

3.1.6 SADB_ACQUIRE

 The SADB_ACQUIRE message is typically sent only by the kernel to
 key socket listeners who have registered their key socket (see
 SADB_REGISTER message). SADB_ACQUIRE messages can be sent by
 application-level consumers of security associations (such as an
 OSPFv2 implementation that uses OSPF security). The SADB_ACQUIRE
 message is a base header along with an address extension, possibly an
 identity extension, and a proposal extension. The proposed situation
 contains a list of desirable algorithms that can be used if the
 algorithms in the base header are not available. The values for the
 fields in the base header and in the security association data which
 follows the base header indicate the properties of the Security
 Association that the listening process should attempt to acquire. If
 the message originates from the kernel (i.e. the sadb_msg_pid is 0),
 the sadb_msg_seq number MUST be used by a subsequent SADB_GETSPI and
 SADB_UPDATE, or subsequent SADB_ADD message to bind a security
 association to the request. This avoids the race condition of two
 TCP connections between two IP hosts that each require unique
 associations, and having one steal another's security association.
 The sadb_msg_errno and sadb_msg_state fields should be ignored by the
 listening process.

 The SADB_ACQUIRE message is typically triggered by an outbound
 packet that needs security but for which there is no applicable

McDonald, Metz, and Phan Expires in 6 months [Page 38]

Internet Draft PF_KEY, Version 2 28 February 1998

 Security Association existing in the key table. If the packet can be
 sufficiently protected by more than one algorithm or combination of
 options, the SADB_ACQUIRE message MUST order the preference of
 possibilities in the Proposal extension.

 There are three messaging behaviors for SADB_ACQUIRE. The first is
 where the kernel needs a security association (e.g. for IPsec).

 The kernel sends an SADB_ACQUIRE message to registered sockets.

 <base, address(SD), (address(P)), (identity(SD),) (sensitivity,)
 proposal>

 NOTE: The address(SD) extensions MUST have the port fields
 filled in with the port numbers of the session requiring
 keys if appropriate.

 The second is when, for some reason, key management fails, it can
 send an ACQUIRE message with the same sadb_msg_seq as the initial
 ACQUIRE with a non-zero errno.

 Send an SADB_ACQUIRE to indicate key management failure.

 <base>

 The third is where an application-layer consumer of security
 associations (e.g. an OSPFv2 or RIPv2 daemon) needs a security
 association.

 Send an SADB_ACQUIRE message from a user process to the kernel.

 <base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
 proposal>

 The kernel returns an SADB_ACQUIRE message to registered sockets.

 <base, address(SD), (address(P),) (identity(SD),) (sensitivity,)
 proposal>

 The user-level consumer waits for a SADB_UPDATE or SADB_ADD
 message for its particular type, and then can use that
 association by using SADB_GET messages.

 Errors:
 EINVAL Invalid acquire request.
 EPROTONOSUPPORT No KM application has registered with the Key
 Engine as being able to obtain the requested SA type, so

McDonald, Metz, and Phan Expires in 6 months [Page 39]

Internet Draft PF_KEY, Version 2 28 February 1998

 the requested SA cannot be acquired.

3.1.7 SADB_REGISTER

 The SADB_REGISTER message allows an application to register its key
 socket as able to acquire new security associations for the kernel.
 SADB_REGISTER allows a socket to receive SADB_ACQUIRE messages for
 the type of security association specified in sadb_msg_satype. The
 application specifies the type of security association that it can
 acquire for the kernel in the type field of its register message. If
 an application can acquire multiple types of security association, it
 MUST register each type in a separate message. Only the base header
 is needed for the register message. Key management applications MAY
 register for a type not known to the kernel, because the consumer may
 be in user-space (e.g. OSPFv2 security).

 The reply of the SADB_REGISTER message contains a supported
 algorithm extension. That field contains an array of supported
 algorithm, one per octet. This allows key management applications to
 know what algorithm are supported by the kernel.

 In an environment where algorithms can be dynamically loaded and
 unloaded, an asynchronous SADB_REGISTER reply MAY be generated. The
 list of supported algorithms MUST be a complete list, so the
 application can make note of omissions or additions.

 The messaging behavior of the SADB_REGISTER message is:

 Send a SADB_REGISTER message from a user process to the kernel.

 <base>

 The kernel returns a SADB_REGISTER message to registered
 sockets, with algorithm types supported by the kernel being
 indicated in the supported algorithms field.

 NOTE: This message may arrive asynchronously due to an
 algorithm being loaded or unloaded into a dynamically
 linked kernel.

 <base, supported>

3.1.8 SADB_EXPIRE Message

 The operating system kernel is responsible for tracking SA
 expirations for security protocols that are implemented inside the
 kernel. If the soft limit or hard limit of a Security Association

McDonald, Metz, and Phan Expires in 6 months [Page 40]

Internet Draft PF_KEY, Version 2 28 February 1998

 has expired for a security protocol implemented inside the kernel,
 then the kernel MUST issue an SADB_EXPIRE message to all key socket
 listeners. If the soft limit or hard limit of a Security Association
 for a user-level security protocol has expired, the user-level
 protocol SHOULD issue a SADB_EXPIRE message.

 The base header will contain the security association information
 followed by the source sockaddr, destination sockaddr, (and, if
 present, internal sockaddr,) (and, if present, one or both
 compartment bitmaps).

 The lifetime extension of an SADB_EXPIRE message is important to
 indicate which lifetime expired. If a HARD lifetime extension is
 included, it indicates that the HARD lifetime expired. This means
 the association MAY be deleted already from the SADB. If a SOFT
 lifetime extension is included, it indicates that the SOFT lifetime
 expired. The CURRENT lifetime extension will indicate the current
 status, and comparisons to the HARD or SOFT lifetime will indicate
 which limit was reached. HARD lifetimes MUST take precedence over
 SOFT lifetimes, meaning if the HARD and SOFT lifetimes are the same,
 the HARD lifetime will appear on the EXPIRE message. The
 pathological case of HARD lifetimes being shorter than SOFT lifetimes
 is handled such that the SOFT lifetime will never expire.

 The messaging behavior of the SADB_EXPIRE message is:

 The kernel sends a SADB_EXPIRE message to all listeners when
 the soft limit of a security association has been expired.

 <base, SA, lifetime(C and one of HS), address(SD)>

 Note that the SADB_EXPIRE message is ONLY sent by the kernel to the
 KMd. It is a one-way informational message that does not have a
 reply.

3.1.9 SADB_FLUSH

 The SADB_FLUSH message causes the kernel to delete all entries in
 its key table for a certain sadb_msg_satype. Only the base header is
 required for a flush message. If sadb_msg_satype is filled in with a
 specific value, only associations of that type are deleted. If it is
 filled in with SADB_SATYPE_UNSPEC, ALL associations are deleted.

 The messaging behavior for SADB_FLUSH is:

 Send a SADB_FLUSH message from a user process to the kernel.

 <base>

McDonald, Metz, and Phan Expires in 6 months [Page 41]

Internet Draft PF_KEY, Version 2 28 February 1998

 The kernel will return a SADB_FLUSH message to all listening
 sockets.

 <base>

 The reply message happens only after the actual flushing
 of security associations has been attempted.

3.1.10 SADB_DUMP

 The SADB_DUMP message causes the kernel to dump the operating
 system's entire Key Table to the requesting key socket. As in
 SADB_FLUSH, if a sadb_msg_satype value is in the message, only
 associations of that type will be dumped. If SADB_SATYPE_UNSPEC is
 specified, all associations will be dumped. Each Security Association
 is returned in its own SADB_DUMP message. A SADB_DUMP message with a
 sadb_seq field of zero indicates the end of the dump transaction. The
 dump message is used for debugging purposes only and is not intended
 for production use.

 Support for the dump message MAY be discontinued in future versions
 of PF_KEY. Key management applications MUST NOT depend on this
 message for basic operation.

 The messaging behavior for SADB_DUMP is:

 Send a SADB_DUMP message from a user process to the kernel.

 <base>

 Several SADB_DUMP messages will return from the kernel to the
 sending socket.

 <base, SA, (lifetime (HSC),) address(SD), (address(P),)
 key(AE), (identity(SD),) (sensitivity)>

3.2 Security Association Flags

 The Security Association's flags are a bitmask field. These flags
 also appear in a combination that is part of a PROPOSAL extension.
 The related symbolic definitions below should be used in order that
 applications will be portable:

 #define SADB_SAFLAGS_PFS 1 /* perfect forward secrecy */

 The SADB_SAFLAGS_PFS flag indicates to key management that this
 association should have perfect forward secrecy in its key. (In
 other words, any given session key cannot be determined by

McDonald, Metz, and Phan Expires in 6 months [Page 42]

Internet Draft PF_KEY, Version 2 28 February 1998

 cryptanalysis of previous session keys or some master key.)

3.3 Security Association States

 The security association state field is an integer that describes
 the states of a security association. They are:

 #define SADB_SASTATE_LARVAL 0
 #define SADB_SASTATE_MATURE 1
 #define SADB_SASTATE_DYING 2
 #define SADB_SASTATE_DEAD 3

 #define SADB_SASTATE_MAX 3

 A SADB_SASTATE_LARVAL security association is one that was created
 by the SADB_GETSPI message. A SADB_SASTATE_MATURE association is one
 that was updated with the SADB_UPDATE message or added with the
 SADB_ADD message. A DYING association is one whose soft lifetime has
 expired. A SADB_SASTATE_DEAD association is one whose hard lifetime
 has expired, but hasn't been reaped by system garbage collection. If
 a consumer of security associations has to extend an association
 beyond its normal lifetime (e.g. OSPF Security) it MUST only set the
 soft lifetime for an association.

3.4 Security Association Types

 This defines the type of Security Association in this message. The
 symbolic names are always the same, even on different
 implementations. Applications SHOULD use the symbolic name in order
 to have maximum portability across different implementations. These
 are defined in the file <net/pfkeyv2.h>.

 #define SADB_SATYPE_UNSPEC 0

 #define SADB_SATYPE_AH 1 /* RFC-1826 */
 #define SADB_SATYPE_ESP 2 /* RFC-1827 */

 #define SADB_SATYPE_RSVP 3 /* RSVP Authentication */
 #define SADB_SATYPE_OSPFV2 4 /* OSPFv2 Authentication */
 #define SADB_SATYPE_RIPV2 5 /* RIPv2 Authentication */
 #define SADB_SATYPE_MIP 6 /* Mobile IP Auth. */

 #define SADB_SATYPE_MAX 6

 SADB_SATYPE_UNSPEC is defined for completeness and means no specific
 type of security association. This type is never used with PF_KEY
 SAs.

https://datatracker.ietf.org/doc/html/rfc1826
https://datatracker.ietf.org/doc/html/rfc1827

McDonald, Metz, and Phan Expires in 6 months [Page 43]

Internet Draft PF_KEY, Version 2 28 February 1998

 SADB_SATYPE_AH is for the IP Authentication Header [Atk95b].

 SADB_SATYPE_ESP is for the IP Encapsulating Security Payload
 [Atk95c].

 SADB_SATYPE_RSVP is for the RSVP Integrity Object [Baker97].

 SADB_SATYPE_OSPFV2 is for OSPFv2 Cryptographic authentication
 [Moy97].

 SADB_SATYPE_RIPV2 is for RIPv2 Cryptographic authentication [BA97].

 SADB_SATYPE_MIP is for Mobile IP's authentication extensions
 [Perkins97].

 SADB_SATYPE_MAX is always set to the highest valid numeric value.
 There MUST not be gaps in the numbering of security types; all
 numbers must be used sequentially.

3.5 Algorithm Types

 The algorithm type is interpreted in the context of the Security
 Association type defined above. The numeric value might vary between
 implementations, but the symbolic name MUST NOT vary between
 implementations. Applications should use the symbolic name in order
 to have maximum portability to various implementations.

 Some of the algorithm types defined below might not be standardized
 or might be deprecated in the future. To obtain an assignment for a
 symbolic name, contact the authors.

 The symbols below are defined in <net/pfkeyv2.h>.

 /* Authentication algorithms */
 #define SADB_AALG_NONE 0
 #define SADB_AALG_MD5HMAC 1
 #define SADB_AALG_SHA1HMAC 2
 #define SADB_AALG_MAX 2

 /* Encryption algorithms */
 #define SADB_EALG_NONE 0
 #define SADB_EALG_DESCBC 1
 #define SADB_EALG_3DESCBC 2
 #define SADB_EALG_MAX 2

 The algorithm for SADB_AALG_MD5_HMAC is defined in [OG96]. The
 algorithm for SADB_AALG_SHA1HMAC is defined in [CG96]. The algorithm

McDonald, Metz, and Phan Expires in 6 months [Page 44]

Internet Draft PF_KEY, Version 2 28 February 1998

 for SADB_EALG_DESCBC is defined in [Hug96].

3.6 Extension Header Values

 To briefly recap the extension header values:

 #define SADB_EXT_RESERVED 0
 #define SADB_EXT_SA 1
 #define SADB_EXT_LIFETIME_CURRENT 2
 #define SADB_EXT_LIFETIME_HARD 3
 #define SADB_EXT_LIFETIME_SOFT 4
 #define SADB_EXT_ADDRESS_SRC 5
 #define SADB_EXT_ADDRESS_DST 6
 #define SADB_EXT_ADDRESS_PROXY 7
 #define SADB_EXT_KEY_AUTH 8
 #define SADB_EXT_KEY_ENCRYPT 9
 #define SADB_EXT_IDENTITY_SRC 10
 #define SADB_EXT_IDENTITY_DST 11
 #define SADB_EXT_SENSITIVITY 12
 #define SADB_EXT_PROPOSAL 13
 #define SADB_EXT_SUPPORTED_AUTH 14
 #define SADB_EXT_SUPPORTED_ENCRYPT 15
 #define SADB_EXT_SPIRANGE 16

 #define SADB_EXT_MAX 16

3.7 Identity Extension Values

 Each identity can have a certain type.

 #define SADB_IDENTTYPE_RESERVED 0
 #define SADB_IDENTTYPE_PREFIX 1
 #define SADB_IDENTTYPE_FQDN 2
 #define SADB_IDENTTYPE_USERFQDN 3

 #define SADB_IDENTTYPE_MAX 3

 The PREFIX identity string consists of a network address followed
 by a forward slash and a prefix length. The network address is in a
 printable numeric form appropriate for the protocol family. The
 prefix length is a decimal number greater than or equal to zero and
 less than the number of bits in the network address. It indicates the
 number of bits in the network address that are significant; all bits
 in the network address that are not significant MUST be set to zero.
 Note that implementations MUST parse the contents of the printable
 address into a binary form for comparison purposes because multiple
 printable strings are valid representations of the same address in
 many protocol families (for example, some allow leading zeros and

McDonald, Metz, and Phan Expires in 6 months [Page 45]

Internet Draft PF_KEY, Version 2 28 February 1998

 some have letters that are case insensitive). Examples of PREFIX
 identities are "199.33.248.64/27" and
 "5f00:3000:c721::f800:19:1/128". If the source or destination
 identity is a PREFIX identity, the source or destination address for
 the SA (respectively) MUST be within that prefix. The sadb_ident_id
 field is zeroed for these identity types.

 The FQDN identity string contains a fully qualified domain name. An
 example FQDN identity is "ministry-of-truth.inner.net". The
 sadb_ident_id field is zeroed for these identity types.

 The UserFQDN identity consists of a text string in the format
 commonly used for Internet-standard electronic mail. The syntax is
 the text username, followed by the "@" character, followed in turn by
 the appropriate fully qualified domain name. This identity specifies
 both a username and an associated FQDN. There is no requirement that
 this string specify a mailbox valid for SMTP or other electronic mail
 use. This identity is useful with protocols supporting user-oriented
 keying. It is a convenient identity form because the DNS Security
 extensions can be used to distribute signed public key values by
 associating KEY and SIG records with an appropriate MB DNS record. An
 example UserFQDN identity is "julia@ministry-of-love.inner.net". The
 sadb_ident_id field is used to contain a POSIX user id in the absence
 of an identity string itself so that a user-level application can use
 the getpwuid{,_r}() routine to obtain a textual user login id. If a
 string is present, it SHOULD match the numeric value in the
 sadb_ident_id field. If it does not match, the string SHOULD
 override the numeric value.

3.8 Sensitivity Extension Values

 The only field currently defined in the sensitivity extension is
 the sadb_sens_dpd, which represents the data protection domain. The
 other data in the sensitivity extension is based off the
 sadb_sens_dpd value.

 The DP/DOI is defined to be the same as the "Labeled Domain
 Identifier Value" of the IP Security DOI specification [Piper97]. As
 noted in that specification, values in the range 0x80000000 to
 0xffffffff (inclusive) are reserved for private use and values in the
 range 0x00000001 through 0x7fffffff are assigned by IANA. The all-
 zeros DP/DOI value is permanently reserved to mean that "no DP/DOI is
 in use".

3.9 Proposal Extension Values

 These are already mentioned in the ALGORITHM TYPES and ASSOCIATION
 FLAGS sections.

McDonald, Metz, and Phan Expires in 6 months [Page 46]

Internet Draft PF_KEY, Version 2 28 February 1998

4 Future Directions

 While the current specification for the Sensitivity and Integrity
 Labels is believed to be general enough, if a case should arise that
 can't work with the current specification then this might cause a
 change in a future version of PF_KEY.

 Similarly, PF_KEY might need extensions to work with other kinds of
 Security Associations in future. It is strongly desirable for such
 extensions to be made in a backwards-compatible manner should they be
 needed.

 When more experience is gained with certificate management, it is
 possible that the IDENTITY extension will have to be revisited to
 allow a finer grained selection of certificate identities.

McDonald, Metz, and Phan Expires in 6 months [Page 47]

Internet Draft PF_KEY, Version 2 28 February 1998

5 Examples

 The following examples illustrate how PF_KEY is used. The first
 example is an IP Security example, where the consumer of the security
 associations is inside an operating system kernel. The second example
 is an OSPF Security example, which illustrates a user-level consumer
 of security associations. The third example covers things not
 mentioned by the first two examples. A real system may closely
 conform to one of these examples, or take parts of them. These
 examples are purely illustrative, and are not intended to mandate a
 particular implementation method.

5.1 Simple IP Security Example

 +---------------+ +-------------+
 |Key Mgmt Daemon| | Application |
 +---------------+ +-------------+
 | | /
 | | /
 | | | Applications
 ======[PF_KEY]====[PF_INET]==========================
 | | | OS Kernel
 +------------+ +-----------------+
 | Key Engine | | TCP/IP, |
 | or SADB |---| including IPsec |
 +------------+ | |
 +-----------------+

 When the Key Management daemon (KMd) begins. It must tell PF_KEY
 that it is willing to accept message for the two IPsec services, AH
 and ESP. It does this by sending down two SADB_REGISTER messages.

 KMd->Kernel: SADB_REGISTER for ESP
 Kernel->Registered: SADB_REGISTER for ESP, Supported Algorithms
 KMd->Kernel: SADB_REGISTER for AH
 Kernel->Registered: SADB_REGISTER for AH, Supported Algorithms

 Each REGISTER message will cause a reply to go to all PF_KEY sockets
 registered for ESP and AH respectively (including the requester).

 Assume that no security associations currently exist for IPsec to
 use. Consider when a network application begins transmitting data
 (e.g. a TCP SYN). Because of policy, or the application's request,
 the kernel IPsec module needs an AH security association for this
 data. Since there is not one present, the following message is
 generated:

 Kernel->Registered: SADB_ACQUIRE for AH, addrs, ID, sens,

McDonald, Metz, and Phan Expires in 6 months [Page 48]

Internet Draft PF_KEY, Version 2 28 February 1998

 proposals

 The KMd reads the ACQUIRE message, especially the sadb_msg_seq
 number. Before it begins the negotiation, it sends down an
 SADB_GETSPI message with the sadb_msg_seq number equal to the one
 received in the ACQUIRE. The kernel returns the results of the
 GETSPI to all listening sockets.

 KMd->Kernel: SADB_GETSPI for AH, addr, SPI range
 Kernel->All: SADB_GETSPI for AH, assoc, addrs

 The KMd may perform a second GETSPI operation if it needs both
 directions of IPsec SPI values. Now that the KMd has an SPI for at
 least one of the security associations, it begins negotiation. After
 deriving keying material, and negotiating other parameters, it sends
 down one (or more) SADB_UPDATE messages with the same value in
 sadb_msg_seq.

 If a KMd has any error at all during its negotiation, it can send
 down

 KMd->Kernel: SADB_UPDATE for AH, assoc (with an error)
 Kernel->All: SADB_UPDATE for AH, assoc (same error)

 but if it succeeds, it can instead

 KMd->Kernel: SADB_UPDATE for AH, assoc, addrs, keys,
 <etc.>
 Kernel->All: SADB_UPDATE for AH, assoc, addrs, <etc.>

 The results of the UPDATE (minus the actual keys) are sent to all
 listening sockets. If only one SPI value was determined locally, the
 other SPI (since IPsec SAs are unidirectional) must be added with an
 SADB_ADD message.

 KMd->Kernel: SADB_ADD for AH, assoc, addrs, keys, <etc.>
 Kernel->All: SADB_ADD for AH, assoc, addrs, <etc.>

 If one of the extensions passed down was a Lifetime extension, it
 is possible at some point an SADB_EXPIRE message will arrive when one
 of the lifetimes has expired.

 Kernel->All: SADB_EXPIRE for AH, assoc, addrs,
 Hard or Soft, Current, <etc.>

 The KMd can use this as a clue to begin negotiation, or, if it has
 some say in policy, send an SADB_UPDATE down with a lifetime
 extension.

McDonald, Metz, and Phan Expires in 6 months [Page 49]

Internet Draft PF_KEY, Version 2 28 February 1998

5.2 Proxy IP Security Example

 Many people are interested in using IP Security in a "proxy"
 or "firewall" configuration in which an intermediate system provides
 security services for "inside" hosts. In these environments, the
 intermediate systems can use PF_KEY to communicate with key
 management applications almost exactly as they would if they were the
 actual endpoints. The messaging behavior of PF_KEY in these cases is
 exactly the same as the previous example, but the address information
 is slightly different.

 Consider this case:

 A ========= B --------- C

 Key:
 A "outside" host that implements IPsec
 B "firewall" that implements IPsec
 C "inside" host that does not implement IPsec

 === IP_{A<->B} ESP [IP_{A<->C} ULP]
 --- IP_{A<->C} ULP

 A is a single system that wishes to communicate with the "inside"
 system C. B is a "firewall" between C and the outside world that
 will do ESP and tunneling on C's behalf. A discovers that it needs
 to send traffic to C via B through methods not described here (Use of
 the DNS' KX record might be one method for discovering this).

 For packets that flow from left to right, A and B need an
 IPsec Security Association with:

 SA type of ESP tunnel-mode
 Source Identity that dominates A (e.g. A's address)
 Destination Identity that dominates B (e.g. B's address)
 No Proxy Identity or a Proxy Identity that dominates A.

 For packets to flow from right to left, A and B need an IPsec
 Security Association with:
 SA type of ESP tunnel-mode
 Source Identity that dominates C.
 Destination Identity that dominates A.
 Proxy Identity that dominates B.

 For this second SA (for packets flowing from C towards A), node A
 MUST verify that the outer source address is dominated by the Proxy
 Identity for the SA used with those packets. If node A does not do
 this, node B could forge packets with an arbitrary Source Identity

McDonald, Metz, and Phan Expires in 6 months [Page 50]

Internet Draft PF_KEY, Version 2 28 February 1998

 and defeat the packet origin protections provided by IPsec.

 Now consider a slightly more complex case:

 A_1 --| |-- D_1
 |--- B ====== C ---|
 A_2 --| |-- D_2

 Key:
 A_n "inside" host on net 1 that does not do IPsec.
 B "firewall" for net 1 that supports IPsec.
 C "firewall" for net 2 that supports IPsec.
 D_n "inside" host on net 2 that does not do IPsec.
 === IP_{B<->C} ESP [IP_{A<->C} ULP]
 --- IP_{A<->C} ULP

 For A_1 to send a packet to D_1, B and C need a SA with:

 SA Type of ESP
 Source Identity that dominates A_1.
 Destination Identity that dominates C.
 Proxy Identity that dominates B.

 For D_1 to send a packet to A_1, C and B need a SA with:
 SA Type of ESP Tunnel-mode
 Source Identity that dominates D_1.
 Destination Identity that dominates B.
 Proxy Identity that dominates C.

 Note that A_2 and D_2 could be substituted for A_1 and D_1
 (respectively) here; the association of an SA with a particular pair
 of ends or group of those pairs is a policy decision on B and/or C
 and not necessarily a function of key management. The same check of
 the Proxy Identity against the outer source IP address MUST also be
 performed in this case for the same reason.

 For a more detailed discussion of the use of IP Security in complex
 cases, please see [Atk97].

 NOTE: The notion of identity domination might be unfamiliar.
 Let H represent some node. Let Hn represent H's fully qualified
 domain name. Let Ha represent the IP address of H. Let Hs
 represent the IP subnet containing Ha. Let Hd represent a fully
 qualified domain name that is a parent of the fully qualified
 domain name of H. Let M be a UserFQDN identity that whose right-
 hand part is Hn or Ha.

McDonald, Metz, and Phan Expires in 6 months [Page 51]

Internet Draft PF_KEY, Version 2 28 February 1998

 Any of M, Hn, Ha, Hs, and Hd is considered to dominate H in the
 example above. Hs dominates any node having an IP address
 within the IP address range represented by Hs. Hd dominates any
 node having a fully qualified domain name within underneath Hd.

5.3 OSPF Security Example

 +---------------+ +-------------+
 |Key Mgmt Daemon| | OSPF daemon |
 +---------------+ +-------------+
 | | / / |
 | /------|----+ / |
 | / | +---+ | Applications
 ======[PF_KEY]====[PF_INET]===========[PF_ROUTE]================
 | | | | OS Kernel
 +------------+ +-----------------+ +---------+
 | Key Engine | | TCP/IP, | | Routing |
 | or SADB |---| including IPsec |--| Table |
 +------------+ | | +---------+
 +-----------------+

 As in the previous examples, the KMd registers itself with the Key
 Engine via PF_KEY. Even though the consumer of the security
 associations is in user-space, the PF_KEY and Key Engine
 implementation knows enough to store SAs and to relay messages.

 When the OSPF daemon needs to communicate securely with its peers,
 it would perform an SADB_GET message and retrieve the appropriate
 association:

 OSPFd->Kernel: SADB_GET of OSPF, assoc, addrs
 Kernel->OSPFd: SADB_GET of OSPF, assoc, addrs, keys, <etc.>

 If this GET fails, the OSPFd may need to acquire a new security
 association. This interaction is as follows:

 OSPFd->Kernel: SADB_ACQUIRE of OSPF, addrs, <ID, sens,>
 proposal
 Kernel->Registered: SADB_ACQUIRE of OSPF, <same as sent message>

 The KMd sees this and performs actions similar to the previous
 example. One difference, however, is that when the UPDATE message
 comes back, the OSPFd will then perform a GET of the updated SA to
 retrieve all of its parameters.

5.4 Miscellaneous

 Some messages work well only in system maintenance programs, for

McDonald, Metz, and Phan Expires in 6 months [Page 52]

Internet Draft PF_KEY, Version 2 28 February 1998

 debugging, or for auditing. In a system panic situation, such as a
 detected compromise, an SADB_FLUSH message should be issued for a
 particular SA type, or for ALL SA types.

 Program->Kernel: SADB_FLUSH for ALL
 <Kernel then flushes all internal SAs>
 Kernel->All: SADB_FLUSH for ALL

 Some SAs may need to be explicitly deleted, either by a KMd, or by
 a system maintenance program.

 Program->Kernel: SADB_DELETE for AH, association, addrs
 Kernel->All: SADB_DELETE for AH, association, addrs

 Common usage of the SADB_DUMP message is discouraged. For
 debugging purposes, however, it can be quite useful. The output of a
 DUMP message should be read quickly, in order to avoid socket buffer
 overflows.

 Program->Kernel: SADB_DUMP for ESP
 Kernel->Program: SADB_DUMP for ESP, association, <all fields>
 Kernel->Program: SADB_DUMP for ESP, association, <all fields>
 Kernel->Program: SADB_DUMP for ESP, association, <all fields>
 <ad nauseam...>

McDonald, Metz, and Phan Expires in 6 months [Page 53]

Internet Draft PF_KEY, Version 2 28 February 1998

6 Security Considerations

 This draft discusses a method for creating, reading, modifying, and
 deleting Security Associations from an operating system. Only
 trusted, privileged users and processes should be able to perform any
 of these operations. It is unclear whether this mechanism provides
 any security when used with operating systems not having the concept
 of a trusted, privileged user.

 If an unprivileged user is able to perform any of these operations,
 then the operating system cannot actually provide the related
 security services. If an adversary knows the keys and algorithms in
 use, then cryptography cannot provide any form of protection.

 This mechanism is not a panacea, but it does provide an important
 operating system component that can be useful in creating a secure
 internetwork.

 Users need to understand that the quality of the security provided
 by an implementation of this specification depends completely upon
 the overall security of the operating system, the correctness of the
 PF_KEY implementation, and upon the security and correctness of the
 applications that connect to PF_KEY. It is appropriate to use high
 assurance development techniques when implementing PF_KEY and the
 related security association components of the operating system.

McDonald, Metz, and Phan Expires in 6 months [Page 54]

Internet Draft PF_KEY, Version 2 28 February 1998

Acknowledgments

 The authors of this document are listed primarily in alphabetical
 order. Randall Atkinson and Ron Lee provided useful feedback on
 earlier versions of this document.

 At one time or other, all of the authors worked at the Center for
 High Assurance Computer Systems at the U.S. Naval Research
 Laboratory. This work was sponsored by the Information Security
 Program Office (PMW-161), U.S. Space and Naval Warfare Systems
 Command (SPAWAR) and the Computing Systems Technology Office, Defense
 Advanced Research Projects Agency (DARPA/CSTO). We really appreciate
 their sponsorship of our efforts and their continued support of
 PF_KEY development. Without that support, PF_KEY would not exist.

 The "CONFORMANCE and COMPLIANCE" wording was taken from [MSST97].

 Finally, the authors would like to thank those who sent in comments
 and questions on the various iterations of this document. This
 specification and implementations of it are discussed on the PF_KEY
 mailing list. If you would like to be added to this list, send a note
 to <pf_key-request@inner.net>.

McDonald, Metz, and Phan Expires in 6 months [Page 55]

Internet Draft PF_KEY, Version 2 28 February 1998

References

 [AMPMC96] Randall J. Atkinson, Daniel L. McDonald, Bao G. Phan, Craig
 W. Metz, and Kenneth C. Chin, "Implementation of IPv6 in
 4.4-Lite BSD", Proceedings of the 1996 USENIX Conference,
 San Diego, CA, January 1996, USENIX Association.

 [Atk95a] Randall J. Atkinson, "IP Security Architecture", RFC 1825,
 August 1995.

 [Atk95b] Randall J. Atkinson, "IP Authentication Header", RFC 1826,
 August 1995.

 [Atk95c] Randall J. Atkinson, "IP Encapsulating Security Payload",
RFC 1827, August 1995.

 [Atk97] Atkinson, Randall, "Key Exchange Delegation Record for the
 Domain Name System", Internet-draft, June 1997."

 [BA97] F. Baker and R. Atkinson, "RIP-2 MD5 Authentication",
RFC 2082, January 1997.

 [Baker97] Fred Baker, "RSVP Cryptographic Authentication", Internet
 Draft, May 1997.

 [Biba77] K. J. Biba, "Integrity Considerations for Secure Computer
 Systems", MTR-3153, The MITRE Corporation, June 1975;
 ESD-TR-76-372, April 1977.

 [BL74] D. Elliot Bell and Leonard J. LaPadula, "Secure Computer
 Systems: Unified Exposition and Multics Interpretation",
 MTR 2997, The MITRE Corporation, April 1974. (AD/A 020 445)

 [CG96] S. Chang & Rob Glenn, "HMAC-SHA IP Authentication with
 Replay Prevention", Internet Draft, May 1996.

 [CW87] D. D. Clark and D. R. Wilson, "A Comparison of Commercial
 and Military Computer Security Policies", Proceedings of the
 1987 Symposium on Security and Privacy, pp. 184-195, IEEE
 Computer Society, Washington, D.C., 1987

 [DIA] US Defense Intelligence Agency (DIA), "Compartmented Mode
 Workstation Specification", Technical Report
 DDS-2600-6243-87.

 [DMS97] Dorsaway, N., Metzger, P., Simpson, W. A., "The ESP Triple-
 DES Transform," Internet-Draft.

https://datatracker.ietf.org/doc/html/rfc1825
https://datatracker.ietf.org/doc/html/rfc1826
https://datatracker.ietf.org/doc/html/rfc1827
https://datatracker.ietf.org/doc/html/rfc2082

McDonald, Metz, and Phan Expires in 6 months [Page 56]

Internet Draft PF_KEY, Version 2 28 February 1998

 [HM97a] H. Harney, C. Muckenhirn, "Group Key Management Protocol
 (GKMP) Specification", RFC 2093, July 1997.

 [HM97b] H. Harney, C. Muckenhirn, "Group Key Management Protocol
 (GKMP) Architecture", RFC 2094, July 1997.

 [Hug96] Jim Hughes (Editor), "Combined DES-CBC, HMAC, and Replay
 Prevention Security Transform", Internet Draft, April 1996.

 [MSST97] Douglas Maughan, Mark Schertler, Mark Schneider, Jeff
 Turner, "Internet Security Association and Key Management
 Protocol (ISAKMP)", Internet Draft, February 1997.

 [Moy97] J. Moy, "OSPF Version 2", Internet Draft, April 1997.

 [OG96] Mike Oehler & Rob Glenn, "HMAC-MD5 IP Authentication with
 Replay Prevention", Internet Draft, May 1996.

 [Perkins97] C. Perkins, "IP Mobility Support", RFC 2002,
 October 1996.

 [Piper97] Derrel Piper, "The Internet IP Security Domain of
 Interpretation for ISAKMP", Internet Draft, February 1997.

 [Skl91] Keith Sklower, "A Tree-based Packet Routing Table for
 Berkeley UNIX", Proceedings of the Winter 1991 USENIX
 Conference, Dallas, TX, USENIX Association. 1991.
 pp. 93-103.

https://datatracker.ietf.org/doc/html/rfc2093
https://datatracker.ietf.org/doc/html/rfc2094
https://datatracker.ietf.org/doc/html/rfc2002

McDonald, Metz, and Phan Expires in 6 months [Page 57]

Internet Draft PF_KEY, Version 2 28 February 1998

Disclaimer

 The views and specification here are those of the editors and are
 not necessarily those of their employers. The employers have not
 passed judgment on the merits, if any, of this work. The editors and
 their employers specifically disclaim responsibility for any problems
 arising from correct or incorrect implementation or use of this
 specification.

Authors' Addresses

 Daniel L. McDonald
 Sun Microsystems, Inc.
 901 San Antonio Road, MS UMPK17-202
 Palo Alto, CA 94303
 E-mail: danmcd@eng.sun.com

 Craig Metz
 The Inner Net
 Box 10314-1932
 Blacksburg, VA 24062-0314
 DSN: 754-8590
 E-mail: cmetz@inner.net

 Bao G. Phan
 U. S. Naval Research Laboratory
 phan@itd.nrl.navy.mil

McDonald, Metz, and Phan Expires in 6 months [Page 58]

Internet Draft PF_KEY, Version 2 28 February 1998

Appendix A: Promiscuous Send/Receive Extension

 A kernel supporting PF_KEY MAY implement the following extension
 for development and debugging purposes. If it does, it MUST implement
 the extension as specified here. An implementation MAY require an
 application to have additional privileges to perform promiscuous send
 and/or receive operations.

 The SADB_X_PROMISC message allows an application to send and
 receive messages in a "promiscuous mode." There are two forms of this
 message: control and data. The control form consists of only a
 message header. This message is used to toggle the promiscuous-
 receive function. A value of one in the sadb_msg_satype field enables
 promiscuous message reception for this socket, while a value of zero
 in that field disables it.

 The second form of this message is the data form. This is used to
 send or receive messages in their raw form. Messages in the data form
 consist of a message header followed by an entire new message. There
 will be two message headers in a row: one for the SADB_X_PROMISC
 message, and one for the payload message.

 Data messages sent from the application are sent to either the
 PF_KEY socket of a single process identified by a nonzero
 sadb_msg_seq or to all PF_KEY sockets if sadb_msg_seq is zero. These
 messages are sent without any processing of their contents by the
 PF_KEY interface (including sanity checking). This promiscuous-send
 capability allows an application to send messages as if it were the
 kernel. This also allows it to send erroneous messages.

 If the promiscuous-receive function has been enabled, a copy of any
 message sent via PF_KEY by another application or by the kernel is
 sent to the promiscuous application. This is done before any
 processing of the message's contents by the PF_KEY interface (again,
 including sanity checking). This promiscuous-receive capability
 allows an application to receive all messages sent by other parties
 using PF_KEY.

 The messaging behavior of the SADB_X_PROMISC message is:

 Send a control-form SADB_X_PROMISC message from a user process
 to the kernel.

 <base>

 The kernel returns the SADB_X_PROMISC message to all listening
 processes.

McDonald, Metz, and Phan Expires in 6 months [Page 59]

Internet Draft PF_KEY, Version 2 28 February 1998

 <base>

 Send a data-form SADB_X_PROMISC message from a user process to
 the kernel.

 <base, base(, others)>

 The kernel sends the encapsulated message to the target
 process(s).

 <base(, others)>

 If promiscuous-receive is enabled, the kernel will encapsulate
 and send copies of all messages sent via the PF_KEY interface.

 <base, base(, others)>

 Errors:
 EPERM Additional privileges are required to perform the
 requested operations.
 ESRCH (Data form, sending) The target process in sadb_msg_seq
 does not exist or does not have an open PF_KEY Version 2
 socket.

McDonald, Metz, and Phan Expires in 6 months [Page 60]

Internet Draft PF_KEY, Version 2 28 February 1998

Appendix B: Passive Change Message Extension

 The SADB_X_PCHANGE message is a passive-side (aka. the "listener"
 or "receiver") counterpart to the SADB_ACQUIRE message. It is useful
 for when key management applications wish to more effectively handle
 incoming key management requests for passive-side sessions that
 deviate from systemwide default security services. If a passive
 session requests that only certain levels of security service be
 allowed, the SADB_X_PCHANGE message expresses this change to any
 registered PF_KEY sockets. Unlike SADB_ACQUIRE, this message is
 purely informational, and demands no other PF_KEY interaction.

 The SADB_X_PCHANGE message is typically triggered by either a
 change in an endpoint's requested security services, or when an
 endpoint that made a special request disappears. In the former case,
 an SADB_X_PCHANGE looks like an SADB_ACQUIRE, complete with an
 sadb_proposal extension indicating the preferred algorithms,
 lifetimes, and other attributes. When a passive session either
 disappears, or reverts to a default behavior, an SADB_X_PCHANGE will
 be issued with _no_ sadb_proposal extension, indicating that the
 exception to systemwide default behavior has disappeared.

 There are two messaging behaviors for SADB_X_PCHANGE. The first is
 the kernel-originated case:

 The kernel sends an SADB_X_PCHANGE message to registered sockets.
n
 <base, address(SD), (identity(SD),) (sensitivity,) (proposal)>

 NOTE: The address(SD) extensions MUST have the port fields
 filled in with the port numbers of the session requiring
 keys if appropriate.

 The second is for a user-level consumer of SAs.

 Send an SADB_X_PCHANGE message from a user process to the kernel.

 <base, address(SD), (identity(SD),) (sensitivity,) (proposal)>

 The kernel returns an SADB_X_PCHANGE message to registered sockets.

 <base, address(SD), (identity(SD),) (sensitivity,) (proposal)>

McDonald, Metz, and Phan Expires in 6 months [Page 61]

Internet Draft PF_KEY, Version 2 28 February 1998

Appendix C: Sample Header File

 /*
 This file defines structures and symbols for the PF_KEY Version 2
 key management interface. It was written at the U.S. Naval Research
 Laboratory. This file is in the public domain. The authors ask that
 you leave this credit intact on any copies of this file.
 */
 #ifndef __PFKEY_V2_H
 #define __PFKEY_V2_H 1

 #define PF_KEY_V2 2
 #define PFKEYV2_REVISION 199802L

 #define SADB_RESERVED 0
 #define SADB_GETSPI 1
 #define SADB_UPDATE 2
 #define SADB_ADD 3
 #define SADB_DELETE 4
 #define SADB_GET 5
 #define SADB_ACQUIRE 6
 #define SADB_REGISTER 7
 #define SADB_EXPIRE 8
 #define SADB_FLUSH 9
 #define SADB_DUMP 10
 #define SADB_X_PROMISC 11
 #define SADB_X_PCHANGE 12
 #define SADB_MAX 12

 struct sadb_msg {
 uint8_t sadb_msg_version;
 uint8_t sadb_msg_type;
 uint8_t sadb_msg_errno;
 uint8_t sadb_msg_satype;
 uint16_t sadb_msg_len;
 uint16_t sadb_msg_reserved;
 uint32_t sadb_msg_seq;
 uint32_t sadb_msg_pid;
 };

 struct sadb_ext {
 uint16_t sadb_ext_len;
 uint16_t sadb_ext_type;
 };

McDonald, Metz, and Phan Expires in 6 months [Page 62]

Internet Draft PF_KEY, Version 2 28 February 1998

 struct sadb_sa {
 uint16_t sadb_sa_len;
 uint16_t sadb_sa_exttype;
 uint32_t sadb_sa_spi;
 uint8_t sadb_sa_replay;
 uint8_t sadb_sa_state;
 uint8_t sadb_sa_auth;
 uint8_t sadb_sa_encrypt;
 uint32_t sadb_sa_flags;
 };

 struct sadb_lifetime {
 uint16_t sadb_lifetime_len;
 uint16_t sadb_lifetime_exttype;
 uint32_t sadb_lifetime_allocations;
 uint64_t sadb_lifetime_bytes;
 uint64_t sadb_lifetime_addtime;
 uint64_t sadb_lifetime_usetime;
 };

 struct sadb_address {
 uint16_t sadb_address_len;
 uint16_t sadb_address_exttype;
 uint8_t sadb_address_proto;
 uint8_t sadb_address_prefixlen;
 uint16_t sadb_address_reserved;
 };

 struct sadb_key {
 uint16_t sadb_key_len;
 uint16_t sadb_key_exttype;
 uint16_t sadb_key_bits;
 uint16_t sadb_key_reserved;
 };

 struct sadb_ident {
 uint16_t sadb_ident_len;
 uint16_t sadb_ident_exttype;
 uint16_t sadb_ident_type;
 uint16_t sadb_ident_reserved;
 uint64_t sadb_ident_id;
 };

McDonald, Metz, and Phan Expires in 6 months [Page 63]

Internet Draft PF_KEY, Version 2 28 February 1998

 struct sadb_sens {
 uint16_t sadb_sens_len;
 uint16_t sadb_sens_exttype;
 uint32_t sadb_sens_dpd;
 uint8_t sadb_sens_sens_level;
 uint8_t sadb_sens_sens_len;
 uint8_t sadb_sens_integ_level;
 uint8_t sadb_sens_integ_len;
 uint32_t sadb_sens_reserved;
 };

 struct sadb_prop {
 uint16_t sadb_prop_len;
 uint16_t sadb_prop_exttype;
 uint8_t sadb_prop_replay;
 uint8_t sadb_prop_reserved[3];
 };

 struct sadb_comb {
 uint8_t sadb_comb_auth;
 uint8_t sadb_comb_encrypt;
 uint16_t sadb_comb_flags;
 uint16_t sadb_comb_auth_minbits;
 uint16_t sadb_comb_auth_maxbits;
 uint16_t sadb_comb_encrypt_minbits;
 uint16_t sadb_comb_encrypt_maxbits;
 uint32_t sadb_comb_reserved;
 uint32_t sadb_comb_soft_allocations;
 uint32_t sadb_comb_hard_allocations;
 uint64_t sadb_comb_soft_bytes;
 uint64_t sadb_comb_hard_bytes;
 uint64_t sadb_comb_soft_addtime;
 uint64_t sadb_comb_hard_addtime;
 uint64_t sadb_comb_soft_usetime;
 uint64_t sadb_comb_hard_usetime;
 };

McDonald, Metz, and Phan Expires in 6 months [Page 64]

Internet Draft PF_KEY, Version 2 28 February 1998

 struct sadb_supported {
 uint16_t sadb_supported_len;
 uint16_t sadb_supported_exttype;
 uint32_t sadb_supported_reserved;
 };

 struct sadb_alg {
 uint8_t sadb_alg_id;
 uint8_t sadb_alg_ivlen;
 uint16_t sadb_alg_minbits;
 uint16_t sadb_alg_maxbits;
 uint16_t sadb_alg_reserved;
 };

 struct sadb_spirange {
 uint16_t sadb_spirange_len;
 uint16_t sadb_spirange_exttype;
 uint32_t sadb_spirange_min;
 uint32_t sadb_spirange_max;
 uint32_t sadb_spirange_reserved;
 };

 #define SADB_EXT_RESERVED 0
 #define SADB_EXT_SA 1
 #define SADB_EXT_LIFETIME_CURRENT 2
 #define SADB_EXT_LIFETIME_HARD 3
 #define SADB_EXT_LIFETIME_SOFT 4
 #define SADB_EXT_ADDRESS_SRC 5
 #define SADB_EXT_ADDRESS_DST 6
 #define SADB_EXT_ADDRESS_PROXY 7
 #define SADB_EXT_KEY_AUTH 8
 #define SADB_EXT_KEY_ENCRYPT 9
 #define SADB_EXT_IDENTITY_SRC 10
 #define SADB_EXT_IDENTITY_DST 11
 #define SADB_EXT_SENSITIVITY 12
 #define SADB_EXT_PROPOSAL 13
 #define SADB_EXT_SUPPORTED_AUTH 14
 #define SADB_EXT_SUPPORTED_ENCRYPT 15
 #define SADB_EXT_SPIRANGE 16
 #define SADB_EXT_MAX 16

 #define SADB_SATYPE_UNSPEC 0
 #define SADB_SATYPE_AH 1
 #define SADB_SATYPE_ESP 2
 #define SADB_SATYPE_RSVP 3
 #define SADB_SATYPE_OSPFV2 4
 #define SADB_SATYPE_RIPV2 5
 #define SADB_SATYPE_MIP 6

McDonald, Metz, and Phan Expires in 6 months [Page 65]

Internet Draft PF_KEY, Version 2 28 February 1998

 #define SADB_SATYPE_MAX 6

 #define SADB_SASTATE_LARVAL 0
 #define SADB_SASTATE_MATURE 1
 #define SADB_SASTATE_DYING 2
 #define SADB_SASTATE_DEAD 3
 #define SADB_SASTATE_MAX 3

 #define SADB_SAFLAGS_PFS 1

 #define SADB_AALG_NONE 0
 #define SADB_AALG_MD5HMAC 1
 #define SADB_AALG_SHA1HMAC 2
 #define SADB_AALG_MAX 2

 #define SADB_EALG_NONE 0
 #define SADB_EALG_DESCBC 1
 #define SADB_EALG_3DESCBC 2
 #define SADB_EALG_MAX 2

 #define SADB_IDENTTYPE_RESERVED 0
 #define SADB_IDENTTYPE_PREFIX 1
 #define SADB_IDENTTYPE_FQDN 2
 #define SADB_IDENTTYPE_USERFQDN 3
 #define SADB_IDENTTYPE_MAX 3

 #define SADB_KEY_FLAGS_MAX 0
 #endif /* __PFKEY_V2_H */

McDonald, Metz, and Phan Expires in 6 months [Page 66]

Internet Draft PF_KEY, Version 2 28 February 1998

Appendix D: Change Log

 The following changes were made between 04 and 05:

 * New appendix on Passive Change message.

 * New sadb_address_prefixlen field.

 * Small clarifications on sadb_ident_id usage.

 * New PFKEYV2_REVISION value.

 * Small clarification on what a PROXY address is.

 * Corrected sadb_spirange_{min,max} language.

 * In ADD messages that are in response to an ACQUIRE, the sadb_msg_seq MUST
 be the same as that of the originating ACQUIRE.

 * Corrected ACQUIRE message behavior, ACQUIRE message SHOULD send up PROXY
 addresses when it needs them.

 * Clarification on SADB_EXPIRE and user-level security protocols.

 The following changes were made between 03 and 04:

 * Stronger language about manual keying.

 * PFKEYV2_REVISION, ala POSIX.

 * Put in language about sockaddr ports in ACQUIRE messages.

 * Mention of asymmetric algorithms.

 * New sadb_ident_id field for easier construction of USER_FQDN identity
 strings.

 * Caveat about source addresses not always used for collision detection.
 (e.g. IPsec)

 The following changes were made between 02 and 03:

McDonald, Metz, and Phan Expires in 6 months [Page 67]

Internet Draft PF_KEY, Version 2 28 February 1998

 * Formatting changes.

 * Many editorial cleanups, rewordings, clarifications.

 * Restrictions that prevent many strange and invalid cases.

 * Added definitions section.

 * Removed connection identity type (this will reappear when it is
 more clear what it should look like).

 * Removed 5.2.1 (Why involve the kernel?).

 * Removed INBOUND, OUTBOUND, and FORWARD flags; they can be computed
 from src, dst, and proxy and you had to anyway for sanity checking.

 * Removed REPLAY flag; sadb_sa_replay==0 means the same thing.

 * Renamed bit lengths to "bits" to avoid potential confusion.

 * Explicitly listed lengths for structures.

 * Reworked identities to always use a string format.

 * Removed requirements for support of shutdown() and SO_USELOOPBACK.

 * 64 bit alignment and 64 bit lengths instead of 32 bit.

 * time_t replaced with uint64 in lifetimes.

 * Inserted Appendix A (SADB_X_PROMISC) and Appendix B (SAMPLE HEADER
 FILE).

 * Explicit error if PF_KEY_V2 not set at socket() call.

 * More text on SO_USELOOPBACK.

 * Made fields names and symbol names more consistent.

 * Explicit error if PF_KEY_V2 is not in sadb_msg_version field.

 * Bytes lifetime field now a 64-bit quantity.

 * Explicit len/exttype wording.

 * Flattening out of extensions (LIFETIME_HARD, LIFETIME_SOFT, etc.)

 * UI example (0x123 == 0x1230 or 0x0123).

McDonald, Metz, and Phan Expires in 6 months [Page 68]

Internet Draft PF_KEY, Version 2 28 February 1998

 * Cleaned up and fixed some message behavior examples.

 The following changes were made between 01 and 02:

 * Mentioned that people COULD use these same messages between user
 progs. (Also mentioned why you still might want to use the actual
 socket.)

 * Various wordsmithing changes.

 * Took out netkey/ directory, and make net/pfkeyv2.h

 * Inserted PF_KEY_V2 proto argument per C. Metz.

 * Mentioned other socket calls and how their PF_KEY behavior is
 undefined.

 * SADB_EXPIRE now communicates both hard and soft lifetime expires.

 * New "association" extension, even smaller base header.

 * Lifetime extension improvements.

 * Length now first in extensions.

 * Errors can be sent from kernel to user, also.

 * Examples section inserted.

 * Some bitfield cleanups, including STATE and SA_OPTIONS cleanup.

 * Key splitting now only across auth algorithm and encryption
 algorithm. Thanks for B. Sommerfeld for clues here.

 The following changes were made between 00 and 01:

 * Added this change log.

 * Simplified TLV header syntax.

 * Splitting of algorithms. This may be controversial, but it allows
 PF_KEY to be used for more than just IPsec. It also allows some
 kinds of policies to be placed in the KMd easier.

 * Added solid definitions and formats for certificate identities,
 multiple keys, etc.

 * Specified how keys are to be layed out (most-to-least bits).

McDonald, Metz, and Phan Expires in 6 months [Page 69]

Internet Draft PF_KEY, Version 2 28 February 1998

 * Changed sequence number semantics to be like an RPC transaction ID
 number.

McDonald, Metz, and Phan Expires in 6 months [Page 70]

