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Abstract

This note describes a digital signature system based on cryptographic
hash functions, following the seminal work in this area. It
specifies a one-time signature scheme based on the work of Lamport,
Diffie, Winternitz, and Merkle (LDWM), and specifies a general
signature system using a Merkle tree. These systems provide
asymmetric authentication without using large integer mathematics and
achieve a high security level. They are suitable for compact
implementations, are relatively simple to implement, and naturally
resist side-channel attacks. Unlike most other signature systems,
hash-based signatures would still be secure even if it proves
feasible for an attacker to build a quantum computer.
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1.

Introduction

One-time signature systems, and general purpose signature systems
built out of one-time signature systems, have been known since 1979
[Merkle79], were well studied in the 1990s, and have benefited from
renewed development in the last decade. The characteristics of these
signature systems are small private and public keys and low
computational cost, but large signatures. 1In recent years there has
been interest in these systems because of their post-quantum security
(see Section 8.3) and their suitability for compact implementations.

This note describes the original Lamport-Diffie-Winternitz-Merkle
(LDWM) one-time signature system (following Merkle 1979 but also
using a technique from Merkle's later work [C:Merkle87][C:
Merkle89a][C:Merkle89b]) and Merkle tree signature system (following
Merkle 1979) with enough specificity to ensure interoperability
between implementations. While the specification of the algorithms
follows these early references, the security considerations makes use
of more recent security analyses (especially Buchmann, Dahmen, Ereth,
Hulsing, and Ruckert 2011).

A signature system provides asymmetric message authentication. The
key generation algorithm produces a public/private key pair. A
message is signed by a private key, producing a signature, and a
message/signature pair can be verified by a public key. A One-Time
Signature (OTS) system can be used to sign exactly one message
securely. A general signature system can be used to sign multiple
messages. The Merkle Tree Signatures (MTS) is a general signature
system that uses an OTS system as a component. In principle the MTS
can be used with any OTS system, but in this note we describe its use
with the LDWM system.

This note is structured as follows. Notation is introduced in
Section 2. The LDWM signature system is described in Section 3, and
the Merkle tree signature system is described in Section 4.
Sufficient detail is provided to ensure interoperability. Appendix B
describes test considerations and contains test cases that can be
used to validate an implementation. The IANA registry for these
signature systems is described in Section 7. Security considerations
are presented in Section 8.

.1. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].


https://datatracker.ietf.org/doc/html/rfc2119
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2. Notation
2.1. Data Types

Bytes and byte strings are the fundamental data type. A single byte
is denoted as a pair of hexadecimal digits with a leading "Ox". A
byte string is an ordered sequence of zero or more bytes and is
denoted as an ordered sequence of hexadecimal characters with a
leading "Ox". For example, 0xe534f0 is a byte string with a length
of three. An array of byte strings is an ordered set, indexed
starting at zero, in which all strings have the same length.

A byte can be considered as a sequence of eight bits, a sequence of
four duets (two bit unsigned integers), or a sequence of two quartets
(four bit unsigned integers). A bit has value © or 1. A duet has a
value between 0 and 3, and a quartet has value between 0 and 15
decimal (F hexadecimal).

The correspondence between bytes, bits, duets, and quartets is shown
below, where X denotes the value of the byte:

Byte (8-bit element)

D dommmmeaa oo +
| X |
Fommm oo - +

Bits (1-bit elements)
bk T TE pupu Sy S
[bO|b1|b2|b3|b4|b5|b6|b7|
B LT oT-JEE Sy Syupu S S

Duets (2-bit elements)

F B +
I qo I ql I
o e Fomm o - +
X = 128*b0O + 64*b1l + 32*b2 + 16*b3 + 8*b4 + 4*b5 + 2*b6 + b7
X = 64*d0 + 16*d1 + 4*d2 + d3

X = 16*g0 + g1l
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For example, the following diagram shows how the byte with decimal
value 27 (hexadecimal value 0x1b) is represented with bits, duets,

and quartets.

Byte (8-bit element)

S Fommmm e o +
| 27 |
o Fommmm e +

Bits (1-bit elements)
b Tk AL TE cSpu U S

| o o of 1| 1] o] 1] 1]
LT Syupus S U S

Duets (2-bit elements)

If S is a byte string,

2.1.1.

Strings of w-bit elements

then byte(S, i) denotes

byte(S, 0) is the leftmost byte. For example,
byte(S, 0) is 0x02.

as follows:

A byte string can be considered to be a string
integers; the correspondence is defined by the

its inth byte, where
if S = Ox0204ff, then

of w-bit unsigned
function coef(S, i, w)

If S is a string, i is a positive integer, and w is a member of the

set {1, 2, 4, 8 },

is interpreted as a sequence of w-bit values.

coef(S, i, w) = (2w - 1) AND
( byte(s, floor(i * w / 8)) >>
(8 - (W™* (1% (87 w)+w)))

then coef(S, i, w) is the iAth, w-bit value, if S

That 1is,
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For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and
coef(S, 0, 4) is 1.

coef (S,

S (Represented as Bits)

R s T e e S e ek et Ik ST RS R P S
| of o] e 1| o] o 1] e| o o] 1] 1] e| 1] o] o]
T Tk aE T T b b T h T e

C

N

|
oef(s, 7, 1)

S (Represented As Quartets)

----- i
I 2 | 3 I 4

----- Y 5

0, 4)

The return value of coef is an unsigned integer. If i is larger than
the number of w-bit values in S, then coef(S, i, w) is undefined, and
an attempt to compute that value should raise an error.

Operators

When a and b

follows:
ANranMb
*ra*hb
/ ra/b
% :a%b
+ i1 a+bh
-ta-b>b

The standard
expressions.

If A and B are bytes,

operation.

are numbers, mathematical operators are defined as

denotes

denotes

denotes

denotes

denotes

denotes

the

the

the

the

the

the

result of a raised to the power of b
product of a multiplied by b
quotient of a divided by b

remainder of a divided by b

sum of a and b

difference of a and b

order of operations is used when evaluating arithmetic

th

en A AND B denotes the bitwise logical and

When B is a byte and i is an integer, then B >> i denotes the logical
right-shift operation.

Similarly, B << i denotes the logical left-
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shift operation.

If S and T are byte strings, then S || T denotes the concatenation of
S and T.

The iAth byte string in an array A is denoted as A[1i].
2.3. Functions

If r is a non-negative real number, then we define the following
functions:

ceil(r) : returns the smallest integer larger than r
floor(r) : returns the largest integer smaller than r
lg(r) : returns the base-2 logarithm of r

When F is a function that takes m-byte strings (i.e. byte strings of
length m) as input and returns m-byte strings as output, we denote
the repeated applications of F with itself a non-negative, integral
number of times i as FA1i.

Thus for any byte string x,

FAi(x) = / F( FA(1i-1)(x) ) for i >0
\ X for 1 = 0.

For example, FA2(x) = F(F(x)).
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3.

LDWM One-Time Signatures

This section defines LDWM signatures. The signature is used to
validate the authenticity of a message by associating a secret
private key with a shared public key. These are one-time signatures;
each private key MUST be used only one time to sign any given
message.

Note that in order to constrain what constitutes the "message" and
establish fixed sizes for the signature, a digest of the original
message is computed using a collision-resistant hash function, H (see
Section 3.2).

Parameters

The signature system uses the parameters m, n, and w; they are all
positive integers. The algorithm description also uses the value p.
These parameters are summarized as follows:

m : the length in bytes of each element of an LDWM signature
n : the length in bytes of result of the hash function

w : the Winternitz parameter; it is a member of the set
{ 1[ 2/ 4I 8 }

p : the number of m-byte string elements that make up the LDWM
signature; it is equivalent to the number of w-bit elements of

( H(message) || C(H(message)) ) as well as the number of n-byte
strings that form the private key; it can be specified in terms of
u and v, as shown in Appendix A.

1s : the number of bits the checksum function C will left-shift
the sum total of hashing operations required by the verifier
before returning a result

The values of m and n are determined by the functions selected for
use as part of the LDWM algorithm. They are chosen to ensure an
appropriate level of security. The parameter w can be chosen to set
the number of bytes in the signature; it has little effect on
security. Note however, that there is a larger computational cost to
generate and verify a shorter signature. The values of p and ls are
a direct result of the choices of n and w. Appendix A describes how
p and 1s depend on the other parameters. A table illustrating
various combinations of n, w, p, and ls is provided in Table 4.
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Hashing Functions

The LDWM algorithm requires a robust one-way function to underpin the
signature generation and verification. Let this be defined as a hash
function H that has inputs of any integral byte length and has n-byte
outputs.

In addition, let F be defined as a one-way function that has m-byte
inputs and m-byte outputs.

Signature Methods

To fully describe a LDWM signature method, the parameters m, n, and
w, as well as the functions H and F MUST be specified. This section
defines several LDWM signature systems, each of which is identified
by a name. Values for p and ls are provided as a convenience.

B Y S ey S R RCRUpE . B T g +----+
| Name | H | F | m | n | w|p | 1s |
e e e a oo Fommme oo SR B T E g +----4
| LDWM_SHA256_M20_W1 | SHA256 | SHA256-20 | 20 | 32 | 1 | 265 | 7 |
I I I I I | I I I
| LDWM_SHA256_M20_W2 | SHA256 | SHA256-20 | 20 | 32 | 2 | 133 | 6 |
I I I I I I I I I
| LDWM_SHA256_M20_W4 | SHA256 | SHA256-20 | 20 | 32 | 4 | 67 | 4 |
I I I I I I I I I
| LDWM_SHA256_M20_W8 | SHA256 | SHA256-20 | 20 | 32 | 8 | 34 | 0 |
e e e oo oo Fommmo oo SRS B L E g +----4
Table 1

Here SHA256 denotes the NIST standard hash function. SHA256-20
denotes that hash function with its final output truncated to 20
bytes.

Private Key

The LDWM private key must be an array of size p containing n-byte
strings. Let x denote the private key. This private key must be
used to sign one and only one message. It must therefore be unique
from all other private keys. The following algorithm shows
pseudocode for generating Xx.
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3.5. Public Key

3.

Algorithm O: Generating A Private Key

for i=0,i<p, i++

set x[i] to a uniformly random value
endfor
return x

Note that one possible implementation may consist of a single random
input to a suitable key derivation function.

The LDWM public key is generated from the private key through a
series of hashing operations using the functions F and H. Its value
is the hash (using H) of the concatenation of the elements of an
array y. The content of y is generated by iteratively hashing (using
F) each element of array x, (22w - 1) times. The following algorithm
shows pseudocode for generating the public key.

Algorithm 1: Generating a Public Key From a Private Key

e = 2N - 1
for i=0,i<p, i++
y[i] = Fre(x[i])
endfor
return H(y[e] || y[1] [ ... [| y[p-1])

6. Checksum

A checksum is used to prevent the manipulation of an existing
signature in an attempt to produce a new signature for a different
message outside of the normal signing process. The security property
is detailed in Section 8.

The checksum value is calculated using a non-negative integer, sum,
whose width is sized an integer number of w-bit fields such that it
is capable of holding the difference of the total possible number of
applications of the function F as defined in the signing algorithm of
Section 3.7 and the total actual number. 1In the worst case (i.e. the
actual number of times F is iteratively applied is 0), the sum is
(2Mw - 1) * ceil(8*n/w). Thus for the purposes of this document,
which describes signature methods based on H = SHA256 (n = 32 bytes)
and w = {1, 2, 4, 8 }, let sum be a 16-bit non-negative integer for
all combinations of n and w. The checksum function C is defined as
follows where S is a byte string provided to the function as an
argument.
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w

Algorithm 2: Checksum Calculation

sum = 0
for i=0,i<u,i++
sum = sum + (2Aw - 1) - coef(S, i, w)
endfor
return (sum << 1s)

Because of the left-shift operation, the rightmost bits of the result
of C will often be zeros. Due to the value of p, these bits will not
be used during signature generation or verification.

Implementation Note: Based on the previous fact, the
implementation may therefore choose to optimize the width of sum
to (v * w) bits and set 1ls to 0. The rationale for this is given
that (2Aw - 1) * ceil(8*n/w) is the maximum value of sum and the
value of (2Aw - 1) is represented by w bits, the result of
repeatedly adding two w-bit numbers a total of u = ceil(8*n/w)
times requires at most (floor(lg(u)) + w) bits. Dividing by w and
taking the next largest integer gives the total required number of
w-bit fields and gives (ceil(floor(lg(u)) / w) + 1), or v. Thus
sum requires a minimum width of (v * w) bits and no left-shift
operation is performed.

Signature Generation

The LDWM signature is generated by using the values of the w-bit
fields that compose the hash of the message and its checksum to
determine the number of times to apply the function F to the elements
of the private key. This signature is provided by the signer to the
verifier along with the message and the public key.

Algorithm 3: Generating a Signature From a Private Key and a Message

V = ( H(message) || C(H(message)) )
for i=0,i<p, i++
a = coef(V, i, w)
y[i] = Fra(x[i])
endfor
return ( y[O0] || y[1] || ... || y[p-1])

Note that this algorithm results in a signature whose elements are
intermediate values of the elements computed by the public key
algorithm in Section 3.5.
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3.8. Signature Verification

3.9.

In order to verify a message with its signature (denoted as y', an
array of m-byte strings), the receiver must "complete" the series of
applications of F using the value of the message hash and its
checksum. This should result in a computation of the public key that
matches the public key provided.

Algorithm 4: Verifying a Signature and Message Using a Public Key

V = ( H(message) || C(H(message)) )
for i=0,i<p, i++
a = (2Mw - 1) - coef(V, i, w)
z[i] = Fra(y'[1])

endfor

if public key is equal to H(z[O] || z[1] || ... || z[p-11)
return 1 (message signature is valid)

else

return 0@ (message signature is invalid)
Notes

A future version of this specification may define a method for
computing the signature of a very short message in which the hash is
not applied to the message during the signature computation. That
would allow the signatures to have reduced size.
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3.10. Formats
The signature format is defined using XDR [RFC4506] as follows:

/*
* ldwm_algorithm_type identifies a particular signature algorithm
*/

enum ldwm_algorithm_type {
ldwm_reserved = 0,

ldwm_sha256_m20_wl = 1,
ldwm_sha256_m20_w2 = 2,
1ldwm_sha256_m20_w4 3,
ldwm_sha256_m20_w8 = 4
}
/*
* basic data types; b16 is a string of 16 bytes, and so on
*/

typedef opaque b16[16];
typedef opaque b20[20];
typedef opaque b24[24];
typedef opaque b28[28];
typedef opaque b32[32];

/*

* arrays

*/
typedef b20 b20_array_265[265];
typedef b20 b20_array_133[133];
typedef b20 b20_array_67[67];
typedef b20 b20_array_34[34];

union ldwm_signature switch (ldwm_algorithm_type type) {

case ldwm_sha256_m20_w1:
b20_array_265 y265;

case ldwm_sha256_m20_w2:
b20_array_133 y133;

case ldwm_sha256_m20_w4:
b20_array_67 y67;

case ldwm_sha256_m20_w8:
b20_array_34 y34;

default:
void; /* error condition */

B

Though the data formats are formally defined by XDR, we describe the
format as well as a convenience to the reader. An example of the
format of an ldwm_signature is illustrated below, for


https://datatracker.ietf.org/doc/html/rfc4506

McGrew & Curcio Expires August 26, 2013 [Page 15]



Internet-Draft Hash-Based Signatures February 2013

ldwm_sha256_m20_w1l, which has 265 elements, each of which is a 20-
octet string. An ldwm_signature always consists of a 32-bit unsigned
integer that indicates the ldwm_algorithm_type followed by an array
of equal-length octet strings. The number of octets in each octet
string, and the number of elements in the array, are determined by
the ldwm_algorithm_type field. A receiver MUST check the
ldwm_algorithm_type field, and a verification operation on a
signature with an unknown ldwm_algorithm_type MUST return FAIL.

B +
| ldwm_algorithm_type |
o e e e e e mme o +
I I
I y265[0] I
I I
I I
ot e oo o oo +
I I
I y265[1] I
I I
I I
I I
o e e e e e e mmm oo s +
I I
I I
o e e e e e mme o +
y265[264]
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4. Merkle Tree Signatures

Merkle Tree Signatures (MTS) are a method for signing a large but
fixed number of messages. An MTS system uses two cryptographic
components: a one-time signature method and a collision-resistant
hash function. Each MTS public/private key pair is associated with a
k-way tree, each node of which contains an n-byte value. Each leaf
of the tree contains the value of the public key of an LDWM public/
private key pair. The value contained by the root of the tree is the
MTS public key. Each interior node is computed by applying the hash
function to the concatenation of the values of its children nodes.

An MTS system has the following parameters:
k : the number of children nodes of an interior node,
h : the height (number of levels) in the tree, and
n : the number of bytes associated with each node.

There are kAh leaves in the tree.

'S

.1. Private Key

An MTS private key consists of kAh LDWM private keys and the leaf
number of the next LDWM private key that has not yet been used. The
leaf number is initialized to zero when the MTS private key is
created.

An MTS private key MAY be generated pseudorandomly from a secret
value, in which case the secret value MUST be n bytes long, be
uniformly random, and MUST NOT be used for any other purpose than the
generation of the MTS private key. The details of how this process
is done do not affect interoperability; that is, the public key
verification operation is independent of these details.

4.2. MTS Public Key

An MTS public key is defined as follows, where we denote the public
key associated with the iAth LDWM private key as ldwm_public_key(1i).

The MTS public key can be computed using the following algorithm or
any equivalent method. The algorithm uses a stack of hashes and a
separate stack of integers which keeps track of the level of the
tree.
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for i = @ to num_ldwm_keys by steps of k
level = 0
for j = 0 to k-1
push ldwm_public_key(i+j) on the data stack
push level on the integer stack
endfor
while the height of the stack is at least k
if the top k elements on the integer stack are equal
pop the top k elements of the data stack
pop the top k elements of the integer stack,
and set the variable "level" to be their value
hash the top k elements of the data stack
push the hash result on the data stack
push (level+1l) on to the integer stack
endif
endwhile
endfor

Note that the stack never gets bigger than the logarithm of the
number of LDWM public keys, so for typical parameters it will have
something like 20 32-byte elements.

4.3. MTS Signature
An MTS signature consists of
an LDWM signature,

a node number that identifies the leaf node associated with the
signature, and

an array of values that is associated with the path through the
tree from the leaf associated with the LDWM signature to the root.

The array of values contains contains the siblings of the nodes on
the path from the leaf to the root but does not contain the nodes on
the path itself. The array for a tree with branching number k and
height h will have (k-1)*h values. The first (k-1) values are the
siblings of the leaf, the next (k-1) values are the siblings of the
parent of the leaf, and so on.

4.3.1. MTS Signature Generation

To compute the MTS signature of a message with an MTS private key,
the signer first computes the LDWM signature of the message using the
leaf number of the next unused LDWM private key. Before releasing
the signature, the leaf number in the MTS private key MUST be
incremented to prevent the LDWM private key from being used again.
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The node number in the signature is set to the leaf number of the MTS
private key that was used in the signature.

The array of node values MAY be computed in any way. There are many
potential time/storage tradeoffs. The fastest alternative is to
store all of the nodes of the tree and set the array in the signature
by copying them. The least storage intensive alternative is to
recompute all of the nodes for each signature. Note that the details
of this procedure are not important for interoperability; it is not
necessary to know any of these details in order to perform the public
key verification algorithm.

4.4. MTS Signature Verification

An MTS signature is verified by first using the LDWM signature
verification algorithm to compute the LDWM public key from the LDWM
signature and the message. The value of the leaf associated with the
LDWM signature is assigned to the public key. Then the root of the
tree is computed from the leaf value and the node array as described
below. If the root value matches the public key, then the signature
is valid; otherwise, the signature fails.

An efficient way to compute the root from the leaf and the node array
is as follows, where n is initially the node number:

v = leaf
step = 0
for i=0 to h-1 by steps of 1
position = n % k
hash_init()
for j=0 to position-1 by steps of 1
hash_update(node[step + j])
endfor
hash_update(v)
for j=position to (k-1) by steps of 1
hash_update(node[step + j])
endfor
v = hash_final()
n = floor(n/k)
step = step + (k-1)
endfor

This algorithm uses the typical init/update/final interface to hash
functions; the result of the invocations hash_init(),
hash_update(N[1]), hash_update(N[2]), ... , hash_update(N[n]), v =
hash_final(), in that order, is identical to that of the invocation
of H(N[1] || N[2] [| ... || N[n]).
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This algorithm works because the leaves of the MTS tree are numbered
starting at zero. Therefore leaf n is in the position (n % k) in the
highest level of the tree.

The verifier MAY cache interior node values that have been computed
during a successful signature verification for use in subsequent
signature verifications. However, any implementation that does so
MUST make sure any nodes that are cached during a signature
verification process are deleted if that process does not result in a
successful match between the root of the tree and the MTS public key.

A full test example that combines the LDWM OTS and MTS algorithms is
given in Appendix B.
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4.5. MTS Formats

MTS signatures and public keys are defined using XDR syntax as
follows:

enum mts_algorithm_type {
mts_reserved = 0,
mts_sha256_k2_h20
mts_sha256_k4_h10
mts_sha256_k8_h7
mts_sha256_k16_h5

H

r

’

4

|
A WDN PR

union mts_path switch (mts_algorithm_type type) {
case mts_sha256_k2_h20:
b32 t20[20];
case mts_sha256_k4_h10:
b32 t30[30];
case mts_sha256_k8_h7:
b32 t49[49];
case mts_sha256_k16_h5:
b32 t75[75];
default:
void; /* error condition */

B

struct mts_signature_t {
ldwm_signature ldwm_sig;
unsigned int signature_leaf_number;
mts_path nodes;

B

union mts_public_key switch (mts_algorithm_type type) {
case mts_sha256_k2_h20:
case mts_sha256_k4_h10:
case mts_sha256_k8_h7:
case mts_sha256_k16_h5:
b32 z;
default:
void; /* error condition */

i
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5.

Rationale

The goal of this note is to describe the LDWM and MTS algorithms

following the original references and present the modern security
analysis of those algorithms. Other signature methods are out of
scope and may be interesting follow-on work.

The signature and public key formats are designed so that they are
easy to parse. Each format starts with a 32-bit enumeration value
that indicates all of the details of the signature algorithm and
hence defines all of the information that is needed in order to parse
the format.
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6. History
This is the initial version of this draft.

This section is to be removed by the RFC editor upon publication.
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7.

IANA Considerations

The Internet Assigned Numbers Authority (IANA) is requested to create
two registries: one for LDWM signatures, as defined in Section 3, and
one for Merkle Tree Signatures, as defined in Section 4. Additions
to these registries require that a specification be documented in an
RFC or another permanent and readily available reference in
sufficient detail that interoperability between independent
implementations is possible. Each entry in the registry contains the
following elements:

a short name, such as "MTS_SHA256_K16_H5", that starts with the
strings "MTS" and "LDWM" for the MTS and LDWM registries,
respectively,

a positive number, and

a reference to a specification that completely defines the
signature method test cases that can be used to verify the
correctness of an implementation.

Requests to add an entry to the registry MUST include the name and
the reference. The number is assigned by IANA. These number
assignments SHOULD use the smallest available positive number.
Submitters SHOULD have their requests reviewed by the IRTF Crypto
Forum Research Group (CFRG) at cfrg@ietf.org. Interested applicants
that are unfamiliar with IANA processes should visit
http://www.iana.org.

The numbers between 32,768 (binary 1000000000000000) and 65,535
(binary 1111111111111111) inclusive, will not be assigned by IANA,
and are reserved for private use; no attempt will be made to prevent
multiple sites from using the same value in different (and
incompatible) ways [RFC2434].

The LDWM registry is as follows.


http://www.iana.org
https://datatracker.ietf.org/doc/html/rfc2434
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o S SR ——— S +
| Name | Reference | Numeric Identifier |
Fom e e e eeooooo- Fomm e e oo - Fom e e e moooooo-- +
| LDWM_SHA256_M20_W1 | Section 3 | 1 |
I I I I
| LDWM_SHA256_M20_W2 | Section 3 | 2 |
I I I I
| LDWM_SHA256_M20_W4 | Section 3 | 3 |
I I I I
| LDWM_SHA256_M20_W8 | Section 3 | 4 |
o e e e e emiooo - U B +
Table 2
The MTS registry is as follows.
R [ S e +
| Name | Reference | Numeric Identifier |
B Uy f RSP o e e e e emiooo - +
| MTS_SHA256_K2_H20 | Section 4 | 1 |
I I I I
| MTS_SHA256_K4_H10 | Section 4 | 2 |
I I I I
| MTS_SHA256_K8_H7 | Section 4 | 3 |
I I I I
| MTS_SHA256_K16_H5 | Section 4 | 4 |
B SRSy [ RSP o e e e e e aaaooo +
Table 3

An IANA registration of a signature system does not constitute an
endorsement of that system or its security.
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8. Security Considerations

The security goal of a signature system is to prevent forgeries. A
successful forgery occurs when an attacker who does not know the
private key associated with a public key can find a message and
signature that are valid with that public key (that is, the Signature
Verification algorithm applied to that signature and message and
public key will return "valid").

LDWM signatures rely on the fact that, given an m-byte string y, it
is prohibitively expensive to compute a value x such that FAi(x) = vy
for any i. 1Informally, F is said to be a "one-way" function.

8.1. Security of LDWM Checksum

To show the security of LDWM checksum, we consider the signature y of
a message with a private key x and let h = H(message) and

c = C(H(message)) (see Section 3.7). To attempt a forgery, an
attacker can change the values of h and c. Let h' and c' denote the
values used in the forgery attempt. If for some integer j in the
range 0 to (u-1), inclusive,

a' = coef(h', j, w),

a = coef(h, j, w), and

a' > a
then attacker can compute FAa'(x[j]) from Fra(x[j]) = y[j] by
iteratively applying function F to the jAth term of the signature an
additional (a' - a) times. However, as a result of this action, the
checksum will decrease, and thus a valid signature's checksum will
have, for some number k in the range u to (p-1), inclusive,

b' = coef(c', k, w),

b = coef(c, k, w), and

b' <b

Due to the one-way property of F, the attacker cannot easily compute
FAb' (x[k]) from FAb(x[k]) = y[k].

8.2. Security Conjectures
LDWM and MTS signatures have a minimum of security conjectures. In

particular, their security does not rely on the computational
difficulty of factoring composites with large prime factors (as does
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RSA) or the difficulty of computing the discrete logarithm in a
finite field (as does DSA) or an elliptic curve group (as does
ECDSA). All of these signature schemes rely on the security of the
hash function that they use, but with LDWM and MTS, the security of
the hash function is sufficient.

8.3. Post-Quantum Security

A post-quantum cryptosystem is a system that is secure against
gquantum computers that have more than a trivial number of quantum
bits. It is open to conjecture whether or not it is feasible to
build such a machine.

The LDWM and Merkle signature systems are post-quantum secure if they
are used with an appropriate underlying hash function, in which the
size of m and n are double what they would be otherwise, in order to
protect against quantum square root attacks due to Grover's
algorithm. 1In contrast, the signature systems in wide use (RSA, DSA,
and ECDSA) are not post-quantum secure.
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Appendix A. LDWM Parameter Options

A table illustrating various combinations of n, w, p, and ls is
provided in Table 4.

The parameters p and 1ls are computed as follows:

u = ceil(8*n/w)
v = ceil(floor(lg(u)) / w) + 1
p=u+yv

1ls = (number of bits in sum) - (v * w)

Here u and v represent the number of w-bit fields required to contain
the hash of the message message and the checksum byte strings,
respectively. For a further explanation of the values of v and sum,
see Section 3.6.
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Appendix B. Example Data for Testing

As with all cryptosystems, implementations of LDWM signatures and
Merkle signatures need to be tested before they are used. This
section contains sample data generated from the signing and
verification operations of software that implements the algorithms
described in this document.

B.1. Parameters
The example contained in this section demonstrates the calculations

of LDWM_SHA256_M20_W4 using a Merkle Tree Signature of degree 4 and
height 2. This corresponds to the following parameter values:

B LT TSRS SRS SpRp U S

[ m| n|lw]|] p| 1] k]|h|

B T e LT

| 20 | 32 | 4 | 67 | 4| 4| 2 |

B L TE TCREIpUS Sy SpRp e S
Table 5

The non-standard size of the Merkle tree (h = 2) has been selected
specifically for this example to reduce the amount of data presented.

B.2. Key Generation

The LDWM algorithm does not define a required method of key
generation. This is left to the implementer. The selected method,
however, must satisfy the requirement that the public/private key
pairs of the one-time signatures are unique. In addition, all LDWM
key pairs must be generated in advance in order to calculate the
value of the Merkle public key.

For the test data presented here, a summary of the key generation
method is as follows:

1. MTS Private Key - Set mts_private_key to a pseudorandomly
generated n-byte value.

2. OTS Private Keys - Use the mts_private_key as a key derivation
key input to some key derivation function, thereby producing n~k
derived keys. Then use each derived key as an input to the same
function again to further derive p elements of n-bytes each.
This accomplishes the result of Algorithm 0 of Section 3.4 for
each leaf of the Merkle tree.
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OTS Public Keys - For each OTS private key, calculate the

corresponding OTS public key as in Algorithm 1 of Section 3.5.

the Merkle tree.

pseudocode algorithm of Section 4.2.

MTS Public Key - Each OTS public key is the value of a leaf on
Calculate the MTS public key using the

The above steps result in the following data values associated with
the first leaf of the Merkle tree, leaf 0.

Key Element
Index (1)

Ox0f677ff1b4chf10baec89959f0511203
3371492da02f62dd61d6fbdlceelbd14

Oxbfb757383fbh08d324629115a84dafo0b
188d5695303c83c184elec7a501c431f

0x7ce628fb82003a2829aab708432787d0
fc735a29d671c7d790068b453dc8c913

0x8174929461329d15068a4645a34412hd
446d4c9e757463a7d5164efd50e05¢c93

0xf283f3480df668ded4daa74bb0e4c5531
5bc00f7d008bb6311e59a5bbca910fd7

0ba9d39c078daa5ebc3160el1d80alea?

Ox1fe02efad2bfb4275e376af7138129e3
3e88cf7512ecldcdc7df8d5270bcOfd7

0x8ed5a703e9200658d18bc4cO5ddOca8a
356448a26f3f4fe4e0418b52bd6750a2

0Oxc74e56d61450c5387e86ddad5a8121c8
8b1bc463e641248a1f1d91d950957726

I I
| I
I |
I I
I I
I I
I I
I I
I I
I I
I I
I I
| 0xe62708eaf9c13801622563780302a068 |
I |
I I
I I
| I
I I
I I
I I
I I
I I
I I
I I
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19

20
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22

23
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0x629f18b6a2a4eab65fff4cf758b57333fF
e1d34af05b1cd7763696899c9869595fF

0x1741c31fdbb4864712f6b17fadc05d45
926¢831c7a755b7d7af57ac316ba6ec2a

0xe59a7b81490c5d1333a9cdd48b9ch364
56821517a3a13ch7a8ed381d4d573545

0x3ba97fe8b2967dd74c8b10f31fc5f527
a23h89c1266202a4d7c281e1f41fa020

0xa262a9287cc979aaa59225d75df51b82
57b92e780dl1labl4c4ac3ecdac58f1280

0x9dfePaf1a3d9064338d96ch8eae88baa
6a69265538873b4c17265fa9d573bcff

Oxde9chcb6abc6a274eabe90ed2a8e6148c
720196d237a839%aaf5868af8da4d0829

0x5de81ec17090a82ch722f616362d3808
30T04841191e4411f81b9880164b14cd

0xc0d047000604105bad657d9fa2f9ef10
1cfd949014668b700d738f2fa9eldlla

0xf45297ef310941e1e855f97968129bb1
73379193919f7b0fee9c037ae507c2d2

0x46ef43a877f023e5e66bbcd4f06b839F
3bfb2b64de25¢cd67d1946b0711989129

0x46e2a599861bd9e8722ad1b55b8T0139
305fcf8b6077d545d4488c4bch652129

Oxelad4d2d296971e4bOb7a57de305779¢e
82319587b58d3ef4daeb08f630bd5684

Ox7a07fa7aed97cb54ae420a0e6a58a153
38110f7743cab8353371f8ca710a4409

0x40601f6c4b35362dd4948d5687b5ch6b
5ec8b2ec59c2f06fd50f8919ebeaae92

0xa61b0ba9f493c4991be5¢cd3a9d15360
a9eb94f6f7adc28dddf174074f3df3c4

February 2013
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Oxcf1546a814ff16099cebf1fe@dblace5
1c272fda9846fbh535815924b0077fa4

Oxcbb06f13155ce4e56c85a32661c90142
8b630a4c37ea5c7062156F07f6b3efff

0x1181ee7fc03342415094e36191eb450a
11lcdea9c6f6cdc34de79cee®basbf230

Oxe9f1d429b343bb897881d2al19ef363cd
lab4117cbaad54dc292b74b8af9f5cf2

0x87f34b2551ef542f579fa65535c5036f
80eh83be4c898266ffc531dazela9122

0x9b4b467852fe33a03a872572707342fd
ddeae64841225186babf353fa2a0cd09

0x19d58cd240ab5c80be6ddf5f60d18159
2dca2be40118cifdd46e0f14dffbcc7d

0x5c9ad386547ba82939e49c9c74a8eccf
lcea60aa327b5d2d0a66blca48912d6d

Oxf49083e502400ffae9273c6de92a301e
7bdal537cab085e5adfa9eb746e8eca9

0x4074e1812d69543ce3clce706f6e0b45
f5f26f4ef39b34caa709335fd71e8fcoO

0x1256612b0ca8398e97b247ae564b74b1
3839b3bl1cfPa0dd8bha629a2c58355f84

0xbab3989f00fd2c327bbfb35a218cc3ce
49d6b34chf8b6e8919e90c4eff400ca9

0x96b52a5d395a5615b73dae65586ac5c8
7f9dd3b9b3f82dbf509b5881f0643fa8

0x5d05ca4c644elcdlccdaedbd2415d4f0
9b4a1b940b51fe823dff7617b8ee8304

Oxd96aab95ef6248e235d91d0f23b64727
a6675adfc64efea72f6f8b4a47996c0d

0xfd9c384d52d3ac27¢c4f4898fccl5e83a
c182f97ea63f7d489283e2cc7e6ed180

February 2013
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Oxc86eaed6a9e3fbes5b262c1falfe99f7c
35ece71d9e467fab7a371dbcf400b544

Oxf462b3719a2ed8778155638ff814dbf4
2b107bb5246ee3dd82abf97787e6a69e

0x014670912e3eb74936ebbh64168b447e4
2522b57c2540ac4b49b9ae356c0lecab

0x2b411096e0cal6587830d3acd673e858
863fedc4cean46587chad556d2bf9884

0Xxa73917¢c74730582e8e1815b8a07b1896
2ac05e500e045676be3f1495fcfal8ca

Oxadab61e6962fe39a255dbf8a46d25110
0d127fab08db59512653607bhda24302c

0x9b910ca516413f376b9eba4b0@d571b22
253c2a9646131ac9a2af5f615f7322b8

0xfclb4ce627c77ad35a2lea9ded2cce9l
b3758a758224e35cf2918153a513d64c

0xc1902d8e8c020d9442581d7e053a2798a
a84d77a74b6e7f2cc5096d50646c890f

0xb3f47e2e8e2dcdd890ean00934b9d8234
830dbc4a30ac996b144f12b3e463c77f

0x8188dlecfc6ae6118911f2b9b3a6c7al
e5f909aa8h5c0aab8c69f1a7d436¢c307

0xca42d985974c7b870bc76494604eff49
2676c942c6¢cb7c75d4938805885dd054

0xbe58851ebe566057eleel6b8c604a473
4c373af622660b2a82357ac6effh4566

Oxc22d493f7a5642fceba2404dbefa8f95
6323fac87fac425f6de8d23c9e8b20ca

Ox1a76¢c1ffa467906173fd0245b0cd6639
e6013ca79c4ed92426ee69ff5beeacOb

Oxbc6cOcb7808T379af1b7b7327436ad65
c05458f2d0a6923c333e5129¢c4c99671

February 2013
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57

58

59

60

61

62

63

64

65

Using the value of the OTS private key above,

public key is given below.

OxTbb04488c3c088dc5e63d13e6a701036
6109ca4c5f4b0a8d37780187e2e9930e

Oxaec10811569d4d72e3albaf71a886b75
eba6dc07ed027afOb2beffa71f9b43c8

0xf5529be3b7a19212e8baa970d2420bf4
1237678267f96c1c3ef26ab610ch0061

0x172balbabb70leeafe00692d1eb90181
8ccaefaeb8f799395da81711766d1f43

Oxfel1f8c1582520813a21346b894b3d94e
4f3aa29cbc194a7b2c8a810c4c509042

0x2e81c66cc914ealb0fa5942fe9780d54
8c0Ob330e3bf73fOcbObdad4bc9c9eb6ff4

0xfc3453aec5ccl19a6ad4bdadbc25931604
704bT4386cd65780c6e73214cl1da85ba

0Ox4e8000c587dc917888e7e3d817672c0a
ef812788cc8579afa7e9bh2e566309003

Oxba667cafed44a8601a0fde825d4d2cfilb
b9cTf467041e04af84c9d0cd9fd8dc784

0x4965db75f81c8a596680753ce70a94c6
156253bb426947del1d7662dd7e05e9a8

0x2c23cc3e5cal37dec279¢c506101a3d8d9
f1e4f99b2a33741b59f8bddba7455419

Table 7

function FA(2Aw - 1)(x[1i]) are provided in Table 13.

| 0x2db55a72075fcfab5aedbef77bf6b371
| dfb489d6e61ad2884a248345e€6910618

the corresponding
Intermediate values of the SHA-256-20

February 2013



McGrew & Curcio Expires August 26, 2013 [Page 37]



Internet-Draft Hash-Based Signatures February 2013

Following the creation of all OTS public/private key pairs, the OTS
public keys in Table 14 are used to determine the MTS public key
below. Intermediate values of the interior nodes of the Merkle tree
are provided in Table 15.

| 0x6610803d9a3546fb0a7895f6a4adcfed |
| 3a07d45e51d096e204b018e677453235 |

B.3. Signature Generation

In order to test signature generation, a text file containing the
content "Hello world!\n", where '\n' represents the ASCII line feed
character, was created and signed. A raw hex dump of the file
contents is shown in the table below.

o mm e e e e eeeeeeeemeeeaaaa IS +
| Hexadecimal Byte Values | ASCII Representation |
| | ('." is substituted for |
| | non-printing characters) |
gt g +
| Ox48 Ox65 Ox6C OXx6C OX6T Ox20 | Hello world!. |
| 0x77 Ox6f OXx72 OX6C Ox64 Ox21 |

| 0x0a | I
o m e e e e e e e e m oo Fom e e e e e e e mm e e mm oo +

Table 10

The SHA256 hash of the text file is provided below.

| 0x0ba904eae8773b70c75333db4de2f3ac4 |
| 5a8ad4ddbalb242f0b3cfc199391dd81c |

Table 11

This value was subsequently used in Algorithm 3 of Section 3.7 to
create the one-time signature of the message. Algorithm 2 of
Section 3.6 was applied to calculate a checksum of Oxlcc. The
resulting signature is shown in the following table.
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0TS
Element
Index

(1)

10
11
12
13
14
15
16
17
18

19

Function
Iteration
Count
(a = coef(
H(msg) ||
C(H(msg)),
i, w))

11

10

14
10

14

Hash-Based Signatures

0TS Element (y[i] = Fra(x[i]))

Oxbfb757383fb08d324629115a84daf00b188d5695
0x4af079e885ddfd3245f29778d265e868a3bfeaa4d
Oxfbad1928bfc57b22bcd949192452293d07d6b9ad
0xbh98063e184b4chb949a51e1bb76d99d4249c0b448
0Xxe62708eaf9c13801622563780302a0680ba9d39c
0x39343cbha3ffa6d75074ce89831b313436108318¢C
0xfe®8aa73607aec5664188a9dacdc34a295588c9a
0xd3346382119552d1ceb92a78597a00c956372bT0
0xfldd245ec587c@a7alb754cc327b27c839%a6e46a
Oxa5f158adcldecafOcledc1a3a5d8958d726627b5
0x06d2990162f22f0c943a418473678e3ffdbff482
0xf3390b8d6e5229ae9c5d4c3f45e10455d8241a49
0x22dd519d3c89180caadf695203d8cTf90f3c359be
0x67999c4043f95de5f07d82b741347a3eb6acOc25
Oxc4ffed472d48adeb37c7360da70711462013b7ade
0x5de81ec17090a82chb722f616362d380830f04841
0x2f892c824af65cc749f912a36dfa8ade2e4c3fdl
0xb644393e8030924403b594fb5cacd8b2d28862e2
0x31b8d2908911dbbf5balf479a854808945d9e948

0xa9a02269d24eb8fed6fb86101cbd0d8977219fb1

February 2013
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20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

13

11

13

14

15

10

12

10

10

13

13

13

11

10

Hash-Based Signatures

Oxedaae6e6a9felb0d5099513f170cl111dee95714d

0xd79c16e7f2d4dd790e28bab0d562298c864e31e9

0xc29678f0Obb4744597e041561532646Cc98a0b42e8

0x57b31d75743ff0f9bcf2db39d9b6224110b8d27b

0x0a336d93aac081a2d849c612368b8chb2fa9563a

0x917be0c94770a7bb12713a4bae801fb3c1c43002

0x91586feaadcf691b6ch07c16c8a2ed0884666e84

0xdd4ed4b720fb2517c4bc6f91cch8725118e5770c6

0x491f6ec665f54c4b3cffaaf2ec594d31e6e26¢c0e

0x41f5a082c9d9c9714701deObf426€9893484618cC

0x11f7017313f0c9549c5d415a8abc25243028514d

0x6839a994fcch9ch76241d809146906a3d13f89f1

0x71cd1d9163d7cd563936837¢c61d97bb1a5337ccO

OX77c9034ffc0f9219841aa8eledbfb62017ef9fdl

0xad9f6034017d35c338ac35778dd6c4clabed472a

0Ox4al1c396b22e4f5cc2428045b36d13737¢c4007515

0x98cb57b779c5fd3f361cd5debc243303ae5bhaefd

0x29857298f274d6bf595eadc89e5464ccf9608a6¢

0x95e35a26815a3ae9ad84a24464b174a29364dal8

0x4afeb3b95b5b333759c0acdd96ce3f26314bb22b

0x325a37ee5e349b22b13b54b24be5145344e7b8T3

Ox41772c93f561d6958ce135702847996¢c67elf2ef

0xd4f6d91c577594060be328b013c9e9b0e8a2e5d8

Ox717ela81c325cdccach6e9fd9e92dd3elbb84ae8

February 2013
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44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

11

15

11

12

15

12

13

13

Hash-Based Signatures

0x1dd363724ec66c090a1228dfalcd3d9cc806T346

0x64b4110476ddObeea78714c5ab71278818792cfa

0xe22290e740056a144af50f0b10962b5bcc18fc82

0x34fd87046a183f4732a52bb7805ce207eebdafch

Oxbd2fdc5e4e8d0ed7c48clbad9c2f7793fc2¢c9303

0xb3f47e2e8e2dcdd890ead0934b9d8234830dbc4a

0xcd29719¢c56cdb507030€6132132179e5807e1d3b

0xT9edb9b301916217de@d746a0542316bebe9e806

0x7a3801chfedcafed863d81210clec721eede49e5

Ox5caba3ec960efa210f5f3elc22c567cad75ef3ec

0xf911b5d148e1b03Te6983c53411f76€a78772379

Ox06da2baa75c6ef752bf59f3812fa042ff8181209

0x2b29f5aa2f34afb5la78a5fac586004f749c6e6dc

0x55e033ababac0845cc9142e24f9ef@ab641c51che

0xb62d207bb700071fba8a68312ca204ce4d994c33

0x551d5c00fad905bdb99c4f70ec7590a10d3ff8ca

0x0d03b1845b5f8838d735142f185f9cf8f8d2db6c

0x3b5d9e49e7eded4l1cd9aa5a09f72a0384fd4ff511

0xa766b0278d14a9b7d32bf0307c0737a8ecf82ab1l

OxcaB85296f354e6e3d2a96ab497c0le5ccd4530ctl

0x7bb29db7dd8aaaflcd11487cea®@d13730edb1df3

0x547ef341b3cf3208753bb1b62d85a4e3fc2cffed

0xb890ela99da4b2e0a9dde42f82f92d0946327cee

Table 12

February 2013
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Finally, based on the fact that the message is the first to be signed

by the Merkle tree (i.e.

and interior nodes that compose the authentication path from leaf to

using leaf node 0), the values of the leaf

root are determined as described in Section 4.3. These values are

marked with an asterisk

('"*') in Table 14 and Table 15.

Signature Verification

The signature verification step was provided the following items:

1. 0TS = (y[e] || y[1]

2. Authentication Path
values - from Table

[l ... || y[p-1]) - from Table 12.

= concatenation of (k-1)*h Merkle tree node
14 and Table 15.

3. Message Number = leaf number of Merkle tree.

4. Merkle Public Key =

Using Algorithm 4 of Section 3.8 as a start,

key was calculated from

root of Merkle tree - from Table 9.

the value of the OTS. Since the actual 0TS

public key was not provided to the verifier, the calculated key was
checked for validity using the pseudocode algorithm of Section 4.4

and the provided values

of the Authentication Path and Message

Number. Since the message was valid, the calculated value of the

root matched the Merkle
have failed.

| Key Element Index |
I (1) |

public key. Otherwise, verification would

Intermediate Calculation Values

SHA256-20 Result for w = 4 (FA15(x[1]))

Ox6eff4b0c224874ecc4ed4f4500da53dbe2a0@30e45
0x58ac2c6c451c7779d67efefdb12e5c3d85475a94
Oxb1f3e42e29c710d69268eed1bbdb7f5a500b7937
0x51d28e573aac2b84d659abb961c32c465€911b55
Oxafed62bccac5888f5000cabanles5ffefd442aice
0x44da9e145666322422cle2b5e21627e05aeb4367

0x04e7ff9213c26557283641659c35d3086d7414el

the potential OTS public
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Hash-Based Signatures

0x414cdb3215408b9722a02577eeb71f9e016e4251

0xa3ab06b90a2b20f631175daa9454365a4f408e9e

Oxe38acfd3c®a®3faa82a0fd4aeacla7c04983fad25

0xd95a289094ccce8adoff1d5f9e38297f9bb306Tf

0x593d148b22e33c32118b66340bdaffceb3adlabs

0x16b53fbealldc7ab70c8336ec3c23881ae5d51bf

0xa639cadcf871188caddo020832c4T06e6ebd5798

Oxe3ab3eOc5ad79d6c8c2a7e9a79856d4380941fe0

0x8368c2933dabcde69¢c373867a9bT2dc78df97bea

0xe3609fcall545dal56a7779ae565b1e3¢c87902¢c0O

0xab029e62c7011772dc0589d79fad0laact8d2177

0xa8310f1c27c1aa481192de07d4397b8c4716e25F

0xdbdbb14dbd9a5f03c1849af24b69b9e3f80faca2

0x1a17399d555dec07d3d4f6d54b2b87d2bcaa398b

0xf81c66cc522bfb203232e44d0003ed65d2462867

0x202a625b8c5f22de6ead8laf6dad77cf5¢c63202F

0x2e08013591f5ff3d5de39c2698846cc107a09816

0xa1d9c78c22f9810e3b7db2d59ad9f5fdd259f4d4

0x658eeb85ebe0f4542c4d32dced2d7226929266b2

0x67faela784f919577afc091504d82d31b4baofc?

0xfc39fb43677fb2d433a6292f19c6e7320279655a

0x491f6ec665f54c4b3cffaaf2ec594d31e6e26¢c0e

0x17cec813a5781409b11d2e4a85f62301c2fd8873

0xc578eb105454d900c053eb55833db607aa5757€0

February 2013
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31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Hash-Based Signatures

0xaed094323290a41fd4b546919620e2f6b23916C8

0x192b5a87b5124dc287e06cdd4ec7cOclif67dda6

Ox4e9e2bdc1b0204d1ceeb68Tfb4159e752c40b9608

0xf34c57ad9ce45d67fd32dc2737e6263bcc5cc61f

0xf73bd27d376186310783cc66e72060aeaccdel371

Oxeead482511acd8be783e9hed42b48799653b222db4

0xa2e53196fec8676065b8132b3e8498e66a4af3cf

0x670c98185157e1b28d38f7dafb00796b434c8316

0x441afbb265b93595389aaa66325de79213431209

0Xx7b6c50d20b5edcObc90eb4b289770514chc8d547

Oxfde6e862a7ba3534893a3e630e209a24be590ble

0xc59611200c20b2e73dfb24c84cedf4792d6daf10

0x66e3527bee88373d18191b230b53b569361f0al5

Oxdefd79c7116198e689275fec9b4c46T4aac73293

0x65f07406ad4241e7cf4174c5f284267292cdbc32

0x7b1b5535d45Tf46542e2b876245b66ea83cde3d8f

0x7a11620934ebbebl17el10ed4a8bbd52aa4b020dale

Oxbd2fdc5e4e8d0ed7c48clbad9c2f7793fc2c9303

0x00432602437252a0622a30676dbaaef3023328h9

0x09a9c4b25034466a5acd7ff681af1c27e8f97577

0x4b31481d52aa5e1a261064bbd87ea46479a6be23

Oxaca2ad4aal264618ab633bfllcbca3cc8fa43091

Ox5caba3ec960efa210f5f3elc22c567cad75ef3ec

0x353e3ffcedfd9500141921cf2aebc2e111364dad

February 2013
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55

56

57

58

59

60

61

62

63

64

Hash-Based Signatures

0xel1lc498c32169c869174ccf2fle71e7202f45fba7

0x5b8519a40d4305813936c7c00a96f5b4ceb603f1

0x3b942ae6a6bd328d08804ade771a0775bb3f 88

0x6f3be60eel1c34372599h8d634be72e168453bf10

Oxf700c70bac24dbdaab1257940661f5b57da6e817

0x85ccf60624b13663a290fa808c6bbecaf89523cd

0xd049be55ab703c44142167d5d9€939¢c830df960T

0Oxd27a178ccc3b364c7e03d2266093a0d1dfddods1

0xd73c53fdddbe196b9ab56fcc5c9a4a57ad868cdl

0xb59a70a7372f0cl21fa71727baaf6588eccec400

0x9b5bT379f98919a499799c12a3202db58b084eed

Oxccabf40f3cldacf114b5e5f98a73103b4c1f9b55

Table 13

February 2013
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MTS Leaf
(Level 2)
Node
Number

10

11

12

13

Hash-Based Signatures

OTS Public Key
(H(x[o] [ x[1] || Il x[p-11))

0x2db55a72075fcfab5aedbef77bf6b371
dfb489d6e61ad2884a248345e6910618

Ox8c6c6a1215bfe7fdal®Ob7754e73cd984
a64823b1ab9d5f50feda6bl151cOfee6d

0xc1fb91de68b3059c273e53596108ec7c
£39923757597fe86439e91celc25fc84

0x1b511189baee50251335695b74d67c40
5a04eddaa79158a9090cc7c3eb204chf

0xf3bcf088ccf9d00338b6c87€8F822dab
8ec471f88d1561193b3c017d20b3c971

0x40584c059e6cc72fb61f7bd1b9c28e73
€c689551e6e7de6bOb9b730fab9237531

0x1b1de9delcal6ca890036e018d7e73de
b39b07de80c19dcc5e55a699f021d880

0x83a82632acaac5418716f4f357f5007f
719d604525dbel1831c09a2ead9400a52

Oxcch8b2al1d60f731b5f51910eb427e211
96090d5cd2a077f33968b425301e3fhbd

0x616767ebf3cl1f3ec662d8c57c630c6ae
b31853fd40a18c3d831f5490610c1f16

0x5a4b3e157b66327c75d7f01304d188e2
cecd1b6168240c11a01775d581b01fbh6

0xf25744b8al1c2184ba38521801bf4727c
407b85eb5aef8884d8fbh1c12e276108

0xaf8189151874999162890f72e0ef25e6
f76b4ab94dc53569bdd66507f5ab0d8e

0x96251e396756686645f35cd059da329f
7083838d56c9ccacebbaf8486af18844

February 2013

Member of
Authentication
Path of
Message 0
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| 14 | Ox773d5206e40065d3553c3c2ed2500122 | |
| | e3ee6fd2c91f35a57f084dc839aablfc | |
I I I I
| 15 | Oxcda7fae67ce2c3ed29ce426fdcd3f2a8 | |
| | eb699e47a67a52f1c94e89726ffe97fa | |
Fommmm e aaaas . D R +
Table 14
Fommm e e aaas . T +
| MTS | Node Value | Member of |
| Interior | (H(child_0 || child_1 || ... || | Authentication |
| (Level 1) | child_k-1)) [ Path of |
| Node | | Message 0 |
| Number | | |
Y e e e e e e e e e e e e moo o Fom e +
| 0 | 6xb6a310deb55ed48004133ece2aebb25e | |
| | d74defb77ebd8d63c79a42b5b4191b0c | |
I I I I
| 1 | Ox71a0c8b767ade2c97ebac069383e4dfb | * |
| | alc06d5Tfd3f69a775711ea6470747664 | |
I I I I
| 2 | 0x91109fa97662dc88ae63037391ac2650 | * |
| | f6c664ac2448b54800a1df748953af31 | |
I | I I
| 3 | ©xd277fb8c89689525f90de567068d6c93 | * |
| | 565df3588h97223276ef89495468996 | |
S s oo o o e e oo S +

Table 15
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