
Crypto Forum Research Group D. McGrew
Internet-Draft M. Curcio
Intended status: Informational Cisco Systems
Expires: September 22, 2016 March 21, 2016

Hash-Based Signatures
draft-mcgrew-hash-sigs-04

Abstract

 This note describes a digital signature system based on cryptographic
 hash functions, following the seminal work in this area of Lamport,
 Diffie, Winternitz, and Merkle, as adapted by Leighton and Micali in
 1995. It specifies a one-time signature scheme and a general
 signature scheme. These systems provide asymmetric authentication
 without using large integer mathematics and can achieve a high
 security level. They are suitable for compact implementations, are
 relatively simple to implement, and naturally resist side-channel
 attacks. Unlike most other signature systems, hash-based signatures
 would still be secure even if it proves feasible for an attacker to
 build a quantum computer.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

McGrew & Curcio Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Hash-Based Signatures March 2016

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

McGrew & Curcio Expires September 22, 2016 [Page 2]

Internet-Draft Hash-Based Signatures March 2016

Table of Contents

1. Introduction . 5
1.1. Conventions Used In This Document 5

2. Interface . 6

3. Notation . 7
3.1. Data Types . 7
3.1.1. Operators . 7
3.1.2. Strings of w-bit elements 8

3.2. Security string . 9
3.3. Functions . 10

4. LM-OTS One-Time Signatures 11
4.1. Parameters . 11
4.2. Hashing Functions . 12
4.3. Signature Methods . 12
4.4. Private Key . 12
4.5. Public Key . 13
4.6. Checksum . 14
4.7. Signature Generation 14
4.8. Signature Verification 15

5. Leighton Micali Signatures 17
5.1. LMS Private Key . 17
5.2. LMS Public Key . 17
5.3. LMS Signature . 18
5.3.1. LMS Signature Generation 18

5.4. LMS Signature Verification 19

6. Hierarchical signatures 21
6.1. Key Generation . 21
6.2. Signature Generation 21
6.3. Signature Verification 22

7. Formats . 23

8. Rationale . 30

9. History . 31

10. IANA Considerations . 32

11. Security Considerations 34
11.1. Stateful signature algorithm 34
11.2. Security of LM-OTS Checksum 35

McGrew & Curcio Expires September 22, 2016 [Page 3]

Internet-Draft Hash-Based Signatures March 2016

12. Acknowledgements . 37

13. References . 38
13.1. Normative References 38
13.2. Informative References 38

Appendix A. LM-OTS Parameter Options 40

Appendix B. An iterative algorithm for computing an LMS
 public key . 41

Appendix C. Example implementation 42

 Authors' Addresses . 43

McGrew & Curcio Expires September 22, 2016 [Page 4]

Internet-Draft Hash-Based Signatures March 2016

1. Introduction

 One-time signature systems, and general purpose signature systems
 built out of one-time signature systems, have been known since 1979
 [Merkle79], were well studied in the 1990s [USPTO5432852], and have
 benefited from renewed attention in the last decade. The
 characteristics of these signature systems are small private and
 public keys and fast signature generation and verification, but large
 signatures and relatively slow key generation. In recent years there
 has been interest in these systems because of their post-quantum
 security and their suitability for compact implementations.

 This note describes the Leighton and Micali adaptation [USPTO5432852]
 of the original Lamport-Diffie-Winternitz-Merkle one-time signature
 system [Merkle79] [C:Merkle87][C:Merkle89a][C:Merkle89b] and general
 signature system [Merkle79] with enough specificity to ensure
 interoperability between implementations. An example implementation
 is given in an appendix.

 A signature system provides asymmetric message authentication. The
 key generation algorithm produces a public/private key pair. A
 message is signed by a private key, producing a signature, and a
 message/signature pair can be verified by a public key. A One-Time
 Signature (OTS) system can be used to sign exactly one message
 securely, but cannot securely sign more than one. An N-time
 signature system can be used to sign N or fewer messages securely. A
 Merkle tree signature scheme is an N-time signature system that uses
 an OTS system as a component. In this note we describe the Leighton-
 Micali Signature (LMS) system, which is a variant of the Merkle
 scheme. We denote the one-time signature scheme that it incorporates
 as LM-OTS.

 This note is structured as follows. Notation is introduced in
Section 3. The LM-OTS signature system is described in Section 4,

 and the LMS N-time signature system is described in Section 5.
 Sufficient detail is provided to ensure interoperability. The IANA
 registry for these signature systems is described in Section 10.
 Security considerations are presented in Section 11.

1.1. Conventions Used In This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

McGrew & Curcio Expires September 22, 2016 [Page 5]

Internet-Draft Hash-Based Signatures March 2016

2. Interface

 The LMS signing algorithm is stateful; once a particular value of the
 private key is used to sign one message, it MUST NOT be used to sign
 another.

 The key generation algorithm takes as input an indication of the
 parameters for the signature system. If it is successful, it
 returns both a private key and a public key. Otherwise, it
 returns an indication of failure.

 The signing algorithm takes as input the message to be signed and
 the current value of the private key. If successful, it returns a
 signature and the next value of the private key, if there is such
 a value. After the private key of an N-time signature system has
 signed N messages, the signing algorithm returns the signature and
 an indication that there is no next value of the private key that
 can be used for signing. If unsuccessful, it returns an
 indication of failure.

 The verification algorithm takes as input the public key, a
 message, and a signature, and returns an indication of whether or
 not the signature and message pair are valid.

 A message/signature pair are valid if the signature was returned by
 the signing algorithm upon input of the message and the private key
 corresponding to the public key; otherwise, the signature and message
 pair are not valid with probability very close to one.

McGrew & Curcio Expires September 22, 2016 [Page 6]

Internet-Draft Hash-Based Signatures March 2016

3. Notation

3.1. Data Types

 Bytes and byte strings are the fundamental data types. A single byte
 is denoted as a pair of hexadecimal digits with a leading "0x". A
 byte string is an ordered sequence of zero or more bytes and is
 denoted as an ordered sequence of hexadecimal characters with a
 leading "0x". For example, 0xe534f0 is a byte string with a length
 of three. An array of byte strings is an ordered set, indexed
 starting at zero, in which all strings have the same length.

 Unsigned integers are converted into byte strings by representing
 them in network byte order. To make the number of bytes in the
 representation explicit, we define the functions u8str(X), u16str(X),
 and u32str(X), which return one, two, and four byte values,
 respectively.

3.1.1. Operators

 When a and b are real numbers, mathematical operators are defined as
 follows:

 ^ : a ^ b denotes the result of a raised to the power of b

 * : a * b denotes the product of a multiplied by b

 / : a / b denotes the quotient of a divided by b

 % : a % b denotes the remainder of the integer division of a by b

 + : a + b denotes the sum of a and b

 - : a - b denotes the difference of a and b

 The standard order of operations is used when evaluating arithmetic
 expressions.

 If A and B are bytes, then A AND B denotes the bitwise logical and
 operation.

 When B is a byte and i is an integer, then B >> i denotes the logical
 right-shift operation. Similarly, B << i denotes the logical left-
 shift operation.

 If S and T are byte strings, then S || T denotes the concatenation of
 S and T.

McGrew & Curcio Expires September 22, 2016 [Page 7]

Internet-Draft Hash-Based Signatures March 2016

 The i^th byte string in an array A is denoted as A[i].

3.1.2. Strings of w-bit elements

 If S is a byte string, then byte(S, i) denotes its i^th byte, where
 byte(S, 0) is the leftmost byte. In addition, bytes(S, i, j) denotes
 the range of bytes from the i^th to the j^th byte, inclusive. For
 example, if S = 0x02040608, then byte(S, 0) is 0x02 and bytes(S, 1,
 2) is 0x0406.

 A byte string can be considered to be a string of w-bit unsigned
 integers; the correspondence is defined by the function coef(S, i, w)
 as follows:

 If S is a string, i is a positive integer, and w is a member of the
 set { 1, 2, 4, 8 }, then coef(S, i, w) is the i^th, w-bit value, if S
 is interpreted as a sequence of w-bit values. That is,

 coef(S, i, w) = (2^w - 1) AND
 (byte(S, floor(i * w / 8)) >>
 (8 - (w * (i % (8 / w)) + w)))

 For example, if S is the string 0x1234, then coef(S, 7, 1) is 0 and
 coef(S, 0, 4) is 1.

 S (represented as bits)
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | 0| 0| 0| 1| 0| 0| 1| 0| 0| 0| 1| 1| 0| 1| 0| 0|
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 ^
 |
 coef(S, 7, 1)

 S (represented as four-bit values)
 +-----------+-----------+-----------+-----------+
 | 1 | 2 | 3 | 4 |
 +-----------+-----------+-----------+-----------+
 ^
 |
 coef(S, 0, 4)

 The return value of coef is an unsigned integer. If i is larger than
 the number of w-bit values in S, then coef(S, i, w) is undefined, and
 an attempt to compute that value should raise an error.

McGrew & Curcio Expires September 22, 2016 [Page 8]

Internet-Draft Hash-Based Signatures March 2016

3.2. Security string

 To improve security against attacks that amortize their effort
 against multiple invocations of the hash function H, Leighton and
 Micali introduce a "security string" that is distinct for each
 invocation of H. The following fields can appear in a security
 string:

 I - an identifier for the private key. This value is 31 bytes
 long, and it MUST be distinct from all other such identifiers. It
 SHOULD be chosen uniformly at random, or via a pseudorandom
 process, at the time that a key pair is generated, in order to
 ensure that it will be distinct with probability close to one, but
 it MAY be a structured identifier.

 D - a domain separation parameter, which is a single byte that
 takes on different values in the different algorithms in which H
 is invoked. D takes on the following values:

 D_ITER = 0x00 in the iterations of the LM-OTS algorithms

 D_PBLC = 0x01 when computing the hash of all of the iterates in
 the LM-OTS algorithm

 D_MESG = 0x02 when computing the hash of the message in the LM-
 OTS algorithms

 D_LEAF = 0x03 when computing the hash of the leaf of an LMS
 tree

 D_INTR = 0x04 when computing the hash of an interior node of an
 LMS tree

 C - an n-byte randomizer that is included with the message
 whenever it is being hashed to improve security. C MUST be chosen
 uniformly at random, or via a pseudorandom process with a
 cryptographic strength that matches or exceeds that of the LM-OTS
 algorithm itself.

 i - in the LM-OTS one-time signature scheme, i is the index of the
 private key element upon which H is being applied. It is
 represented as a 16-bit (two byte) unsigned integer in network
 byte order.

 j - in the LM-OTS one-time signature scheme, j is the iteration
 number used when the private key element is being iteratively
 hashed. It is represented as an 8-bit (one byte) unsigned
 integer.

McGrew & Curcio Expires September 22, 2016 [Page 9]

Internet-Draft Hash-Based Signatures March 2016

 q - in the LM-OTS one-time signature scheme, q is a
 diversification string provided as input. In the LMS N-time
 signature scheme, each LM-OTS signature is associated with the
 leaf of a tree, and q is set to the leaf number (as described
 below). This ensures that a distinct value of q is used for each
 distinct LM-OTS public/private keypair. q is represented as a four
 byte string.

 r - in the LMS N-time signature scheme, the node number r
 associated with a particular node of the hash tree is used as an
 input to the hash used to compute that node. This value is
 represented as a 32-bit (four byte) unsigned integer in network
 byte order.

3.3. Functions

 If r is a non-negative real number, then we define the following
 functions:

 ceil(r) : returns the smallest integer larger than r

 floor(r) : returns the largest integer smaller than r

 lg(r) : returns the base-2 logarithm of r

McGrew & Curcio Expires September 22, 2016 [Page 10]

Internet-Draft Hash-Based Signatures March 2016

4. LM-OTS One-Time Signatures

 This section defines LM-OTS signatures. The signature is used to
 validate the authenticity of a message by associating a secret
 private key with a shared public key. These are one-time signatures;
 each private key MUST be used only one time to sign any given
 message.

 As part of the signing process, a digest of the original message is
 computed using the cryptographic hash function H (see Section 4.2),
 and the resulting digest is signed.

 In order to facilitate its use in an N-time signature system, the LM-
 OTS key generation, signing, and verification algorithms all take as
 input a diversification parameter q. When the LM-OTS signature
 system is used outside of an N-time signature system, this value
 SHOULD be set to the all-zero value.

4.1. Parameters

 The signature system uses the parameters n and w, which are both
 positive integers. The algorithm description also makes use of the
 internal parameters p and ls, which are dependent on n and w. These
 parameters are summarized as follows:

 n : the number of bytes of the output of the hash function

 w : the Winternitz parameter; it is a member of the set
 { 1, 2, 4, 8 }

 p : the number of n-byte string elements that make up the LM-OTS
 signature

 ls : the number of left-shift bits used in the checksum function
 Cksm (defined in Section 4.6).

 The value of n is determined by the functions selected for use as
 part of the LM-OTS algorithm; the choice of this value has a strong
 effect on the security of the system. The parameter w can be chosen
 to set the number of bytes in the signature; it has little effect on
 security. Note however, that there is a larger computational cost to
 generate and verify a shorter signature. The values of p and ls are
 dependent on the choices of the parameters n and w, as described in

Appendix A. A table illustrating various combinations of n, w, p,
 and ls is provided in Table 1.

McGrew & Curcio Expires September 22, 2016 [Page 11]

Internet-Draft Hash-Based Signatures March 2016

4.2. Hashing Functions

 The LM-OTS algorithm uses a hash function H that accepts byte strings
 of any length, and returns an n-byte string.

4.3. Signature Methods

 To fully describe a LM-OTS signature method, the parameters n and w,
 as well as the function H, MUST be specified. This section defines
 several LM-OTS signature systems, each of which is identified by a
 name. Values for p and ls are provided as a convenience.

 +---------------------+-----------+----+---+-----+----+
 | Name | H | n | w | p | ls |
 +---------------------+-----------+----+---+-----+----+
 | LMOTS_SHA256_N32_W1 | SHA256 | 32 | 1 | 265 | 7 |
 | | | | | | |
 | LMOTS_SHA256_N32_W2 | SHA256 | 32 | 2 | 133 | 6 |
 | | | | | | |
 | LMOTS_SHA256_N32_W4 | SHA256 | 32 | 4 | 67 | 4 |
 | | | | | | |
 | LMOTS_SHA256_N32_W8 | SHA256 | 32 | 8 | 34 | 0 |
 | | | | | | |
 | LMOTS_SHA256_N16_W1 | SHA256-16 | 16 | 1 | 68 | 8 |
 | | | | | | |
 | LMOTS_SHA256_N16_W2 | SHA256-16 | 16 | 2 | 68 | 8 |
 | | | | | | |
 | LMOTS_SHA256_N16_W4 | SHA256-16 | 16 | 4 | 35 | 4 |
 | | | | | | |
 | LMOTS_SHA256_N16_W8 | SHA256-16 | 16 | 8 | 18 | 0 |
 +---------------------+-----------+----+---+-----+----+

 Table 1

 Here SHA256 denotes the NIST standard hash function [FIPS180].
 SHA256-16 denotes the SHA256 hash function with its final output
 truncated to return the leftmost 16 bytes.

4.4. Private Key

 The LM-OTS private key consists of an array of size p containing
 n-byte strings. Let x denote the private key. This private key must
 be used to sign one and only one message. It must therefore be
 unique from all other private keys. The following algorithm shows
 pseudocode for generating x.

McGrew & Curcio Expires September 22, 2016 [Page 12]

Internet-Draft Hash-Based Signatures March 2016

 Algorithm 0: Generating a Private Key

 set type to the typecode of the algorithm
 set n and p according to the typecode and Table 1
 for (i = 0; i < p; i = i + 1) {
 set x[i] to a uniformly random n-byte string
 }
 return u32str(type) || x[0] || x[1] || ... || x[p-1]

 An implementation MAY use a pseudorandom method to compute x[i], as
 suggested in [Merkle79], page 46. The details of the pseudorandom
 method do not affect interoperability, but the cryptographic strength
 MUST match that of the LM-OTS algorithm.

4.5. Public Key

 The LM-OTS public key is generated from the private key by
 iteratively applying the function H to each individual element of x,
 for 2^w - 1 iterations, then hashing all of the resulting values.

 Each public/private key pair is associated with a single identifier
 I. This string MUST be 31 bytes long, and be generated as described
 in Section 3.2. It MUST be generated by a uniform random or
 pseudorandom process during the LM-OTS key pair generation, unless a
 structured identifier is provided as an input to the algorithm.

 The diversification parameter q is an input to the algorithm, as
 described in Section 3.2. (In the LMS scheme, this parameter is set
 to the leaf number, as each LM-OTS key pair is associated with the
 leaf of a tree.)

 The following algorithm shows pseudocode for generating the public
 key, where the array x is the private key.

 Algorithm 1: Generating a Public Key From a Private Key

 set type to the typecode of the algorithm
 set n and p according to the typecode and Table 1
 for (i = 0; i < p; i = i + 1) {
 tmp = x[i]
 for (j = 0; j < 2^w - 1; j = j + 1) {
 tmp = H(tmp || I || q || u16str(i) || u8str(j) || D_ITER)
 }
 y[i] = tmp
 }
 return H(I || q || y[0] || y[1] || ... || y[p-1] || D_PBLC)

 The public key the value returned by Algorithm 1.

McGrew & Curcio Expires September 22, 2016 [Page 13]

Internet-Draft Hash-Based Signatures March 2016

4.6. Checksum

 A checksum is used to ensure that any forgery attempt that
 manipulates the elements of an existing signature will be detected.
 The security property that it provides is detailed in Section 11.
 The checksum function Cksm is defined as follows, where S denotes the
 byte string that is input to that function, and the value sum is a
 16-bit unsigned integer:

 Algorithm 2: Checksum Calculation

 sum = 0
 for (i = 0; i < u; i = i + 1) {
 sum = sum + (2^w - 1) - coef(S, i, w)
 }
 return (sum << ls)

 Because of the left-shift operation, the rightmost bits of the result
 of Cksm will often be zeros. Due to the value of p, these bits will
 not be used during signature generation or verification.

4.7. Signature Generation

 The LM-OTS signature of a message is generated by first appending the
 randomizer C, the identifier string I, the diversification string q,
 and D_MESG to the message, then using H to compute the hash of the
 resulting string, concatenating the checksum of the hash to the hash
 itself, then considering the resulting value as a sequence of w-bit
 values, and using each of the the w-bit values to determine the
 number of times to apply the function H to the corresponding element
 of the private key. The outputs of the function H are concatenated
 together and returned as the signature. The pseudocode for this
 procedure is shown below.

 The identifier string I and diversification string q are the same as
 in Section 4.5.

McGrew & Curcio Expires September 22, 2016 [Page 14]

Internet-Draft Hash-Based Signatures March 2016

 Algorithm 3: Generating a Signature From a Private Key and a Message

 set type to the typecode of the algorithm
 set n and p according to the typecode and Table 1
 set C to a uniformly random n-byte string
 Q = H(C || I || q || D_MESG || message)
 for (i = 0; i < p; i = i + 1) {
 a = coef(Q || Cksm(Q), i, w)
 tmp = x[i]
 for (j = 0; j < a; j = j + 1) {
 tmp = H(tmp || I || q || u16str(i) || u8str(j) || D_ITER)
 }
 y[i] = tmp
 }
 return u32str(type) || C || q || y[0] || y[1] || ... || y[p-1]

 Note that this algorithm results in a signature whose elements are
 intermediate values of the elements computed by the public key
 algorithm in Section 4.5.

 The signature is the string returned by Algorithm 3. Section 7
 specifies the typecode and more formally defines the encoding and
 decoding of the string.

4.8. Signature Verification

 In order to verify a message with its signature (an array of n-byte
 strings, denoted as y), the receiver must "complete" the series of
 applications of H using the w-bit values of the message hash and its
 checksum. This computation should result in a value that matches the
 provided public key.

McGrew & Curcio Expires September 22, 2016 [Page 15]

Internet-Draft Hash-Based Signatures March 2016

 Algorithm 4: Verifying a Signature and Message Using a Public Key

 if the signature is not at least four bytes long, return INVALID

 set type by applying uint32str() to the first four bytes of the
 signature

 if the type computed from the signature is not equal to the
 type of the public key, return INVALID

 set n and p according to the type and Table 1

 if the signature is not exactly 8 + n * (p+1) bytes long, return
 INVALID

 parse C, q, and y from the signature as follows:
 type = first 4 bytes
 C = next n bytes
 q = next four bytes
 y[0] = next n bytes
 y[1] = next n bytes
 ...
 y[p-1] = next n bytes
 Q = H(C || I || q || D_MESG || message)
 for (i = 0; i < p; i = i + 1) {
 a = (2^w - 1) - coef(Q || Cksm(Q), i, w)
 tmp = y[i]
 for (j = a+1; j < 2^w - 1; j = j + 1) {
 tmp = H(tmp || I || q || u16str(i) || u8str(j) || D_ITER)
 }
 z[i] = tmp
 }
 candidate = H(I || q || z[0] || z[1] || ... || z[p-1] || D_PBLC)
 if (candidate = public_key)
 return VALID
 else
 return INVALID

McGrew & Curcio Expires September 22, 2016 [Page 16]

Internet-Draft Hash-Based Signatures March 2016

5. Leighton Micali Signatures

 The Leighton Micali Signature (LMS) method can sign a potentially
 large but fixed number of messages. An LMS system uses two
 cryptographic components: a one-time signature method and a hash
 function. Each LMS public/private key pair is associated with a
 perfect binary tree, each node of which contains an n-byte value.
 Each leaf of the tree contains the value of the public key of an LM-
 OTS public/private key pair. The value contained by the root of the
 tree is the LMS public key. Each interior node is computed by
 applying the hash function to the concatenation of the values of its
 children nodes.

 An LMS system has the following parameters:

 h : the height (number of levels - 1) in the tree, and

 n : the number of bytes associated with each node.

 There are 2^h leaves in the tree.

5.1. LMS Private Key

 An LMS private key consists of 2^h one-time signature private keys
 and the leaf number of the next LM-OTS private key that has not yet
 been used. The leaf number is initialized to zero when the LMS
 private key is created.

 An LMS private key MAY be generated pseudorandomly from a secret
 value, in which case the secret value MUST be at least n bytes long,
 be uniformly random, and MUST NOT be used for any other purpose than
 the generation of the LMS private key. The details of how this
 process is done do not affect interoperability; that is, the public
 key verification operation is independent of these details.

5.2. LMS Public Key

 An LMS public key is defined as follows, where we denote the public
 key associated with the i^th LM-OTS private key as OTS_PUBKEY[i],
 with i ranging from 0 to (2^h)-1. Each instance of an LMS public/
 private key pair is associated with a perfect binary tree, and the
 nodes of that tree are indexed from 1 to 2^(h+1)-1. Each node is
 associated with an n-byte string, and the string for the rth node is
 denoted as T[r] and is defined as

 T[r] = / H(OTS_PUBKEY[r-2^h] || I || u32str(r) || D_LEAF) if r >= 2^h
 \ H(T[2*r] || T[2*r+1] || I || u32str(r) || D_INTR) otherwise.

McGrew & Curcio Expires September 22, 2016 [Page 17]

Internet-Draft Hash-Based Signatures March 2016

 The LMS public key is the string u32str(type) || I || T[1].
Section 7 specifies the typecode and more formally defines the

 format. The value T[1] can be computed via recursive application of
 the above equation, or by any equivalent method. An iterative
 procedure is outlined in Appendix B.

5.3. LMS Signature

 An LMS signature consists of

 a typecode indicating the particular LMS algorithm,

 an LM-OTS signature, and

 an array of values that is associated with the path through the
 tree from the leaf associated with the LM-OTS signature to the
 root.

 Symbolically, the signature can be represented as u32str(type) ||
 lmots_signature || path[0] || path[1] || ... || path[p-1]. Section 7
 specifies the typecode and more formally defines the format. The
 array of values contains the siblings of the nodes on the path from
 the leaf to the root but does not contain the nodes on the path
 itself. The array for a tree with height h will have h values. The
 first value is the sibling of the leaf, the next value is the sibling
 of the parent of the leaf, and so on up the path to the root.

5.3.1. LMS Signature Generation

 To compute the LMS signature of a message with an LMS private key,
 the signer first computes the LM-OTS signature of the message using
 the leaf number of the next unused LM-OTS private key. Before
 releasing the signature, the leaf number in the LMS private key MUST
 be incremented to prevent the LM-OTS private key from being used
 again. The node number in the signature is set to the leaf number of
 the LMS private key that was used in the signature. Then the
 signature and the LMS private key are returned.

 The array of node values in the signature MAY be computed in any way.
 There are many potential time/storage tradeoffs that can be applied.
 The fastest alternative is to store all of the nodes of the tree and
 set the array in the signature by copying them. The least storage
 intensive alternative is to recompute all of the nodes for each
 signature. Note that the details of this procedure are not important
 for interoperability; it is not necessary to know any of these
 details in order to perform the signature verification operation.
 The internal nodes of the tree need not be kept secret, and thus a
 node-caching scheme that stores only internal nodes can sidestep the

McGrew & Curcio Expires September 22, 2016 [Page 18]

Internet-Draft Hash-Based Signatures March 2016

 need for strong protections.

 One useful time/storage tradeoff is described in Column 19 of
 [USPTO5432852].

5.4. LMS Signature Verification

 An LMS signature is verified by first using the LM-OTS signature
 verification algorithm to compute the LM-OTS public key from the LM-
 OTS signature and the message. The value of that public key is then
 assigned to the associated leaf of the LMS tree, then the root of the
 tree is computed from the leaf value and the node array (path[]) as
 described below. If the root value matches the public key, then the
 signature is valid; otherwise, the signature fails.

McGrew & Curcio Expires September 22, 2016 [Page 19]

Internet-Draft Hash-Based Signatures March 2016

 Algorithm 5: LMS Signature Verification

 set pubtype by applying uint32str() to the first four bytes of the
 public key

 set sigtype by applying uint32str() to the first four bytes of the
 signature

 if pubtype is not equal to sigtype, return INVALID; otherwise,
 continue

 identify the height h of the tree from pubtype

 parse q from the LM-OTS signature in the LMS signature

 parse the path from the LMS signature

 parse the LMS public key value from the lms_public_key

 tmp = candidate public key computed from LM-OTS signature and message
 tmp = H(tmp || I || u32str(node_num) || D_LEAF)
 i = 0
 n = node number = 2^h + q
 while (node_num > 1) {
 if (node_num is odd):
 tmp = H(path[i] || tmp || I || u32str(node_num/2) || D_INTR)
 else:
 tmp = H(tmp || path[i] || I || u32str(node_num/2) || D_INTR)
 node_num = node_num/2
 i = i + 1
 if (tmp == LMS public key vaule)
 return 1 // message/signature pair is valid
 else
 return 0 // message/signature pair is invalid

 Upon completion, v contains the value of the root of the LMS tree for
 comparison.

 The verifier MAY cache interior node values that have been computed
 during a successful signature verification for use in subsequent
 signature verifications. However, any implementation that does so
 MUST make sure any nodes that are cached during a signature
 verification process are deleted if that process does not result in a
 successful match between the root of the tree and the LMS public key.

McGrew & Curcio Expires September 22, 2016 [Page 20]

Internet-Draft Hash-Based Signatures March 2016

6. Hierarchical signatures

 In scenarios where it is necessary to minimize the time taken by the
 public key generation process, a hierarchical N-time signature scheme
 can be used. Leighton and Micali describe a scheme in which an LMS
 public key is used to sign a second LMS public key, which is then
 distributed along with the signatures generated with the second
 public key [USPTO5432852]. This hierarchical scheme, which we
 describe in this section, uses an LMS scheme as a component. Each
 level is associated with an LMS public key, private key, and
 signature. The number of levels denoted L, and is between two and
 eight, inclusive. The following notation is used, where i is an
 integer between 1 and L inclusive:

 prv[i] is the private key of the ith level,

 pub[i] is the public key of the ith level,

 sig[i] is the signature of the ith level, and

 info[i] is lms_key_info, a structure containing information
 describing the public key of the ith level, including the LMS
 algorithm type, OTS algorithm type, and the Identifier I.

 In this section, we say that an N-time private key is exhausted when
 it has signed all N messages, and thus it can no longer be used for
 signing.

6.1. Key Generation

 To generate an HSS private and public key pair, new LMS private and
 public keys are generated for prv[i] and pub[i] for i=1, ..., L.
 These key pairs MUST be generated independently, and each key pair
 MUST use a distinct Identity I.

 The public key of the HSS scheme is pub[1], the public key of the
 first level, followed by the lms_key_info structures for the
 remaining levels.

 The HSS private key consists of prv[1], ... , prv[L]. The values
 pub[1] and prv[1] do not change, though the values of pub[i] and
 prv[i] are dynamic for i > 1, and are changed by the signature
 generation algorithm.

6.2. Signature Generation

 To sign a message using the private key prv, the following steps are
 performed:

McGrew & Curcio Expires September 22, 2016 [Page 21]

Internet-Draft Hash-Based Signatures March 2016

 The message is signed with prv[L], and the value sig[L] is set to
 that result.

 The value of the HSS signature is set to sig[1] || ... || sig[L].

 If prv[L] is exhausted, then the key pair associated with that
 level is regenerated as follows. A new LMS public and private key
 pair with the same algorithm parameters is generated, and pub[L]
 and prv[L] are set to those values. pub[L] is signed with
 prv[L-1], and sig[L-1] is set to the resulting value. If prv[L-1]
 is exhausted, then the regeneration process is applied to that
 key, and so on for L-1 up to 2.

6.3. Signature Verification

 To verify a signature sig and message using the public key pub, the
 following steps are performed:

 The signature sig is parsed into its components sig[1] || ... ||
 sig[L].

 The signature sig[L] and message is verified using the public key
 pub[L]. If verification fails, then an indication of failure is
 returned. Otherwise, processing continues as follows.

 The signature sig[L-1] of the "message" pub[L] is verified using
 the public key pub[L-1]. If verification fails, then an
 indication of failure is returned. Otherwise, this process is
 repeated for all levels from L-1 down to 2.

 The signature sig[1] of the "message" pub[2] is verified using the
 value of the HSS public key. If verification fails, then an
 indication of failure is returned. Otherwise, an indication of
 success is returned.

McGrew & Curcio Expires September 22, 2016 [Page 22]

Internet-Draft Hash-Based Signatures March 2016

7. Formats

 The signature and public key formats are formally defined using the
 External Data Representation (XDR) [RFC4506] in order to provide an
 unambiguous, machine readable definition. For clarity, we also
 include a private key format as well, though consistency is not
 needed for interoperability and an implementation MAY use any private
 key format. Though XDR is used, these formats are simple and easy to
 parse without any special tools. An illustration of the layout of
 data in these objects is provided below. The definitions are as
 follows:

 /*
 * one-time signature primitives
 */
 enum ots_algorithm_type {
 ots_reserved = 0,
 lmots_sha256_n16_w1 = 1,
 lmots_sha256_n16_w2 = 2,
 lmots_sha256_n16_w4 = 3,
 lmots_sha256_n16_w8 = 4,
 lmots_sha256_n32_w1 = 5,
 lmots_sha256_n32_w2 = 6,
 lmots_sha256_n32_w4 = 7,
 lmots_sha256_n32_w8 = 8
 };

 typedef opaque bytestring4[4];
 typedef opaque bytestring16[16];
 typedef opaque bytestring32[32];

 struct lmots_signature_n16_p265 {
 bytestring16 C;
 bytestring4 q;
 bytestring16 y[265];
 };

 struct lmots_signature_n16_p133 {
 bytestring16 C;
 bytestring4 q;
 bytestring16 y[133];
 };

 struct lmots_signature_n16_p67 {
 bytestring16 C;
 bytestring4 q;
 bytestring16 y[67];

https://datatracker.ietf.org/doc/html/rfc4506

McGrew & Curcio Expires September 22, 2016 [Page 23]

Internet-Draft Hash-Based Signatures March 2016

 };

 struct lmots_signature_n16_p34 {
 bytestring16 C;
 bytestring4 q;
 bytestring16 y[34];
 };

 struct lmots_signature_n32_p265 {
 bytestring32 C;
 bytestring4 q;
 bytestring32 y[265];
 };

 struct lmots_signature_n32_p133 {
 bytestring32 C;
 bytestring4 q;
 bytestring32 y[133];
 };

 struct lmots_signature_n32_p67 {
 bytestring32 C;
 bytestring4 q;
 bytestring32 y[67];
 };

 struct lmots_signature_n32_p34 {
 bytestring32 C;
 bytestring4 q;
 bytestring32 y[34];
 };

 union ots_signature switch (ots_algorithm_type type) {
 case lmots_sha256_n16_w1:
 lmots_signature_n16_p256 sig_n16_p265;
 case lmots_sha256_n16_w2:
 lmots_signature_n16_p133 sig_n16_p133;
 case lmots_sha256_n16_w4:
 lmots_signature_n16_p67 sig_n16_p67;
 case lmots_sha256_n16_w8:
 lmots_signature_n16_p43 sig_n16_p34;
 case lmots_sha256_n32_w1:
 lmots_signature_n32_p256 sig_n32_p265;
 case lmots_sha256_n32_w2:
 lmots_signature_n32_p133 sig_n32_p133;
 case lmots_sha256_n32_w4:
 lmots_signature_n32_p67 sig_n32_p67;
 case lmots_sha256_n32_w8:

McGrew & Curcio Expires September 22, 2016 [Page 24]

Internet-Draft Hash-Based Signatures March 2016

 lmots_signature_n32_p43 sig_n32_p34;
 default:
 void; /* error condition */
 };

 union ots_private_key switch (ots_algorithm_type type) {
 case lmots_sha256_n16_w1:
 case lmots_sha256_n16_w2:
 case lmots_sha256_n16_w4:
 case lmots_sha256_n16_w8:
 bytestring16 x16;
 case lmots_sha256_n32_w1:
 case lmots_sha256_n32_w2:
 case lmots_sha256_n32_w4:
 case lmots_sha256_n32_w8:
 bytestring32 x32;
 default:
 void; /* error condition */
 };

 /* leighton micali signature (lms) data types */

 enum lms_algorithm_type {
 lms_reserved = 0,
 lms_sha256_n32_h20 = 1,
 lms_sha256_n32_h10 = 2,
 lms_sha256_n32_h5 = 3,
 lms_sha256_n16_h20 = 4,
 lms_sha256_n16_h10 = 5,
 lms_sha256_n16_h5 = 6
 };

 union lms_path switch (lms_algorithm_type type) {
 case lms_sha256_n32_h20:
 bytestring32 path_n32_h20[20];
 case lms_sha256_n32_h10:
 bytestring32 path_n32_h10[10];
 case lms_sha256_n32_h5:
 bytestring32 path_n32_h5[5];
 case lms_sha256_n16_h20:
 bytestring16 path_n16_h20[20];
 case lms_sha256_n16_h10:
 bytestring16 path_n16_h10[10];
 case lms_sha256_n16_h5:
 bytestring16 path_n16_h5[5];
 default:
 void; /* error condition */
 };

McGrew & Curcio Expires September 22, 2016 [Page 25]

Internet-Draft Hash-Based Signatures March 2016

 struct lms_signature {
 ots_signature lmots_sig;
 lms_path nodes;
 };

 struct lms_key_n16 {
 ots_algorithm_type ots_alg_type;
 opaque I[31];
 opaque value[16];
 };

 struct lms_key_n32 {
 ots_algorithm_type ots_alg_type;
 opaque I[31];
 opaque value[32];
 };

 union lms_public_key switch (lms_algorithm_type type) {
 case lms_sha256_n32_h20:
 case lms_sha256_n32_h10:
 case lms_sha256_n32_h5:
 lms_key_n32 z_n32;
 case lms_sha256_n16_h20:
 case lms_sha256_n16_h10:
 case lms_sha256_n16_h5:
 lms_key_n16 z_n16;
 default:
 void; /* error condition */
 };

 struct lms_key_info {
 lms_algorithm_type lms_alg_type;
 ots_algorithm_type ots_alg_type;
 opaque I[31];
 };

 union lms_private_key switch (lms_algorithm_type type) {
 case lms_sha256_n32_h20:
 case lms_sha256_n32_h10:
 case lms_sha256_n32_h5:
 lms_key_n32 z_n32;
 case lms_sha256_n16_h20:
 case lms_sha256_n16_h10:
 case lms_sha256_n16_h5:
 lms_key_n16 z_n16;
 default:
 void; /* error condition */
 };

McGrew & Curcio Expires September 22, 2016 [Page 26]

Internet-Draft Hash-Based Signatures March 2016

 /*
 * hierarchical signature scheme (hss)
 */

 struct hss_public_key {
 lms_public_key pub;
 lms_key_info info<7>;
 };

 struct hss_private_key {
 lms_private_key pub<8>;
 };

 struct hss_signature {
 lms_signature sig<8>; /* maximum of eight levels */
 };

 /*
 * hss_data_type and hss_data provide high level data types for all of
 * the objects that might need to be stored on a file system, as a
 * convenience to the implementer
 */
 enum hss_data_type {
 reserved = 0,
 type_lms_public_key = 1,
 type_lms_private_key = 2,
 type_hss_public_key = 3,
 type_hss_private_key = 4,
 type_hss_signature = 5
 };

 union hss_data switch (hss_data_type type) {
 case type_lms_public_key:
 lms_public_key lms_public_key_data;
 case type_lms_private_key:
 lms_private_key lms_private_key_data;
 case type_hss_public_key:
 hss_public_key hss_public_key_data;
 case type_hss_private_key:
 hss_private_key hss_private_key_data;
 case type_hss_signature:
 hss_signature hss_signature_data;
 default:
 void;
 };

 Many of the objects start with a typecode. A verifier MUST check

McGrew & Curcio Expires September 22, 2016 [Page 27]

Internet-Draft Hash-Based Signatures March 2016

 each of these typecodes, and a verification operation on a signature
 with an unknown type MUST return INVALID. The expected length of a
 variable-length object can be determined from its typecode, and if an
 object has a different length, then any signature computed from the
 object is INVALID.

 The layout of the data inside of public keys, signatures, and private
 keys is illustrated below, using the following notation. Each line
 describes a single object, and indentation is used to show that an
 object is contained in another object. Some of these objects do not
 appear explicitly in the data format, as they are merely logical
 groupings. Objects that do appear explicitly are indicated by an
 asterisk (*). The lengths of some objects is variable, and some
 object names are incomplete (because more than one name might
 appear), so this diagriam is meant as a conceptual aid only, and not
 a precise definition.

 hss_public_key
 * hss_algorithm_type
 lms_public_key
 * lms_algorithm_type
 lms_public_key_n
 * ots_algorithm_type
 * I
 * value
 lms_key_info
 * lms_algorithm_type
 * ots_algorithm_type
 * I

 hss_private_key
 * hss_algorithm_type
 lms_private_key
 * lms_algorithm_type
 lms_public_key_n
 * ots_algorithm_type
 * I
 * value
 lms_private_key
 * lms_algorithm_type
 lms_public_key_n
 * ots_algorithm_type
 * I
 * value

McGrew & Curcio Expires September 22, 2016 [Page 28]

Internet-Draft Hash-Based Signatures March 2016

 hss_signature
 * hss_algorithm_type
 lms_public_key
 * lms_algorithm_type
 lms_key_n
 * ots_algorithm_type
 * I
 * value
 lms_signature
 ots_signature
 * ots_algorithm_type
 * C
 * q
 * y[p]
 lms_path
 * lms_algorithm_type
 * path[h]
 lms_signature
 ots_signature
 * ots_algorithm_type
 * C
 * q
 * y[p]
 lms_path
 * lms_algorithm_type
 * path[h]

McGrew & Curcio Expires September 22, 2016 [Page 29]

Internet-Draft Hash-Based Signatures March 2016

8. Rationale

 The goal of this note is to describe the LM-OTS and LMS algorithms
 following the original references and present the modern security
 analysis of those algorithms. Other signature methods are out of
 scope and may be interesting follow-on work.

 We adopt the techniques described by Leighton and Micali to mitigate
 attacks that amortize their work over multiple invocations of the
 hash function.

 The values taken by the identifier I across different LMS public/
 private key pairs are required to be distinct in order to improve
 security. That distinctness ensures the uniqueness of the inputs to
 H across all of those public/private key pair instances, which is
 important for provable security in the random oracle model. The
 length of I is set at 31 bytes so that randomly chosen values of I
 will be distinct with probability at least 1 - 1/2^128 as long as
 there are 2^60 or fewer instances of LMS public/private key pairs.

 The sizes of the parameters in the security string are such that, for
 n=16, the LM-OTS iterates a 55-byte value (that is, the string that
 is input to H() during the iteration over j during signature
 generation and verification is 55 bytes long). Thus, when SHA-256 is
 used as the function H, only a single invocation of its compression
 function is needed.

 The signature and public key formats are designed so that they are
 easy to parse. Each format starts with a 32-bit enumeration value
 that indicates all of the details of the signature algorithm and
 hence defines all of the information that is needed in order to parse
 the format.

 The Checksum Section 4.6 is calculated using a non-negative integer
 "sum", whose width was chosen to be an integer number of w-bit fields
 such that it is capable of holding the difference of the total
 possible number of applications of the function H as defined in the
 signing algorithm of Section 4.7 and the total actual number. In the
 worst case (i.e. the actual number of times H is iteratively applied
 is 0), the sum is (2^w - 1) * ceil(8*n/w). Thus for the purposes of
 this document, which describes signature methods based on H = SHA256
 (n = 32 bytes) and w = { 1, 2, 4, 8 }, the sum variable is a 16-bit
 non-negative integer for all combinations of n and w. The
 calculation uses the parameter ls defined in Section 4.1 and
 calculated in Appendix A, which indicates the number of bits used in
 the left-shift operation.

McGrew & Curcio Expires September 22, 2016 [Page 30]

Internet-Draft Hash-Based Signatures March 2016

9. History

 This is the fourth version of this draft. It has the following
 changes from the previous version:

 In Algorithms 3 and 4, the message was moved from the initial
 position of the input to the function H to the final position, in
 the computation of the intermediate variable Q. This was done to
 improve security by preventing an an attacker that can find a
 collision in H from taking advantage of that fact via the forward
 chaining property of Merkle-Damgard.

 The Hierarchical Signature Scheme was generalized slightly so that
 it can use more than two levels.

 Several points of confusion were corrected; these had resulted
 from incomplete or inconsistent changes from the Merkle approach
 of the earlier draft to the Leighton-Micali approach.

 This section is to be removed by the RFC editor upon publication.

McGrew & Curcio Expires September 22, 2016 [Page 31]

Internet-Draft Hash-Based Signatures March 2016

10. IANA Considerations

 The Internet Assigned Numbers Authority (IANA) is requested to create
 two registries: one for OTS signatures, which includes all of the LM-
 OTS signatures as defined in Section 3, and one for Leighton-Micali
 Signatures, as defined in Section 4. Additions to these registries
 require that a specification be documented in an RFC or another
 permanent and readily available reference in sufficient detail that
 interoperability between independent implementations is possible.
 Each entry in the registry contains the following elements:

 a short name, such as "LMS_SHA256_n32_h10",

 a positive number, and

 a reference to a specification that completely defines the
 signature method test cases that can be used to verify the
 correctness of an implementation.

 Requests to add an entry to the registry MUST include the name and
 the reference. The number is assigned by IANA. These number
 assignments SHOULD use the smallest available palindromic number.
 Submitters SHOULD have their requests reviewed by the IRTF Crypto
 Forum Research Group (CFRG) at cfrg@ietf.org. Interested applicants
 that are unfamiliar with IANA processes should visit

http://www.iana.org.

 The numbers between 0xDDDDDDDD (decimal 3,722,304,989) and 0xFFFFFFFF
 (decimal 4,294,967,295) inclusive, will not be assigned by IANA, and
 are reserved for private use; no attempt will be made to prevent
 multiple sites from using the same value in different (and
 incompatible) ways [RFC2434].

 The LM-OTS registry is as follows.

http://www.iana.org
https://datatracker.ietf.org/doc/html/rfc2434

McGrew & Curcio Expires September 22, 2016 [Page 32]

Internet-Draft Hash-Based Signatures March 2016

 +---------------------+-----------+--------------------+
 | Name | Reference | Numeric Identifier |
 +---------------------+-----------+--------------------+
 | LMOTS_SHA256_N16_W1 | Section 4 | 0x00000001 |
 | | | |
 | LMOTS_SHA256_N16_W2 | Section 4 | 0x00000002 |
 | | | |
 | LMOTS_SHA256_N16_W4 | Section 4 | 0x00000003 |
 | | | |
 | LMOTS_SHA256_N16_W8 | Section 4 | 0x00000004 |
 | | | |
 | LMOTS_SHA256_N32_W1 | Section 4 | 0x00000005 |
 | | | |
 | LMOTS_SHA256_N32_W2 | Section 4 | 0x00000006 |
 | | | |
 | LMOTS_SHA256_N32_W4 | Section 4 | 0x00000007 |
 | | | |
 | LMOTS_SHA256_N32_W8 | Section 4 | 0x00000008 |
 +---------------------+-----------+--------------------+

 Table 2

 The LMS registry is as follows.

 +--------------------+-----------+--------------------+
 | Name | Reference | Numeric Identifier |
 +--------------------+-----------+--------------------+
 | LMS_SHA256_N32_H20 | Section 5 | 0x00000001 |
 | | | |
 | LMS_SHA256_N32_H10 | Section 5 | 0x00000002 |
 | | | |
 | LMS_SHA256_N32_H5 | Section 5 | 0x00000003 |
 | | | |
 | LMS_SHA256_N16_H20 | Section 5 | 0x00000004 |
 | | | |
 | LMS_SHA256_N16_H10 | Section 5 | 0x00000005 |
 | | | |
 | LMS_SHA256_N16_H5 | Section 5 | 0x00000006 |
 +--------------------+-----------+--------------------+

 Table 3

 An IANA registration of a signature system does not constitute an
 endorsement of that system or its security.

McGrew & Curcio Expires September 22, 2016 [Page 33]

Internet-Draft Hash-Based Signatures March 2016

11. Security Considerations

 The security goal of a signature system is to prevent forgeries. A
 successful forgery occurs when an attacker who does not know the
 private key associated with a public key can find a message and
 signature that are valid with that public key (that is, the Signature
 Verification algorithm applied to that signature and message and
 public key will return "valid"). Such an attacker, in the strongest
 case, may have the ability to forge valid signatures for an arbitrary
 number of other messages.

 LM-OTS and LMS are provably secure in the random oracle model, as
 shown by Katz [Katz15]. From Theorem 8 of that reference:

 For any adversary attacking arbitrarily many instances of the one-
 time signature scheme, and making at most q hash queries, the
 probability with which the adversary is able to forge a signature
 with respect to any of the instances is at most q2^(1-8n).

 Here n is the number of bytes in the output of the hash function (as
 defined in Section 4.1). Thus, the security of the algorithms
 defined in this note can be roughly described as follows. For a
 security level of roughly 128 bits, assuming that there are no
 quantum computers, use n=16 by selecting an algorithm identifier with
 N16 in its name. For a security level of roughly 128 bits, assuming
 that there are quantum computers that can compute the input to an
 arbitrary function with computational cost equivalent to the square
 root of the size of the domain of that function [Grover96], use n=32
 by selecting an algorithm identifier with N32 in its name.

11.1. Stateful signature algorithm

 The LMS signature system, like all N-time signature systems, requires
 that the signer maintain state across different invocations of the
 signing algorithm, to ensure that none of the component one-time
 signature systems are used more than once. This section calls out
 some important practical considerations around this statefulness.

 In a typical computing environment, a private key will be stored in
 non-volatile media such as on a hard drive. Before it is used to
 sign a message, it will be read into an application's Random Access
 Memory (RAM). After a signature is generated, the value of the
 private key will need to be updated by writing the new value of the
 private key into non-volatile storage. It is essential for security
 that the application ensure that this value is actually written into
 that storage, yet there may be one or more memory caches between it
 and the application. Memory caching is commonly done in the file
 system, and in a physical memory unit on the hard disk that is

McGrew & Curcio Expires September 22, 2016 [Page 34]

Internet-Draft Hash-Based Signatures March 2016

 dedicated to that purpose. To ensure that the updated value is
 written to physical media, the application may need to take several
 special steps. In a POSIX environment, for instance,the O_SYNC flag
 (for the open() system call) will cause invocations of the write()
 system call to block the calling process until the data has been to
 the underlying hardware. However, if that hardware has its own
 memory cache, it must be separately dealt with using an operating
 system or device specific tool such as hdparm to flush the on-drive
 cache, or turn off write caching for that drive. Because these
 details vary across different operating systems and devices, this
 note does not attempt to provide complete guidance; instead, we call
 the implementer's attention to these issues.

 When hierarchical signatures are used, an easy way to minimize the
 private key synchronization issues is to have the private key for the
 second level resident in RAM only, and never write that value into
 non-volatile memory. A new second level public/private key pair will
 be generated whenever the application (re)starts; thus, failures such
 as a power outage or application crash are automatically
 accommodated. Implementations SHOULD use this approach wherever
 possible.

11.2. Security of LM-OTS Checksum

 To show the security of LM-OTS checksum, we consider the signature y
 of a message with a private key x and let h = H(message) and
 c = Cksm(H(message)) (see Section 4.7). To attempt a forgery, an
 attacker may try to change the values of h and c. Let h' and c'
 denote the values used in the forgery attempt. If for some integer j
 in the range 0 to (u-1), inclusive,

 a' = coef(h', j, w),

 a = coef(h, j, w), and

 a' > a

 then the attacker can compute F^a'(x[j]) from F^a(x[j]) = y[j] by
 iteratively applying function F to the j^th term of the signature an
 additional (a' - a) times. However, as a result of the increased
 number of hashing iterations, the checksum value c' will decrease
 from its original value of c. Thus a valid signature's checksum will
 have, for some number k in the range u to (p-1), inclusive,

 b' = coef(c', k, w),

 b = coef(c, k, w), and

McGrew & Curcio Expires September 22, 2016 [Page 35]

Internet-Draft Hash-Based Signatures March 2016

 b' < b

 Due to the one-way property of F, the attacker cannot easily compute
 F^b'(x[k]) from F^b(x[k]) = y[k].

McGrew & Curcio Expires September 22, 2016 [Page 36]

Internet-Draft Hash-Based Signatures March 2016

12. Acknowledgements

 Thanks are due to Chirag Shroff, Andreas Hulsing, Burt Kaliski, Eric
 Osterweil, Ahmed Kosba, Russ Housley, and Scott Fluhrer for
 constructive suggestions and valuable detailed review. We esepcially
 acknowledge Jerry Solinas, Laurie Law, and Kevin Igoe, who pointed
 out the security benefits of the approach of Leighton and Micali
 [USPTO5432852] and Jonathan Katz, who gave us security guidance.

McGrew & Curcio Expires September 22, 2016 [Page 37]

Internet-Draft Hash-Based Signatures March 2016

13. References

13.1. Normative References

 [FIPS180] National Institute of Standards and Technology, "Secure
 Hash Standard (SHS)", FIPS 180-4, March 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434,
 DOI 10.17487/RFC2434, October 1998,
 <http://www.rfc-editor.org/info/rfc2434>.

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506,
 May 2006, <http://www.rfc-editor.org/info/rfc4506>.

 [USPTO5432852]
 Leighton, T. and S. Micali, "Large provably fast and
 secure digital signature schemes from secure hash
 functions", U.S. Patent 5,432,852, July 1995.

13.2. Informative References

 [C:Merkle87]
 Merkle, R., "A Digital Signature Based on a Conventional
 Encryption Function", Lecture Notes in Computer
 Science crypto87vol, 1988.

 [C:Merkle89a]
 Merkle, R., "A Certified Digital Signature", Lecture Notes
 in Computer Science crypto89vol, 1990.

 [C:Merkle89b]
 Merkle, R., "One Way Hash Functions and DES", Lecture
 Notes in Computer Science crypto89vol, 1990.

 [Grover96]
 Grover, L., "A fast quantum mechanical algorithm for
 database search", 28th ACM Symposium on the Theory of
 Computing p. 212, 1996.

 [Katz15] Katz, J., "Analysis of a proposed hash-based signature
 standard", Contribution to

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2434
http://www.rfc-editor.org/info/rfc2434
https://datatracker.ietf.org/doc/html/rfc4506
http://www.rfc-editor.org/info/rfc4506

McGrew & Curcio Expires September 22, 2016 [Page 38]

Internet-Draft Hash-Based Signatures March 2016

 IRTF http://www.cs.umd.edu/~jkatz/papers/
HashBasedSigs.pdf, 2015.

 [Merkle79]
 Merkle, R., "Secrecy, Authentication, and Public Key
 Systems", Stanford University Information Systems
 Laboratory Technical Report 1979-1, 1979.

McGrew & Curcio Expires September 22, 2016 [Page 39]

http://www.cs.umd.edu/~jkatz/papers/HashBasedSigs.pdf
http://www.cs.umd.edu/~jkatz/papers/HashBasedSigs.pdf

Internet-Draft Hash-Based Signatures March 2016

Appendix A. LM-OTS Parameter Options

 A table illustrating various combinations of n and w with the
 associated values of u, v, ls, and p is provided in Table 4.

 The parameters u, v, ls, and p are computed as follows:

 u = ceil(8*n/w)
 v = ceil((floor(lg((2^w - 1) * u)) + 1) / w)
 ls = (number of bits in sum) - (v * w)
 p = u + v

 Here u and v represent the number of w-bit fields required to contain
 the hash of the message and the checksum byte strings, respectively.
 The "number of bits in sum" is defined according to Section 4.6. And
 as the value of p is the number of w-bit elements of (H(message) ||
 Cksm(H(message))), it is also equivalently the number of byte
 strings that form the private key and the number of byte strings in
 the signature.

 +---------+------------+-----------+-----------+-------+------------+
Hash	Winternitz	w-bit	w-bit	Left	Total
Length	Parameter	Elements	Elements	Shift	Number of
in	(w)	in Hash	in	(ls)	w-bit
Bytes		(u)	Checksum		Elements
(n)			(v)		(p)
+---------+------------+-----------+-----------+-------+------------+					
16	1	128	8	8	137
16	2	64	4	8	68
16	4	32	3	4	35
16	8	16	2	0	18
32	1	256	9	7	265
32	2	128	5	6	133
32	4	64	3	4	67
32	8	32	2	0	34
 +---------+------------+-----------+-----------+-------+------------+

 Table 4

McGrew & Curcio Expires September 22, 2016 [Page 40]

Internet-Draft Hash-Based Signatures March 2016

Appendix B. An iterative algorithm for computing an LMS public key

 The LMS public key can be computed using the following algorithm or
 any equivalent method. The algorithm uses a stack of hashes for data
 and a separate stack of integers to keep track of the level of the
 tree. It also makes use of a hash function with the typical init/
 update/final interface to hash functions; the result of the
 invocations hash_init(), hash_update(N[1]), hash_update(N[2]), ... ,
 hash_update(N[n]), v = hash_final(), in that order, is identical to
 that of the invocation of H(N[1] || N[2] || ... || N[n]).

 Generating an LMS Public Key From an LMS Private Key

 for (i = 0; i < num_lmots_keys; i = i + 2) {
 level = 0;
 for (j = 0; j < 2; j = j + 1) {
 r = node number
 push H(OTS_PUBKEY[i+j] || I || u32str(r) || D_LEAF) onto data stack
 push level onto the integer stack
 }
 while (height of the integer stack >= 2) {
 if level of the top 2 elements on the integer stack are equal {
 hash_init()
 siblings = ""
 repeat (2) {
 siblings = (pop(data stack) || siblings)
 level = pop(integer stack)
 }
 hash_update(siblings)
 r = node number
 hash_update(I || u32str(r) || D_INTR)
 push hash_final() onto the data stack
 push (level + 1) onto the integer stack
 }
 }
 }
 public_key = pop(data stack)

 Note that this pseudocode expects that all 2^h leaves of the tree
 have equal depth. Neither stack ever contains more than h+1
 elements. For typical parameters, these stacks will hold around 512
 bytes of data.

McGrew & Curcio Expires September 22, 2016 [Page 41]

Internet-Draft Hash-Based Signatures March 2016

Appendix C. Example implementation

 --- Pending Revision ---

McGrew & Curcio Expires September 22, 2016 [Page 42]

Internet-Draft Hash-Based Signatures March 2016

Authors' Addresses

 David McGrew
 Cisco Systems
 13600 Dulles Technology Drive
 Herndon, VA 20171
 USA

 Email: mcgrew@cisco.com

 Michael Curcio
 Cisco Systems
 7025-2 Kit Creek Road
 Research Triangle Park, NC 27709-4987
 USA

 Email: micurcio@cisco.com

McGrew & Curcio Expires September 22, 2016 [Page 43]

