
TLS D. McGrew
Internet-Draft D. Wing
Intended status: Informational Cisco
Expires: January 17, 2013 Y. Nir
 Checkpoint
 P. Gladstone
 Independent
 July 16, 2012

TLS Proxy Server Extension
draft-mcgrew-tls-proxy-server-01

Abstract

 Transport Layer Security (TLS) is commonly used to protect HTTP and
 other protocols; it provides encrypted and authenticated
 conversations between a client and a server. In some scenarios, two
 TLS sessions are used, so that a third device can participate in the
 protected communication. In these cases, separate TLS sessions are
 run between the client and the middle device, on one side, and the
 middle device and the server on the other side. This provides the
 needed security, as long as the client, server, and middle device use
 appropriate and consistent security policies. However, this last
 part is problematic; how can the middle device know if a client
 trusts a server? At present, TLS provides no mechanism to coordinate
 policies, and there is no convenient way to do so.

 This note defines a TLS extension that allows a TLS server to provide
 a TLS client with all of information about the other TLS server (or
 servers) that are participating in the application layer traffic that
 the client needs to make a well-informed access control decision.
 This empowers the client to reject TLS sessions that include servers
 that it does not trust.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

McGrew, et al. Expires January 17, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft TLS Proxy Server July 2012

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

McGrew, et al. Expires January 17, 2013 [Page 2]

Internet-Draft TLS Proxy Server July 2012

Table of Contents

1. Introduction . 4
1.1. Requirements Language 5

2. Motivation . 5
3. Operation . 7
3.1. ProxyInfoExtension . 9
3.2. Client Certificates 11

4. Discussion . 14
5. IANA Considerations . 14
6. Security Considerations 15
7. References . 17
7.1. Normative References 17
7.2. Informative References 17

 Authors' Addresses . 18

McGrew, et al. Expires January 17, 2013 [Page 3]

Internet-Draft TLS Proxy Server July 2012

1. Introduction

 Transport Layer Security (TLS) RFC 5246 [RFC5246] is commonly used to
 protect HTTP [RFC2616] as described in [RFC2818]. In some scenarios
 an HTTP proxy is used, for instance, to allow caching, to provide
 anonymity to a client, or to provide security by using an
 application-layer firewall to inspect the HTTP traffic on behalf of
 the client (e.g. to protect it against cross-site scripting attacks).
 A TLS session cannot protect traffic between the client and server
 when an HTTP proxy is present. It is possible to have separate TLS
 sessions between the client and the proxy, on one side, and the proxy
 and the server on the other side, as show in Figure 1 . This
 technique provides the appropriate cryptographic security (see below
 for a discussion of why some other alternatives are less attractive).
 But there is a problem: the presence of the proxy removes the
 client's knowledge about the server. Without this knowledge, the
 client has no way to decide what trust, if any, it should have in the
 server. This is most problematic when the client trusts multiple
 different servers for different applications, or trusts servers from
 different domains.

 Client Proxy Server
 TLS Session #1 TLS Session #2
 <------------> <------------->
 HTTP
 <----------------------------------->

 A proxied HTTPS session, with two independent TLS sessions.

 Figure 1

 A further issue is that the client cannot determine the security
 level of the TLS session between the proxy and the server. For
 instance, a client can negotiate a high security ciphersuite between
 itself and the proxy, but it will have no way of knowing what
 ciphersuite is in use between the client and the server, which could
 be using the obsolete 56-bit Data Encryption Standard (DES) cipher.

 Another point of difficulty is the fact that there can be multiple
 proxies on a particular path. To solve the security issues
 introduced by TLS proxies in a way that is generally applicable, it
 is necessary to accommodate scenarios involving multiple proxies.

 A separate issue is the provisioning of the proxy with information
 about what servers (or rather, which certificates) should be trusted.
 If the laptop has installed certificates that are specific to its

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2818

McGrew, et al. Expires January 17, 2013 [Page 4]

Internet-Draft TLS Proxy Server July 2012

 organization or to a particular domain, how can the proxy know to
 trust these certificates on behalf of the laptop?

 We propose a solution in this note, by describing a TLS extension
 that can be used by a proxy to provide information to a TLS client
 about the TLS server. When this extension is used, the client is
 well informed about the proxy as well as the server, and can make a
 knowledgeable access control decision about the server, using the
 same processes that it uses when the proxy is not present. The data
 in the extension are signed by the proxy in order to bind the
 information about the server to a particular session between the
 client and the proxy. When there are multiple proxies, the client is
 informed about all of them. This extension also works for DTLS.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Motivation

 One motivation for the proxy extension is the benefit that it
 provides a client with a clear and explicit indication whenever a
 device is attempting to act in the role of a TLS proxy server. This
 allows TLS clients to reject sessions that include proxy servers that
 it does not trust. As an extreme example, a client could be
 configured to reject all sessions that involve proxy servers, in
 order to enforce a conservative security policy.

 The following motivating example describes a typical situation with a
 TLS proxy, as in Figure 1. A laptop trusts the server A for a
 particular banking application, and trusts server B for a social
 media application, and can authenticate both servers by using
 standard PKIX certificate checking [RFC5280] and locally stored root
 certificates. Or rather, the client trusts a set of root
 certificates, and uses them to authenticate the TLS servers that it
 connects with. The laptop also trusts the proxy, and has a
 certificate by which it can authenticate the proxy. When making a
 connection directly with B, the laptop can authenticate the server as
 being trusted (that is, the server's public key appears in a
 certificate that has been signed by the appropriate trusted
 certificate authority), and it can also check the authorizations of
 that server (that is, B is authorized to provide the social media
 service, but not any other services such as banking). If the web
 traffic from the laptop goes through an HTTP proxy, then the proxy
 will need to know that it should trust both A and B to act as TLS

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5280

McGrew, et al. Expires January 17, 2013 [Page 5]

Internet-Draft TLS Proxy Server July 2012

 servers. Assuming that it does have this knowledge, it will proxy
 TLS connections from both A and B. However, when the client attempts
 to establish an HTTPS connection to A through the proxy, it has no
 way of knowing what security checks the proxy has applied to the
 connection between the proxy and A. The client cannot tell whether
 the trusted certificate that it associates with A was used on the
 connection between the proxy and A. The inability of the client to be
 confident of the identity of the actual server forces the client to
 trust all TLS servers indiscriminately.

 This obstacle could be overcome by pushing the client's policy (that
 is, information about what servers it trusts for what applications)
 onto the proxy, so that the proxy can make well-informed decisions on
 behalf of the client. However, this alternative has significant
 drawbacks: it requires that the proxy obtain and store a significant
 amount of information about each client, and it requires the
 construction of a syntax by which the client's policy can be
 expressed and understood. In contrast, our solution moves the
 information about the server to the client, which does not require
 the communication or storage of any security policy between the
 client and server.

 TLS proxies without this extension also defeat some recent security
 mechanisms that other groups have added to TLS:

 o Extended Validation certificates ([CAB.EV]) are certificates that
 contain a special indication of the actual organization for which
 the certificate had been issued. Only a minority of public CAs
 are authorized to issue such certificates. By hiding the actual
 server certificate, proxies do not allow the browser to determine
 the EV status of the server certificate. This loses the visual
 indication that browsers typically show when EV certificates are
 present.

 o The DANE protocol ([I-D.ietf-dane-protocol]) stores hashes of
 server certificates in the DNS. Clients are expected to verify
 that the certificate that the server uses is the one specified in
 the DNS record. This fails if the certificate is one generated by
 the proxy.

 o Key Pinning ([I-D.ietf-websec-key-pinning]) is an alternative way
 to make sure the client is connecting to the correct server.
 Unlike DANE, that stores the certificate hash in the DNS, key
 pinning sends that hash in an HTTP header. Still, a client that
 moves behind a proxy will have stored the correct hash, but will
 get in TLS a certificate that does not match that hash, causing
 the connection to fail, unless that feature is disabled behind a
 proxy.

McGrew, et al. Expires January 17, 2013 [Page 6]

Internet-Draft TLS Proxy Server July 2012

 All these cases are solved if the client has access to the actual
 certificate sent by the server. This is provided by this extension.

3. Operation

 In this note, a TLS proxy is a device that acts as a TLS server in
 one session and acts as a TLS client in another session, and passes
 all of the data from one session to the other, possibly modifying it
 in the process. That is, it is a non-transparent proxy, in the terms
 of [RFC2616].

 TLS Session #1 TLS Session #2
 Client <------------> Proxy <-------------> Server

 Session #1 Session #2 Session #3
 Client <---------> Proxy #1 <--------> Proxy #2 <---------> Server

 A TLS session with a single proxy (top) and a TLS session with two
 proxies (bottom).

 Figure 2

 The essential idea is as follows. When a TLS proxy is contacted by a
 client, it does not respond to the client until it completes a TLS
 session with the server. It then sends the client an assertion about
 the server and the session, signed with the same private key that it
 uses in its role as the TLS proxy server. When the client receives
 this assertion, it checks the data in the assertion to determine
 whether or not it trusts the server. The assertion is carried in a
 ProxyInfoExtension, which is defined below.

 This extension carries all of the information that is available to a
 TLS client about a TLS server; thus the client can use existing
 authorization checking processes. The client will need to verify the
 hostname and/or address, and check to see if the certificate has been
 revoked. The client authenticates the proxy server as usual during
 the TLS session. This ensures that the client trusts the proxy, and
 because of the signature on the assertion, it should trust the server
 certificate carried in the assertion. The proxy need not perform any
 checking on the server certificate, because this check is done by the
 client. Of course, by completing a TLS exchange with the server, the
 proxy verifies that the server holds the private key associated with
 that certificate.

 If the client attempts session resumption, and the proxy can resume
 the session, then it must attempt to resume the session with the

https://datatracker.ietf.org/doc/html/rfc2616

McGrew, et al. Expires January 17, 2013 [Page 7]

Internet-Draft TLS Proxy Server July 2012

 server. If the server resumes the session, then the proxy must
 resume the session with the client. If the proxy cannot resume the
 session with the client, then it MUST begin a fresh session with the
 server, and not resume the session with the client. If the server
 does not resume, the proxy MUST not resume the session with the
 client.

 Because there may be more than one proxy in any path, the TLS
 extension carries a list of assertions.

 On receiving a ClientHello from the client, the proxy:

 1. Checks for a ProxyInfoExtension in the ClientHello; if there is
 no such extension, then the following steps cannot be performed
 and are omitted,

 2. Establishes a TLS session with the server (session #2 in
 Figure 1); a ProxyInfoExtension is included in that session,

 3. Constructs a ProxyInfo structure by populating it with
 information about the server and the current session with that
 server; if the sever sends back a ProxyInfoExtension, then the
 ProxyInfo structure is included as the next_proxy_info,

 4. Signs the ProxyInfo structure with the private key corresponding
 to the server certificate it uses in session #1,

 5. Completes the session with the client (session #1 in Figure 1)
 and provides the ProxyInfoExtension in that session,

 The proxy MAY

 Perform revocation checking on the certificate chain of the server
 in session #2, and indicate that it has done this in the extension
 by setting performed_revocation_checking to "true".

 Note that the entity acting in the role of the server in session #2
 could be a proxy, but in the above it is referred to as a server
 because that is the role that it performs in that TLS session.

 When TLS is used in HTTPS, the proxy MUST perform the Server Identity
 checks described in Section 3.1 of [RFC2818].

 The normal operation of the proxy is to accept the (extended)
 ClientHello from the client and then send a ClientHello to the
 server. It is recommended that the TLS Proxy support commonly
 deployed TLS extensions (as defined in [RFC4366] et al). Any TLS
 extensions present on the original ClientHello MUST be examined and

https://datatracker.ietf.org/doc/html/rfc2818#section-3.1
https://datatracker.ietf.org/doc/html/rfc4366

McGrew, et al. Expires January 17, 2013 [Page 8]

Internet-Draft TLS Proxy Server July 2012

 either ignored, processed or forwarded (possibly after modification)
 to the TLS server as part of the new ClientHello.

 The client:

 1. Includes a ProxyInfoExtension in the ClientHello message,

 2. Checks for ProxyInfoExtension in the ServerHello message; if
 there is no such extension, then the TLS processing continues as
 usual; otherwise,

 3. Processes the ProxyInfo extension by checking the validity of the
 digitally-signed struct, then performing the usual server
 authentication and authorization checking on the
 server_certificate_list in the ProxyInfo,

 4. Checks the revocation_checking_performed flag in the ProxyInfo;
 if it is "false", then the client SHOULD perform revocation
 checking on the server_certificate_list,

 5. Checks the ProxyInfoFlag in the next_proxy_info field; if it is
 not_empty, then the client returns to step 3 and performs that
 processing on the next_proxy_info.

 In order to maintain backwards compatibility for existing TLS
 clients, the TLS proxies MUST (by default) perform certificate
 validation for the certificates that they receive from the server.
 The use of the ProxyInfoExtension in the extended ClientHello is an
 indication by the client to request the alternate processing defined
 by this note. In particular, if this extension is present in the
 extended ClientHello, then the TLS proxy should not use its own
 private key to dynamically generate a certificate.

 The proxy will relay the data between the client and peer data
 connections. End-to-end flow control is maintained by the relay
 process: if the relay process is no longer able to write data to the
 destination of the relayed data, the relay process stops reading data
 from the source.

3.1. ProxyInfoExtension

 The syntax of the ProxyInfo extension is as follows:

McGrew, et al. Expires January 17, 2013 [Page 9]

Internet-Draft TLS Proxy Server July 2012

 struct {
 ProtocolVersion tls_version;
 CipherSuite cipher_suite;
 CompresseionMethod compression_method;
 } ConnectionSecurityParameters;

 enum { client_to_proxy, proxy_to_client,
 proxy_to_server, server_to_proxy } ProxyInfoFlag;

 struct {
 select (ProxyInfoFlag) {
 case client_to_proxy:
 /* zero length body */
 case proxy_to_client:
 digitally-signed struct {
 ConnectionSecurityParameters connection_parameters;
 ASN.1Cert server_certificate_list<0..2^8-1>;
 Random server_random; /* server-side server random */
 Boolean revocation_checking_performed;
 ProxyInfo next_proxy_info;
 } SignedProxyInfo;
 case proxy_to_server:
 digitally-signed struct {
 ASN.1Cert proxy_certificate_list<0..2^8-1>;
 ProxyInfo next_proxy_info;
 } SignedProxyInfo2;
 case server_to_proxy:
 /* zero length body */
 }
 } ProxyInfo;

 struct {
 ProxyInfo proxy_info;
 } ProxyInfoExtension;

 The ProxyInfo structure is defined recursively, so that the signature
 of each proxy authenticates the information provided by the proxies
 that follow it on the path. The ProxyInfo contains the
 ProxyInfoFlag, which indicates whether or not the ProxyInfo is empty
 (in which case it contains no other fields) or not (in which case it
 contains a SignedProxyInfo structure). The SignedProxyInfo structure
 is signed with the public key that the proxy uses in its role as the
 TLS server (in session #1). That structure contains the
 connection_parameters that describe the security of session #2, and
 the certificate chain of the server from session #2 in the
 server_certificate_list. If the proxy has performed revocation
 checking on that certificate chain, it indicates this by setting the

McGrew, et al. Expires January 17, 2013 [Page 10]

Internet-Draft TLS Proxy Server July 2012

 Boolean revocation_checking_performed. If the server in session #2
 was actually a proxy itself, and it provides a ProxyInfo struct, then
 that struct is included in the next_proxy_info field. Otherwise, the
 next_proxy_info field contains an empty ProxyInfo.

 enum {
 /* ... */
 proxy_info(TBD1), (65535)
 } ExtensionType;

3.2. Client Certificates

 The mechanism described above supports server authentication and
 requires updates to the TLS client (e.g., the web browser) to support
 TLS proxying. Some TLS connections use client certificates
 (sometimes called mutual authentication). When TLS client
 certificates are used, the TLS server must be updated to support TLS
 proxy. This section describes the handshake changes beyond those
 described in the previous section.

 On the first TLS connection to a server, the TLS proxy does not know
 if the TLS server will request a client certificate (that is, if the
 server will send a CertificateRequest in its TLS handshake). So, the
 TLS proxy first establishes a TCP and TLS connection to the server
 (as described in previous section) and when the proxy sees the TLS
 CertificateRequest from the server, it starts a new TCP connection.
 Then the following steps occur:

 1. The client sends ClientHello with ProxyInfo. If the ClientHello
 does not include ProxyInfo, processing stops and the following
 steps cannot be performed.

 2. The proxy, after determining the server is going to request the
 client's certificate (see proceeding paragraph), initiates a TLS
 session (TLS Session #2) to the server. The ProxyInfo in TLS
 Session #2 contains two ProxyInfo datastructures -- the ProxyInfo
 from Session #1 and the second containing the proxy's own
 certificate.

 3. The server acknowledges it supports ProxyInfo, by including
 ProxyInfo in its ServerHello with a nonce it wants signed by the
 client, along with its CertificateRequest.

 4. On Session #1, the proxy sends a ServerHello, and includes the
 ProxyInfo from the previous step.

McGrew, et al. Expires January 17, 2013 [Page 11]

Internet-Draft TLS Proxy Server July 2012

 5. On Session #1, the client sends its Certificate, its
 CertificateVerify, ChangeCipherSpec, and Finished.

 6. The proxy valididates the CertificateVerify message. If it fails
 validation, both of the TLS sessions are abandoned.

 7. On Session #2, the proxy sends the client's certificate (obtained
 in the previous step) in ProxyInfo, the client's
 CertificateVerify (obtained in the previous step), its own
 ClientKeyExchange, ChangeCipherSpec, and Finished.

 8. The TLS server verifies the TLS client initiated the TLS
 communication by using the data in ProxyInfo, the nonce it sent
 in Step 3, and CertificateVerify.

McGrew, et al. Expires January 17, 2013 [Page 12]

Internet-Draft TLS Proxy Server July 2012

 A message flow diagram of the TLS proxy, after the proxy has
 determined the TLS server requests a client certificate

 client TLS SESSION #1 proxy TLS SESSION #2 server
 | | |
 1. |--client Hello---------->| |
 | + ProxyInfo | |
 | | |
 2. | |----client Hello-------->|
 | | + ProxyInfo |
 | | |
 3. | |<---ServerHello----------|
 | | + ProxyInfo |
 | |<---Certificate----------|
 | |<---ServerKeyExchange----|
 | |<---CertificateRequese---|
 | |<---ServerHelloDone------|
 | | |
 4. |<---ServerHello----------| |
 | + ProxyInfo | |
 |<---Certificate----------| |
 |<---ServerKeyExchange----| |
 |<---CertificateRequest---| |
 |<---ServerHelloDone------| |
 | | |
 5. |---Certificate---------->| |
 |---ClientKeyExchange---->| |
 |---CertificateVerify---->| |
 |---ChangeCipherSpec----->| |
 |---Finished------------->| |
 | | |
 6. | |--Certificate----------->|
 | |--ProxyInfo------------->|
 | |--ClientKeyExchange----->|
 | |--ChangeCipherSpec------>|
 | |--Finished-------------->|

 The ProxyCertVerify is carried from the client to the server (that
 is, it is un-modified by the proxy), which allows the TLS server to
 check that certificate. Because there are two separate TLS, Session
 #1 and Session #2, ProxyCertVerify cannot utilize a signature over
 the TLS handshake messages (as with the classic CertificateVerify).
 Instead, the new ProxyCertVerify message contains two signatures
 which provide a similar (but not identical) function. One signature
 is over TLS SESSION #2's ServerHello (which is conveyed into Session
 #1's ProxyInfo), signed using the client's private key. The second
 signature is over TLS SESSION #2's entire handshake, signed using the
 private key of the TLS proxy.

McGrew, et al. Expires January 17, 2013 [Page 13]

Internet-Draft TLS Proxy Server July 2012

4. Discussion

 The ProxyInfo extension could contain information about the checking
 that the proxy performed on the server and its certificate. For
 example, if the DNS name of the server matched the subjectAltName,
 this fact could be indicated. It may be desirable to enumerate the
 ways in which the server can match its certificate, to allow the
 proxy to indicate to the client which of those ways was positive for
 a particular server.

 A potential issue with the ProxyInfo extension is that it can be
 large, because the certificate chains that it carries can be large.
 Roughly speaking, the amount of certificate data presented to the
 client is proportional to the number of proxies on the path. It is
 undesirable to require that so much data be sent, but on the other
 hand, the client does need all of the data in order to make a well-
 informed access control decision. It appears that the data is the
 minimum required, in the sense that removing any of the data would
 make it impossible for the client to assess the security of the
 entire path.

 The proxy is required to do the authentication checking on the
 signatures created by the server, but not the authorization checking
 or revocation checking. The responsibility for authorization
 checking is not put onto the proxy because it does not know the
 security policy of the client; in particular, the proxy does not know
 which servers the client trusts for which applications. The
 responsibility for revocation checking is not put onto the proxy
 because that process is better left to the client. The client can
 perform revocation checking on all of the certificate lists for all
 of the proxies and the server in parallel, whereas if each proxy
 performed the revocation checking, those processes would necessarily
 be serial. Since revocation checking can take a significant amount
 of time, the serial approach could add a significant amount of
 latency to the TLS session, and potentially trigger retransmissions.
 The parallel approach not only reduces the overall latency, but it
 moves it outside of the client's retransmission timer for the
 ClientHello message.

 The ProxyInfo extension could convey the IP address of the server, or
 other network layer information such as the DNS name. However, it is
 not clear that this information is needed, so it was not included.

5. IANA Considerations

 This document requests IANA to update its registry of TLS extension
 types to assign an entry, referred herein as proxy_info, with the

McGrew, et al. Expires January 17, 2013 [Page 14]

Internet-Draft TLS Proxy Server July 2012

 number TBD1.

6. Security Considerations

 In a situation with a client, server, and a middle device that all
 need to participate in an encrypted and authenticated session, the
 appropriate security goals are to

 preserve the security properties of the cryptographic protocols in
 use,

 make the client aware of both the middle device and the server,
 able to authenticate the both of those devices, and able to check
 that both of the devices are trusted/authorized to act in their
 roles,

 allow the client to make access control decisions that are as
 well-informed as when only the client and server are present.

 The idea in this note meets these goals.

 We briefly describe some alternative approaches that do not meet
 these security goals.

 First, we consider the proliferation of private keys. In order to
 allow one device to act as a proxy for a server, the private key of
 the server could be shared with the proxy. This practice may be
 workable when there is a one-to-one correspondence between proxies
 and servers, but it substantially increases the security risk. If a
 proxy contains multiple private keys, it becomes an attractive target
 for an attacker.

 Second, we consider the session-key proliferation approach in which
 there is only a single TLS session, negotiated between the client and
 server, and the proxy participates in the session because either the
 client or the server has passed the secret session keys to the proxy
 (using some secure channel). One attempt at this approach is in the
 now abandoned [I-D.nir-tls-keyshare]. If the proxy is completely
 passive, and it only decrypts traffic from the TLS session and never
 modifies the data in that session, then this method can be secure.
 However, if the proxy rewrites the data inside the session, or
 originates messages, then the security of the TLS protocol will be
 undermined. Message authentication can be subverted because an
 attacker can intercept a message sent by the server, and forward it
 on to the client, bypassing the proxy. By interleaving messages sent
 by the proxy with ones sent by the server, an attacker can
 potentially confuse a client, and can certainly cause a denial of

McGrew, et al. Expires January 17, 2013 [Page 15]

Internet-Draft TLS Proxy Server July 2012

 service. Confidentiality may be undermined as well; if RC4, AES-GCM,
 or AES-CCM is in use, information about the plaintext will be leaked
 due to keystream reuse. Session-key proliferation is not secure when
 the proxy needs to edit the session. Most proxies do need to edit
 the session, and we regard it as potentially hazardous to construct a
 TLS proxy along these lines. Suppose that such a proxy were
 implemented because it was anticipated that the application proxy
 would be read-only, but then a future revision to the application
 protocol or the goals of the application proxy made it necessary to
 have the proxy edit the application session. If the session-key
 proliferation approach had been used, the implementer would be in the
 awkward position of having to choose between the costly path of
 implementing a completely new approach that preserved security, and
 the quick and inexpensive path of allowing the proxy to edit the
 session to the detriment of the security of the application.

 With the ProxyInfo extension, there is no protection against the
 proxy lying about the security characteristics of the onward
 connection, unless client certificates are used. However, in any
 proxying scenario, it is necessary to trust the proxy, just as a
 client must trust the server. For instance, any proxy (not just one
 using the ProxyInfo extension) could choose to forward the plaintext
 from the session to untrusted third parties, and violate the trust of
 the client. It is the responsibility of the client to decide whether
 or not a particular device should be trusted to act in the role of
 proxy. The ProxyInfo proposal has the benefit of making the presence
 of the proxy obvious, and allows the client to refuse to deal with
 untrusted proxies.

 Many clients use password-based authentication within a TLS tunnel.
 When a proxy is present, it can learn plaintext passwords, and it can
 gain the information needed to perform offline dictionary attacks
 against authentication systems that use challenge-response methods.
 This is a highly undesirable aspect of TLS proxying. The ProxyInfo
 extension does nothing to directly help this issue. However, it does
 indirectly improve the situation, because it empowers the client with
 information that enables it to reject proxies and servers that it
 should not trust. Since the TLS authentication (including both sever
 and proxy authentication) takes place before the password-based
 authentication, the client can protect itself by rejecting sessions
 with inappropriate proxies, or inappropriate servers on the path
 beyond the proxy.

 In theory, the cryptographic proxying scenario could be considered as
 multiparty security negotiation and key establishment. It may be
 interesting to investigate such ideas because they can allow for more
 equitable negotiation of session parameters, and additional security
 properties. This note focuses on compatibility with existing

McGrew, et al. Expires January 17, 2013 [Page 16]

Internet-Draft TLS Proxy Server July 2012

 specifications and implementations, so these considerations are
 beyond its scope.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

7.2. Informative References

 [CAB.EV] CA/Browser Forum, "GUIDELINES for the PROCESSING of
 EXTENDED VALIDATION CERTIFICATES", CAB GUIDELINES for the
 PROCESSING of EXTENDED VALIDATION CERTIFICATES,
 January 2009.

 [I-D.ietf-dane-protocol]
 Hoffman, P. and J. Schlyter, "The DNS-Based Authentication
 of Named Entities (DANE) Transport Layer Security (TLS)
 Protocol: TLSA", draft-ietf-dane-protocol-23 (work in
 progress), June 2012.

 [I-D.ietf-websec-key-pinning]
 Evans, C. and C. Palmer, "Public Key Pinning Extension for
 HTTP", draft-ietf-websec-key-pinning-02 (work in
 progress), June 2012.

 [I-D.nir-tls-keyshare]
 Nir, Y., "A Method for Sharing Record Protocol Keys with a
 Middlebox in TLS", draft-nir-tls-keyshare-02 (work in
 progress), March 2012.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/draft-ietf-dane-protocol-23
https://datatracker.ietf.org/doc/html/draft-ietf-websec-key-pinning-02
https://datatracker.ietf.org/doc/html/draft-nir-tls-keyshare-02

McGrew, et al. Expires January 17, 2013 [Page 17]

Internet-Draft TLS Proxy Server July 2012

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Authors' Addresses

 David A. McGrew
 Cisco Systems, Inc.
 510 McCarthy Blvd.
 Milpitas, CA 95035
 US

 Phone: (408) 525 8651
 Email: mcgrew@cisco.com
 URI: http://www.mindspring.com/~dmcgrew/dam.htm

 Dan Wing
 Cisco Systems, Inc.
 170 West Tasman Drive
 San Jose, California 95134
 USA

 Email: dwing@cisco.com

 Yoav
 Check Point Software Technologies Ltd.
 5 Ha'Solelim Street
 Tel Aviv, 67897
 Israel

 Email: ynir@checkpoint.com

 Philip Gladstone
 Independent

https://datatracker.ietf.org/doc/html/rfc2616
http://www.mindspring.com/~dmcgrew/dam.htm

McGrew, et al. Expires January 17, 2013 [Page 18]

