
Network Working Group P. McManus
Internet-Draft Mozilla
Intended status: Standards Track December 19, 2016
Expires: June 22, 2017

HTTP Immutable Responses
draft-mcmanus-immutable-01

Abstract

 The immutable HTTP response Cache-Control extension allows servers to
 identify resources that will not be updated during their freshness
 lifetime. This assures that a client never needs to revalidate a
 cached fresh resource to be certain it has not been modified.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 22, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

McManus Expires June 22, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft I-D December 2016

1. Introduction

 The HTTP freshness lifetime [RFC7234] caching attribute specifies
 that a client may safely reuse a response to satisfy future requests
 over a specific period of time. It does not specify that the
 resource will be not be modified during that period.

 For instance, a front page newspaper photo with a freshness lifetime
 of one hour would mean that no user should see a photo more than one
 hour old. However, the photo could be updated at any time resulting
 in different users seeing different photos depending on the contents
 of their caches for up to one hour. This is compliant with the
 caching mechanism defined in [RFC7234].

 Users that need to confirm there have been no updates to their
 current cached resources typically invoke the reload (or refresh)
 mechanism in the user agent. This in turn generates a conditional
 request [RFC7232] and either a new representation or, if unmodified,
 a 304 response [RFC7231] is returned. A user agent that manages HTML
 and its dependent sub-resources may issue hundreds of conditional
 requests to refresh all portions of a common HTML page [REQPERPAGE].

 Through the use of the versioned URL design pattern some content
 providers never create more than one variant of a sub-resource. When
 these resources need an update they are simply published under a new
 URL, typically embedding a variant identifier in the path, and
 references to the sub-resource are updated with the new path
 information.

 For example, https://www.example.com/101016/main.css might be updated
 and republished as https://www.example.com/102026/main.css and the
 html that references it is changed at the same time. This design
 pattern allows a very large freshness lifetime to be applied to the
 sub-resource without guessing when it will be updated in the future.

 Unfortunately, the user-agent is not aware of the versioned URL
 design pattern. User driven refresh events still translate into
 wasted conditional requests for each sub-resource as each will return
 304 responses.

 The immutable HTTP response Cache-Control extension allows servers to
 identify resources that will not be updated during their freshness
 lifetime. This effectively instructs the client that any conditional
 request for a previously served variant of that resource may be
 safely skipped without worrying that it has been updated.

https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7231

McManus Expires June 22, 2017 [Page 2]

Internet-Draft I-D December 2016

2. The immutable Cache-Control extension

 When present in an HTTP response, the immutable Cache-Control
 extension indicates that the origin server MUST NOT update the
 representation of that resource during the freshness lifetime of the
 response.

 The immutable extension only applies during the freshness lifetime of
 the response. Stale responses SHOULD be revalidated as they normally
 would be in the absence of immutable.

 The immutable extension takes no arguments and if any arguments are
 present they have no meaning. Multiple instances of the immutable
 extension are equivalent to one instance. The presence of an
 immutable Cache-Control extension in a request has no effect.

2.1. About Intermediaries

 An immutable response has the same semantic meaning for proxy clients
 as it does for User-Agent based clients and they therefore MAY also
 presume a conditional revalidation for a response marked immutable
 would return 304. A proxy client who uses immutable to anticipate a
 304 response may choose whether to reply with a 304 or 200 to its
 requesting client.

2.2. Example

 Cache-Control: max-age=31536000, immutable

3. Security Considerations

 The immutable mechanism acts as form of soft pinning and, as with all
 pinning mechanisms, creates a vector for amplification of cache
 corruption incidents. These incidents include cache poisoning
 attacks. Three mechanisms are suggested for mitigation of this risk:

 o Clients should ignore immutable for resources that are not part of
 an authenticated context such as HTTPS. Authenticated resources
 are less vulnerable to cache poisoning.

 o User-Agents often provide two different refresh mechanismss:
 reload and some form of force-reload. The latter is used to
 rectify interrupted loads and other corruption. These reloads,
 typically indicated through no-cache request attributes, should
 ignore immutable as well.

McManus Expires June 22, 2017 [Page 3]

Internet-Draft I-D December 2016

 o Clients should ignore immutable for resources that do not provide
 a strong indication that the stored response size is the correct
 response size such as responses delimited by connection close.

4. IANA Considerations

 [RFC7234] sections 7.1 and 7.1.2 require registration of the
 immutable extension in the "Hypertext Transfer Protocol (HTTP) Cache
 Directive Registry" with IETF Review.

 o Cache-Directive: immutable

 o Pointer to specification text: [this document]

5. Acknowledgments

 Thank you to Ben Maurer for partnership in developing and testing
 this idea. Thank you to Amos Jeffries for help with proxy
 interactions.

6. References

6.1. Normative References

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <http://www.rfc-editor.org/info/rfc7232>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <http://www.rfc-editor.org/info/rfc7234>.

6.2. Informative References

 [REQPERPAGE]
 "HTTP Archive", n.d.,
 <http://httparchive.org/interesting.php#reqTotal>.

https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
http://www.rfc-editor.org/info/rfc7232
https://datatracker.ietf.org/doc/html/rfc7234
http://www.rfc-editor.org/info/rfc7234
http://httparchive.org/interesting.php#reqTotal

McManus Expires June 22, 2017 [Page 4]

Internet-Draft I-D December 2016

Author's Address

 Patrick McManus
 Mozilla

 Email: pmcmanus@mozilla.com

McManus Expires June 22, 2017 [Page 5]

