
Workgroup: KT Working Group

Internet-Draft:

draft-mcmillion-key-transparency-01

Published: 16 May 2023

Intended Status: Informational

Expires: 17 November 2023

Authors: B. McMillion

Key Transparency

Abstract

While there are several established protocols for end-to-end

encryption, relatively little attention has been given to securely

distributing the end-user public keys for such encryption. As a

result, these protocols are often still vulnerable to eavesdropping

by active attackers. Key Transparency is a protocol for distributing

sensitive cryptographic information, such as public keys, in a way

that reliably either prevents interference or detects that it

occurred in a timely manner. In addition to distributing public

keys, it can also be applied to ensure that a group of users agree

on a shared value or to keep tamper-evident logs of security-

critical events.

Discussion Venues

This note is to be removed before publishing as an RFC.

Source for this draft and an issue tracker can be found at https://

github.com/Bren2010/draft-key-transparency.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 November 2023.

¶

¶

¶

¶

¶

¶

¶

https://github.com/Bren2010/draft-key-transparency
https://github.com/Bren2010/draft-key-transparency
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Protocol Overview

3.1. Basic Operations

3.2. Deployment Modes

3.3. Security Guarantees

4. Tree Construction

4.1. Log Tree

4.2. Prefix Tree

4.3. Combined Tree

4.3.1. Implicit Binary Search Tree

4.3.2. Monitoring

5. Preserving Privacy

6. Ciphersuites

7. Cryptographic Computations

7.1. Commitment

7.2. Prefix Tree

7.3. Log Tree

7.4. Tree Head Signature

8. Tree Proofs

8.1. Log Tree

8.2. Prefix Tree

8.3. Combined Tree

9. Update Format

10. User Operations

10.1. Search

10.2. Update

10.3. Monitor

10.4. Distinguished

11. Third Parties

11.1. Management

11.2. Auditing

¶

¶

https://trustee.ietf.org/license-info

12. Operational Considerations

12.1. Detecting Forks

12.2. Combining Multiple Logs

12.3. Obscuring Update Rate

13. Security Considerations

13.1. Contact Monitoring

13.2. Third-party Management

13.3. Third-party Auditing

14. IANA Considerations

14.1. KT Ciphersuites

14.2. KT Designated Expert Pool

15. References

15.1. Normative References

15.2. Informative References

Acknowledgments

Author's Address

1. Introduction

Before any information can be exchanged in an end-to-end encrypted

system, two things must happen. First, participants in the system

must provide to the service operator any public keys they wish to

use to receive messages. Second, the service operator must

distribute these public keys to any participants that wish to send

messages to those users.

Typically this is done by having users upload their public keys to a

simple directory where other users can download them as necessary.

With this approach, the service operator is trusted to not

manipulate the directory by inserting malicious public keys, which

means that the underlying encryption protocol can only protect users

against passive eavesdropping on their messages.

However most messaging systems are designed such that all messages

exchanged between users flow through the service operator's servers,

so it's extremely easy for an operator to launch an active attack.

That is, the service operator can insert public keys into the

directory that they know the private key for, attach those public

keys to a user's account without the user's knowledge, and then

inject these keys into active conversations with that user to

receive plaintext data.

Key Transparency (KT) solves this problem by requiring the service

operator to store user public keys in a cryptographically-protected

append-only log. Any malicious entries added to such a log will

generally be visible to all users, in which case a user can detect

that they're being impersonated by viewing the public keys attached

to their account. However, if the service operator attempts to

conceal some entries of the log from some users but not others, this

¶

¶

¶

creates a "forked view" which is permanent and easily detectable

with out-of-band communication.

The critical improvement of KT over related protocols like

Certificate Transparency [RFC6962] is that KT includes an efficient

protocol to search the log for entries related to a specific

participant. This means users don't need to download the entire log,

which may be substantial, to find all entries that are relevant to

them. It also means that KT can better preserve user privacy by only

showing entries of the log to participants that genuinely need to

see them.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Protocol Overview

From a networking perspective, KT follows a client-server

architecture with a central Transparency Log, acting as a server,

which holds the authoritative copy of all information and exposes

endpoints that allow clients to query or modify stored data. Clients

coordinate with each other through the server by uploading their own

public keys and downloading the public keys of other clients.

Clients are expected to maintain relatively little state, limited

only to what is required to interact with the log and ensure that it

is behaving honestly.

From an application perspective, KT works as a versioned key-value

database. Clients insert key-value pairs into the database where,

for example, the key is their username and the value is their public

key. Clients can update a key by inserting a new version with new

data. They can also look up the most recent version of a key or any

past version. From this point forward, "key" will refer to a lookup

key in a key-value database and "public key" or "private key" will

be specified if otherwise.

While this document uses the TLS presentation language [RFC8446] to

describe the structure of protocol messages, it does not require the

use of a specific transport protocol. This is intended to allow

applications to layer KT on top of whatever transport protocol their

application already uses. In particular, this allows applications to

continue relying on their existing access control system.

Applications may enforce arbitrary access control rules on top of KT

such as requiring a user to be logged in to make KT requests, only

¶

¶

¶

¶

¶

¶

allowing a user to lookup the keys of another user if they're

"friends", or simply applying a rate limit. Applications SHOULD

prevent users from modifying keys that they don't own. The exact

mechanism for rejecting requests, and possibly explaining the reason

for rejection, is left to the application.

Finally, this document does not assume that clients can reliably

communicate with each other out-of-band (that is, away from any

interference by the Transparency Log operator), or communicate with

the Transparency Log anonymously. However, Section 12.1 gives

guidance on how these channels can be utilized effectively when or

if they're available.

3.1. Basic Operations

The operations that can be executed by a client are as follows:

Search: Performs a lookup on a specific key in the most recent

version of the log. Clients may request either a specific

version of the key, or the most recent version available. If

the key-version pair exists, the server returns the

corresponding value and a proof of inclusion.

Update: Adds a new key-value pair to the log, for which the

server returns a proof of inclusion. Note that this means that

new values are added to the log immediately in response to an

Update operation, and are not queued for later insertion with a

batch of other values.

Monitor: While Search and Update are run by the client as

necessary, monitoring is done in the background on a recurring

basis. It both checks that the log is continuing to behave

honestly (all previously returned keys remain in the tree) and

that no changes have been made to keys owned by the client

without the client's knowledge.

3.2. Deployment Modes

In the interest of satisfying the widest range of use-cases

possible, three different modes for deploying a Transparency Log are

described in this document. Each mode has slightly different

requirements and efficiency considerations for both the service

operator and the end-user.

Third-party Management and Third-party Auditing are two deployment

modes that require the service operator to delegate part of the

operation of the Transparency Log to a third party. Users are able

to run more efficiently as long as they can assume that the service

operator and the third party won't collude to trick them into

accepting malicious results.

¶

¶

¶

1.

¶

2.

¶

3.

¶

¶

¶

With both third-party modes, all requests from end-users are

initially routed to the service operator and the service operator

coordinates with the third party themself. End-users never contact

the third party directly, however they will need a signature public

key from the third party to verify its assertions.

With Third-party Management, the third party performs the majority

of the work of actually storing and operating the log, and the

service operator only needs to sign new entries as they're added.

With Third-party Auditing, the service operator performs the

majority of the work of storing and operating the log, and obtains

signatures from a lightweight third-party auditor at regular

intervals asserting that the service operator has been constructing

the tree correctly.

Contact Monitoring, on the other hand, supports a single-party

deployment with no third party. The tradeoff is that executing the

background monitoring protocol requires an amount of work that's

proportional to the number of keys a user has looked up in the past.

As such, it's less suited to use-cases where users look up a large

number of ephemeral keys, but would work ideally in a use-case where

users look up a small number of keys repeatedly (for example, the

keys of regular contacts).

The deployment mode of a Transparency Log is chosen when the log is

first created and isn't able to be changed over the log's lifetime.

This makes it important for operators to carefully consider the best

long-term approach based on the specifics of their application,

although migrating from a log operating in one deployment mode to

another is possible if it becomes necessary (see Section 12.2).

3.3. Security Guarantees

A client that executes a Search or Update operation correctly (and

does any required monitoring afterwards) receives a guarantee that

the Transparency Log operator also executed the operation correctly

and in a way that's globally consistent with what it has shown all

other clients. That is, when a client searches for a key, they're

guaranteed that the result they receive represents the same result

that any other client searching for the same key would've seen. When

a client updates a key, they're guaranteed that other clients will

see the update the next time they search for the key.

If the Transparency Log operator does not execute an operation

correctly, then either:

The client will detect the error immediately and reject the

result of an operation, or

The client will permanently enter an invalid state.

¶

¶

¶

¶

¶

¶

1.

¶

2. ¶

Depending on the exact reason that the client enters an invalid

state, it will either be detected by background monitoring or the

next time that out-of-band communication is available. Importantly,

this means that clients must stay online for some fixed amount of

time after entering an invalid state for it to be successfully

detected.

The exact caveats of the above guarantee depend naturally on the

security of underlying cryptographic primitives, but also the

deployment mode that the Transparency Log relies on:

Third-Party Management and Third-Party Auditing require an

assumption that the service operator and the third-party manager/

auditor do not collude to trick clients into accepting malicious

results.

Contact Monitoring requires an assumption that the client that

owns a key and all clients that look up the key do the necessary

monitoring afterwards.

4. Tree Construction

KT relies on two combined hash tree structures: log trees and prefix

trees. This section describes the operation of both at a high level

and the way that they're combined. More precise algorithms for

computing the intermediate and root values of the trees are given in

Section 7.

Both types of trees consist of nodes which have a byte string as

their value. A node is either a leaf if it has no children, or a

parent if it has either a left child or a right child. A node is

the root of a tree if it has no parents, and an intermediate if it

has both children and parents. Nodes are siblings if they share the

same parent.

The descendants of a node are that node, its children, and the

descendants of its children. A subtree of a tree is the tree given

by the descendants of a node, called the head of the subtree.

The direct path of a root node is the empty list, and of any other

node is the concatenation of that node's parent along with the

parent's direct path. The copath of a node is the node's sibling

concatenated with the list of siblings of all the nodes in its

direct path, excluding the root.

4.1. Log Tree

Log trees are used for storing information in the chronological

order that it was added and are constructed as left-balanced binary

trees.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

A binary tree is balanced if its size is a power of two and for any

parent node in the tree, its left and right subtrees have the same

size. A binary tree is left-balanced if for every parent, either the

parent is balanced, or the left subtree of that parent is the

largest balanced subtree that could be constructed from the leaves

present in the parent's own subtree. Given a list of n items, there

is a unique left-balanced binary tree structure with these elements

as leaves. Note also that every parent always has both a left and

right child.

Log trees initially consist of a single leaf node. New leaves are

added to the right-most edge of the tree along with a single parent

node, to construct the left-balanced binary tree with n+1 leaves.

While leaves contain arbitrary data, the value of a parent node is

always the hash of the combined values of its left and right

children.

Log trees are special in that they can provide both inclusion

proofs, which demonstrate that a leaf is included in a log, and

consistency proofs, which demonstrate that a new version of a log is

an extension of a past version of the log.

An inclusion proof is given by providing the copath values of a

leaf. The proof is verified by hashing together the leaf with the

copath values and checking that the result equals the root value of

the log. Consistency proofs are a more general version of the same

idea. With a consistency proof, the prover provides the minimum set

of intermediate node values from the current tree that allows the

verifier to compute both the old root value and the current root

value. An algorithm for this is given in section 2.1.2 of [RFC6962].

4.2. Prefix Tree

Prefix trees are used for storing key-value pairs while preserving

the ability to efficiently look up a value by its corresponding key.

Each leaf node in a prefix tree represents a specific key-value

pair, while each parent node represents some prefix which all keys

in the subtree headed by that node have in common. The subtree

headed by a parent's left child contains all keys that share its

prefix followed by an additional 0 bit, while the subtree headed by

a parent's right child contains all keys that share its prefix

followed by an additional 1 bit.

The root node, in particular, represents the empty string as a

prefix. The root's left child contains all keys that begin with a 0

bit, while the right child contains all keys that begin with a 1

bit.

¶

¶

¶

¶

¶

¶

¶

¶

Every key stored in the tree is required to have the same length in

bits, which allows every leaf node to exist at the same level of the

tree (that is, every leaf has a direct path that's the same length).

This effectively prevents users from being able to infer the total

number of key-value pairs stored in the tree.

A prefix tree can be searched by starting at the root node, and

moving to the left child if the first bit of a search key is 0, or

the right child if the first bit is 1. This is then repeated for the

second bit, third bit, and so on until the search either terminates

at the leaf node for the desired key, or a parent node that lacks

the desired child.

New key-value pairs are added to the tree by searching it according

to this process. If the search terminates at a parent without a left

or right child, the parent's missing child is replaced with a series

of intermediate nodes for each remaining bit of the search key,

followed by a new leaf. If the search terminates at the leaf

corresponding to the search key (indicating that this search key

already has a value in the tree), the old leaf value is simply

replaced with a new one.

The value of a leaf node is the encoded key-value pair, while the

value of a parent node is the hash of the combined values of its

left and right children (or a stand-in value when one of the

children doesn't exist).

4.3. Combined Tree

Log trees are desirable because they can provide efficient

consistency proofs to assure verifiers that nothing has been removed

from a log that was present in a previous version. However, log

trees can't be efficiently searched without downloading the entire

log. Prefix trees are efficient to search and can provide inclusion

proofs to convince verifiers that the returned search results are

correct. However, it's not possible to efficiently prove that a new

version of a prefix tree contains the same data as a previous

version with only new keys added.

In the combined tree structure, which is based on [Merkle2], a log

tree maintains a record of updates to key-value pairs while a prefix

tree maintains a map from each key to a pair of integers: a counter

with the number of times the key has been updated, and the position

in the log of the first instance of the key. Importantly, the root

value of the prefix tree after adding the new key or updating the

counter/position pair of an existing key, is stored in the log tree

alongside the record of the update. With some caveats, this combined

structure supports both efficient consistency proofs and can

efficiently authenticate searches.

¶

¶

¶

¶

¶

¶

To search the combined structure, the server first provides the user

with the position of the first instance of the key in the log. The

user then follows a binary search for the log entry where looking up

the search key in the prefix tree at that entry yields the desired

version counter. As such, the entry that a user arrives at through

binary search contains the update with the key-value pair that the

user is looking for, even though the log itself is not sorted.

Providing the position of the first instance of the key in the log

is necessary because the prefix tree structure used isn't able to

provide proofs of non-inclusion (which would leak information about

the number of keys stored in the prefix tree). Without proofs of

non-inclusion, users aren't able to lookup the same key in any

version of the prefix tree -- only versions of the prefix tree that

were created after the key was initially added to the log. Because

the server provides this position, users are able to restrict their

binary search to only touching log entries where the search key can

be successfully looked up in the prefix tree.

Following a binary search also ensures that all users will check the

same or similar entries when searching for the same key, which is

necessary for the efficient auditing of a Transparency Log. To

maximize this effect, users rely on an implicit binary tree

structure constructed over the leaves of the log tree (distinct from

the structure of the log tree itself).

4.3.1. Implicit Binary Search Tree

Intuitively, the leaves of the log tree can be considered a flat

array representation of a left-balanced binary tree. In this

representation, "leaf" nodes are stored in even-numbered indices,

while "intermediate" nodes are stored in odd-numbered indices:

X

X X

X X X X

X X X X X X X

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1: A binary tree constructed from 14 entries in a log

¶

¶

¶

¶

¶

Following the structure of this binary tree when executing searches

makes auditing the Transparency Log much more efficient because

users can easily reason about which nodes will be accessed when

conducting a search. As such, only nodes along a specific search

path need to be checked for correctness.

The following Python code demonstrates the computations used for

following this tree structure:

¶

¶

The exponent of the largest power of 2 less than x. Equivalent to:

int(math.floor(math.log(x, 2)))

def log2(x):

 if x == 0:

 return 0

 k = 0

 while (x >> k) > 0:

 k += 1

 return k-1

The level of a node in the tree. Leaves are level 0, their parents

are level 1, etc. If a node's children are at different levels,

then its level is the max level of its children plus one.

def level(x):

 if x & 0x01 == 0:

 return 0

 k = 0

 while ((x >> k) & 0x01) == 1:

 k += 1

 return k

def left_step(x):

 k = level(x)

 if k == 0:

 raise Exception('leaf node has no children')

 return x ^ (0x01 << (k - 1))

def right_step(x):

 k = level(x)

 if k == 0:

 raise Exception('leaf node has no children')

 return x ^ (0x03 << (k - 1))

def move_within(x, start, n):

 while x < start or x >= n:

 if x < start: x = right_step(x)

 else: x = left_step(x)

 return x

The root index of a search, if the first instance of a key is at

`start` and the log has `n` entries.

def root(start, n):

 return move_within((1 << log2(n)) - 1, start, n)

The left child of an intermediate node.

def left(x, start, n):

 return move_within(left_step(x), start, n)

The right child of an intermediate node.

def right(x, start, n):

 return move_within(right_step(x), start, n)

¶

The root function returns the index in the log at which a search

should start. The left and right functions determine the subsequent

index to be accessed, depending on whether the search moves left or

right.

For example, in a search where the first instance of the key is at

index 10 and the log has 60 entries, instead of starting the search

at the typical "middle" entry of 10+60/2 = 35, users would start at

entry root(10, 60) = 31. If the next step in the search is to move

right, the next index to access would be right(31, 10, 60) = 47. As

more entries are added to the log, users will consistently revisit

entries 31 and 47, while they may never revisit entry 35 after even

a single new entry is added to the log.

Additionally, while users searching for a specific version of a key

can jump right into a binary search for the entry with that counter,

other users may instead wish to search for the "most recent" version

of a key. That is, the key with the highest counter possible. Users

looking up the most recent version of a key start by fetching the

frontier, which they use to determine what the highest counter for a

key is.

The frontier consists of the root node of a search, followed by the

entries produced by repeatedly calling right until reaching the last

entry of the log. Using the same example of a search where the first

instance of a key is at index 10 and the log has 60 entries, the

frontier would be entries: 31, 47, 55, 59.

If we can assume that the log operator is behaving honestly, then

checking only the last entry of the log would be sufficient to find

the most recent version of any key. However, we can't assume this.

Checking each entry along the frontier is functionally the same as

checking only the last entry, but also allows the user to verify

that the entire search path leading to the last entry is constructed

correctly.

4.3.2. Monitoring

As new entries are added to the log tree, the search path that's

traversed to find a specific version of a key may change. New

intermediate nodes may become established in between the search root

and the leaf, or a new search root may be created. The goal of

monitoring a key is to efficiently ensure that, when these new

parent nodes are created, they're created correctly so that searches

for the same versions continue converging to the same entries in the

log.

To monitor a given search key, users maintain a small amount of

state: a map from a version counter, to an entry in the log where

¶

¶

¶

¶

¶

¶

looking up the search key in the prefix tree at that entry yields

the given version. Users initially populate this map by setting a

version of the search key that they've looked up, to map to the

entry in the log where that version of the key is stored. A map may

track several different versions of a search key simultaneously, if

a user has been shown different versions of the same search key.

To update this map, users receive the most recent tree head from the

server and follow these steps, for each entry in the map:

Compute the entry's direct path based on the current tree size.

If there are no entries in the direct path that are to the

right of the current node, then skip updating this entry

(there's no new information to update it with).

For each entry in the direct path that's to the right of the

current node, from low to high:

Obtain a proof from the server that the prefix tree at

that entry maps the search key to a version counter that's

greater than or equal to the current version.

If the above check was successful, remove the current

version-node pair from the map and replace it with a

version-node pair corresponding to the entry in the log

that was just checked.

This algorithm progressively moves up the tree as new intermediate/

root nodes are established and verifies that they're constructed

correctly. Note that users can often execute this process with the

output of Search or Update operations for a key, without waiting to

make explicit Monitor queries.

It is also worth noting that the work required to monitor several

versions of the same key scales sublinearly, due to the fact that

the direct paths of the different versions will often intersect.

Intersections reduce the total number of entries in the map and

therefore the amount of work that will be needed to monitor the key

from then on.

Once a user has finished updating their monitoring map with the

algorithm above, all nodes in the map should lie on the frontier of

the log. For all the remaining nodes of the frontier, users request

proofs from the server that the prefix trees at those entries are

also constructed correctly. That is, that they map the search key to

a version counter that's greater than or equal to what would be

expected. Rather than checking the version counter, the primary

purpose of these checks is to demonstrate that the position field in

each prefix tree has been set correctly.

¶

¶

1. ¶

2.

¶

3.

¶

1.

¶

2.

¶

¶

¶

¶

5. Preserving Privacy

In addition to being more convenient for many use-cases than similar

transparency protocols, KT is also better at preserving the privacy

of a Transparency Log's contents. This is important because in many

practical applications of KT, service operators expect to be able to

control when sensitive information is revealed. In particular, an

operator can often only reveal that a user is a member of their

service to that user's friends or contacts. Operators may also wish

to conceal when individual users perform a given task like rotate

their public key or add a new device to their account, or even

conceal the exact number of users their application has overall.

Applications are primarily able to manage the privacy of their data

in KT by enforcing access control policies on the basic operations

performed by clients, as discussed in Section 3. However, the proofs

given by a Transparency Log can indirectly leak information about

other entries and lookup keys.

When users search for a key with the binary search algorithm

described in Section 4.3, they necessarily see the values of several

leaves while conducting their search that they may not be authorized

to view the contents of. However, log entries generally don't need

to be inspected except as specifically allowed by the service.

The privacy of log entries is maintained by storing only a

cryptographic commitment to the serialized, updated key-value pair

in the leaf of the log tree instead of the update itself. At the end

of a successful search, the service operator provides the committed

update along with the commitment opening, which allows the user to

verify that the commitment in the log tree really does correspond to

the provided update. By logging commitments instead of plaintext

updates, users learn no information about an entry's contents unless

the service operator explicitly provides the commitment opening.

Beyond the log tree, the second potential source of privacy leaks is

the prefix tree. When receiving proofs of inclusion from the prefix

tree, users also receive indirect information about what other valid

lookup keys exist. To prevent this, all lookup keys are processed

through a Verifiable Random Function, or VRF [I-D.irtf-cfrg-vrf].

A VRF deterministically maps each key to a fixed-length pseudorandom

value. The VRF can only be executed by the service operator, who

holds a private key. But critically, VRFs can still provide a proof

that an input-output pair is valid, which users verify with a public

key. When a user requests to search for or update a key, the service

operator first executes its VRF on the input key to obtain the

output key that will actually be looked up or stored in the prefix

¶

¶

¶

¶

¶

tree. The service operator then provides the output key, along with

a proof that the output key is correct, in its response to the user.

The pseudorandom output of VRFs means that even if a user indirectly

observes that a search key exists in the prefix tree, they can't

immediately learn which user the search key identifies. The

inability of users to execute the VRF themselves also prevents

offline "password cracking" approaches, where an attacker tries all

possibilities in a low entropy space (like the set of phone numbers)

to find the input that produces a given search key.

6. Ciphersuites

Each Transparency Log uses a single fixed ciphersuite, chosen when

the log is initially created, that specifies the following

primitives to be used for cryptographic computations:

A hash algorithm

A signature algorithm

A Verifiable Random Function (VRF) algorithm

The hash algorithm is used for computing the intermediate and root

values of hash trees. The signature algorithm is used for signatures

from both the service operator and the third party, if one is

present. The VRF is used for preserving the privacy of lookup keys.

One of the VRF algorithms from [I-D.irtf-cfrg-vrf] must be used.

Ciphersuites are represented with the CipherSuite type. The

ciphersuites are defined in Section 14.1.

7. Cryptographic Computations

7.1. Commitment

As discussed in Section 5, commitments are stored in the leaves of

the log tree and correspond to updated key-value pairs. Commitments

are computed with HMAC [RFC2104], using the hash function specified

by the ciphersuite. To produce a new commitment, the application

generates a random 16 byte value called opening and computes:

where fixedKey is the 16 byte hex-decoded value:

and CommitmentValue is specified as:

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

commitment = HMAC(fixedKey, CommitmentValue)¶

¶

d821f8790d97709796b4d7903357c3f5¶

¶

This fixed key allows the HMAC function, and thereby the commitment

scheme, to be modeled as a random oracle. The search_key field of

CommitmentValue contains the search key being updated (the search

key provided by the user, not the VRF output) and the update field

contains the value of the update.

The output value commitment may be published, while opening should

be kept private until the commitment is meant to be revealed.

7.2. Prefix Tree

The leaf nodes of a prefix tree are serialized as:

where key is the VRF-output search key, counter is the counter of

times that the key has been updated (starting at 0 for a key that

was just created), position is the position in the log of the first

occurrence of this key, and VRF.Nh is the output size of the

ciphersuite VRF in bytes.

The parent nodes of a prefix tree are serialized as:

where Hash.Nh is the output length of the ciphersuite hash function.

The value of a parent node is computed by hashing together the

values of its left and right children:

struct {

 opaque opening<16>;

 opaque search_key<0..2^8-1>;

 UpdateValue update;

} CommitmentValue;

¶

¶

¶

¶

struct {

 opaque key<VRF.Nh>;

 uint32 counter;

 uint64 position;

} PrefixLeaf;

¶

¶

¶

struct {

 opaque value<Hash.Nh>;

} PrefixParent;

¶

¶

where Hash denotes the ciphersuite hash function. Whenever a

parent's left or right child is missing, a stand-in value is

computed from a random seed. The stand-in value is computed as:

The seed value is a randomly sampled byte string of 16 bytes and the

counter is an 8-bit integer. The counter starts at zero and

increases by one for each subsequent stand-in value that's needed,

counting from the root down.

7.3. Log Tree

The leaf and parent nodes of a log tree are serialized as:

The value of a parent node is computed by hashing together the

values of its left and right children:

parent.value = Hash(0x01 ||

 nodeValue(parent.leftChild) ||

 nodeValue(parent.rightChild))

nodeValue(node):

 if node.type == emptyNode:

 return standIn(seed, counter)

 else if node.type == leafNode:

 return Hash(0x00 || node.key || node.counter || node.position)

 else if node.type == parentNode:

 return node.value

¶

¶

standIn(seed, counter):

 return Hash(0x02 || seed || counter)

¶

¶

¶

struct {

 opaque commitment<Hash.Nh>;

 opaque prefix_tree<Hash.Nh>;

} LogLeaf;

struct {

 opaque value<Hash.Nh>;

} LogParent;

¶

¶

7.4. Tree Head Signature

The head of a Transparency Log, which represents the log's most

recent state, is represented as:

where tree_size counts the number of entries in the log tree and

timestamp is the time that the structure was generated in

milliseconds since the Unix epoch. If the Transparency Log is

deployed with Third-party Management then the public key used to

verify the signature belongs to the third-party manager; otherwise

the public key used belongs to the service operator.

The signature itself is computed over a TreeHeadTBS structure, which

incorporates the log's current state as well as long-term log

configuration:

parent.value = Hash(hashContent(parent.leftChild) ||

 hashContent(parent.rightChild))

hashContent(node):

 if node.type == leafNode:

 return 0x00 || nodeValue(node)

 else if node.type == parentNode:

 return 0x01 || nodeValue(node)

nodeValue(node):

 if node.type == leafNode:

 return Hash(node.commitment || node.prefix_tree)

 else if node.type == parentNode:

 return node.value

¶

¶

struct {

 uint64 tree_size;

 uint64 timestamp;

 opaque signature<0..2^16-1>;

} TreeHead;

¶

¶

¶

8. Tree Proofs

8.1. Log Tree

An inclusion proof for a single leaf in a log tree is given by

providing the copath values of a leaf. Similarly, a bulk inclusion

proof for any number of leaves is given by providing the fewest node

values that can be hashed together with the specified leaves to

produce the root value. Such a proof is encoded as:

Each NodeValue is a uniform size, computed by passing the relevant

LogLeaf or LogParent structures through the nodeValue function in

Section 7.3. Finally, the contents of the elements array is kept in

left-to-right order: if a node is present in the root's left

enum {

 reserved(0),

 contactMonitoring(1),

 thirdPartyManagement(2),

 thirdPartyAuditing(3),

 (255)

} DeploymentMode;

struct {

 CipherSuite ciphersuite;

 DeploymentMode mode;

 opaque signature_public_key<0..2^16-1>;

 opaque vrf_public_key<0..2^16-1>;

 select (Configuration.mode) {

 case contactMonitoring:

 case thirdPartyManagement:

 opaque leaf_public_key<0..2^16-1>;

 case thirdPartyAuditing:

 opaque auditor_public_key<0..2^16-1>;

 };

} Configuration;

struct {

 Configuration config;

 uint64 tree_size;

 uint64 timestamp;

 opaque root_value<Hash.Nh>;

} TreeHeadTBS;

¶

¶

opaque NodeValue<Hash.Nh>;

struct {

 NodeValue elements<0..2^16-1>;

} InclusionProof;

¶

subtree, its value must be listed before any values provided from

nodes that are in the root's right subtree, and so on recursively.

Consistency proofs are encoded similarly:

Again, each NodeValue is computed by passing the relevant LogLeaf or

LogParent structure through the nodeValue function. The nodes chosen

correspond to those output by the algorithm in Section 2.1.2 of

[RFC6962].

8.2. Prefix Tree

A proof from a prefix tree authenticates that a search was done

correctly for a given search key. Such a proof is encoded as:

The elements array consists of the copath of the leaf node, in

bottom-to-top order. That is, the leaf's sibling would be first,

followed by the leaf's parent's sibling, and so on. In the event

that a node is not present, then the random value generated when

computing the parent's value is provided instead.

The proof is verified by hashing together the provided elements, in

the left/right arrangement dictated by the search key, and checking

that the result equals the root value of the prefix tree.

The position field of the PrefixLeaf structure isn't provided in

PrefixProof to save space, as this value is expected to be the same

across several proofs.

8.3. Combined Tree

A proof from a combined log and prefix tree follows the execution of

a binary search through the leaves of the log tree, as described in

Section 4.3. It is serialized as follows:

¶

¶

struct {

 NodeValue elements<0..2^8-1>;

} ConsistencyProof;

¶

¶

¶

struct {

 NodeValue elements<8*VRF.Nh>;

 uint32 counter;

} PrefixProof;

¶

¶

¶

¶

¶

Each SearchStep structure in steps is one leaf that was inspected as

part of the binary search. The steps of the binary search are

determined by starting with the "middle" leaf (according to the root

function in Section 4.3.1), which represents the first node touched

by the search. From there, the user moves incrementally left or

right, based on the version counter found in each previous step.

The prefix_proof field of a SearchStep is the output of searching

the prefix tree whose root is at that leaf for the search key, while

the commitment field is the commitment to the update at that leaf.

The inclusion field of SearchProof contains a batch inclusion proof

for all of the leaves accessed by the binary search, relating them

to the root of the log tree.

The proof can be verified by checking that:

The elements of steps represent a monotonic series over the

leaves of the log, and

The steps array has the expected number of entries (no more or

less than are necessary to execute the binary search).

Once the validity of the search steps has been established, the

verifier can compute the root of each prefix tree represented by a

prefix_proof and combine it with the corresponding commitment to

obtain the value of each leaf. These leaf values can then be

combined with the proof in inclusion to check that the output

matches the root of the log tree.

9. Update Format

The updates committed to by a combined tree structure contain the

new value of a search key, along with additional information

depending on the deployment mode of the Transparency Log. They are

serialized as follows:

struct {

 PrefixProof prefix_proof;

 opaque commitment<Hash.Nh>;

} SearchStep;

struct {

 uint64 position;

 SearchStep steps<0..2^8-1>;

 InclusionProof inclusion;

} SearchProof;

¶

¶

¶

¶

1.

¶

2.

¶

¶

¶

The value field contains the new value of the search key.

In the event that third-party management is used, the prefix field

contains a signature from the service operator, using the public key

from Configuration.leaf_public_key, over the following structure:

The search_key field contains the search key being updated (the

search key provided by the user, not the VRF output), version

contains the new key version, and value contains the same contents

as UpdateValue.value. Clients MUST successfully verify this

signature before consuming UpdateValue.value.

10. User Operations

The basic user operations are organized as a request-response

protocol between a user and the Transparency Log operator.

Generally, users MUST retain the most recent TreeHead they've

successfully verified as part of any query response, and populate

the last field of any query request with the tree_size from this

TreeHead. This ensures that all operations performed by the user

return consistent results.

10.1. Search

Users initiate a Search operation by submitting a SearchRequest to

the Transparency Log containing the key that they're interested in.

Users can optionally specify a version of the key that they'd like

to receive, if not the most recent one. They can also include the

tree_size of the last TreeHead that they successfully verified.

struct {

 select (Configuration.mode) {

 case thirdPartyManagement:

 opaque signature<0..2^16-1>;

 };

} UpdatePrefix;

struct {

 UpdatePrefix prefix;

 opaque value<0..2^32-1>;

} UpdateValue;

¶

¶

¶

struct {

 opaque search_key<0..2^8-1>;

 uint32 version;

 opaque value<0..2^32-1>;

} UpdateTBS;

¶

¶

¶

¶

In turn, the Transparency Log responds with a SearchResponse

structure:

If last is present, then the Transparency Log MUST provide a

consistency proof between the current tree and the tree when it was

this size, in the consistency field of FullTreeHead.

Users verify a search response by following these steps:

Verify the VRF proof in VRFResult.proof against the requested

search key SearchRequest.search_key and the claimed VRF output

VRFResult.index.

Evaluate the search proof in search according to the steps in

Section 8.3. This will produce a verdict as to whether the

search was executed correctly, and also a candidate root value

for the tree. If it's determined that the search was executed

incorrectly, abort with an error.

If the user has monitoring information for this search key

(because they own it or are performing Contact Monitoring),

struct {

 opaque search_key<0..2^8-1>;

 optional<uint32> version;

 optional<uint64> last;

} SearchRequest;

¶

¶

struct {

 TreeHead tree_head;

 optional<ConsistencyProof> consistency;

 select (Configuration.mode) {

 case thirdPartyAuditing:

 AuditorTreeHead auditor_tree_head;

 };

} FullTreeHead;

struct {

 opaque index<VRF.Nh>;

 opaque proof<0..2^16-1>;

} VRFResult;

struct {

 FullTreeHead full_tree_head;

 VRFResult vrf_result;

 SearchProof search;

 opaque opening<16>;

 UpdateValue value;

} SearchResponse;

¶

¶

¶

1.

¶

2.

¶

3.

verify that SearchProof.position is the same as in previous

requests, and that the entry's version and position in the log

are consistent with other known versions.

With the candidate root value for the tree:

Verify the proof in FullTreeHead.consistency, if one is

expected.

Verify the signature in TreeHead.signature.

Verify that the timestamp in TreeHead is sufficiently

recent. Additionally, verify that the timestamp and

tree_size fields of the TreeHead are greater than or equal

to what they were before.

If third-party auditing is used, verify auditor_tree_head

with the steps described in Section 11.2.

Verify that the commitment in the terminal search step opens to

SearchResponse.value with opening SearchResponse.opening.

Depending on the deployment mode of the Transparency Log, the value

field may or may not require additional verification, specified in

Section 9, before its contents may be consumed.

To be able to later perform monitoring, users retain the claimed

position of the key's first occurrence in the log,

SearchProof.position. They also retain, for each version of the key

observed, the version number and its position in the log. Users MUST

retain this information if the Transparency Log's deployment mode is

Contact Monitoring, and they SHOULD retain the entire SearchResponse

structure to assist with debugging or to provide non-repudiable

proof if misbehavior is detected. If one of the third-party modes is

being used, users MAY retain this information to perform Contact

Monitoring even though it is not required.

10.2. Update

Users initiate an Update operation by submitting an UpdateRequest to

the Transparency Log containing the new key and value to store.

Users can also optionally include the tree_size of the last TreeHead

that they successfully verified.

¶

4. ¶

1.

¶

2. ¶

3.

¶

4.

¶

5.

¶

¶

¶

¶

struct {

 opaque search_key<0..2^8-1>;

 opaque value<0..2^32-1>;

 optional<uint64> last;

} UpdateRequest;

¶

If the request is acceptable by application-layer policies, the

Transparency Log adds the new key-value pair to the log and returns

an UpdateResponse structure:

Users verify the UpdateResponse as if it were a SearchResponse for

the most recent version of search_key, and they also check that

their update is the last entry in the log. To aid verification, the

update response provides the UpdatePrefix structure necessary to

reconstruct the UpdateValue.

Users MUST retain the information required to perform monitoring as

described in Section 10.1.

10.3. Monitor

Users initiate a Monitor operation by submitting a MonitorRequest to

the Transparency Log containing information about the keys they wish

to monitor. Similar to Search and Update operations, users can

include the tree_size of the last TreeHead that they successfully

verified.

Users include each of the keys that they own in owned_keys. If the

Transparency Log is deployed with Contact Monitoring (or simply if

the user wants a higher degree of confidence in the log), they also

include any keys they've looked up in contact_keys.

Each MonitorKey structure contains the key being monitored in

search_key, and a list of entries in the log tree corresponding to

the values of the map described in Section 4.3.2.

¶

struct {

 FullTreeHead full_tree_head;

 VRFResult vrf_result;

 SearchProof search;

 opaque opening<16>;

 UpdatePrefix prefix;

} UpdateResponse;

¶

¶

¶

¶

struct {

 opaque search_key<0..2^8-1>;

 uint64 entries<0..2^8-1>;

} MonitorKey;

struct {

 MonitorKey owned_keys<0..2^8-1>;

 MonitorKey contact_keys<0..2^8-1>;

 optional<uint64> last;

} MonitorRequest;

¶

¶

¶

The Transparency Log verifies the MonitorRequest by following these

steps, for each MonitorKey structure:

Verify that the requested keys in owned_keys and contact_keys

are all distinct.

Verify that the user owns every key in owned_keys, and is

allowed to lookup every key in contact_keys, based on the

application's policy.

Verify that each entries array is sorted in ascending order.

Verify that the entries in each entries array are all between

the initial position of the requested key and the end of the

log.

Verify each entry lies on the direct path of different versions

of the key.

If the request is valid, the Transparency Log responds with a

MonitorResponse structure:

The elements of owned_proofs and contact_proofs correspond one-to-

one with the elements of owned_keys and contact_keys. Each

MonitorProof is meant to convince the user that the key they looked

up is still properly included in the log and has not been

surreptitiously concealed.

The steps of a MonitorProof consist of the proofs required to update

the user's monitoring data following the algorithm in Section 4.3.2,

including proofs along the current frontier of the log. The steps

are provided in the order that they're consumed by the monitoring

algorithm. If same proof is consumed by the monitoring algorithm

multiple times, it is provided in the MonitorProof structure only

¶

1.

¶

2.

¶

3. ¶

4.

¶

5.

¶

¶

struct {

 PrefixProof prefix_proof;

 opaque commitment<Hash.Nh>;

} MonitorProofStep;

struct {

 MonitorProofStep steps<0..2^8-1>;

 InclusionProof inclusion;

} MonitorProof;

struct {

 FullTreeHead full_tree_head;

 MonitorProof owned_proofs<0..2^8-1>;

 MonitorProof contact_proofs<0..2^8-1>;

} MonitorResponse;

¶

¶

the first time. Proofs along the frontier are provided from left to

right, excluding any proofs that have already been provided, and

excluding any entries of the frontier which are to the left of the

leftmost entry being monitored.

Users verify a MonitorResponse by following these steps:

Verify that the lengths of owned_proofs and contact_proofs are

the same as the lengths of owned_keys and contact_keys.

For each MonitorProof structure:

Evalute the monitoring algorithm in Section 4.3.2. Abort

with an error if the monitoring algorithm detects that the

tree is constructed incorrectly, or if there are fewer or

more steps provided than would be expected.

Construct a candidate root value for the tree by combining

the PrefixProof and commitment of each step, with the

provided inclusion proof.

Verify that all of the candidate root values are the same. With

the candidate root value:

Verify the proof in FullTreeHead.consistency, if one is

expected.

Verify the signature in TreeHead.signature.

Verify that the timestamp in TreeHead is sufficiently

recent. Additionally, verify that the timestamp and

tree_size fields of the TreeHead are greater than or equal

to what they were before.

If third-party auditing is used, verify auditor_tree_head

with the steps described in Section 11.2.

Some information is omitted from MonitorResponse in the interest of

efficiency, due to the fact that the user would have already seen

and verified it as part of conducting other queries. In particular,

the VRF output and proof for each search key is not provided, or

each key's initial position in the log, given that both of these can

be cached from the original Search or Update query for the key.

10.4. Distinguished

Users can request distinguished tree heads by submitting a

DistinguishedRequest to the Transparency Log containing the

approximate timestamp of the tree head they'd like to receive.

¶

¶

1.

¶

2. ¶

1.

¶

2.

¶

3.

¶

1.

¶

2. ¶

3.

¶

4.

¶

¶

¶

In turn, the Transparency Log responds with a DistinguishedResponse

structure containing the FullTreeHead with the timestamp closest to

what the user requested and the root hash of the tree at this point.

If last is present, then the Transparency Log MUST provide a

consistency proof between the provided tree head and the tree when

it had last entries, in the consistency field of FullTreeHead.

Unlike the other operations described in this section, where last is

always less than or equal to the tree_size in the provided

FullTreeHead, a DistinguishedResponse may contain a FullTreeHead

which comes either before or after last.

Users verify a response by following these steps:

Verify the proof in FullTreeHead.consistency, if one is

expected.

Verify the signature in TreeHead.signature.

Verify that the timestamp and tree_size fields of the TreeHead

are consistent with the previously held TreeHead.

If third-party auditing is used, verify auditor_tree_head with

the steps described in Section 11.2.

11. Third Parties

11.1. Management

With the Third-party Management deployment mode, a third party is

responsible for the majority of the work of storing and operating

the log, while the service operator serves mainly to enforce access

control and authenticate the addition of new entries to the log. All

user queries specified in Section 10 are initially sent by users

directly to the service operator, and the service operator proxies

them to the third-party manager if they pass access control.

The service operator only maintains one private key that is kept

secret from the third-party manager, which is the private key

struct {

 uint64 timestamp;

 optional<uint64> last;

} DistinguishedRequest;

¶

¶

struct {

 FullTreeHead full_tree_head;

 opaque root<Hash.Nh>;

} DistinguishedResponse;

¶

¶

¶

1.

¶

2. ¶

3.

¶

4.

¶

¶

corresponding to Configuration.leaf_public_key. This private key is

used to sign new entries before they're added to the log.

As such, all requests and their corresponding responses from

Section 10 are proxied between the user and the third-party manager

unchanged with the exception of UpdateRequest, which needs to carry

the service operator's signature over the update:

The signature is computed over the UpdateTBS structure from

Section 9. The service operator MUST maintain its own records

(independent of the third-party manager) for the most recent version

of each key, for the purpose of producing this signature. The

service operator SHOULD also attempt to proactively detect forks

presented by the third-party manager.

11.2. Auditing

With the Third-party Auditing deployment mode, the service operator

obtains signatures from a lightweight third-party auditor attesting

to the fact that the service operator is constructing the tree

correctly. These signatures are provided to users along with the

responses for their queries.

The third-party auditor is expected to run asynchronously,

downloading and authenticating a log's contents in the background,

so as not to become a bottleneck for the service operator. This

means that the signatures from the auditor will usually be somewhat

delayed. Applications MUST specify a maximum amount of time after

which an auditor signature will no longer be accepted. It MUST also

specify a maximum number of entries that an auditor's signature may

be behind the most recent TreeHead before it will no longer be

accepted. Both of these parameters SHOULD be small relative to the

log's normal operating scale so that misbehavior can be detected

quickly.

Failing to verify an auditor's signature in a query MUST result in

an error that prevents the query's response from being consumed or

accepted by the application.

The service operator submits updates to the auditor in batches, in

the order that they were added to the log tree:

¶

¶

struct {

 UpdateRequest request;

 opaque signature<0..2^16-1>;

} ManagerUpdateRequest;

¶

¶

¶

¶

¶

¶

The update_type field of each AuditorUpdate specifies whether the

update was real or fake (see Section 12.3). Real updates genuinely

affect a leaf node of the prefix tree, while fake updates only

change the random stand-in value for a non-existent child. The index

field contains the VRF output of the search key that was updated,

seed contains the seed used to compute new random stand-in values

for non-existent children in the prefix tree, and commitment

contains the service provider's commitment to the update. The

auditor responds with:

The tree_head field contains a signature from the auditor's private

key, corresponding to Configuration.auditor_public_key, over the

serialized TreeHeadTBS structure. The tree_size field of the

TreeHead is equal to the number of entries processed by the auditor

and the timestamp field is set to the time the signature was

produced (in milliseconds since the Unix epoch).

The auditor TreeHead from this response is provided to users wrapped

in the following struct:

The root_value field contains the root hash of the tree at the point

that the signature was produced and consistency contains a

enum {

 reserved(0),

 real(1),

 fake(2),

 (255)

} AuditorUpdateType;

struct {

 AuditorUpdateType update_type;

 opaque index<VRF.Nh>;

 opaque seed<16>;

 opaque commitment<Hash.Nh>;

} AuditorUpdate;

struct {

 AuditorUpdate updates<0..2^16-1>;

} AuditorRequest;

¶

¶

struct {

 TreeHead tree_head;

} AuditorResponse;

¶

¶

¶

struct {

 TreeHead tree_head;

 opaque root_value<Hash.Nh>;

 ConsistencyProof consistency;

} AuditorTreeHead;

¶

consistency proof between the tree at this point and the most recent

TreeHead provided by the service operator.

To check that an AuditorTreeHead structure is valid, users follow

these steps:

Verify the signature in TreeHead.signature.

Verify that TreeHead.timestamp is sufficiently recent.

Verify that TreeHead.tree_size is sufficiently close to the

most recent tree head from the service operator.

Verify the consistency proof consistency between this tree head

and the most recent tree head from the service operator.

12. Operational Considerations

12.1. Detecting Forks

It is sometimes possible for a Transparency Log to present forked

views of data to different users. This means that, from an

individual user's perspective, a log may appear to be operating

correctly in the sense that all of a user's Monitor operations

succeed. However, the Transparency Log has presented a view to the

user that's not globally consistent with what it has shown other

users. As such, the log may be able to associate data with keys

without the key owner's awareness.

The protocol is designed such that users always remember the last

TreeHead that they observed when querying the log, and require

subsequent queries to prove consistency against this tree head. As

such, users always stay on an individually-consistent view of the

log. If a user is ever presented with a forked view, they hold on to

this forked view forever and reject the output of any subsequent

queries that are inconsistent with it.

This provides ample opportunity for users to detect when a fork has

been presented, but isn't in itself sufficient for detection. To

detect forks, users must either use out-of-band communication with

other users or anonymous communication with the Transparency Log.

With out-of-band communication, a user obtains a "distinguished"

TreeHead that was issued closest to a given time, like the start of

the day, by sending a Distinguished request to the Transparency Log.

The user then sends the TreeHead along with the root hash that it

verifies against to other users over some out-of-band communication

channel (for example, an in-app screen with a QR code / scanner).

The other users check that the TreeHead verifies successfully and

matches their own view of the log. If the TreeHead verifies

¶

¶

1. ¶

2. ¶

3.

¶

4.

¶

¶

¶

¶

successfully on its own but doesn't match a user's view of the log,

this proves the existence of a fork.

With anonymous communication, a user first obtains a "distinguished"

TreeHead by sending a Distinguished request to the Transparency Log

over their normal communication channel. They then send the same

Distinguished request, omitting any identifying information and

leaving the last field empty, over an anonymous channel. If the log

responds with a different TreeHead over the anonymous channel, this

proves the existence of a fork.

In the event that a fork is successfully detected, the two

signatures on the differing views of the log provide non-repudiable

proof of log misbehavior which can be published.

12.2. Combining Multiple Logs

There are some cases where it may make sense to operate multiple

cooperating log instances. For example, a service provider may

decide that it's prudent to migrate to a new deployment mode. They

can do this by creating a new log instance operating under the new

deployment mode, and gradually migrating their data from the old log

to the new log while users are able to query both. In another case,

a service provider may choose to operate multiple logs to improve

their ability to scale or to provide higher availability. Similarly,

a federated system may allow each party in the federation to operate

their own log for their own users.

When this happens, all users in the system MUST have a consistent

policy for executing Search, Update, and Monitor queries against the

multiple logs that maintains the high-level security guarantees of

KT:

If all logs behave honestly, then users observe a globally-

consistent view of the data associated with each key.

If any log behaves dishonestly such that the prior guarantee is

not met (some users observe data associated with a key that

others do not), this will be detected either immediately or in a

timely manner by background monitoring.

In the specific case of migrating from an old log to a new one, this

policy may look like:

Search queries should be executed against the old log first,

and then against the new log only if the most recent version of

a key in the old log is a tombstone.

¶

¶

¶

¶

¶

*

¶

*

¶

¶

1.

¶

Update queries should only be executed against the new log,

adding a tombstone entry to the old log if one hasn't been

already created.

Both logs should be monitored as they would be if they were run

individually. Once the migration has completed and the old log

has stopped accepting changes, the old log SHOULD stay

operational long enough for all users to complete their

monitoring of it (keeping in mind that some users may be

offline for a significant amount of time).

Placing a tombstone entry for each key in the old log gives users a

clear indication as to which log contains the most recent version of

a key and prevents them from incorrectly accepting a stale version

if the new log rejects a search query.

12.3. Obscuring Update Rate

While the protocol already prevents outside observers from

determining the total number of key-value pairs stored by a server,

some applications may also wish to obscure the frequency of updates.

Revealing the frequency of updates may make it possible to deduce

the total size of the tree, or it may expose sensitive information

about an application's usage patterns. However, fully hiding the

frequency of updates is impossible with any hash-based KT

construction. Instead, an application may pad real updates with

"fake" random updates, such that the update rate measured by

observers is fixed to an arbitrary upper-bound value.

The service provider produces a fake update by first choosing three

random values: one to represent the VRF output of the key being

updated, one to represent the commitment to the update, and one

which will be the seed for generating a new stand-in value in the

prefix tree. It then traverses the prefix tree according to the

random VRF output, and replaces the first stand-in value it reaches

with the one generated from the chosen seed. Note that this means

that fake updates don't affect a leaf of the prefix tree. Finally,

the service provider adds a new entry to the log tree with the

random commitment value and the updated prefix tree root.

The VRF output and commitment value can be chosen randomly, instead

of being computed with the actual VRF or commitment scheme, because

the server will never be required to actually open either of these

values. No legitimate search for a key will ever terminate at this

entry in the log.

2.

¶

3.

¶

¶

¶

¶

¶

13. Security Considerations

While providing a formal security proof is outside the scope of this

document, this section attempts to explain the intuition behind the

security of each deployment mode.

13.1. Contact Monitoring

Contact Monitoring works by splitting the monitoring burden between

both the owner of a key and those that look it up. Stated as simply

as possible, the monitoring obligations of each party are:

The key owner, on a regular basis, searches for the most recent

version of the key in the log. They verify that this search

results in the expected version of the key, at the expected

position in the log.

The user that looks up a key, whenever a new parent is

established on the key's direct path, searches for the key in

the prefix tree stored in this new parent. They verify that the

version counter returned is greater than or equal to the

expected version.

To understand why this is secure, we look at what happens when the

service operator tampers with the log in different ways.

First, say that the service operator attempts to cover up the latest

version of a key, with the goal of causing a "most recent version"

search for the key to resolve in a lower version. To do this, the

service operator must add a parent over the latest version of the

key with a prefix tree that contains an incorrect version counter.

Left unchanged, the key owner will observe that the most recent

version of their key is no longer available the next time they

perform monitoring. Alternatively, the service operator could add

the new version of the key back at a later position in the log. But

even so, the key owner will observe that the key's position has

changed the next time they perform monitoring. The service operator

is unable to restore the latest version of the key without violating

the log's append-only property or presenting a forked view of the

log to different users.

Second, say that the service operator attempts to present a fake new

version of a key, with the goal of causing a "most recent version"

search for the key to resolve to the fake version. To do this, the

service operator can simply add the new version of the key as the

most recent entry to the log, with the next highest version counter.

Left unchanged, or if the log continues to be constructed correctly,

the key owner will observe that a new version of their key has been

added without their permission the next time they perform

monitoring. Alternatively, the service operator can add a parent

¶

¶

1.

¶

2.

¶

¶

¶

over the fake version with an incorrect version counter to attempt

to conceal the existence of the fake entry. However, the user that

previously consumed the fake version of the key will detect this

attempt at concealment the next time they perform monitoring.

13.2. Third-party Management

Third-party Management works by separating the construction of the

log from the ability to approve which new entries are added to the

log, such that tricking users into accepting malicious data requires

the collusion of both parties.

The service operator maintains a private key that signs new entries

before they're added to the log, which means that it has the ability

to sign malicious new entries and have them successfully published.

However, without the collusion of the third-party manager to later

conceal those entries by constructing the tree incorrectly, their

existence will be apparent to the key owner the next time they

perform monitoring.

Similarly, while the third-party manager has the ability to

construct the tree incorrectly, it cannot add new entries on its own

without the collusion of the service operator. Without access to the

service operator's signing key, the third-party manager can only

attempt to selectively conceal the latest version of a key from

certain users. However, as discussed in Section 13.1, this is also

apparent to the key owner through monitoring.

13.3. Third-party Auditing

Third-party Auditing works by requiring users to verify a signature

from a third-party auditor attesting to the fact that the service

operator has been constructing the tree correctly.

While the service operator can still construct the tree incorrectly

and temporarily trick users into accepting malicious data, an honest

auditor will no longer provide its signatures over the tree at this

point. Once there are no longer any sufficiently recent auditor tree

roots, the log will become non-functional as the service operator

won't be able to produce any query responses that would be accepted

by users.

14. IANA Considerations

This document requests the creation of the following new IANA

registries:

KT Ciphersuites (Section 14.1)

¶

¶

¶

¶

¶

¶

¶

* ¶

[I-D.irtf-cfrg-vrf]

[RFC2104]

[RFC2119]

[RFC6962]

[RFC8126]

[RFC8174]

All of these registries should be under a heading of "Key

Transparency", and assignments are made via the Specification

Required policy [RFC8126]. See Section 14.2 for additional

information about the KT Designated Experts (DEs).

RFC EDITOR: Please replace XXXX throughout with the RFC number

assigned to this document

14.1. KT Ciphersuites

TODO

14.2. KT Designated Expert Pool

TODO

15. References

15.1. Normative References

Goldberg, S., Reyzin, L., Papadopoulos, D., and

J. Včelák, "Verifiable Random Functions (VRFs)", Work in

Progress, Internet-Draft, draft-irtf-cfrg-vrf-15, 9

August 2022, <https://datatracker.ietf.org/doc/html/

draft-irtf-cfrg-vrf-15>.

Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-

Hashing for Message Authentication", RFC Editor report,

DOI 10.17487/rfc2104, February 1997, <https://doi.org/

10.17487/rfc2104>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Laurie, B., Langley, A., and E. Kasper, "Certificate

Transparency", RFC Editor report, DOI 10.17487/rfc6962,

June 2013, <https://doi.org/10.17487/rfc6962>.

Cotton, M., Leiba, B., and T. Narten, "Guidelines for

Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017, <https://

www.rfc-editor.org/rfc/rfc8126>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

¶

¶

uint16 CipherSuite;¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-15
https://doi.org/10.17487/rfc2104
https://doi.org/10.17487/rfc2104
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://doi.org/10.17487/rfc6962
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8126
https://www.rfc-editor.org/rfc/rfc8174

[RFC8446]

[Merkle2]

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/rfc/rfc8446>.

15.2. Informative References

Hu, Y., Hooshmand, K., Kalidhindi, H., Yang, S. J., and

R. A. Popa, "Merkle^2: A Low-Latency Transparency Log

System", 8 April 2021, <https://eprint.iacr.org/

2021/453>.

Acknowledgments

TODO acknowledge.

Author's Address

Brendan McMillion

Email: brendanmcmillion@gmail.com

¶

https://www.rfc-editor.org/rfc/rfc8446
https://eprint.iacr.org/2021/453
https://eprint.iacr.org/2021/453
mailto:brendanmcmillion@gmail.com

	Key Transparency
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Protocol Overview
	3.1. Basic Operations
	3.2. Deployment Modes
	3.3. Security Guarantees

	4. Tree Construction
	4.1. Log Tree
	4.2. Prefix Tree
	4.3. Combined Tree
	4.3.1. Implicit Binary Search Tree
	4.3.2. Monitoring

	5. Preserving Privacy
	6. Ciphersuites
	7. Cryptographic Computations
	7.1. Commitment
	7.2. Prefix Tree
	7.3. Log Tree
	7.4. Tree Head Signature

	8. Tree Proofs
	8.1. Log Tree
	8.2. Prefix Tree
	8.3. Combined Tree

	9. Update Format
	10. User Operations
	10.1. Search
	10.2. Update
	10.3. Monitor
	10.4. Distinguished

	11. Third Parties
	11.1. Management
	11.2. Auditing

	12. Operational Considerations
	12.1. Detecting Forks
	12.2. Combining Multiple Logs
	12.3. Obscuring Update Rate

	13. Security Considerations
	13.1. Contact Monitoring
	13.2. Third-party Management
	13.3. Third-party Auditing

	14. IANA Considerations
	14.1. KT Ciphersuites
	14.2. KT Designated Expert Pool

	15. References
	15.1. Normative References
	15.2. Informative References

	Acknowledgments
	Author's Address

